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Indirect Utility Maximization under Risk: 

A Heterogeneous Panel Application

Abstract

The curvature properties of the indirect utility function imply a set of refutable implications in 

the form of comparative static results and symmetric relations for the competitive firm operating 

under uncertainty. These hypotheses, first derived and empirically tested under output price 

uncertainty by Saha and Shumway (1998), are extended in this article to the more general case of 

both price and quantity uncertainty and result in an important theoretical finding. Using recently 

developed techniques for testing unit root and cointegration in heterogeneous panels, we develop 

a model of U.S. agricultural production based on the time series properties of a panel of 

state-level data and contrast test implications with those resulting from a traditional model that 

presumes stationarity in all variables. Although differing in specific outcomes, the empirical tests 

of the refutable hypotheses render the same conclusions for both models: we fail to reject most 

refutable hypotheses under output price and output quantity risk, symmetry conditions implied 

by a twice-continuously-differentiable indirect utility function are rejected, two restrictive risk 

preference hypotheses are also rejected, and, at individual observations, data are generally 

consistent with most (but not all) of the hypotheses implied by individual states acting as though 

they were expected utility-maximizing firms.    

Key words: refutable implications, risk and uncertainty, panel unit root, panel cointegration
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Indirect Utility Maximization under Risk:

A Heterogeneous Panel Application

Because of the long time periods between commitment of resources and generation of 

marketable output in production agriculture, a high level of uncertainty is associated with many 

production decisions. Because producers frequently have few options available to significantly 

alter input combinations after the decision is made to produce a commodity, opportunities to 

reduce the adverse consequences of risk are often limited in the short run. Consequently, 

economists concerned about decision making in production agriculture have had a long history 

of considering the impact of risk and uncertainty. 

Building on the early work of Sandmo (1971) and Batra and Ullah (1974), who 

developed the theory of the competitive firm under output price uncertainty, agricultural 

economists have examined firm operations and developed testable firm models under various 

sources of risk. The pioneering work of Pope (1980) derived testable hypotheses expressed in 

symmetry and homogeneity results under constant absolute risk aversion and price uncertainty. 

His symmetry results proved simple enough for empirical application under certain classes of 

utility functions (Antonovitz and Roe 1986). Chavas and Pope (1985) extended Pope’s work by 

examining price uncertainty within a general risk preference framework which facilitated 

empirical tests of firm behavior under the expected utility hypothesis. Paris (1988) analyzed the 

competitive entrepreneur under output and input price uncertainty in a long-run scenario. Dalal

(1990) derived additional symmetry conditions for empirical application under price risk. 

Adrangi and Raffiee (1999) derived testable implications within a comparative statics framework 

for the competitive firm operating under output and input price uncertainty.
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A number of studies have also provided empirical tests for behavioral hypotheses of the 

firm operating under risk. For example, Chavas and Holt (1990) developed an acreage supply 

response model consistent with expected utility maximization and empirically tested the 

symmetry restrictions using annual time-series data for U.S. corn and soybean acreage decisions. 

They found empirical evidence for the symmetry conditions and decreasing absolute risk 

aversion (DARA) on the part of the producer. Later they (Chavas and Holt 1996) tested the 

economic implications of producer behavior under price and production risk in U.S. corn and 

soybean acreage response decisions. The null hypothesis of CARA was rejected and evidence 

was again found to support DARA. Theoretical and functional form deficiencies in the 

Chavas-Holt analysis were addressed by Satyanarayan (1999), who extended previous works to

the firm operating under domestic price and exchange rate uncertainty.

Park and Antonovitz (1992a, b) derived and empirically tested the reciprocity conditions 

linking optimal output and hedging decisions for the competitive firm that uses hedging to 

manage price uncertainty. They concluded that the symmetric results as well as constant absolute 

risk aversion (CARA) for their California feedlot could not be rejected. Dalal (1994) alleged a 

misspecification, criticized their conclusions, and developed a more general formulation using 

the envelope theorem and derivatives of the indirect expected utility function. 

Saha and Shumway (1998) derived general refutable implications from the first-order and 

second-order curvature properties of the indirect utility function under output price uncertainty 

and empirically tested each postulate for a sample of Kansas wheat producers. They failed to 

reject any of the implications of expected utility maximization for their data set but rejected 

restrictive risk attitudes including both CARA and risk neutrality.
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Several studies have recently investigated firm behavior under risk using pooled 

cross-sectional time-series data (e.g., Saha and Shumway 1998; Lien and Hardaker 2001; 

Kumbhakar 2002; Kumbhakar and Tveteras 2003; Roosen and Hennessy 2003). Using panel 

data has several benefits for empirical analysis. For example, it enlarges the sample size, 

enhances the power of statistical tests, and facilitates analysis of dynamic properties of 

relationships. However, a daunting challenge arising from both time series and panel data 

regressions is the possibility that variables involved in the regressions are nonstationary. Unless a 

linear combination of nonstationary variables is stationary, i.e., the variables are cointegrated, 

use of ordinary regression estimators may lead to spurious results (Phillips 1986; Engle and 

Granger 1987). 

Traditional tests of unit roots and cointegration have low power against the alternate 

hypothesis of stationarity in small and moderate sized samples. Consequently, failure to reject 

the hypothesis of a unit root in the series or in the linear combination of variables may occur 

because of the low power of the tests as well as failure of the data to satisfy the necessary 

conditions. Whatever the cause, failure to find stationarity in each series or in a linear 

combination of the series gives the analyst pause when seeking to estimate long-run relationships 

in the data. Recent developments in time-series econometrics that combine time-series and 

cross-sectional information have provided important possibilities for surmounting this dilemma. 

Panel data increase the power of unit root and cointegration tests even though the length of the 

time series is unaffected. Consequently, confidence in time series test conclusions is increased by 

use of panel data.

Although pooled cross-sectional time-series data has been frequently used to examine 

firm behavior under risk, it appears that none has examined the time-series properties of the 
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panel data. Consequently, reported results are subject to the possibility of the spurious regression 

problem. The current research seeks to at least partially fill this void by employing recent 

advances in the econometrics literature designed to test for panel unit roots (i.e. Im, Pesaran, and 

Shin 1997) and panel cointegration (i.e. Pedroni 1999).1 These panel tests allow for both 

parametric and dynamic heterogeneity across groups and are considerably more powerful than 

conventional methods (Harris and Tzavalis 1999). Besides its unique application to firm 

behavior under risk, this investigation joins only a small number of other studies in reporting 

empirical applications of panel cointegration techniques to a heterogeneous panel with multiple 

regressors.2  

With this background, the objectives of this article are to: (a) extend the previous 

theoretical work by careful derivation of refutable and testable implications of the indirect utility 

function under both output price and quantity risk, (b) demonstrate that one previously 

maintained hypothesis is not a necessary condition for the derived implications, (c) empirically 

test the derived implications as well as a set of hypotheses about the nature of risk aversion 

practiced by producers using a traditional model in which stationarity of the data is implicitly 

assumed and time is included as a proxy for technical change, (d) examine the time-series 

properties of variables involved in a system of input demand equations by employing recent 

developments in panel unit root and panel cointegration techniques, (e) develop a model for 

input demands consistent with the time series test results and with technical change proxied by 

public research expenditures, and (f) contrast important inferences from hypothesis test results 

from this model with those from the traditional model.

The plan of this article is as follows. The next section gives a brief overview of the 

behavioral theory implied by curvature properties of the indirect utility function and derives a set 
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of testable hypotheses. The following section discusses our econometric model and introduces

the panel testing methodologies employed in this article. Time series properties of our data based 

on panel unit root and cointegration tests are then reported along with empirical results of the 

refutable hypotheses from both models. Conclusions are presented in the last section.

Theoretical Model

Traditionally, the introduction of price uncertainty into the theory of the competitive firm has 

been approached within an expected utility framework. The seminal works of Arrow (1965) and 

Pratt (1964) defined preferences of expected utility-maximizing decision makers over final 

wealth. Despite their unambiguous reference to final wealth, much of the analysis of risk taking 

behavior of agricultural producers, beginning with Sandmo (1971), has used profit rather than 

wealth as the argument of utility (Meyer and Meyer 1998). Profit is the appropriate argument 

only if sources of wealth other than profit are nonrandom and held fixed. Since we do not wish to 

impose nonrandom constraints on other sources of wealth, we use wealth as the argument of 

utility in the following theoretical model. Therefore, the firm is assumed to maximize its 

expected utility of random wealth. 

Following Feder (1977) and Saha and Shumway (1998), we assume that a competitive 

firm’s random wealth W  can be structured as a nonrandom part Z(∙), a random component S(∙), 

and nonrandom initial (beginning of period) wealth endowment I:

(1)    ; , ; ; IW Z S    � �x x

where x =(x1, x2,…, xn)’ is an 1n  vector of decision variables,   is a random variable vector, 

β is a parameter vector, and · denotes the additional parameters concealed in Z(∙) and S(∙). The 

parameters, β, only enter the nonrandom part of wealth, Z(∙), but not the random part S(∙). 
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Although we later demonstrate that it is unnecessary for our refutable implications to hold under 

output price and output quantity risk, we initially maintain the standard expectation:

(2)  E ; , 0S     �x

where E denotes the expectation operator.

Conditional on twice-differentiable functions of Z and S, the expectation of random 

wealth defined by (1) and (2) can be written as:  

(3)        E ; , I E ; ; ; , IW W Z S Z          � � �x x x .

Refutable Implications of the Indirect Utility Function

For a competitive firm whose objective is to maximize the expected utility of random 

wealth specified by (1), the indirect utility function is defined by: 

(4)        ; I, E ; , ; ; IV max U Z S      � � �x x , 

where U(∙) represents the von Neumann Morgenstern utility function, which is increasing in 

wealth, therefore is increasing in nonrandom part of wealth, Z(x; β, ∙). Let x*(β, I, ∙) denote the 

optimal input variables which are determined by (4). Under the assumptions of (1) and (2), the 

indirect utility function defined by (4) implies the following propositions (Saha and Shumway 

1998):

Proposition 1: The indirect utility function defined by (1) has the following first-order curvature 

properties:

(i) Increasing in I,

(ii) Increasing (decreasing) in β if Z is increasing (decreasing) in β.

Proposition 2: The second-order curvature properties of the indirect utility function indicate:

(i) V quasiconvex in β and I if Z is convex in β,  
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(ii) V quasiconvex in β and I   symmetric and positive semidefinite (SPSD),

where  * *
IZ Z Z      x x x .3

Corollary: Under risk neutrality or CARA, xI*=0, and Z convex in β *Z Z    x x  is SPSD. 

Obviously, V(β; I, ∙) is increasing in I. Proposition 1(ii) indicates that the first-order 

curvature properties of the indirect utility function corresponding to β can be revealed by the 

first-order curvature characters of the nonrandom part of wealth Z(x; β, ∙). Proposition 2(i) 

implies the fundamental second-order curvature properties of the indirect utility function which 

can be explored by observing the properties of the second-order curvature of Z(x; β, ∙). By 

proposition 2(i), V(β; I, ∙) is quasi-convex in β if Z is convex in β. This property implies and is 

implied by the testable postulates contained in proposition 2(ii). In proposition 2(ii), the 

symmetric and positive semi-definite (SPSD) matrix,  , which contains the comparative static 

and reciprocity results demonstrating the firm behaviors, includes the complete set of the 

refutable implications for the competitive firm under risk. Most importantly, propositions 1 and 2 

do not rely on specific forms of U(∙) that would otherwise impose an explicit risk preference 

(Love and Buccola 1991; Saha Shumway and Talpaz 1994). When combined with the 

empirically testable curvature properties of Z(x; β, ∙), they allow us to test the behavioral 

postulates without assuming a specific functional form for the indirect utility function.  

These refutable propositions derived by Saha and Shumway (1998) have been 

empirically tested only under output price uncertainty. One important theoretical contribution of 

this article, the importance of which will be explained in the next section, is to demonstrate that 

the propositions hold even without assumption (2). From the proof in Saha and Shumway (1998), 

it is obvious that proposition 1 and proposition 2(ii) aren’t conditioned on assumption (2), and all 

that is needed for them to hold is assumption (1). We refer readers to Saha and Shumway (1998) 
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for the details. Before proving that proposition 2(i) holds without assumption (2), we claim the 

following result. 

Claim. The firm’s optimization problem defined in (4) is equivalent to a constrained 

optimization problem where x and W  are jointly chosen. Defining  ,Wk x  and λ = {β, I}, 

then:

(5)
   

         
max E ; , ; ; I

max E ; ; E ; ; | ; , E ; ; I

x

k

V U Z S

V U W S S W Z S

 

   

    

          

� �

  � � � �

x x

x x x x
.

Proof: First, we demonstrate that the constraint, ( ;β, ) E[ ( ; ; )] IW Z S     x x , will be 

binding for all optimal values of   and W x . Suppose the constraint is not binding, then there 

must exist some parameter values 0 0 0 0 0 0{ ,  } and {β ,  I }W k x λ  such that 0 0 0{ ,  } Wk x

and 0 0 0{β ,  I }λ  maximize the indirect utility, given by (5), with the following condition 

(6)    0 0 0 0 0x ; , E ; ; IW Z S x     � � .

Therefore, there exists some 0'W W  such that 

(7) 0 0 0 0' E ' ( ;β , ) I E ( ; ; ),W W Z S      x x

which implies 0{ ,  '}Wx  is feasible.

Since the utility function is increasing in wealth, we have

(8) 0 0 0 0 0E ( ' ( ; ; ) E[ ( ; ; )]) E ( ( ; ; ) E[ ( ; ; )])U W S S U W S S              x x x x ,

which contradicts the fact that 0 0 0 0 0 0{ ,  } and {β ,  I }W k x λ  maximize the indirect utility. 

Thus, the constraint is binding for all optimal values of  and k λ , and the claim is proved by 

substituting the binding constraint E ( ;β, ) I E ( ; ; )W W Z S      x x  into (5).
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With claim 1 proven, we can now prove that proposition 2(i) is implied by assumption (1). 

Let      , ; , E ; ; IH k W Z S     � �x x , which is non-positive. Then (5) is equivalent to 

the following expression:

(9)          , max E ; ; E ; ; | , 0
k

V U W S S       k k � � �x x .

If  ; ,Z  �x  is convex in , 0 and 0Z Z    . The Hessian matrix of  ,H k  with 

respect to  and I is 

(10)

2 2

2

2 2

2

0

0 0

I I

H H
ZI

D
H H

 



  
              
 
   

Let ,    and   be any feasible vectors such that  1 , 0 1t t t         and k

denotes the optimal vector corresponding to  . Under the conditions 0Z   and | | 0D  , D

is negative semi-definite, which implies  ,H k  is quasiconcave in  , I  . Therefore, the 

following inequality holds: 

(11)       min , , , , 0,H H H     k k k

which is sufficient to ensure that either    , 0 or , 0,H H   k k  or both. Therefore, 

(12)       , max , , ,V V V   � � � . 

By definition, the inequality in (12) implies that  V �  is quasiconvex in λ .

Testable Hypotheses

Consider a firm’s production function that has the following general form:

(13)   ,Yf  Y x
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and random price denoted by:

(14) ,P P P

where Y  is random output quantity; f(x), a function of input vectors x, is called the mean 

output function; P  denotes random price; P  is the mean of price; Y and P are stochastic 

terms which represent random production shock and random price shock respectively; 

  0YE    and   0PE   . Letting r = {r1, …, rn}’ be the price vector of inputs, random wealth 

under output price and output quantity uncertainty will be:

(15)    I I.Y P P YW f f           r r  � � � � � �P Y x P x P x x

In terms of the notation in the preceding section, r corresponds to β, the nonrandom part 

of wealth is:

(16)    ; , ,Z f r r� � �x P x x

and the random component of wealth is:

(17)    ; ; Y P P YS f       � � � �x P x

Therefore,      E ; ; E Y P P Y P YS f E               � � � � �x P x . Under the assumption of no 

correlation between output prices and quantities,  E 0P Y  �  and thus  E ; ; 0S     �x , 

which is consistent with assumption (2). 

For an individual firm operating in a competitive market  E 0P Y  � because the 

firm’s decisions cannot affect the general equilibrium of the market. However, much empirical 

analysis, including ours, uses data for aggregates of firms.  Sometimes that is for convenience 

and other times it is necessary because essential firm-level data don’t exist. Even though the 

decisions of individual price-taking firms can’t affect the market equilibrium, the collective 
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decisions of many firms can. Thus, since we have demonstrated that assumption (2) is 

unnecessary for any of the previous implications to hold, it is clear that we can make use of 

aggregate data, if necessary, to conduct empirical tests of both propositions.

With random wealth under output price and output quantity uncertainty defined as in 

equations (15), (16) and (17), the indirect utility function becomes:

(18)        ; I, E ; , ; ; I .V max U Z S     r r � � �x x

By proposition 1(ii), the firm’s indirect utility function, V(r; I, ∙), is decreasing in r since the 

firm’s expected profit, i.e., a nonrandom portion of wealth, decreases in r. Applying the envelope 

theorem to (16), proposition 1(ii) can thus be translated to the following:

(19) * 0,
S

V Z   r r x

where 
S

  denotes ‘same sign as’. The result in (19) is the first-order curvature property of the 

indirect utility function.  It indicates that, as input prices increase, the terminal wealth of the 

producer diminishes and leads to a decrease in the utility of final wealth. By again applying the 

envelope theorem, Zrr = -xr
*and Zrx is a negative identity matrix. Thus, we have: 

(20)

 

 

* *
I

* *
I

* * *
I

2

2

Z Z Z

Z

   

 

  

rr r r

r r

r

x rx x

x x

x x x

since Zr= -x*. Using this result, the second-order curvature result of proposition 2(ii) translates 

to:

(21a)   V(r; I , ∙) quasiconvex in r and I  * * *
I 2    rx x x  is SPSD,

which implies the following matrix is symmetric negative semidefinite:

(21b) * * *
I 2 .   rx x x
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Specifically, when there are three input variables, (21b) can be rewritten as:

(21c)

* * * * * * * * *
1 1 1I 1 1 2 1I 2 1 3 1I 3

* * * * * * * * *
2 1 2I 1 2 2 2I 2 2 3 2I 3

* * * * * * * * *
3 1 3I 1 3 2 3I 2 3 3 3I 3

2 2 2

2 2 2

2 2 2

   
    
    

r r r

r r r

r r r

� � � � � �

� � � � � �

� � � � � �

x x x x x x x x x

x x x x x x x x x

x x x x x x x x x

.

Equations (19) and (21a)-(21c) reveal that the propositions imply a set of testable hypotheses 

associated with the input responses of the firm operating under output price and output quantity 

uncertainty. Therefore, the propositions implied by the indirect utility function can be 

empirically tested by imposing parameter restrictions on a firm’s demand equations.

Econometric Model and Empirical Methodology

Data 

Because we lack essential data to conduct tests of these propositions for a broad cross-section of 

individual U.S. firms, the above methodology was applied to annual state-level data for the 

period, 1960-1999.4 The major data source was the ERS annual agricultural output and input 

series for each of the contiguous 48 states for the period 1960-1999 (Ball 2002). This 

high-quality aggregate data set includes a comprehensive inventory of agricultural output and 

input prices and quantities compiled using theoretically and empirically sound procedures 

consistent with a gross output model of production (see Ball et al. 1999, for details). The data set 

includes three output groups (crops, livestock, and secondary outputs) and four input groups 

(materials, capital, labor, and land). 

Initial stock of wealth, I, was proxied by equity, or "net worth", which measures farm 

business assets minus farm business debt. These data for each state were taken from the Farm 

Balance Sheets (USDA/ERS). 

Deflated annual public research expenditures for each state for the period 1927-1995 

were from Huffman (2002). These data served as proxies for technical innovation in the model 



14

based on the time series properties of the data. It has been showed that research expenditures can 

affect technology, or the nature of the production function, at least seven years later and

sometimes as long as 30 years later (Chavas and Cox 1992; Pardey and Craig 1989). Akaike’s 

Information Criterion (AIC) was used to select the optimal lag on public research expenditures. 

Lagged output prices were used as proxies for expected output prices. Lagged equity was 

used as a proxy for initial (beginning period) wealth. To partially mitigate the effects of trending 

and autocorrelated data, expected output prices, equity, and current input prices were normalized 

by the price of land. To reduce heteroskedasticity and to permit estimation of identical 

non-intercept coefficients for all states in the panel data set, input quantities, normalized equity, 

and deflated research expenditures were scaled by the quantity of land.5

Econometric Model

Without maintaining any additional hypotheses about the input demand equations, we used a 

quadratic (second-order Taylor-series expansion) functional form to approximate the input 

demand framework. Input demand equations for materials/land, capital/land, and labor/land were 

each estimated as a fixed-effects panel data model: 

(22) 2
j j j j 1j 2 j j0.5 t 0.5 t ,j 1,2,3e          d z z zx

where xj is the quantity of the jth input measured as input per unit of land; d is the vector of state 

dummy variables; the vector z = {p1, p2, p3, r1, r2, r3, I} contains lagged output prices pi (for crops, 

livestock, and secondary outputs), current input prices rj (for materials, capital, and labor), and 

lagged farm equity per unit of land I, each normalized by the price of land; t is the proxy for 

technological innovations and is represented by time = 1, . . ., 40 in the traditional model and by 

public research expenditures per unit of land in the time-series-based model; the error term is 

denoted by ej: parameters to be estimated are the vectors j, j, j, and the scalars 1j, 2j. 
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For each individual equation in the demand system specified by (22), fixed effects across 

cross-sectional observations were considered. So that all refutable implications under output 

price and output quantity risk contained in (19) and (21a)-(21c) could be tested, no restrictions 

were imposed on the estimated parameters across the equations. 

Since stationarity of all variables is implicitly assumed when equation (22) is estimated 

without first examining their time-series properties, the results of the traditional model may be 

misleading. In the time-series-based model, we checked whether any of the variables contain unit 

roots, and if they do, whether a linear combination of the variables as represented in equation (22) 

also have a unit root (i.e., are not cointegrated). If they are cointegrated, a valid long-run 

relationship can be represented by equation (22). Variables are cointegrated if they are stationary 

after differencing and no unit root exists in the residuals (Engle and Granger, 1987). If all 

nonstationary variables in equation (22) are cointegrated, the equation represents a structural 

rather than a spurious relationship.  

Unit Root Tests in Panel Data

The most common procedure used to test for a unit root in a data series is the augmented 

Dickey-Fuller (ADF) test. The null hypothesis of this test is nonstationarity. Given the small 

span of our time series (40 annual observations), conventional ADF tests conducted on each

individual state series can have very low power and lead to seriously misguided conclusions. The 

preferred choice is to apply a panel unit root test. 

Several procedures have been proposed to test for the null hypothesis of nonstationarity 

in panels. Quah (1992, 1994) developed a test for a unit root in panel data subject to 

homogeneous dynamics. Levin and Lin (1993) generalized this method to allow for fixed effects, 

individual deterministic trends, and heterogeneous serially correlated errors. However, the 
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alternative hypothesis only allowed for the possibility of identical first-order autoregressive 

coefficients in all series. To allow for residual serial correlation and heterogeneous 

autoregressive coefficients across groups, Im, Pesaran, and Shin (1997) (hereafter IPS) proposed

using an average of the ADF tests. Monte Carlo experiments showed that the IPS test 

outperforms Levin and Lin's test, especially having greater power and better small-sample 

properties (Im, Pesaran, and Shin 1997). Consequently, the IPS test is the panel unit root test we 

employ. 

It consists of testing the null hypothesis H0: 0i i    (where i indicates a

cross-sectional member) against the alternative hypothesis Ha: 0i  for some or all i in the 

following equation:

(23) , 1 ,1
, 1, 2, , , 1, , ,ip

it i i i i t ij i t j itj
y t y y i N t T     

          

where y is a data series; t is time period; , 1it it i ty y y    ;  and  represent the idiosyncratic 

fixed effect and deterministic trend parameters to be estimated;  and  are other parameters to 

be estimated; and  is the error term. The IPS statistic is defined as the average of the ADF 

statistics for individual cross-sectional members. It is computed as:

(24)
1

1 N

NT iT
i

t t
N 

  ,

where iTt  is the individual t-statistic for the ADF test of a unit root for an individual member in 

the panel. The resulting IPS statistic is:

(25)
( [ | 0])

N(0,1)
[ | 0]

NT T i
IPS

T i

N t E t
t

Var t




 
 


,

where [ | 0]T iE t    and [ | 0]T iVar t    are the common mean and variance of iTt , obtained 

by Monte Carlo simulation and tabulated in Im, Pesaran, and Shin (1997).
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As noted by Pedroni (1997) and Kao, Chiang, and Chen (1999) regarding heterogeneous 

panels with multiple regressors, it is inappropriate to apply individual unit root tests to judge the 

stationarity of estimated residuals from linear combinations of nonstationary variables. 

Consequently we pool the time-series and cross-sectional data sets and use Pedroni’s (1999) 

panel cointegration tests to test for the existence of a long-run relationship between the 

normalized input quantity xj and the right hand-side variables in equations (22). 

Consider the following time series panel regression:

(26) ,   1,..., ,   1,..., ,it i it i i ity X t e i N t T       

where ity and itX are the observable dependent and independent variables with dimensions

( ) 1N T  and ( )N T m  , respectively; m is the number of regressors;  are the regressor 

parameters to be estimated; ite is a vector of disturbance terms. Pedroni (1999) proposed 

several statistics that can be classified into two categories. One category consists of 

within-dimension-based statistics (or panel statistics), in the spirit of Levin and Lin (1993). 

These statistics pool the residuals along the “within dimension” of the panel, i.e., numerator and 

denominator components of the test statistics are summed separately over the cross-sectional 

dimension. The second category consists of between-dimension-based statistics (or group mean 

statistics). Based on IPS (1997), these statistics obtain the ratio of numerator to denominator for 

each cross-sectional member prior to aggregating over the N dimension. 

In both cases, the null hypothesis is the same, i.e., that the variables are not cointegrated 

for each cross-sectional member. The alternative hypothesis is different for the two test 

categories. The alternative for the first test category (panel statistics) is that the stationary 

autoregressive parameter is homogeneous. Maddala and Wu (1999) argue that this alternative is 

unreasonable, and that the second test category (group statistics) is more appropriate since the 
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alternative hypothesis, which permits heterogeneous autoregressive parameters, is less 

restrictive. 

Two statistics for the second category of tests are as follows:

(27) (Group ρ statistic)  
, 1
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where 2 21ˆ ˆ ˆ( )
2i i is   , and 2ˆi  and 2

îs  are individual long-run and contemporaneous 

variances, respectively, of the residuals ˆitu from the autoregression , 1
ˆˆ ˆ ˆit it i i tu e e   .
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Adjusted by appropriate constants obtained from the moments of the underlying 

Brownian motion functions, these statistics are distributed as standard normal when both N and T

grow large. Large left tail values of these statistics imply rejection of the null hypothesis in favor 

of cointegration.

Empirical Results

Panel Unit Root and Cointegration Tests

As illustrated in figure 1, a structural change involving a break in volatility occurred in 

approximately 1981 for most of the states for all the normalized prices and normalized wealth. 

To mimic the effects of such a structural break, we split the data for normalized prices and 

wealth variables for all states into two groups at 1981. A linear regression of each variable on 
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year was estimated for each time period, and standard deviations were computed. After dividing 

the normalized prices and equity in each time period by the respective standard deviation, the 

transformed data were used in the panel tests.

As also illustrated in figure 1, all cross-sectional members in the panel had almost the 

same time pattern for prices and equity variables. The implication is that the price series and 

equity tended to be driven by some common external disturbance. As recommended by IPS, the 

common time effects across states was purged by regressing each normalized price series and 

normalized equity on a set of time dummies and using these residuals in the unit root tests. This 

approach assumes that the disturbances for each member of the panel can be decomposed into 

common disturbances that are shared among all members of the panel and independent 

idiosyncratic disturbances that are specific to each member.

The results of the unit root tests proposed by IPS are shown for each variable in table 1. 

These tests allowed each panel member to have a different autoregressive coefficient and short 

run dynamics under the alternative hypothesis of trend stationarity. The tests were conducted 

using the econometric software package RATS version 6, routine PANCOINT. Following the 

suggestion of Newey and West (1994), the number of lags included in each test was determined 

by the Bartlett kernel with the bandwidth parameter, ki , set equal to the integer of 4(T/100)2/9, 

i.e., ki=3 in our application. The lag on research expenditures was determined by minimizing

AIC for lags of 7-30 years. The optimal lag ranged from 17 to 30 years, depending on input 

demand equation. For convenience in subsequent analysis, an identical lag of 17 years was 

selected for all equations. This value was the optimal lag for the labor equation, and the 

distribution of AIC values was much flatter for the other equations than for the labor equation. 
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The unit root test statistics were distributed as N(0,1) under the null of a unit root with a 

one-tailed negative test statistic for the alternative hypothesis. 

At the 5% significance level, a unit root was rejected only for the series x3, r3, and p2. 

When the other (nonstationary) variables were tested for a unit root in first differences, the 

alternative hypothesis was stationarity without a trend since any time trend in levels was

removed by differencing (Canning and Pedroni, 1999). The test statistic for 1st differences was 

negative and significant at a 5% level in each variable except for x1. The latter was significant at 

a 10% level. Although higher than our prespecified significance level, we accepted x1 as a 

stationary series in first differences because it continued to exhibit nonstationarity at the 5% level 

even after 4th differencing. Consequently, we conclude that x3, r3, and p2 are stationary, i.e., 

integrated of order zero – I(0), and that all other variables are integrated of order one, I(1).

 We next tested for cointegration among the nonstationary variables for each input

demand equation. If the data are cointegrated for an input demand, equation (22) for that input 

can be estimated using the original (i.e., untransformed) data to capture the long-run 

relationships in the data. If the data are not cointegrated, first differences must be taken for all 

variables except x3, r3 and p2 in order to capture the long-run relationships 

In order to improve the power of the cointegration tests, we considered the trade-off 

between size and power of the tests (Haug, 1996). By pooling the data across states, the group

mean statistics for panel cointegration tests in Pedroni (1999) could be applied. Some variables 

(i.e., all the normalized prices and equity) involved in the input demand equations (equation 22) 

tended to be cross-sectionally dependent, and the others did not. Therefore, in the panel 

cointegration testing procedure, we considered both the case including common time dummies 
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(to capture effects that tend to cause individual state variables to move together over time) and 

the case without time dummies.

As suggested by Pedroni (1999), the adjustment terms for the panel cointegration tests 

were obtained by Monte Carlo simulation on the basis of 10,000 draws of 37 independent 

random walks (i.e., the number of regressors exclusive of dummy variables) of length 

T=10,000.6 The results of the panel cointegration tests, presented in table 2, show that there is 

no evidence of cointegration among the variables for any of the demand equations. Consequently, 

the time-series-based input demand equations were estimated using differenced data for all 

variables except x3, r3, and p2.

Econometric Model Estimates

For the purpose of comparison, two sets of input demand equations were estimated.  They 

included (a) the traditional model in which all variables were implicitly assumed to be stationary 

and (b) the time-series-based model that accounted for non-rejected time series properties of the 

data investigated in last sub-section. In both models, each equation had the same regressors and 

no across-equation restrictions were imposed. Consequently, the SUR parameter estimates were 

identical to OLS estimates. The SUR estimation procedure was used to permit across-equation 

tests to be conducted, as required for proposition 2.

Before estimating the traditional model, we first tested for a 1st-order autoregressive 

(AR(1)) process in the error terms for each input demand equation defined in (22). Evidence of 

an AR(1) process was found in each equation with Durbin-Watson test statistics of 0.311, 0.317, 

and 0.674, respectively, for the materials, capital, and labor input demand equations. Subject to 

the assumption that the autoregressive coefficients (rho) within a demand equation were identical 

across states, estimates of rho for the three input demand equations were 0.971, 0.923, and 0.870, 
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respectively. The data were transformed for 1st-order autocorrelation and used in a seemingly 

unrelated regression (SUR) estimation of the system of three input demand equations.7 The 

traditional model estimates of the input demand equations are reported in table 3. The R2 values 

for the three equations in (22) were 0.834, 0.542, and 0.791 respectively.

Parameter estimates for the time-series-based input demand equations are reported in 

table 4.8 The R2 values were considerably lower (0.153 and 0.204) for the materials and capital 

equations estimated by this model than by the traditional model. However, it should be recalled 

that the data used for the dependent variables were not the same. They were untransformed data 

in the traditional model and first differences in the time-series-based model. For the labor 

equation, the data used for the dependent variable was the same in both models and the R2 value 

was higher (0.935) in the time-series-based model.

It is well known that failing to properly account for unit roots in time-series data often 

results in spurious conclusions being drawn about significant relationships. Our findings were 

consistent with that expectation.  Far fewer estimated parameters were significant in our 

time-series-based model than in our traditional model. For example, 20, 46, and 51% of 

estimated parameters in the materials, capital, and labor demand equations, respectively, were 

significant at the 5% level of significance in the time-series-based model. These compared to 76, 

58, and 73%, respectively, in the traditional model. Excluding dummy variables, the traditional 

model overestimated the number of significant relationships by 60-100%. In addition, of 35

common non-dummy coefficients in these two models, many changed signs – 11 in the materials

demand equation, 20 in the capital demand equation, and 20 in the labor demand equation.  
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Hypothesis Test Results

Hypothesis tests of the propositions and corollary were conducted on the estimated parameters at 

the data means. These results, as well as a tabulation of predicted values consistent with the 

hypotheses at each observation, are presented in table 5 for both models. Proposition 1 was 

examined by testing whether each of the three predicted input demands in equation (22) was 

positive. These test results are listed as propositions 1.1-1.3 in table 5. The null hypothesis of a 

zero input demand level was rejected by both models in favor of positive predicted input 

demands at the data means for each input at a 5% significance level. In addition, nearly all the 

predicted input quantities were strictly positive at individual observations. For the traditional 

model, among 1,872 observations, only 11 predicted capital quantities and one predicted labor 

quantity violated first-order curvature properties. For the time-series-based model, a higher 

rejection rate were found – among 1,824 observations, 78 predicted capital quantities and 14

predicted labor quantities violated first-order curvature properties.

The second proposition that * * *
I( 2 )    rх х х  is symmetric positive semidefinite was 

tested by the equivalent specification that * * *
I 2   rх х х  is symmetric negative semidefinite. 

To test this proposition, three individual tests (tests 2.1-2.3 in table 5) were conducted for 

negative semidefiniteness and a joint test (test 3 in table 5) for symmetry. The tests for negative 

semidefiniteness involved tests that all the leading principal minors of   alternative in signs, 

starting with a nonpositive first leading principal minor, i.e., the first diagonal element. None of 

the refutable behavioral hypotheses implied by second-order curvature properties of the indirect 

utility function was rejected at the data means by either model. In the traditional model, although 

both the second leading principal minor (test 2.2) and the determinant (test 2.3) of   had 

unexpected signs at the data means, they were not significantly different from zero. Considerably 
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more evidence of second-order curvature violations than of first-order curvature violations at 

individual observations than of first-order condition violations. Except for test 2.3 with the 

time-series-based model, individual violations didn’t exceed 25% of the observations.

The test results for symmetry of   are presented in test 3 in table 5. The three 

symmetric restrictions were rejected at the 5% significance level by the joint test conducted at 

data means in both models. Thus, the hypothesis implied by proposition 2 that  is symmetric 

positive semidefinite is statistically rejected at this data point. Whether rejection of symmetry 

constitutes a rejection of the hypothesis that the collection of firms in each state act as though 

they were a single expected utility-maximizing firm, or whether it simply implies that the 

indirect utility function is not twice continuously differentiable at the data means is ambiguous 

from these test results. Unfortunately, we are unable to resolve the ambiguity in this article.

Decision making consistent with constant absolute risk aversion or risk neutrality implies 

three restrictions on input demand responses. The result (test 4 in table 5) indicates that these 

restrictions were rejected by the joint test at the data means at the 5% significance level in both 

models. 

Our results using state-level aggregates were similar in a number of respects to Saha and 

Shumway’s (1998) findings about output price risk for Kansans wheat farmers. However, we 

found less support in the aggregate data than they found in the firm-level data for symmetry of 

the indirect utility function. Our conclusions about first-order curvature properties and the nature 

of producers’ risk preference were the same as theirs. The extant literature has not reached a 

consensus regarding the nature of farmers’ risk preferences (Goodwin and Mishra, 2002), but a 

few have found empirical support for the hypothesis of constant absolute risk aversion (CARA).  
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Among those are the work of Park and Antonovitz (1992a, 1992b) who failed to reject CARA 

for California feedlots.

Conclusions

This study has extended the Saha and Shumway (1998) model of a competitive firm operating 

under output price risk to a firm operating under both output price and output quantity risk. One 

important theoretical contribution to the previous literature is that the refutable propositions 

implied by the indirect utility function are shown to hold without one of the previously 

maintained hypotheses. Therefore, the only conditions required for the propositions to hold are: 

(a) random wealth can be structured as three parts – a nonrandom part of profit, a random part of 

profit, and nonrandom initial wealth, and (b) there exists an optimal input vector that maximizes 

the expected utility function. Both are common assumptions in the firm theory under uncertainty. 

Without requiring the previously imposed assumption that the expectation of the random part of 

profit is zero, the propositions can be empirically applied to varied market structures by 

permitting tests when there is a nonzero correlation between the error terms of random output 

price and random output quantity. 

Moreover, a set of testable hypotheses associated with input responses under multiple 

sources of risk were derived from these propositions, and empirically tested for aggregates of 

firms operating under both output price and output quantity risk. This is the first study using an 

aggregate state-level panel data set to empirically test for utility-maximizing behavior by 

considering each aggregate as though it were an expected utility-maximizing firm. Aggregate 

agricultural production data for these states have previously been found to approximate 

nonparametric conditions for consistent behavior with this hypothesis.
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To avoid the possibility of spurious estimation from statistical estimation using 

nonstationary data, we examined the time series properties of the data. The data were tested both 

for nonstationarity and cointegration using recent developments in time-series econometrics, i.e., 

Im, Pesaran, and Shin’s panel unit root tests and Pedroni’s panel cointegration tests. Most of the 

data series were found to be nonstationary but none of the demand equations exhibited evidence 

of cointegration among nonstationary variables. Two models were developed and used for 

comparison purposes to test the expected utility maximization hypotheses – a traditional model 

that implicitly assumed stationary data and a model based on nonrejected time series properties 

of the data.

In both models, parametric results showed that the behavioral postulates implied by the 

first-order curvature properties of the indirect utility function could not be rejected at the data 

means, and the data at nearly all individual observations were consistent with these properties. 

The second-order curvature properties were also not rejected at the data means, but a larger 

portion of the observations were inconsistent with the hypotheses. The symmetry property 

implied by a twice continuously differentiable indirect utility function was soundly rejected at 

the data means by both models. The empirical evidence from both models also failed to support 

ad hoc risk preference assumptions of either risk neutrality or constant absolute risk aversion.
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Footnotes

1 See Banerjee (1999), Baltagi and Kao (1999), and Phillips and Moon (1999) for surveys of the recent theoretical 

literature on panel unit root tests and panel cointegration tests. 

2 Exceptions are Bandiera et al. (2000), McCoskey and Kao (1999), and Sarantis and Stewart (2001). 

3 The following notation is used throughout this article: hx denotes the partial derivative of h(∙) with respect to x, hxy

represents the Hessian matrix whose ijth element is 2
/

i j
h x y   , where h(∙) is a real-value function of vectors x and y.

4 The theory of the expected utility maximization applies to the individual, in this case the individual firm. Although 

tests of utility maximization have not been reported for state-level data, Lim and Shumway (1992) failed to reject 

the hypothesis that each of the states acted as though they were profit-maximizing firms. They used nonparametric 

testing procedures on annual data for the period 1956-1982, which overlaps with the first 23 years of our data 

period. 

5 Significant (5% level) groupwise heteroskadasticity was still found in the scaled data.  

6 Pedroni (1999) tabulated the adjustment terms for a maximum of seven regressors. 

7 Although evidence was found that significant heteroskedasticity still remained across states, we were unable to 

transform the data to remove cross-sectional heteroskedasticity because we had more cross-sectional units than time 

periods. 

8 An additional dummy variable was included in each input demand equation in the time-series-based model for the 

production year 1983 to pick up the effects of the PIK program.
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Table 1. Panel Unit Root Test Results 

Variablea Test Statisticb Test Conclusion

Panel Unit Root Test for First Differences with Trend:
x1 0.803 Nonstationary
x2 0.043 Nonstationary
x3   -2.030*** Stationary
r1 -0.491 Nonstationary
r2 0.847 Nonstationary
r3 -3.241*** Stationary
p1 1.76896 Nonstationary
p2 -2.131*** Stationary
p3 -0.881 Nonstationary
w0 -0.85731 Nonstationary
resc 0.628 Nonstationary

Panel Unit Root Test for First Differences without Trend:
x1 -1.371* Stationary
x2 -5.799*** Stationary
r1 -6.622 *** Stationary
r2 -6.7845*** Stationary
p1 -8.107 *** Stationary
p3 -7.755 *** Stationary
w0 -8.608 *** Stationary
res -8.922 *** Stationary

a x1, x2, x3, and res were tested without time dummies, and other variables were tested with time 
dummies.
b Based on Im, Pesaran, and Shin (1997):

* Reject the null of a unit root (nonstationarity) at the 10% level (lower-tail critical value = 
-1.282)
** Reject the null of a unit root at the 5% level (lower-tail critical value = -1.645)
*** Reject the null of a unit root at the 1% level (lower-tail critical value = -2.326)

c The variable res is public research expenditures. Other variables are defined in the text.
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Table 2. Panel Cointegration Test Results 

Demand Equation

Test Statistic
Test With or Without Time 

Dummies
x1 x2 x3

With 4.578 4.075 4.751
Group ρ-Statistic

Without 4.189 4.456 4.393

With -1.264 -5.621 -0.297
Group t-Statistic

Without 2.343 1.643 -1.321
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Table 3. Parameter Estimates for the Input Demand Equations: Traditional model

Material/Land Equation

(x1)

Capital/Land Equation

(x2)

Labor/Land Equation

(x3)
Variablea

Estimated

 coefficientb
SEc Estimated

 coefficientb
SEc Estimated

 coefficientb
SEc

d1 0.218*** 0.032 0.132*** 0.014 0.359*** 0.072

d2 0.091*** 0.032 0.087*** 0.014 0.239*** 0.074

d3 0.035 0.031 0.028** 0.014 0.134* 0.072

d4 0.239*** 0.030 0.132*** 0.013 0.730*** 0.067

d5 0.047 0.031 0.061*** 0.014 0.162** 0.074

d6 0.170*** 0.031 0.284*** 0.014 1.068*** 0.069

d7 0.739*** 0.030 0.301*** 0.013 0.722*** 0.067

d8 0.112*** 0.031 0.075*** 0.014 0.413*** 0.068

d9 0.235*** 0.031 0.156*** 0.014 0.435*** 0.069

d10 0.114*** 0.031 0.171*** 0.014 0.362*** 0.069

d11 0.070** 0.031 0.089*** 0.014 0.266*** 0.072

d12 0.092*** 0.031 0.180*** 0.014 0.310*** 0.068

d13 0.138*** 0.031 0.230*** 0.014 0.454*** 0.068

d14 0.075** 0.031 0.093*** 0.014 0.230*** 0.071

d15 0.091*** 0.031 0.157*** 0.014 0.435*** 0.069

d16 0.086*** 0.031 0.102*** 0.014 0.278*** 0.069

d17 0.125*** 0.031 0.259*** 0.014 1.070*** 0.069

d18 0.309*** 0.031 0.288*** 0.013 0.755*** 0.067

d19 0.146*** 0.034 0.252*** 0.015 0.730*** 0.077

d20 0.200*** 0.031 0.307*** 0.014 0.786*** 0.069

d21 0.178*** 0.031 0.227*** 0.014 0.567*** 0.069

d22 0.115*** 0.031 0.165*** 0.014 0.465*** 0.069

d23 0.131*** 0.031 0.099*** 0.014 0.273*** 0.071

d24 -0.026 0.033 0.043*** 0.015 0.159** 0.079

d25 0.191*** 0.031 0.158*** 0.014 0.516*** 0.069

d26 0.018 0.033 0.076*** 0.015 0.198*** 0.077

d27 0.127*** 0.031 0.107*** 0.014 0.295*** 0.070

d28 0.086*** 0.031 0.202*** 0.014 0.716*** 0.070

d29 0.156*** 0.031 0.529*** 0.014 1.234*** 0.067

d30 -0.011 0.033 0.039*** 0.015 0.158** 0.079

d31 -0.041 0.037 0.033** 0.017 0.092 0.086

d32 0.184*** 0.031 0.283*** 0.014 0.757*** 0.070

d33 0.145*** 0.031 0.290*** 0.014 0.650*** 0.068
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Table 3 (continued)

Material/Land Equation

(x1)

Capital/Land Equation

(x2)

Labor/Land Equation

(x3)
Variablea

Estimated

 coefficientb
SEc Estimated

 coefficientb
SEc Estimated

 coefficientb
SEc

d34 0.041 0.031 0.068*** 0.014 0.237*** 0.071

d35 0.125*** 0.031 0.100*** 0.014 0.369*** 0.070

d36 0.221*** 0.031 0.305*** 0.014 1.000*** 0.069

d37 0.097*** 0.031 0.302*** 0.014 1.012*** 0.070

d38 0.158*** 0.031 0.177*** 0.014 0.518*** 0.069

d39 0.033 0.031 0.079*** 0.014 0.198*** 0.074

d40 0.065** 0.031 0.122*** 0.014 0.361*** 0.071

d41 0.022 0.031 0.054*** 0.014 0.165** 0.072

d42 0.015 0.032 0.056*** 0.014 0.171** 0.075

d43 0.008 0.031 0.128*** 0.014 0.347*** 0.070

d44 0.110*** 0.033 0.155*** 0.015 0.493*** 0.074

d45 0.121*** 0.031 0.139*** 0.014 0.469*** 0.069

d46 0.249*** 0.031 0.347*** 0.014 0.993*** 0.070

d47 0.0714** 0.031 0.135*** 0.014 0.435*** 0.071

d48 0.003 0.031 0.047*** 0.014 0.157** 0.075

p1 -0.048*** 0.010 -0.006 0.004 0.032 0.024

p2 0.0602*** 0.012 0.017*** 0.006 -0.064** 0.031

p3 -0.034** 0.021 -0.019** 0.011 0.023 0.062

r1 0.118*** 0.044 0.002 0.022 0.321*** 0.119

r2 -0.046** 0.019 0.003 0.009 0.038 0.051

r3 0.0002 0.023 -0.044*** 0.012 -0.379*** 0.072

I 0.003*** 0.001 0.0003 0.000 0.002 0.002

p1
2 0.015 ** 0.007 -0.008** 0.003 -0.017 0.018

p1 p2 -0.005 0.011 0.014*** 0.006 0.076** 0.029

p1 p3 -0.017 0.020 0.008 0.009 0.001 0.046

p1r1 0.033 0.039 0.004 0.016 -0.043 0.075

p1r2 -0.027 0.016 0.0002 0.007 -0.023 0.034

p1r3 0.021 0.025 -0.016 0.011 0.059 0.055

p1I -0.001 0.001 -0.003*** 0.001 -0.016*** 0.003

p2
2 0.017 0.020 -0.022** 0.009 -0.197*** 0.044

p2 p3 -0.008 0.023 0.017 0.010 0.182*** 0.048

p2r1 -0.120** 0.048 -0.069*** 0.020 -0.162** 0.094

p2r2 0.018 0.021 0.002 0.009 0.069 0.045
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Table 3 (continued)

Material/Land Equation

(x1)

Capital/Land Equation

(x2)

Labor/Land Equation

(x3)
Variablea

Estimated

 coefficientb
SEc Estimated

 coefficientb
SEc Estimated

 coefficientb
SEc

p2r3 0.02806 0.038 0.019 0.017 -0.060 0.086

p2I 0.0003 0.002 0.001* 0.001 0.009** 0.003

p3
2 0.077 0.047 0.002 0.019 -0.122 0.087

p3r1 0.096 0.094 0.058 0.037 0.074 0.168

p3r2 -0.045 0.039 -0.016 0.017 -0.146* 0.080

p3r3 -0.014 0.058 0.002 0.027 0.239* 0.131

p3I 0.0003 0.004 -0.006*** 0.002 -0.016** 0.007

r1
2 -0.337** 0.187 -0.192*** 0.067 -0.515* 0.298

r1 r2 0.059 0.053 0.023 0.021 0.079 0.103

r1 r3 0.206* 0.115 0.138*** 0.044 0.230 0.201

r1I 0.008 0.006 0.015*** 0.002 0.048** 0.009

r2
2 -0.004 0.032 0.002** 0.014 0.053 0.065

r2r3 -0.040 0.041 -0.041** 0.017 -0.180** 0.080

r2I 0.008*** 0.003 -0.001 0.001 0.003 0.005

r3
2 -0.052 0.067 0.004 0.029 0.185 0.139

r3I -0.010** 0.005 -0.001 0.002 -0.029*** 0.008

I2 0.0001 0.000 0.001*** 0.0001 0.003*** 0.0003

t -0.004** 0.002 0.003*** 0.001 -0.010*** 0.004

t2 0.0003*** 0.00008 0.0002*** 0.00003 0.0003** 0.0002

R-Square 0.834 0.542 0.791
a Variable codes: p1 is crop price, p2 is livestock price, p3 is secondary output price, r1 is materials input price, 

r2 is capital input price, r3 is labor input price, I is farm equity, t is the time variable, d1-d48 are state dummy 

variables.
b Parameter estimates marked with *** are significant at the 1% level, ** at the 5% level, and * at the 10% 

level.
c SE is standard error. 
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Table 4. Parameter Estimates for the Input Demand Equations: Time-Series Model

Material/Land

(x1)

Capital/Land

(x2)

Labor/Land

(x3)
Variable a

Estimated

Coefficientb
SEc Estimated

Coefficientb
SEc Estimated

Coefficientb
SEc

d35 0.051* 0.029 -0.051*** 0.012 1.432*** 0.098

d36 0.064** 0.027 -0.021* 0.011 5.949*** 0.092

d37 -0.009 0.029 -0.027** 0.012 6.706*** 0.099

d38 0.069** 0.027 -0.018* 0.011 3.110*** 0.091

d39 -0.002 0.030 -0.074*** 0.012 0.250** 0.101

d40 0.016 0.029 -0.043*** 0.012 1.394*** 0.099

d41 0.005* 0.029 -0.061*** 0.011 -0.014 0.098

d42 0.002 0.030 -0.059*** 0.012 0.228** 0.100

d43 0.002 0.028 -0.038*** 0.011 1.614*** 0.095

d44 0.049* 0.029 -0.034*** 0.011 2.355*** 0.097

d45 0.054** 0.027 -0.030*** 0.011 2.141*** 0.092

d46 0.055** 0.027 -0.036*** 0.011 6.669*** 0.091

d47 0.027 0.029 -0.050*** 0.011 2.243*** 0.097

d48 -0.009 0.029 -0.069*** 0.012 -0.210** 0.099

d83 0.117*** 0.039 0.022 0.016 0.294** 0.133

p1 -0.052** 0.024 0.018* 0.010 0.069 0.083

p2 -0.010 0.007 0.020*** 0.003 0.428*** 0.024

p3 0.047** 0.027 -0.015 0.011 -0.174* 0.092

r1 0.080** 0.036 -0.032** 0.014 -0.007 0.122

r2 -0.093*** 0.028 -0.006 0.011 -0.067 0.094

r3 0.038** 0.017 0.007 0.007 -0.420*** 0.059

I 0.002 0.012 -0.030*** 0.005 -0.029 0.040

p1
2 0.148* 0.042 0.020 0.017 -0.123 0.142

p1 p2 0.009 0.009 0.007* 0.004 0.023 0.032

p1 p3 -0.043 0.040 -0.0010 0.016 0.075 0.134

p1r1 -0.083* 0.049 0.009 0.020 0.007 0.168

p1r2 0.100** 0.039 -0.003 0.015 -0.007 0.132

p1r3 -0.014 0.030 -0.027** 0.012 -0.035 0.102

p1I -0.024 0.023 0.0006 0.009 -0.013 0.076

p2
2 0.004 0.002 -0.002 0.0009 -0.041*** 0.008

p2 p3 -0.017 0.012 0.001 0.005 0.061 0.041

p2r1 -0.036** 0.018 0.005 0.007 0.087 0.062

p2r2 0.032** 0.014 0.001 0.005 -0.044 0.046
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Table 4 (continued)

Material/Land

(x1)

Capital/Land

(x2)

Labor/Land

(x3)
Variable a

Estimated

Coefficientb
SEc Estimated

Coefficientb
SEc Estimated

Coefficientb
SEc

p2r3 -0.002 0.005 -0.003 0.002 -0.048*** 0.018

d1 0.100*** 0.028 -0.031*** 0.011 1.477*** 0.095

d2 0.053* 0.029 -0.044*** 0.011 0.550*** 0.098

d3 0.005 0.030 -0.057*** 0.012 -0.049 0.100

d4 0.100*** 0.026 -0.011 0.010 3.568*** 0.088

d5 0.005 0.029 -0.068*** 0.012 -0.030 0.100

d6 0.038 0.027 -0.028** 0.011 6.052*** 0.093

d7 0.344*** 0.026 -0.009 0.011 4.036*** 0.090

d8 0.043 0.027 -0.018* 0.011 1.818*** 0.090

d9 0.113*** 0.027 -0.019* 0.011 2.225*** 0.092

d10 0.007 0.028 -0.032*** 0.011 1.811*** 0.094

d11 0.026 0.029 -0.055*** 0.012 0.706*** 0.099

d12 0.002 0.027 -0.026** 0.011 1.560*** 0.091

d13 0.026 0.027 -0.023** 0.011 2.625*** 0.091

d14 0.010 0.029 -0.059*** 0.011 0.564*** 0.098

d15 0.035 0.028 -0.021* 0.011 2.350*** 0.093

d16 0.027 0.028 -0.024** 0.011 1.467*** 0.094

d17 0.017 0.027 -0.030*** 0.011 6.616*** 0.093

d18 0.125*** 0.026 -0.008 0.011 4.286*** 0.090

d19 0.033 0.029 -0.033*** 0.012 4.226*** 0.099

d20 0.048* 0.027 -0.031*** 0.011 4.828*** 0.092

d21 0.041 0.027 -0.032*** 0.011 3.343*** 0.093

d22 0.024 0.027 -0.025** 0.011 2.613*** 0.092

d23 0.073** 0.029 -0.038*** 0.011 1.202*** 0.097

d24 -0.023 0.031 -0.073*** 0.012 -0.212** 0.105

d25 0.100*** 0.027 -0.024** 0.011 2.912*** 0.093

d26 -0.012 0.031 -0.072*** 0.012 0.109 0.105

d27 0.031 0.029 -0.048*** 0.011 1.121*** 0.097

d28 0.014 0.027 -0.033*** 0.011 3.863*** 0.093

d29 -0.006 0.026 0.026** 0.010 7.193*** 0.089

d30 -0.027 0.031 -0.074*** 0.012 -0.252** 0.104

d31 -0.006 0.033 -0.063*** 0.013 -0.205* 0.112

d32 0.058** 0.028 -0.032*** 0.011 5.006*** 0.096
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Table 4 (continued)

Material/Land

(x1)

Capital/Land

(x2)

Labor/Land

(x3)
Variable a

Estimated

Coefficientb
SEc Estimated

Coefficientb
SEc Estimated

Coefficientb
SEc

d33 0.023 0.027 -0.026** 0.011 3.910*** 0.092

d34 0.011 0.029 -0.061*** 0.011 0.551*** 0.097

p2I 0.014* 0.008 -0.003 0.003 -0.054** 0.026

p3
2 0.012 0.049 -0.028 0.019 0.126 0.165

p3r1 0.026 0.062 -0.004 0.025 -0.055 0.210

p3r2 -0.038 0.044 0.009 0.017 0.056 0.149

p3r3 0.028 0.038 -0.005 0.015 -0.089 0.128

p3I 0.019 0.022 -0.001 0.009 -0.133* 0.075

r1
2 -0.099 0.041 0.043 0.016 -0.285 0.137

r1 r2 0.015 0.037 -0.011 0.015 0.116 0.126

r1 r3 0.078 0.057 0.006 0.023 -0.166 0.193

r1I -0.007 0.041 0.004 0.016 -0.015 0.140

r2
2 -0.029 0.035 0.013 0.014 -0.159 0.120

r2r3 -0.063 0.042 -0.007 0.017 0.138 0.143

r2I -0.012 0.027 -0.007 0.011 -0.088 0.092

r3
2 -0.004 0.012 0.007 0.005 0.320*** 0.042

r3I -0.035 0.022 0.023*** 0.009 0.111 0.075

I2 -0.029 0.011 -0.023*** 0.004 0.168** 0.036

res -0.003** 0.001 -0.001** 0.0005 -0.032*** 0.004

res2 0.00003 0.0001 -0.0001*** 0.00003 -0.002*** 0.0002

R-square 0.153 0.204 0.935
a materials input price, r2 is capital input price, r3 is labor input price, I is farm equity, t is the time variable, 

d1-d48 are state dummy variables, and d83 is the 1983 dummy variable.
b Parameter estimates marked with *** are significant at the 1% level, ** at the 5% level, and * at the 10% 

level.
c SE is standard error. 
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Table 5. Expected Utility Maximization Hypothesis Test Results

Traditional Model Time Series Model

Test at Data Means Test at Data Means

Proposition
Null Test 

type a Statistic P-value

Rejections 

among 1,872 

Observations
Statistic P-value

Rejections 

among 1,824

Observations

1. V is decreasing in r

1.1 V is decreasing in 

r1, 1̂ 0x  1̂ 0x  AN 98.706 0.000 0 8.486 0.000 0

1.2 V is decreasing in 

r2, 2ˆ 0x  2ˆ 0x  AN 9.963 0.000 11 3.253 0.001 78

1.3 V is decreasing in 

r3, 3ˆ 0x  3ˆ 0x  AN 56.521 0.000 1   228.681 0.000 14

2. * * *
I 2   rх х х  is negative semidefinite

2.1 1st leading     

principal minor: 

1

* * *
1r 1I 12 0x x x  

= zero AN -2.284 0.022 387 -4.739 0.000 1

2.2 2nd leading      

principal minor of 

0 

= zero AN -1.736 0.083 460     3.258 0.001     232

2.3 Determinant of 

0 
= zero AN 0.772 0.440 450 -2.173 0.030 840

3. Symmetry of  b W 71.770 0.000 -- 14.471 0.002 --

4. CARA or RN c

x*
1I= x*

2I= x*
3I=0 = zero W 99.116 0.000 -- 9.755 0.021 --

a AN is asymptotic normal test, and W is Wald chi-squared test.

b Test of symmetry involves jointly testing H0: 
2 1

* * * * * *
1 1I 2 2 2I 12 2 ,x x x x x x  r r� � � �

3 1

* * * * * *
1 1I 3 3 3I 12 2x x x x x x  r r� � � �  and 

3 2

* * * * * *
2 2I 3 3 3I 22 2 .x x x x x x  r r� � � �

  c CARA is constant absolute risk aversion, and RN is risk neutrality



Figure 1. Plots of Prices and Equity
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