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Indirect Utility Maximization under Risk:

A Heterogeneous Panel Application

Abstract
The curvature properties of the indirect utility function imply a set of refutable implications in
the form of comparative static results and symmetric relations for the competitive firm operating
under uncertainty. These hypotheses, first derived and empirically tested under output price
uncertainty by Saha and Shumway (1998), are extended in this article to the more general case of
both price and quantity uncertainty and result in an important theoretical finding. Using recently
developed techniques for testing unit root and cointegration in heterogeneous panels, we develop
a model of U.S. agricultural production based on the time series properties of a panel of
state-level data and contrast test implications with those resulting from a traditional model that
presumes stationarity in all variables. Although differing in specific outcomes, the empirical tests
of the refutable hypotheses render the same conclusions for both models: we fail to reject most
refutable hypotheses under output price and output quantity risk, symmetry conditions implied
by a twice-continuously-differentiable indirect utility function are rejected, two restrictive risk
preference hypotheses are also rejected, and, at individual observations, data are generally
consistent with most (but not all) of the hypotheses implied by individual states acting as though
they were expected utility-maximizing firms.
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Indirect Utility Maximization under Risk:

A Heterogeneous Panel Application

Because of the long time periods between commitment of resources and generation of
marketable output in production agriculture, a high level of uncertainty is associated with many
production decisions. Because producers frequently have few options available to significantly
alter input combinations after the decision is made to produce a commodity, opportunities to
reduce the adverse consequences of risk are often limited in the short run. Consequently,
economists concerned about decision making in production agriculture have had a long history
of considering the impact of risk and uncertainty.

Building on the early work of Sandmo (1971) and Batra and Ullah (1974), who
developed the theory of the competitive firm under output price uncertainty, agricultural
economists have examined firm operations and developed testable firm models under various
sources of risk. The pioneering work of Pope (1980) derived testable hypotheses expressed in
symmetry and homogeneity results under constant absolute risk aversion and price uncertainty.
His symmetry results proved simple enough for empirical application under certain classes of
utility functions (Antonovitz and Roe 1986). Chavas and Pope (1985) extended Pope’s work by
examining price uncertainty within a general risk preference framework which facilitated
empirical tests of firm behavior under the expected utility hypothesis. Paris (1988) analyzed the
competitive entrepreneur under output and input price uncertainty in a long-run scenario. Dalal
(1990) derived additional symmetry conditions for empirical application under price risk.
Adrangi and Raffiee (1999) derived testable implications within a comparative statics framework

for the competitive firm operating under output and input price uncertainty.



A number of studies have also provided empirical tests for behavioral hypotheses of the
firm operating under risk. For example, Chavas and Holt (1990) developed an acreage supply
response model consistent with expected utility maximization and empirically tested the
symmetry restrictions using annual time-series data for U.S. corn and soybean acreage decisions.
They found empirical evidence for the symmetry conditions and decreasing absolute risk
aversion (DARA) on the part of the producer. Later they (Chavas and Holt 1996) tested the
economic implications of producer behavior under price and production risk in U.S. corn and
soybean acreage response decisions. The null hypothesis of CARA was rejected and evidence
was again found to support DARA. Theoretical and functional form deficiencies in the
Chavas-Holt analysis were addressed by Satyanarayan (1999), who extended previous works to
the firm operating under domestic price and exchange rate uncertainty.

Park and Antonovitz (1992a, b) derived and empirically tested the reciprocity conditions
linking optimal output and hedging decisions for the competitive firm that uses hedging to
manage price uncertainty. They concluded that the symmetric results as well as constant absolute
risk aversion (CARA) for their California feedlot could not be rejected. Dalal (1994) alleged a
misspecification, criticized their conclusions, and developed a more general formulation using
the envelope theorem and derivatives of the indirect expected utility function.

Saha and Shumway (1998) derived general refutable implications from the first-order and
second-order curvature properties of the indirect utility function under output price uncertainty
and empirically tested each postulate for a sample of Kansas wheat producers. They failed to
reject any of the implications of expected utility maximization for their data set but rejected

restrictive risk attitudes including both CARA and risk neutrality.



Several studies have recently investigated firm behavior under risk using pooled
cross-sectional time-series data (e.g., Saha and Shumway 1998; Lien and Hardaker 2001;
Kumbhakar 2002; Kumbhakar and Tveteras 2003; Roosen and Hennessy 2003). Using panel
data has several benefits for empirical analysis. For example, it enlarges the sample size,
enhances the power of statistical tests, and facilitates analysis of dynamic properties of
relationships. However, a daunting challenge arising from both time series and panel data
regressions is the possibility that variables involved in the regressions are nonstationary. Unless a
linear combination of nonstationary variables is stationary, i.e., the variables are cointegrated,
use of ordinary regression estimators may lead to spurious results (Phillips 1986; Engle and
Granger 1987).

Traditional tests of unit roots and cointegration have low power against the alternate
hypothesis of stationarity in small and moderate sized samples. Consequently, failure to reject
the hypothesis of a unit root in the series or in the linear combination of variables may occur
because of the low power of the tests as well as failure of the data to satisfy the necessary
conditions. Whatever the cause, failure to find stationarity in each series or in a linear
combination of the series gives the analyst pause when seeking to estimate long-run relationships
in the data. Recent developments in time-series econometrics that combine time-series and
cross-sectional information have provided important possibilities for surmounting this dilemma.
Panel data increase the power of unit root and cointegration tests even though the length of the
time series is unaffected. Consequently, confidence in time series test conclusions is increased by
use of panel data.

Although pooled cross-sectional time-series data has been frequently used to examine

firm behavior under risk, it appears that none has examined the time-series properties of the



panel data. Consequently, reported results are subject to the possibility of the spurious regression
problem. The current research seeks to at least partially fill this void by employing recent
advances in the econometrics literature designed to test for panel unit roots (i.e. Im, Pesaran, and
Shin 1997) and panel cointegration (i.e. Pedroni 1999)." These panel tests allow for both
parametric and dynamic heterogeneity across groups and are considerably more powerful than
conventional methods (Harris and Tzavalis 1999). Besides its unique application to firm
behavior under risk, this investigation joins only a small number of other studies in reporting
empirical applications of panel cointegration techniques to a heterogeneous panel with multiple
regressors.’

With this background, the objectives of this article are to: (a) extend the previous
theoretical work by careful derivation of refutable and testable implications of the indirect utility
function under both output price and quantity risk, (b) demonstrate that one previously
maintained hypothesis is not a necessary condition for the derived implications, (c) empirically
test the derived implications as well as a set of hypotheses about the nature of risk aversion
practiced by producers using a traditional model in which stationarity of the data is implicitly
assumed and time is included as a proxy for technical change, (d) examine the time-series
properties of variables involved in a system of input demand equations by employing recent
developments in panel unit root and panel cointegration techniques, (e) develop a model for
input demands consistent with the time series test results and with technical change proxied by
public research expenditures, and (f) contrast important inferences from hypothesis test results
from this model with those from the traditional model.

The plan of this article is as follows. The next section gives a brief overview of the

behavioral theory implied by curvature properties of the indirect utility function and derives a set



of testable hypotheses. The following section discusses our econometric model and introduces
the panel testing methodologies employed in this article. Time series properties of our data based
on panel unit root and cointegration tests are then reported along with empirical results of the
refutable hypotheses from both models. Conclusions are presented in the last section.
Theoretical Model

Traditionally, the introduction of price uncertainty into the theory of the competitive firm has
been approached within an expected utility framework. The seminal works of Arrow (1965) and
Pratt (1964) defined preferences of expected utility-maximizing decision makers over final
wealth. Despite their unambiguous reference to final wealth, much of the analysis of risk taking
behavior of agricultural producers, beginning with Sandmo (1971), has used profit rather than
wealth as the argument of utility (Meyer and Meyer 1998). Profit is the appropriate argument
only if sources of wealth other than profit are nonrandom and held fixed. Since we do not wish to
impose nonrandom constraints on other sources of wealth, we use wealth as the argument of
utility in the following theoretical model. Therefore, the firm is assumed to maximize its
expected utility of random wealth.

Following Feder (1977) and Saha and Shumway (1998), we assume that a competitive
firm’s random wealth W can be structured as a nonrandom part Z(), a random component S(+),
and nonrandom initial (beginning of period) wealth endowment I:

(1) W=Z(x;,8,D)+S(x;§;D)+I
where X =(x, x2,..., x,)” isan nx1 vector of decision variables, £ 1is a random variable vector,

[ is a parameter vector, and - denotes the additional parameters concealed in Z(+) and S(-). The

parameters, S, only enter the nonrandom part of wealth, Z(+), but not the random part S(-).



Although we later demonstrate that it is unnecessary for our refutable implications to hold under

output price and output quantity risk, we initially maintain the standard expectation:
2 E[S(x&)]=0
where E denotes the expectation operator.

Conditional on twice-differentiable functions of Z and S, the expectation of random

wealth defined by (1) and (2) can be written as:
(3) W= E(W) = Z(x;ﬂ,D)+I+E|:S(x;§;D):| =Z(x;p)+1.
Refutable Implications of the Indirect Utility Function

For a competitive firm whose objective is to maximize the expected utility of random
wealth specified by (1), the indirect utility function is defined by:
@ V(A= max{E[U(Z(x;ﬂ,D)+S(x; é;D)+I)]} ;
where U(-) represents the von Neumann Morgenstern utility function, which is increasing in
wealth, therefore is increasing in nonrandom part of wealth, Z(x; f, -). Let x*(5, I, -) denote the
optimal input variables which are determined by (4). Under the assumptions of (1) and (2), the
indirect utility function defined by (4) implies the following propositions (Saha and Shumway
1998):
Proposition 1: The indirect utility function defined by (1) has the following first-order curvature
properties:

(1) Increasing in I,

(i1) Increasing (decreasing) in P if Z is increasing (decreasing) in 3.
Proposition 2: The second-order curvature properties of the indirect utility function indicate:

(1) ¥ quasiconvex in g and I if Z is convex in £,



(ii) ¥ quasiconvex in f and I € symmetric and positive semidefinite (SPSD),
_ * * 3
where Q=7,,+7, {xﬁ -x,Z } :
Corollary: Under risk neutrality or CARA, x1*=0, and Z convex in B<> Z,, + Z ﬂxx;, is SPSD.

Obviously, V(f; 1, -) is increasing in I. Proposition 1(ii) indicates that the first-order
curvature properties of the indirect utility function corresponding to f can be revealed by the
first-order curvature characters of the nonrandom part of wealth Z(x; S, -). Proposition 2(i)
implies the fundamental second-order curvature properties of the indirect utility function which
can be explored by observing the properties of the second-order curvature of Z(x; f, -). By
proposition 2(i), V(f; 1, -) is quasi-convex in f if Z is convex in . This property implies and is
implied by the testable postulates contained in proposition 2(ii). In proposition 2(ii), the
symmetric and positive semi-definite (SPSD) matrix, €2, which contains the comparative static
and reciprocity results demonstrating the firm behaviors, includes the complete set of the
refutable implications for the competitive firm under risk. Most importantly, propositions 1 and 2
do not rely on specific forms of U(-) that would otherwise impose an explicit risk preference
(Love and Buccola 1991; Saha Shumway and Talpaz 1994). When combined with the
empirically testable curvature properties of Z(x; f, -), they allow us to test the behavioral
postulates without assuming a specific functional form for the indirect utility function.

These refutable propositions derived by Saha and Shumway (1998) have been
empirically tested only under output price uncertainty. One important theoretical contribution of
this article, the importance of which will be explained in the next section, is to demonstrate that
the propositions hold even without assumption (2). From the proof in Saha and Shumway (1998),
it is obvious that proposition 1 and proposition 2(ii) aren’t conditioned on assumption (2), and all

that is needed for them to hold is assumption (1). We refer readers to Saha and Shumway (1998)



for the details. Before proving that proposition 2(i) holds without assumption (2), we claim the
following result.

Claim. The firm’s optimization problem defined in (4) is equivalent to a constrained
optimization problem where x and W are jointly chosen. Defining Kk = {x, VI_/} and A= {f, I},
then:

V =maxEU [ Z(x; ) +S(x:60) +1]

(5) -y mkax{EU[W+S(x;5;D)—E(S(x?§?D))} W < Z(x;,B,D)+E[S(x;§;D)]+I}.

Proof: First, we demonstrate that the constraint, W<z (x;B,)+ E[S(x;&;-)]+1, will be
binding for all optimal values of 7 and x . Suppose the constraint is not binding, then there
must exist some parameter values K’ ={x°, W°} and 2° = {8°, I°} suchthat K’={x", W°}
and A° ={p°, I’} maximize the indirect utility, given by (5), with the following condition
6 W< Z(xo;ﬁ‘),m)+E[S(x°;5;D)J+1°.

Therefore, there exists some W'>W° such that
(7)  W'=EW'=Z(x"p",)+1° +ES(x";&;"),
which implies {x°, W'} is feasible.

Since the utility function is increasing in wealth, we have
®)  EUW '+ S(x";&)~E[S(x";89]) > EUOV" +S(x"; &)~ E[S(x"; &),
which contradicts the fact that k® = {x°, W’} and A" = {B°, I’} maximize the indirect utility.

Thus, the constraint is binding for all optimal values of k and 4, and the claim is proved by

substituting the binding constraint W =EW = Z(x;B,-)+ 1+ ES(x;&;-) into (5).



With claim 1 proven, we can now prove that proposition 2(i) is implied by assumption (1).
Let H(k,A)=W -Z(x;p,)-ES(x;&L)—1, which is non-positive. Then (5) is equivalent to
the following expression:

©  V(kD)=max{EU[7+S(x:&)—E(S(x:80)) ] I(k, 2) <0}

If Z(x;8L) isconvexinfl, Z,,>0and —Z,; <0. The Hessian matrix of H (k,1) with
respect to S and I is

O’H 0’H

op> opol| |-z, 0O
(10) D= e OBl | =2

0’H 0’H 0 0

olop oI’

Let A,A" and A be any feasible vectors such that 1 =¢4'+(1-¢)A",0<¢<1 and k
denotes the optimal vector corresponding to A . Under the conditions —Z s <0 and |D[=0,D
is negative semi-definite, which implies H (k, ) is quasiconcave in A =(f3,I). Therefore, the
following inequality holds:

(1) min{H (k,2'),H (k,2")} < H(k,1)<0,

which is sufficient to ensure that either H (R, /1’) <0orH (E, A ) <0, or both. Therefore,

(12) V(2 <max{r(2'0).v(A"0)}.

By definition, the inequality in (12) implies that V(D) is quasiconvex in 4.

Testable Hypotheses

Consider a firm’s production function that has the following general form:

(13) Y=f(x)+e,

10



and random price denoted by:
(14) P=P+g,,
where ¥ is random output quantity; f(x), a function of input vectors x, is called the mean
output function; P denotes random price; P is the mean of price; &y and &p are stochastic
terms which represent random production shock and random price shock respectively;
E(&,)=0 and E(&,)=0.Letting r= {ri, ..., 1.} be the price vector of inputs, random wealth
under output price and output quantity uncertainty will be:
(15) W =P -rix+1=Pf(x)+Pl, +&,0f (x)+¢, 05, —rx+1L

In terms of the notation in the preceding section, I corresponds to f3, the nonrandom part
of wealth is:
(16)  Z(x;r[)=Plf (x)-rix,
and the random component of wealth is:
(17)  S(x&L)=Ple, +&,0f (x)+ &k,
Therefore, E [S(x;é;l])] =E [l_’DEY +&,0f (x)+ é‘PDE'Y:I = E(&,lk, ) . Under the assumption of no
correlation between output prices and quantities, E(,lg,)=0 and thus E[S (x;; ):I =0,
which is consistent with assumption (2).

For an individual firm operating in a competitive market E (e » Dsy) =0 because the

firm’s decisions cannot affect the general equilibrium of the market. However, much empirical
analysis, including ours, uses data for aggregates of firms. Sometimes that is for convenience
and other times it is necessary because essential firm-level data don’t exist. Even though the

decisions of individual price-taking firms can’t affect the market equilibrium, the collective
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decisions of many firms can. Thus, since we have demonstrated that assumption (2) is
unnecessary for any of the previous implications to hold, it is clear that we can make use of
aggregate data, if necessary, to conduct empirical tests of both propositions.

With random wealth under output price and output quantity uncertainty defined as in

equations (15), (16) and (17), the indirect utility function becomes:
(18) V(I’; I,D) = max{E[U(Z(x; I‘,I]) + S(x; §;EI) + I)}} )

By proposition 1(ii), the firm’s indirect utility function, ¥(r; I, -), is decreasing in I since the
firm’s expected profit, i.e., a nonrandom portion of wealth, decreases in r. Applying the envelope

theorem to (16), proposition 1(ii) can thus be translated to the following:

S
(19) V.=Z =-x <0,

N
where = denotes ‘same sign as’. The result in (19) is the first-order curvature property of the

indirect utility function. It indicates that, as input prices increase, the terminal wealth of the
producer diminishes and leads to a decrease in the utility of final wealth. By again applying the

envelope theorem, Zyr = -xr*and Zry 18 a negative identity matrix. Thus, we have:

*

Q= er +er {x: _ler}
(20) =x,7Z —2x,

= —(xfx* + 2x:)
since Zr= -x . Using this result, the second-order curvature result of proposition 2(ii) translates

to:
(2la)  W(r; I, ) quasiconvexinrandl < Q= —(xl*x* + Zx:) is SPSD,

which implies the following matrix is symmetric negative semidefinite:

(21b) ¥ =xx" +2x,.

12



Specifically, when there are three input variables, (21b) can be rewritten as:

ZDxlrl + xlIDxl 2Dx1r2 + xlIDxZ 2’Dxer + xlle3

(2le) |2k, +x,[x; 2k, +x,[x, 20x,;+Xx,[k;
2y, + x5 2, +x50x, 20K, + x5l

Equations (19) and (21a)-(21c¢) reveal that the propositions imply a set of testable hypotheses
associated with the input responses of the firm operating under output price and output quantity
uncertainty. Therefore, the propositions implied by the indirect utility function can be
empirically tested by imposing parameter restrictions on a firm’s demand equations.
Econometric Model and Empirical Methodology

Data

Because we lack essential data to conduct tests of these propositions for a broad cross-section of
individual U.S. firms, the above methodology was applied to annual state-level data for the
period, 1960-1999.* The major data source was the ERS annual agricultural output and input
series for each of the contiguous 48 states for the period 1960-1999 (Ball 2002). This
high-quality aggregate data set includes a comprehensive inventory of agricultural output and
input prices and quantities compiled using theoretically and empirically sound procedures
consistent with a gross output model of production (see Ball et al. 1999, for details). The data set
includes three output groups (crops, livestock, and secondary outputs) and four input groups
(materials, capital, labor, and land).

Initial stock of wealth, I, was proxied by equity, or "net worth", which measures farm
business assets minus farm business debt. These data for each state were taken from the Farm
Balance Sheets (USDA/ERS).

Deflated annual public research expenditures for each state for the period 1927-1995

were from Huffman (2002). These data served as proxies for technical innovation in the model
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based on the time series properties of the data. It has been showed that research expenditures can
affect technology, or the nature of the production function, at least seven years later and
sometimes as long as 30 years later (Chavas and Cox 1992; Pardey and Craig 1989). Akaike’s
Information Criterion (AIC) was used to select the optimal lag on public research expenditures.
Lagged output prices were used as proxies for expected output prices. Lagged equity was
used as a proxy for initial (beginning period) wealth. To partially mitigate the effects of trending
and autocorrelated data, expected output prices, equity, and current input prices were normalized
by the price of land. To reduce heteroskedasticity and to permit estimation of identical
non-intercept coefficients for all states in the panel data set, input quantities, normalized equity,
and deflated research expenditures were scaled by the quantity of land.’
Econometric Model
Without maintaining any additional hypotheses about the input demand equations, we used a
quadratic (second-order Taylor-series expansion) functional form to approximate the input
demand framework. Input demand equations for materials/land, capital/land, and labor/land were
each estimated as a fixed-effects panel data model:
(22)  x;+da;+24,+0.520 7'+ 5,t +0.56,t* +e,,j=1,2,3
where x; is the quantity of the j th input measured as input per unit of land; d is the vector of state
dummy variables; the vector Z= {py, p2, p3, I'1, I2, I3, I} contains lagged output prices p; (for crops,
livestock, and secondary outputs), current input prices r;j (for materials, capital, and labor), and
lagged farm equity per unit of land I, each normalized by the price of land; t is the proxy for
technological innovations and is represented by time = 1, . . ., 40 in the traditional model and by
public research expenditures per unit of land in the time-series-based model; the error term is

denoted by e;: parameters to be estimated are the vectors o, ¢, I';, and the scalars 6, &;.

14



For each individual equation in the demand system specified by (22), fixed effects across
cross-sectional observations were considered. So that all refutable implications under output
price and output quantity risk contained in (19) and (21a)-(21¢) could be tested, no restrictions
were imposed on the estimated parameters across the equations.

Since stationarity of all variables is implicitly assumed when equation (22) is estimated
without first examining their time-series properties, the results of the traditional model may be
misleading. In the time-series-based model, we checked whether any of the variables contain unit
roots, and if they do, whether a linear combination of the variables as represented in equation (22)
also have a unit root (i.e., are not cointegrated). If they are cointegrated, a valid long-run
relationship can be represented by equation (22). Variables are cointegrated if they are stationary
after differencing and no unit root exists in the residuals (Engle and Granger, 1987). If all
nonstationary variables in equation (22) are cointegrated, the equation represents a structural
rather than a spurious relationship.

Unit Root Tests in Panel Data

The most common procedure used to test for a unit root in a data series is the augmented
Dickey-Fuller (ADF) test. The null hypothesis of this test is nonstationarity. Given the small
span of our time series (40 annual observations), conventional ADF tests conducted on each
individual state series can have very low power and lead to seriously misguided conclusions. The
preferred choice is to apply a panel unit root test.

Several procedures have been proposed to test for the null hypothesis of nonstationarity
in panels. Quah (1992, 1994) developed a test for a unit root in panel data subject to
homogeneous dynamics. Levin and Lin (1993) generalized this method to allow for fixed effects,

individual deterministic trends, and heterogeneous serially correlated errors. However, the
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alternative hypothesis only allowed for the possibility of identical first-order autoregressive
coefficients in all series. To allow for residual serial correlation and heterogeneous
autoregressive coefficients across groups, Im, Pesaran, and Shin (1997) (hereafter IPS) proposed
using an average of the ADF tests. Monte Carlo experiments showed that the IPS test
outperforms Levin and Lin's test, especially having greater power and better small-sample
properties (Im, Pesaran, and Shin 1997). Consequently, the IPS test is the panel unit root test we
employ.

It consists of testing the null hypothesis Ho: p, =0Vi (where i indicates a
cross-sectional member) against the alternative hypothesis Hy: p, <0 for some or all i in the
following equation:

(23) Ay, =a,+St+py,,  + 2’; oAy, +E,i=12,.. N,t=1...T,

where y is a data series; ¢ is time period; Ay, =y, —y,,,; @and orepresent the idiosyncratic

fixed effect and deterministic trend parameters to be estimated; p and ¢ are other parameters to
be estimated; and ¢ is the error term. The IPS statistic is defined as the average of the ADF

statistics for individual cross-sectional members. It is computed as:
(24) t_NT = ﬁztiT >

where ¢, is the individual t-statistic for the ADF test of a unit root for an individual member in
the panel. The resulting IPS statistic is:

25t - VN (@ — Elt; | p, = 0]) N

JVarlt, | p, =0]

where E[t,|p, =0] and Var(t, | p, =0] are the common mean and variance of ¢

.+ » obtained

by Monte Carlo simulation and tabulated in Im, Pesaran, and Shin (1997).

16



As noted by Pedroni (1997) and Kao, Chiang, and Chen (1999) regarding heterogeneous
panels with multiple regressors, it is inappropriate to apply individual unit root tests to judge the
stationarity of estimated residuals from linear combinations of nonstationary variables.
Consequently we pool the time-series and cross-sectional data sets and use Pedroni’s (1999)
panel cointegration tests to test for the existence of a long-run relationship between the
normalized input quantity x; and the right hand-side variables in equations (22).

Consider the following time series panel regression:

(26) y,=a,+X,B +dt+e,

it?

i=L..,N, t=1,..T,
where y, and X, are the observable dependent and independent variables with dimensions
(NxT)x1 and (N xT)xm,respectively; m is the number of regressors; S are the regressor

parameters to be estimated; e, is a vector of disturbance terms. Pedroni (1999) proposed

several statistics that can be classified into two categories. One category consists of
within-dimension-based statistics (or panel statistics), in the spirit of Levin and Lin (1993).
These statistics pool the residuals along the “within dimension” of the panel, i.e., numerator and
denominator components of the test statistics are summed separately over the cross-sectional
dimension. The second category consists of between-dimension-based statistics (or group mean
statistics). Based on IPS (1997), these statistics obtain the ratio of numerator to denominator for
each cross-sectional member prior to aggregating over the N dimension.

In both cases, the null hypothesis is the same, i.e., that the variables are not cointegrated
for each cross-sectional member. The alternative hypothesis is different for the two test
categories. The alternative for the first test category (panel statistics) is that the stationary
autoregressive parameter is homogeneous. Maddala and Wu (1999) argue that this alternative is

unreasonable, and that the second test category (group statistics) is more appropriate since the
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alternative hypothesis, which permits heterogeneous autoregressive parameters, is less
restrictive.

Two statistics for the second category of tests are as follows:

T

T
) —1 A A 2
€. 1) Z(ei,t—lAei,t _/Ii)
=1

t=1

_ N
(27)  (Group p statistic) ~ Z, = Z(

=l t

5 N T T R
(28)  (Group tstatistic) ~ Z,_ =D (67D.&],)"* Y (6, A8, —4)
i=l t=1

t=1
s 1o . . o
where 4, :E(af —§?),and &7 and §’ are individual long-run and contemporaneous

variances, respectively, of the residuals #, from the autoregression i, =¢,—7.e,, .

Specifically,

P S~
29 A==> (1- uu.. ),and
( ) 1 T;( ki +1)t;1( it l,t—S)
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Adjusted by appropriate constants obtained from the moments of the underlying
Brownian motion functions, these statistics are distributed as standard normal when both N and T’
grow large. Large left tail values of these statistics imply rejection of the null hypothesis in favor
of cointegration.

Empirical Results

Panel Unit Root and Cointegration Tests

As illustrated in figure 1, a structural change involving a break in volatility occurred in
approximately 1981 for most of the states for all the normalized prices and normalized wealth.
To mimic the effects of such a structural break, we split the data for normalized prices and

wealth variables for all states into two groups at 1981. A linear regression of each variable on
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year was estimated for each time period, and standard deviations were computed. After dividing
the normalized prices and equity in each time period by the respective standard deviation, the
transformed data were used in the panel tests.

As also illustrated in figure 1, all cross-sectional members in the panel had almost the
same time pattern for prices and equity variables. The implication is that the price series and
equity tended to be driven by some common external disturbance. As recommended by IPS, the
common time effects across states was purged by regressing each normalized price series and
normalized equity on a set of time dummies and using these residuals in the unit root tests. This
approach assumes that the disturbances for each member of the panel can be decomposed into
common disturbances that are shared among all members of the panel and independent
idiosyncratic disturbances that are specific to each member.

The results of the unit root tests proposed by IPS are shown for each variable in table 1.
These tests allowed each panel member to have a different autoregressive coefficient and short
run dynamics under the alternative hypothesis of trend stationarity. The tests were conducted
using the econometric software package RATS version 6, routine PANCOINT. Following the
suggestion of Newey and West (1994), the number of lags included in each test was determined
by the Bartlett kernel with the bandwidth parameter, k; , set equal to the integer of 4(T/100)*”,
i.e., k=3 in our application. The lag on research expenditures was determined by minimizing
AIC for lags of 7-30 years. The optimal lag ranged from 17 to 30 years, depending on input
demand equation. For convenience in subsequent analysis, an identical lag of 17 years was
selected for all equations. This value was the optimal lag for the labor equation, and the

distribution of AIC values was much flatter for the other equations than for the labor equation.
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The unit root test statistics were distributed as N(0,1) under the null of a unit root with a
one-tailed negative test statistic for the alternative hypothesis.

At the 5% significance level, a unit root was rejected only for the series x3, 13, and p.
When the other (nonstationary) variables were tested for a unit root in first differences, the
alternative hypothesis was stationarity without a trend since any time trend in levels was
removed by differencing (Canning and Pedroni, 1999). The test statistic for 1* differences was
negative and significant at a 5% level in each variable except for x;. The latter was significant at
a 10% level. Although higher than our prespecified significance level, we accepted x| as a
stationary series in first differences because it continued to exhibit nonstationarity at the 5% level
even after 4" differencing. Consequently, we conclude that xs, r3, and p, are stationary, i.e.,
integrated of order zero — 1(0), and that all other variables are integrated of order one, I(1).

We next tested for cointegration among the nonstationary variables for each input
demand equation. If the data are cointegrated for an input demand, equation (22) for that input
can be estimated using the original (i.e., untransformed) data to capture the long-run
relationships in the data. If the data are not cointegrated, first differences must be taken for all
variables except x3, 3 and p; in order to capture the long-run relationships

In order to improve the power of the cointegration tests, we considered the trade-off
between size and power of the tests (Haug, 1996). By pooling the data across states, the group
mean statistics for panel cointegration tests in Pedroni (1999) could be applied. Some variables
(i.e., all the normalized prices and equity) involved in the input demand equations (equation 22)
tended to be cross-sectionally dependent, and the others did not. Therefore, in the panel

cointegration testing procedure, we considered both the case including common time dummies
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(to capture effects that tend to cause individual state variables to move together over time) and
the case without time dummies.

As suggested by Pedroni (1999), the adjustment terms for the panel cointegration tests
were obtained by Monte Carlo simulation on the basis of 10,000 draws of 37 independent
random walks (i.e., the number of regressors exclusive of dummy variables) of length
T=10,000.° The results of the panel cointegration tests, presented in table 2, show that there is
no evidence of cointegration among the variables for any of the demand equations. Consequently,
the time-series-based input demand equations were estimated using differenced data for all
variables except x3, 13, and po.

Econometric Model Estimates

For the purpose of comparison, two sets of input demand equations were estimated. They
included (a) the traditional model in which all variables were implicitly assumed to be stationary
and (b) the time-series-based model that accounted for non-rejected time series properties of the
data investigated in last sub-section. In both models, each equation had the same regressors and
no across-equation restrictions were imposed. Consequently, the SUR parameter estimates were
identical to OLS estimates. The SUR estimation procedure was used to permit across-equation
tests to be conducted, as required for proposition 2.

Before estimating the traditional model, we first tested for a Ist-order autoregressive
(AR(1)) process in the error terms for each input demand equation defined in (22). Evidence of
an AR(1) process was found in each equation with Durbin-Watson test statistics of 0.311, 0.317,
and 0.674, respectively, for the materials, capital, and labor input demand equations. Subject to
the assumption that the autoregressive coefficients (rho) within a demand equation were identical

across states, estimates of rho for the three input demand equations were 0.971, 0.923, and 0.870,
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respectively. The data were transformed for 1st-order autocorrelation and used in a seemingly
unrelated regression (SUR) estimation of the system of three input demand equations.” The
traditional model estimates of the input demand equations are reported in table 3. The R? values
for the three equations in (22) were 0.834, 0.542, and 0.791 respectively.

Parameter estimates for the time-series-based input demand equations are reported in
table 4.® The R? values were considerably lower (0.153 and 0.204) for the materials and capital
equations estimated by this model than by the traditional model. However, it should be recalled
that the data used for the dependent variables were not the same. They were untransformed data
in the traditional model and first differences in the time-series-based model. For the labor
equation, the data used for the dependent variable was the same in both models and the R? value
was higher (0.935) in the time-series-based model.

It is well known that failing to properly account for unit roots in time-series data often
results in spurious conclusions being drawn about significant relationships. Our findings were
consistent with that expectation. Far fewer estimated parameters were significant in our
time-series-based model than in our traditional model. For example, 20, 46, and 51% of
estimated parameters in the materials, capital, and labor demand equations, respectively, were
significant at the 5% level of significance in the time-series-based model. These compared to 76,
58, and 73%, respectively, in the traditional model. Excluding dummy variables, the traditional
model overestimated the number of significant relationships by 60-100%. In addition, of 35
common non-dummy coefficients in these two models, many changed signs — 11 in the materials

demand equation, 20 in the capital demand equation, and 20 in the labor demand equation.
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Hypothesis Test Results

Hypothesis tests of the propositions and corollary were conducted on the estimated parameters at
the data means. These results, as well as a tabulation of predicted values consistent with the
hypotheses at each observation, are presented in table 5 for both models. Proposition 1 was
examined by testing whether each of the three predicted input demands in equation (22) was
positive. These test results are listed as propositions 1.1-1.3 in table 5. The null hypothesis of a
zero input demand level was rejected by both models in favor of positive predicted input
demands at the data means for each input at a 5% significance level. In addition, nearly all the
predicted input quantities were strictly positive at individual observations. For the traditional
model, among 1,872 observations, only 11 predicted capital quantities and one predicted labor
quantity violated first-order curvature properties. For the time-series-based model, a higher
rejection rate were found — among 1,824 observations, 78 predicted capital quantities and 14

predicted labor quantities violated first-order curvature properties.

The second proposition that Q =—(x,'x" +2x, ) is symmetric positive semidefinite was

tested by the equivalent specification that ¥ = x,'x" +2x,  is symmetric negative semidefinite.

To test this proposition, three individual tests (tests 2.1-2.3 in table 5) were conducted for
negative semidefiniteness and a joint test (test 3 in table 5) for symmetry. The tests for negative
semidefiniteness involved tests that all the leading principal minors of W alternative in signs,
starting with a nonpositive first leading principal minor, i.e., the first diagonal element. None of
the refutable behavioral hypotheses implied by second-order curvature properties of the indirect
utility function was rejected at the data means by either model. In the traditional model, although
both the second leading principal minor (test 2.2) and the determinant (test 2.3) of ¥ had

unexpected signs at the data means, they were not significantly different from zero. Considerably
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more evidence of second-order curvature violations than of first-order curvature violations at
individual observations than of first-order condition violations. Except for test 2.3 with the
time-series-based model, individual violations didn’t exceed 25% of the observations.

The test results for symmetry of ¥ are presented in test 3 in table 5. The three
symmetric restrictions were rejected at the 5% significance level by the joint test conducted at
data means in both models. Thus, the hypothesis implied by proposition 2 that Q2 is symmetric
positive semidefinite is statistically rejected at this data point. Whether rejection of symmetry
constitutes a rejection of the hypothesis that the collection of firms in each state act as though
they were a single expected utility-maximizing firm, or whether it simply implies that the
indirect utility function is not twice continuously differentiable at the data means is ambiguous
from these test results. Unfortunately, we are unable to resolve the ambiguity in this article.

Decision making consistent with constant absolute risk aversion or risk neutrality implies
three restrictions on input demand responses. The result (test 4 in table 5) indicates that these
restrictions were rejected by the joint test at the data means at the 5% significance level in both
models.

Our results using state-level aggregates were similar in a number of respects to Saha and
Shumway’s (1998) findings about output price risk for Kansans wheat farmers. However, we
found less support in the aggregate data than they found in the firm-level data for symmetry of
the indirect utility function. Our conclusions about first-order curvature properties and the nature
of producers’ risk preference were the same as theirs. The extant literature has not reached a
consensus regarding the nature of farmers’ risk preferences (Goodwin and Mishra, 2002), but a

few have found empirical support for the hypothesis of constant absolute risk aversion (CARA).
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Among those are the work of Park and Antonovitz (1992a, 1992b) who failed to reject CARA
for California feedlots.

Conclusions

This study has extended the Saha and Shumway (1998) model of a competitive firm operating
under output price risk to a firm operating under both output price and output quantity risk. One
important theoretical contribution to the previous literature is that the refutable propositions
implied by the indirect utility function are shown to hold without one of the previously
maintained hypotheses. Therefore, the only conditions required for the propositions to hold are:
(a) random wealth can be structured as three parts — a nonrandom part of profit, a random part of
profit, and nonrandom initial wealth, and (b) there exists an optimal input vector that maximizes
the expected utility function. Both are common assumptions in the firm theory under uncertainty.
Without requiring the previously imposed assumption that the expectation of the random part of
profit is zero, the propositions can be empirically applied to varied market structures by
permitting tests when there is a nonzero correlation between the error terms of random output
price and random output quantity.

Moreover, a set of testable hypotheses associated with input responses under multiple
sources of risk were derived from these propositions, and empirically tested for aggregates of
firms operating under both output price and output quantity risk. This is the first study using an
aggregate state-level panel data set to empirically test for utility-maximizing behavior by
considering each aggregate as though it were an expected utility-maximizing firm. Aggregate
agricultural production data for these states have previously been found to approximate

nonparametric conditions for consistent behavior with this hypothesis.
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To avoid the possibility of spurious estimation from statistical estimation using
nonstationary data, we examined the time series properties of the data. The data were tested both
for nonstationarity and cointegration using recent developments in time-series econometrics, i.e.,
Im, Pesaran, and Shin’s panel unit root tests and Pedroni’s panel cointegration tests. Most of the
data series were found to be nonstationary but none of the demand equations exhibited evidence
of cointegration among nonstationary variables. Two models were developed and used for
comparison purposes to test the expected utility maximization hypotheses — a traditional model
that implicitly assumed stationary data and a model based on nonrejected time series properties
of the data.

In both models, parametric results showed that the behavioral postulates implied by the
first-order curvature properties of the indirect utility function could not be rejected at the data
means, and the data at nearly all individual observations were consistent with these properties.
The second-order curvature properties were also not rejected at the data means, but a larger
portion of the observations were inconsistent with the hypotheses. The symmetry property
implied by a twice continuously differentiable indirect utility function was soundly rejected at
the data means by both models. The empirical evidence from both models also failed to support

ad hoc risk preference assumptions of either risk neutrality or constant absolute risk aversion.
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Footnotes

! See Banerjee (1999), Baltagi and Kao (1999), and Phillips and Moon (1999) for surveys of the recent theoretical
literature on panel unit root tests and panel cointegration tests.
? Exceptions are Bandiera et al. (2000), McCoskey and Kao (1999), and Sarantis and Stewart (2001).

? The following notation is used throughout this article: 4, denotes the partial derivative of (-) with respect to x, A,

represents the Hessian matrix whose i/™ element is 94/ oxdy, , where A(*) is a real-value function of vectors x and y.

* The theory of the expected utility maximization applies to the individual, in this case the individual firm. Although
tests of utility maximization have not been reported for state-level data, Lim and Shumway (1992) failed to reject
the hypothesis that each of the states acted as though they were profit-maximizing firms. They used nonparametric
testing procedures on annual data for the period 1956-1982, which overlaps with the first 23 years of our data
period.

> Significant (5% level) groupwise heteroskadasticity was still found in the scaled data.

% Pedroni (1999) tabulated the adjustment terms for a maximum of seven regressors.

7 Although evidence was found that significant heteroskedasticity still remained across states, we were unable to
transform the data to remove cross-sectional heteroskedasticity because we had more cross-sectional units than time
periods.

¥ An additional dummy variable was included in each input demand equation in the time-series-based model for the

production year 1983 to pick up the effects of the PIK program.
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Table 1. Panel Unit Root Test Results

Test Conclusion

Variable® Test Statistic”
Panel Unit Root Test for First Differences with Trend:

X1 0.803

X2 0.043

X3 -2.030%**

I -0.491

r 0.847

I3 -3.24 1 %**
p1 1.76896

P2 -2.131%%*
p3 -0.881

Wo -0.85731
res’ 0.628

Panel Unit Root Test for First Differences without Trend:

Axy -1.371%*

Ax; -5.799%**
Ary -6.622 ***
Ar, -0.7845%**
Ap; -8.107 ***
Aps -7.755 F**
Awy -8.608 ***
Ares -8.922 ***

Nonstationary
Nonstationary
Stationary
Nonstationary
Nonstationary
Stationary
Nonstationary
Stationary
Nonstationary
Nonstationary
Nonstationary

Stationary
Stationary
Stationary
Stationary
Stationary
Stationary
Stationary
Stationary

 x1, x2, X3, and res were tested without time dummies, and other variables were tested with time

dummies.

® Based on Im, Pesaran, and Shin (1997):

* Reject the null of a unit root (nonstationarity) at the 10% level (lower-tail critical value =

-1.282)

** Reject the null of a unit root at the 5% level (lower-tail critical value = -1.645)
*#% Reject the null of a unit root at the 1% level (lower-tail critical value = -2.326)

¢ The variable res is public research expenditures. Other variables are defined in the text.
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Table 2. Panel Cointegration Test Results

Test With or Without Time

Demand Equation

Test Statistic X1 X7 X3
Dummies

With 4.578 4.075 4.751

Group p-Statistic
Without 4.189 4.456 4.393
With -1.264 -5.621 -0.297

Group t-Statistic
Without 2.343 1.643 -1.321
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Table 3. Parameter Estimates for the Input Demand Equations: Traditional model

Material/Land Equation Capital/Land Equation Labor/Land Equation
Variable® (x1) (x2) (x3)

Estimated . Estimated . Estimated .

coefficient” SE coefficient” SE coefficient” SE
dl 0.218%** 0.032 0.132%** 0.014 0.359%** 0.072
d2 0.091*** 0.032 0.087*** 0.014 0.239%** 0.074
d3 0.035 0.031 0.028** 0.014 0.134* 0.072
d4 (0.239%:*x* 0.030 0.132%*x* 0.013 0.730%** 0.067
ds 0.047 0.031 0.061%** 0.014 0.162%* 0.074
dé 0.170%*** 0.031 0.284*** 0.014 1.068*** 0.069
d7 0.739%** 0.030 0.301*** 0.013 0.722%** 0.067
ds 0.112%** 0.031 0.075%** 0.014 0.413%** 0.068
d9 (0.235%:*x* 0.031 0.156%** 0.014 0.435%*x* 0.069
d10 0.114%** 0.031 0.171%** 0.014 0.362%** 0.069
di1l 0.070** 0.031 0.089*** 0.014 0.266*** 0.072
d12 0.092%** 0.031 0.180%** 0.014 0.310%** 0.068
d13 0.138%** 0.031 0.230%** 0.014 0.454%** 0.068
d14 0.075%* 0.031 0.093 %** 0.014 0.230%** 0.071
d1s 0.091 *** 0.031 0.157%** 0.014 0.435%** 0.069
d16 0.086%** 0.031 0.102%** 0.014 0.278%** 0.069
d17 0.125%** 0.031 0.259%** 0.014 1.070%** 0.069
di8 0.309%** 0.031 0.288*** 0.013 0.755%** 0.067
d19 0.146%*** 0.034 0.252%** 0.015 0.730%*** 0.077
d20 0.200%*** 0.031 0.307*** 0.014 0.786%*** 0.069
d21 0.178%** 0.031 0.227%** 0.014 0.567%** 0.069
d22 0.115%** 0.031 0.165%** 0.014 0.465%** 0.069
d23 0.131%** 0.031 0.099%** 0.014 0.273%** 0.071
d24 -0.026 0.033 0.043%** 0.015 0.159%* 0.079
d25 0.191%** 0.031 0.158%** 0.014 0.516%** 0.069
d26 0.018 0.033 0.076%** 0.015 0.198%** 0.077
d27 0.127%** 0.031 0.107%** 0.014 0.295%** 0.070
d28 0.086%*** 0.031 0.202%** 0.014 0.716%*** 0.070
d29 0.156%*** 0.031 0.529%** 0.014 1.234%** 0.067
d30 -0.011 0.033 0.039%** 0.015 0.158%* 0.079
d31 -0.041 0.037 0.033%* 0.017 0.092 0.086
d32 0.184%** 0.031 0.283%** 0.014 0.757%** 0.070
d33 0.145%** 0.031 0.290%** 0.014 0.650%*** 0.068
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Table 3 (continued)

Material/Land Equation Capital/Land Equation Labor/Land Equation
Variable® (x1) (x2) (x3)

Estimated . Estimated . Estimated .

coefficient” SE coefficient” SE coefficient” SE
d34 0.041 0.031 0.068*** 0.014 0.237%** 0.071
d3s 0.125%** 0.031 0.100%*** 0.014 0.369%** 0.070
d36 0.221*** 0.031 0.305%** 0.014 1.000*** 0.069
d37 0.097%** 0.031 0.302%** 0.014 1.012%** 0.070
d38 0.158%** 0.031 0.177%** 0.014 0.518%** 0.069
d39 0.033 0.031 0.079%** 0.014 0.198*** 0.074
d40 0.065** 0.031 0.122%** 0.014 0.361*** 0.071
d41 0.022 0.031 0.054*** 0.014 0.165%** 0.072
d42 0.015 0.032 0.056%** 0.014 0.171%* 0.075
d43 0.008 0.031 0.128%** 0.014 0.347%** 0.070
d44 0.110%*** 0.033 0.155%** 0.015 0.493%** 0.074
d4s 0.121%** 0.031 0.139%** 0.014 0.469%** 0.069
d46 0.249%*x* 0.031 0.347%** 0.014 0.993 **x* 0.070
d47 0.0714** 0.031 0.135%*x* 0.014 0.435%** 0.071
d48 0.003 0.031 0.047%** 0.014 0.157%* 0.075
P -0.048*** 0.010 -0.006 0.004 0.032 0.024
P2 0.0602%** 0.012 0.017*** 0.006 -0.064%* 0.031
Jo -0.034** 0.021 -0.019** 0.011 0.023 0.062
I 0.118%** 0.044 0.002 0.022 0.32]%** 0.119
15} -0.046** 0.019 0.003 0.009 0.038 0.051
I3 0.0002 0.023 -0.044%** 0.012 -0.379%** 0.072
I 0.003*** 0.001 0.0003 0.000 0.002 0.002
p’ 0.015 ** 0.007 -0.008** 0.003 -0.017 0.018
p1 P2 -0.005 0.011 0.014%*x* 0.006 0.076** 0.029
P1 P3 -0.017 0.020 0.008 0.009 0.001 0.046
piti 0.033 0.039 0.004 0.016 -0.043 0.075
pir2 -0.027 0.016 0.0002 0.007 -0.023 0.034
pit3 0.021 0.025 -0.016 0.011 0.059 0.055
pil -0.001 0.001 -0.003%** 0.001 -0.016%** 0.003
P 0.017 0.020 -0.022%* 0.009 -0.197%** 0.044
P2 P3 -0.008 0.023 0.017 0.010 0.182%** 0.048
pari -0.120%* 0.048 -0.069%** 0.020 -0.162%* 0.094
par2 0.018 0.021 0.002 0.009 0.069 0.045
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Table 3 (continued)

Material/Land Equation Capital/Land Equation Labor/Land Equation
Variable® (x1) (x2) (x3)
Estimated . Estimated . Estimated .
coefficient” SE coefficient” SE coefficient” SE
pars 0.02806 0.038 0.019 0.017 -0.060 0.086
pal 0.0003 0.002 0.001* 0.001 0.009** 0.003
s’ 0.077 0.047 0.002 0.019 -0.122 0.087
pst1 0.096 0.094 0.058 0.037 0.074 0.168
pst2 -0.045 0.039 -0.016 0.017 -0.146* 0.080
psls -0.014 0.058 0.002 0.027 0.239%* 0.131
psl 0.0003 0.004 -0.006%** 0.002 -0.016%* 0.007
r’ -0.337%* 0.187 -0.192%** 0.067 -0.515%* 0.298
ISRV 0.059 0.053 0.023 0.021 0.079 0.103
I 13 0.206* 0.115 0.138%** 0.044 0.230 0.201
il 0.008 0.006 0.015%** 0.002 0.048** 0.009
o -0.004 0.032 0.002** 0.014 0.053 0.065
Io13 -0.040 0.041 -0.041** 0.017 -0.180** 0.080
1l 0.008%** 0.003 -0.001 0.001 0.003 0.005
rs° -0.052 0.067 0.004 0.029 0.185 0.139
13l -0.010** 0.005 -0.001 0.002 -0.029%** 0.008
r 0.0001 0.000 0.001*** 0.0001 0.003*** 0.0003
t -0.004** 0.002 0.003%** 0.001 -0.010%** 0.004
t 0.0003*** 0.00008 0.0002°%** 0.00003 0.0003*x* 0.0002
R-Square 0.834 0.542 0.791

*Variable codes: p; is crop price, p; is livestock price, ps is secondary output price, r; is materials input price,
1, is capital input price, r3 is labor input price, I is farm equity, t is the time variable, d1-d48 are state dummy
variables.

® Parameter estimates marked with *** are significant at the 1% level, ** at the 5% level, and * at the 10%
level.

¢ SE is standard error.
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Table 4. Parameter Estimates for the Input Demand Equations: Time-Series Model

Material/Land Capital/Land Labor/Land
Variable * (1) (x2) (x3)
Estimated . Estimated . Estimated .

Coefficient” SE Coefficient” SE Coefficient” SE

d3s 0.051* 0.029 -0.051 *** 0.012 1.432%*% 0.098
d36 0.064** 0.027 -0.021* 0.011 5.949%** 0.092
d37 -0.009 0.029 -0.027** 0.012 6.706*** 0.099
d38 0.069** 0.027 -0.018* 0.011 3.110%** 0.091
d39 -0.002 0.030 -0.074%** 0.012 0.250%** 0.101
d40 0.016 0.029 -0.043%** 0.012 1.394%** 0.099
d41 0.005* 0.029 -0.061 *** 0.011 -0.014 0.098
d42 0.002 0.030 -0.059%** 0.012 0.228** 0.100
d43 0.002 0.028 -0.038*** 0.011 1.614%** 0.095
d44 0.049% 0.029 -0.034%** 0.011 2.355%** 0.097
d4s 0.054** 0.027 -0.030%** 0.011 2.141%** 0.092
d46 0.055** 0.027 -0.036%** 0.011 6.669*** 0.091
d47 0.027 0.029 -0.050%** 0.011 2.243%** 0.097
d48 -0.009 0.029 -0.069%** 0.012 -0.210%* 0.099
ds3 0.117%%* 0.039 0.022 0.016 0.294** 0.133
p1 -0.052%* 0.024 0.018* 0.010 0.069 0.083
P2 -0.010 0.007 0.020%** 0.003 0.428*** 0.024
ps 0.047** 0.027 -0.015 0.011 -0.174* 0.092
I 0.080** 0.036 -0.032%* 0.014 -0.007 0.122
I -0.093%** 0.028 -0.006 0.011 -0.067 0.094
I3 0.038** 0.017 0.007 0.007 -0.420%** 0.059
I 0.002 0.012 -0.030%** 0.005 -0.029 0.040
p’ 0.148%* 0.042 0.020 0.017 -0.123 0.142
p1 P2 0.009 0.009 0.007* 0.004 0.023 0.032
p1 P3 -0.043 0.040 -0.0010 0.016 0.075 0.134
pir -0.083* 0.049 0.009 0.020 0.007 0.168
pir2 0.100** 0.039 -0.003 0.015 -0.007 0.132
pit3 -0.014 0.030 -0.027%* 0.012 -0.035 0.102
pil -0.024 0.023 0.0006 0.009 -0.013 0.076
P’ 0.004 0.002 -0.002 0.0009 -0.041%** 0.008
P2 D3 -0.017 0.012 0.001 0.005 0.061 0.041
pary -0.036** 0.018 0.005 0.007 0.087 0.062
para 0.032%* 0.014 0.001 0.005 -0.044 0.046
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Table 4 (continued)

Material/Land Capital/Land Labor/Land
Variable * (x1) (x2) (x3)

Estimated . Estimated . Estimated .
Coefficient® SE Coefficient® SE Coefficient® SE

) -0.002 0.005 -0.003 0.002 -0.048*** 0.018
dl 0.100%** 0.028 -0.03 1 %** 0.011 1.477%** 0.095
d2 0.053* 0.029 -0.044%** 0.011 0.550%** 0.098
d3 0.005 0.030 -0.057%** 0.012 -0.049 0.100
d4 0.100%** 0.026 -0.011 0.010 3.568%** 0.088
ds 0.005 0.029 -0.068*** 0.012 -0.030 0.100
dé 0.038 0.027 -0.028** 0.011 6.052%** 0.093
d7 0.344%** 0.026 -0.009 0.011 4.036%** 0.090
d8 0.043 0.027 -0.018%* 0.011 1.818*** 0.090
d9 0.113%** 0.027 -0.019%* 0.011 2.225%%* 0.092
d10 0.007 0.028 -0.032%%* 0.011 1.811%** 0.094
di1 0.026 0.029 -0.055%** 0.012 0.706%** 0.099
d12 0.002 0.027 -0.026** 0.011 1.560%** 0.091
di3 0.026 0.027 -0.023** 0.011 2.625%** 0.091
di4 0.010 0.029 -0.059%** 0.011 0.564*** 0.098
dis 0.035 0.028 -0.021* 0.011 2.350%** 0.093
d16 0.027 0.028 -0.024** 0.011 1.467%** 0.094
d17 0.017 0.027 -0.030%** 0.011 6.616%*** 0.093
d18 0.125%** 0.026 -0.008 0.011 4.286%** 0.090
d19 0.033 0.029 -0.033%** 0.012 4.226%** 0.099
d20 0.048* 0.027 -0.031*** 0.011 4.828%** 0.092
d21 0.041 0.027 -0.032°%** 0.011 3.343%%%* 0.093
d22 0.024 0.027 -0.025** 0.011 2.613%** 0.092
d23 0.073%* 0.029 -0.038*** 0.011 1.202%** 0.097
d24 -0.023 0.031 -0.073%** 0.012 -0.212%* 0.105
d25 0.100%** 0.027 -0.024** 0.011 2.912%** 0.093
d26 -0.012 0.031 -0.072%** 0.012 0.109 0.105
d27 0.031 0.029 -0.048*** 0.011 1 121%** 0.097
d28 0.014 0.027 -0.033%** 0.011 3.863%** 0.093
d29 -0.006 0.026 0.026** 0.010 7.193%** 0.089
d30 -0.027 0.031 -0.074%** 0.012 -0.252%* 0.104
d31 -0.006 0.033 -0.063*** 0.013 -0.205%* 0.112
d32 0.058%* 0.028 -0.032%** 0.011 5.006%** 0.096
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Table 4 (continued)

Material/Land Capital/Land Labor/Land
Variable ® (x1) (x2) (x3)
Estimated . Estimated . Estimated .
Coefficient” SE Coefficient” SE Coefficient” SE
d33 0.023 0.027 -0.026%* 0.011 3.910%** 0.092
d34 0.011 0.029 -0.061 *** 0.011 0.551*** 0.097
pal 0.014* 0.008 -0.003 0.003 -0.054%* 0.026
ps’ 0.012 0.049 -0.028 0.019 0.126 0.165
psti 0.026 0.062 -0.004 0.025 -0.055 0.210
pat2 -0.038 0.044 0.009 0.017 0.056 0.149
psts 0.028 0.038 -0.005 0.015 -0.089 0.128
psl 0.019 0.022 -0.001 0.009 -0.133* 0.075
r’ -0.099 0.041 0.043 0.016 -0.285 0.137
ISRV 0.015 0.037 -0.011 0.015 0.116 0.126
I 13 0.078 0.057 0.006 0.023 -0.166 0.193
il -0.007 0.041 0.004 0.016 -0.015 0.140
r,’ -0.029 0.035 0.013 0.014 -0.159 0.120
Io13 -0.063 0.042 -0.007 0.017 0.138 0.143
1l -0.012 0.027 -0.007 0.011 -0.088 0.092
r5° -0.004 0.012 0.007 0.005 0.320%** 0.042
13l -0.035 0.022 0.023*** 0.009 0.111 0.075
I -0.029 0.011 -0.023%** 0.004 0.168** 0.036
res -0.003** 0.001 -0.001** 0.0005 -0.032%#* 0.004
res’ 0.00003 0.0001 -0.0007 *** 0.00003 -0.002%** 0.0002
R-square 0.153 0.204 0.935

“materials input price, 1, is capital input price, r3 is labor input price, I is farm equity, t is the time variable,
d1-d48 are state dummy variables, and d83 is the 1983 dummy variable.

® Parameter estimates marked with *** are significant at the 1% level, ** at the 5% level, and * at the 10%
level.

¢ SE is standard error.
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Table 5. Expected Utility Maximization Hypothesis Test Results

Traditional Model Time Series Model
Test at Data Means  Rejections ~ Test at Data Means ~ Rejections
o Null Test
Proposition e among 1,872 among 1,824
ype . . _ . . _
Statistic  P-value Observations Statistic ~ P-value Observations

1. V is decreasing in r
1.1 V is decreasing in

R =0 AN 98.706 0.000 0 8.486 0.000 0
I, X >0
1.2 V is decreasing in

R X, =0 AN 9.963 0.000 11 3.253 0.001 78
I, X, >0
1.3 Vis decreasing in

R x;=0 AN 56.521 0.000 1 228.681  0.000 14
I3, X5 >0
2. ¥= xl*x* + 2xr* is negative semidefinite
2.1 1" leading
principal minor: =zero AN 2284  0.022 387 4739 0.000 1
2x1*rl +x,% <0
2.2 2" leading
principal minor of =zero AN -1.736  0.083 460 3.258 0.001 232
¥Y>0
2.3 Determinant of

=zero AN 0.772  0.440 450 -2.173 0.030 840

¥ <0
3. Symmetry of ¥'° W 71770  0.000 -- 14.471 0.002 -
4. CARA orRN ¢
X = x = x 5=0 =zero W 99.116  0.000 - 9.755 0.021 -

* AN is asymptotic normal test, and W is Wald chi-squared test.

® Test of symmetry involves jointly testing Hy: 2|])Cl*r2 + xl*IDx; = 2Dx;.l + x;IDxl ,

*

2D>c1r3 +x,Lx; = 2Dx3n +x; X, and ZD)C2r3 + Xy = 2[[)63r2 + x5, Lk,

“CARA is constant absolute risk aversion, and RN is risk neutrality
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Figure 1. Plots of Prices and Equity
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