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Artificial intelligence (Al) has generated excitement for its
potential to transform how food is grown, harvested, and
managed (NIFA, 2025). Yet, despite its prominence as a
catchphrase, Al remains poorly understood in
agricultural policy debates. What exactly constitutes Al in
this context? More importantly, does Al represent a
turning point for one of the sector’'s most persistent
challenges in developed economies—the reliance on
costly or scarce human labor?

Suboptimal input decisions, unpredictable weather, pest
outbreaks, and disease pressures often reduce
agricultural yield potential. Even when crops do ripen, a
substantial share may go unharvested due to labor
shortages or low market prices (Baker et al., 2019;
Dunning, Johnson, and Boys, 2019). At the same time,
rising climate volatility and shifting trade dynamics have
made farming more financially precarious. As labor costs
and production risks rise, so do expectations that
technology—particularly Al—can offer solutions.

Al promises to address many of these challenges by
replicating some human tasks and enhancing data-
driven decision-making. Depending on the application,
Al may boost productivity, generate new roles in
AgTech, or eliminate existing jobs. These questions
about the future of work are especially pressing in U.S.
agriculture, where dependence on migrant and manual
labor remains the norm. To engage with these debates
meaningfully, we must move beyond the hype and clarify
what Al actually is—not in abstract terms, but in
practical, functional ones relevant to agricultural policy.

This article draws on 2 decades of U.S. patent data to
examine how Al is being embedded in agricultural
technologies. By analyzing the types of Al functions
being patented and the sectors they are targeting, we
provide a clearer picture of how Al may reshape the
nature of agricultural work in the years ahead.

What Is Artificial Intelligence? A Functional
Framework for Policy

Al encompasses a broad set of computational
technologies designed to perform tasks that typically
require human intelligence (NIST, 2019). In the broader
Al field, Al is commonly classified into three levels of
capability: artificial narrow intelligence (ANI), artificial
general intelligence (AGI), and artificial superintelligence
(ASI) (Wang et al., 2021). ANI systems are designed to
perform specific, well-defined tasks—such as identifying
pests through image recognition or optimizing irrigation
schedules using predictive analytics. This is the form of
Al relevant to current technologies and patent activity. In
contrast, AGI (artificial general intelligence, or human-
equivalent intelligence) and ASI (artificial
superintelligence, or beyond-human intelligence) remain
theoretical and are not the focus of this analysis. In other
words, when most people refer to “Al” in 2025, they are,
in practice, referring to ANI. For clarity, this article uses
“Al” and “ANI” interchangeably.

To make the concept of Al more useful for policy
analysis, we adopt a functional classification based on
the human capabilities Al is designed to replicate:
perception, cognition & learning, and execution (Wang et
al., 2021). This typology aligns well with the structure of
labor markets and allows us to assess where Al might
substitute or augment human work.

Perception-Oriented Al
Perception-oriented Al systems replicate human sensory
abilities by interpreting information from the physical
environment. These systems enable machines to “see,”
“hear,” or “sense” environmental cues. In agriculture,
examples include
e computer vision for identifying pests, weeds,
or disease symptoms from imagery (e.g.,
Patent US8705017: Photonic fence, a
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vision-based tracking system that identifies
biological properties of airborne organisms);

e remote sensing and Internet of Things (loT)-
based monitoring for soil moisture,
temperature, and nutrient levels (e.g., Patent
US11521382: Machine vision plant tracking
system, which uses convolutional neural
networks and multisensor inputs to track
individual plants in real time);

e speech recognition systems for hands-free
control of farm equipment (e.g., Patent
US10580403B2, which enables voice-
controlled operation of agricultural
machinery).

These technologies may partially substitute for manual
inspection and monitoring, particularly those involving
routine or repetitive observation, while offering
improvements in precision, frequency, and scope of
observation.

Cognition & Learning—Oriented Al
This domain includes Al systems that simulate human
reasoning, learning, and decision-making. These tools
typically serve as decision aids, helping process
complex data to generate predictions or optimize
processes. Examples include
¢ machine learning models for yield prediction,
price forecasting, or resource allocation
(e.g., Patent US11017306, which uses
machine learning to predict seed harvest
moisture and guide operational decisions);
¢ knowledge representation and expert
systems for agronomic diagnostics (e.g.,
Patent US7184859, which uses remote
sensing and vegetation data to guide
variable-rate chemical applications);
e optimization algorithms for irrigation,
machinery scheduling, or input delivery
(e.g., Patent US10524406, which describes
a system for managing and guiding field
operations through automated control
mechanisms).

These Al tools often enhance managerial and planning
functions on farms by enabling more informed decision-
making. However, they may also reduce demand for
workers engaged in data interpretation or routine
logistical tasks.

Execution-Oriented Al
Execution-oriented Al refers to systems capable of
autonomous or semiautonomous physical action. These
technologies often take the form of robotics, including
e autonomous machinery for planting, spraying, or
harvesting (e.g., Patent US20240306544, which
describes a multicamera robotic harvester
capable of remote-targeted action on delicate
crops like berries);

e human-robot collaboration systems for sorting,
packing, or greenhouse work (e.g., Patent
US20190138967A1, which outlines a system for
coordinating human and machine activity in
shared workspaces using real-time Al-driven
feedback).

Execution-oriented Al systems raise the most direct
concerns about labor displacement, particularly for
repetitive tasks. At the same time, their deployment often
requires skilled operators and technicians, potentially
shifting labor demand toward more technical roles.

This functional classification reinforces that Al is not a
single technology but rather a diverse set of tools with
varied implications for agricultural work. By classifying Al
based on the human functions it replicates, policy-
makers can better anticipate which jobs may be
automated, which enhanced, and where retraining or
workforce development may be most needed. This
framework serves as the analytical foundation for the
sections that follow, where we explore trends in Al
patenting and their potential labor market effects.

Using U.S. Patents Data to Identify Al-
Driven Innovation in Agriculture

To examine the role of artificial intelligence in agricultural
innovation, we analyze over 5 million utility patents
granted by the U.S. Patent and Trademark Office
(USPTO) between 2003 and 2023, obtained from the
PatentsView public repository (USPTO, 2025a). The
starting year aligns with the broader shift toward digital
patent filings and the emergence of Al-relevant
technologies in the USPTO corpus. The USPTO is
considered a global benchmark for technological
innovation, as it accepts applications from both domestic
and international inventors and recognizes a broad
spectrum of patentable technologies, including Al-driven
inventions. Each patent record includes the date of
issuance, the assignee’s country of origin, and a
structured text corpus comprising the abstract, claims,
and technical description. Patents are classified under
the Cooperative Patent Classification (CPC) system,
which allow researchers to track trends across specific
technological areas—for example, walking robots are
consistently labeled under B62D57/032.

Figure 1 shows how patents are classified as agricultural
patents and, if identified as Al-related, further
categorized into functional Al domains—perception,
cognition & learning, and execution—based on the
technological capabilities likely embedded in the
innovation. Figure 1 provides a detailed description of
the classification process. As patents do not indicate
where technologies are ultimately adopted, we first link
patents to the sector most likely to adopt them based on
the text description of the patent. Goldschlag et al.
(2020) used natural language processing techniques to
probabilistically map four-character CPC tags to three-
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Figure 1. Workflow for Classifying Agricultural and Al-Enabled Patents

Start with USPTO Utility Patents (2003-2023) and their CPC tags
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Step 1: Assign each patent sectoral probabilities using
CPC->3-digit NAICS mapping by Goldschlag et al., (2020).

Is the patent relevant to the agricultural sector and at least one of
its 3-digit NAICS probabilities >0.5?
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Classify the patent into the corresponding
agricultural sub-sector (NAICS 111-114).
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Step 2: Map agricultural patents to Al subdomains using
patent texts (Giczy, Pairolero, and Toole 2022; Pairolero et

al. 2025).

Is the patent in the top 20% when ranked by highest Al sub-
domain probabilities?
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Classify the patent as ‘Al-patent’ and
assign to Al domains proportional to
domain probabilities.
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Note: Patent-to-industry mapping adapted from Goldschlag et al. (2020); Al subdomain classification from Giczy, Pairolero, and

Toole (2022); Pairolero et al. (2025).

Choices Magazine

3

A publication of the Agricultural & Applied Economics Association



Figure 2. Distribution of Al-Driven Innovation in Agriculture by Three Functional Al Domains and
Their Dominant Al Subdomain, 2003-2023

Natural Vision
Language
Processing
(3.36%)

Enowledge
Representation
(7.43%)

Learning
(68.2%%)

Speech
Recognition
1.37%)

Evolutionary

Compugation
Machine

Learning
(2.17%)

Source: Authors’ calculations using USPTO (2025a) data

digit North American Industry Classification System
(NAICS) codes. For instance, CPC tag CO5F—organic
fertilizers—maps to NAICS 111 (crop production) with a
64% probability and to NAICS 327 (non-metallic mineral
product manufacturing) with a 16% probability, with
several other NAICS industries splitting the remaining
20%. The goal is to retain patents most likely used in
agricultural subindustries: crop production (111), animal
production and aquaculture (112), forestry and logging
(113), and fishing, hunting, and trapping (114). If the
mapping reveals no relationship with any of the four
agricultural subindustries, then we omit those CPC tags
from further calculations of subindustrial probabilities.
Then, we look at all the remaining CPC tags attached to
patents along with their industry-specific probabilities. If
a patent has multiple CPC tags referring to the same
agricultural subindustry, then we average those
probabilities within an agriculture subindustry so that we

have one sectoral probability per patent per subindustry.

Next, we rank patents along with the maximum of their
industrial classification probabilities. We retain the top
20% of ranked patents to make sure we do not consider

patents with very low subindustry probabilities relating to
agriculture. Once we identify our pool of agricultural
patents, we assign each retained patent to an
agricultural subindustry if its probability of association
with that agricultural subindustry exceeds 0.5. CPC tags
mapped by Goldschlag et al. (2020) to NAICS 115
(supporting services in agriculture) were remapped to
their corresponding major subindustry (i.e., NAICS 1151
to 111, 1152 to 112, and 1153 to 113).

Next, to distinguish Al-enabled technologies from
conventional technological innovations, we apply the
crosswalk developed by Giczy, Pairolero, and Toole
(2022) and Pairolero et al. (2025), which maps the
parsed text of each patent to eight Al subdomains:
Machine Learning, Evolutionary Computation, Natural
Language Processing, Vision Recognition, Speech
Knowledge, Knowledge Processing, Planning and
Control, and Hardware. A patent has eight reported
probabilities each corresponding to one of the eight Al
subdomains above. We rank patents along with the
maximum of their Al domain classification probabilities.
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Figure 3. Trends in Al-Driven Agricultural Innovation in All Agriculture (11), Crop Agriculture (111) and Animal
Agriculture (112 and 114) sectors, 2003-2023
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Notes: In this figure, Al-containing patents are proportionally assigned to one or more functional domains—Perception, Cognition &

We label the top 20% of ranked patents as patents
containing Al innovation, or simply “Al patents”; the
remaining 80% of patents with much smaller Al
probabilities are labeled as “non-Al patents.” Finally,
each Al patent is proportionally categorized into one or
more of three functional domains—perception, cognition
& learning, and execution—based on their relative
domain-specific probabilities. These domains reflect the
human capabilities Al technologies are designed to

replicate and serve as a foundation for understanding
potential effects on agricultural work. The following
mapping aligns specific Al subdomains (Giczy, Pairolero,
and Toole, 2022; Pairolero et al., 2025) with three
broader functional domains identified in the previous
section:
1. perception: sensing and interpreting the physical
or informational environment. Includes computer
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vision, natural language processing, and speech
recognition.

2. cognition & learning: reasoning, learning from
data, and decision-making. Encompasses
machine learning, knowledge processing,
evolutionary computation, and planning and
control.

3. execution: performing physical tasks or
operating machinery autonomously. Includes Al
hardware such as robotics, embedded systems,
and autonomous vehicles.

Figure 2 illustrates the distribution of Al-driven
innovation across functional domains in agriculture,
based on USPTO patents granted between 2003 and
2023. Each Al patent is categorized into one subdomain
using probabilistic weights, then grouped into the three
overarching domains: perception, cognition & learning,
and execution. The inner ring displays the share of each
functional domain, while the outer ring provides further
detail on subdomains. The results show that cognition &
learning accounts for the largest share (68.2%) of Al-
related agricultural innovation, with particularly high
activity in planning and control (44.28%) and
evolutionary computation (14.35%). Perception
technologies represent 20.7% of Al innovation in
agriculture, with notable contributions from vision
recognition (15.94%) and natural language processing
(3.36%). Finally, the execution domain—which
encompasses Al hardware and robotic control
systems—accounts for 11.1% of Al activity. This
distribution suggests that most agricultural Al-containing
patents are oriented toward enhancing decision-making
and predictive capabilities, followed by sensing and
automation of physical execution. The presence of
execution-related technologies suggests a possible shift
toward physical task automation, though this remains a

smaller component of Al-driven agricultural innovation
relative to the cognitive aspects of Al.

Trends in Al-Driven Agricultural Innovation

Figure 3 presents the trajectory of Al-related patenting
activity in U.S. agriculture from 2003 to 2023,
disaggregated by functional Al domain: perception,
cognition & learning, and execution. Across the full
agricultural sector (NAICS 11), Al innovation shows a
clear upward trend, with growth accelerating after 2010.
Cognition & learning technologies consistently dominate
in patent counts. These technologies—which include
machine learning, knowledge representation, and
planning systems—likely reflect the growing integration
of data analytics, predictive modeling, and decision-
support systems in modern agricultural management.
Perception-oriented Al innovation, including computer
vision and sensing technologies, also exhibit strong
growth and converge to cognition patents in recent
years. Execution-oriented Al, encompassing automation
and robotics, lags in absolute numbers but exhibits the
fastest growth in the last decade—suggesting increasing
focus on autonomous farm operations.

This pattern is especially pronounced in crop agriculture
(NAICS 111), where Al activity has grown across all
domains since 2010. Cognition & learning continues to
lead, consistent with the data-intensive nature of
cropping systems. Perception and execution have also
gained traction, supporting applications in plant
detection, precision input application, and mechanized
harvesting. By contrast, animal agriculture (NAICS 112
and 114) shows a more modest and gradual increase in

Table 1. Patents in Agricultural and Nonagricultural Sectors by the Type of Innovation They Contain,

2003-2023
Patents Patents Growth Rate
Type of Innovation 2003-2012 2013-2023 (%)
Agricultural Sector (NAICS: 11)

Non-Al 21,787 42,823 97

Any Al 3,193 10,749 237
1. Perception-oriented Al 679 2,029 199
2. Cognition- and learning-oriented Al 1,913 6,640 247
3. Execution-oriented Al 548 1,375 151

Nonagricultural Sectors

Non-Al 80,227 158,473 98

Any Al 14,879 47,007 216
1. Perception-oriented Al 3,266 8,159 150
2. Cognition- and learning-oriented Al 7,864 26,481 237
3. Execution-oriented Al 3,371 9,519 182

Notes: In this table, Al patents are assigned to one or more functional domains—perception, cognition &
learning, and execution—according to whether their domain-specific probabilities exceed 0.5.

Source: Authors’ calculations using USPTO (2025a) patents data.
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Table 2. Patents in Agricultural Subsectors by the Type of Innovation They Contain, 2003-2023
Patents Patents Growth Rate
Type of Innovation 2003-2012 2013-2023 (%)
Crop Production (NAICS: 111)
Non-Al 6,147 12,689 106
Any Al 1,065 4,756 347
1. Perception-oriented Al 109 563 417
2. Cognition- and learning-oriented Al 851 3,456 306
3. Execution oriented Al 89 352 296
Animal Production and Aquaculture (NAICS: 112)
Non-Al 243 475 95
Any Al 72 208 189
1. Perception-oriented Al 15 60 300
2. Cognition- and learning-oriented Al 52 124 138
3. Execution-oriented Al 2 8 300
Notes: In this table, Al patents are assigned to one or more functional domains—perception, cognition &
learning, and execution—according to whether their domain-specific probabilities exceed 0.5.
Source: Authors’ calculations using USPTO (2025a) patents data.

Al uptake across domains. This slower adoption may
reflect the greater biological complexity and variability
inherent in animal systems, or it may indicate that
existing non-Al technologies remain sufficient for many
animal production tasks.

Table 1 compares the growth of Al-related patents in the
agricultural sector (NAICS 11) to those in nonagricultural
sectors. Between the two decades (2003-2012 and
2013-2023), Al patents in agriculture grew by 237%,
outpacing the 97% growth in non-Al agricultural patents.
Among functional domains, cognition & learning saw the
largest increase (247%), followed by perception (199%)
and execution (151%). While nonagricultural sectors had
a higher baseline of Al patenting, their overall Al growth
(216%) was similar in relative terms. These trends
suggest a convergence in Al intensity of innovations
between agriculture and other sectors, with agriculture
closing the gap in domains such as prediction, decision-
support, and environmental sensing.

Table 2 provides a more detailed look at Al trends within
agricultural subsectors. In crop production (NAICS 111),
Al-related patents increased from 1,065 in the 2003—
2012 period to 4,756 in 2013-2023—a 347% increase.
The dominant domain remains cognition & learning (with
3,456 patents in the recent decade), while perception
grew most rapidly (417%), reflecting expanded use of
sensors, imaging, and analytics for crop monitoring and
yield prediction. In animal production and aquaculture
(NAICS 112), the total number of Al patents remains
smaller, rising from 72 to 208 patents (a 189% increase).
Yet within this modest base, perception- and execution-
oriented Al both grew by 300%, indicating early-stage
adoption of technologies like computer vision and
automation for animal monitoring, behavior analysis, and
facility operations.

Together, these trends highlight the growing functional
diversity of Al-driven innovation in agriculture. While
most innovation to date has focused on decision-support
and predictive systems (cognition & learning), we
observe rising interest in complementary technologies
for sensing (perception) and, to a lesser extent,
automation (execution). Crop agriculture appears to be
leading this technological transformation, while animal
agriculture has room for future expansion.

Potential Implications for Labor Markets

The labor market implications of Al adoption in
agriculture are theoretically ambiguous and depend on
the nature of the tasks affected and the technological
capabilities of the Al systems in question. Task-based
models of technological change (Acemoglu and
Restrepo, 2019; Caunedo, Jaume, and Keller, 2023)
suggest that technologies can either displace or
complement labor depending on whether they automate
specific tasks or raise the productivity of workers
engaged in nonautomated functions. If execution-
oriented Al technologies—such as robotic harvesters or
milking machines—is adopted to perform routine,
manual tasks, it may reduce labor demand by
substituting for human effort in physically intensive
activities. Similarly, if Al for perception-based tasks,
including sensors and machine vision systems, is used
to automate monitoring and detection tasks, it could
displace labor in roles that rely on pattern recognition
and routine inspection. However, these technologies
may also increase productivity by enabling more timely
and granular information, which could raise demand for
labor in complementary tasks.

Conversely, if Al for cognition is deployed to support
decision-making in complex, uncertain, or data-rich
environments, it may augment rather than replace labor.
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Cognitive Al systems—such as those used for predicting
crop needs, optimizing resource allocation, or
coordinating on-farm logistics—could increase the
marginal productivity of agricultural workers by improving
the quality and precision of their decisions. Under this
scenario, Al adoption may shift the composition of tasks
toward those requiring oversight, interpretation, and
responsiveness, potentially creating new roles or
expanding the scope of existing ones. Moreover, as
emphasized by Caunedo et al. (2023), technologies that
enhance productivity may induce within-sector
reallocations and local spillovers that contribute to
increased labor demand. The net employment effects of
Al in agriculture, therefore, are contingent on the specific
domains of innovation and their interaction with the task
structure of agricultural production.

Conclusion

Artificial intelligence is no longer a distant or abstract
concept in agriculture—it is already shaping how
decisions are made, how crops and livestock are
managed, and how labor is allocated. This article shows
that Al-driven innovation in U.S. agriculture is
accelerating, particularly in technologies that replicate
human cognition and perception. Patent data from the
past 2 decades reveal that Al is expanding not only in
scale but also in functional diversity, with applications
ranging from data-driven decision support to
autonomous harvesting.

Yet the implications for the agricultural workforce remain
uncertain. Some Al technologies, especially those
related to execution and perception, may displace
workers in routine or manual roles. Others, particularly in

the cognition & learning domain, may augment human
decision-making, boost labor productivity, and create
new roles. The net effect on employment will depend on
how these technologies are adopted, how tasks are
reorganized, and whether complementary investments in
skills and infrastructure are made.

For policy-makers, the key challenge is to anticipate and
shape the transition, not merely respond to it. This
involves investing in workforce development for
increasingly technical roles, supporting access to Al
tools for smaller producers, and ensuring productivity
gains are broadly shared. It also requires grounding Al
policy in realistic assessments of existing technologies,
rather than hype. Many agricultural Al tools remain
narrow in scope, depend on extensive data
infrastructure, or still require human oversight. Policy-
makers should invest in independent evaluations of Al
performance, support open-access benchmarking of
new Al tools, and promote evidence-based support
programs that reflect usability and cost-effectiveness on
farms. Functional classifications—like the one presented
here—can help identify which technologies are most
likely to affect farm labor needs and how.

As Al continues to advance, a clearer understanding of
its practical applications and labor implications is
necessary for crafting policies that promote both
innovation and equity in the future of food production.
While this article offers a descriptive foundation, drawing
causal links between Al adoption and labor market
outcomes requires further empirical work. Studies that
connect Al use to employment, wages, and productivity
will be critical for crafting evidence-based agricultural

policy.
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