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Sensing, Thinking, Doing: AI’s Growing Role on the Farm—
and What It Means for Farm Work 
 

Gulcan Onel, Fernando Brito, Jared Gars, and Conner Mullally 

 
Artificial intelligence (AI) has generated excitement for its 
potential to transform how food is grown, harvested, and 
managed (NIFA, 2025). Yet, despite its prominence as a 
catchphrase, AI remains poorly understood in 
agricultural policy debates. What exactly constitutes AI in 
this context? More importantly, does AI represent a 
turning point for one of the sector’s most persistent 
challenges in developed economies—the reliance on 
costly or scarce human labor? 
 
Suboptimal input decisions, unpredictable weather, pest 
outbreaks, and disease pressures often reduce 
agricultural yield potential. Even when crops do ripen, a 
substantial share may go unharvested due to labor 
shortages or low market prices (Baker et al., 2019; 
Dunning, Johnson, and Boys, 2019). At the same time, 
rising climate volatility and shifting trade dynamics have 
made farming more financially precarious. As labor costs 
and production risks rise, so do expectations that 
technology—particularly AI—can offer solutions. 
 
AI promises to address many of these challenges by 
replicating some human tasks and enhancing data-
driven decision-making. Depending on the application, 
AI may boost productivity, generate new roles in 
AgTech, or eliminate existing jobs. These questions 
about the future of work are especially pressing in U.S. 
agriculture, where dependence on migrant and manual 
labor remains the norm. To engage with these debates 
meaningfully, we must move beyond the hype and clarify 
what AI actually is—not in abstract terms, but in 
practical, functional ones relevant to agricultural policy.  
 
This article draws on 2 decades of U.S. patent data to 
examine how AI is being embedded in agricultural 
technologies. By analyzing the types of AI functions 
being patented and the sectors they are targeting, we 
provide a clearer picture of how AI may reshape the 
nature of agricultural work in the years ahead. 
 

 

 
What Is Artificial Intelligence? A Functional 
Framework for Policy 
AI encompasses a broad set of computational 
technologies designed to perform tasks that typically 
require human intelligence (NIST, 2019). In the broader 
AI field, AI is commonly classified into three levels of 
capability: artificial narrow intelligence (ANI), artificial 
general intelligence (AGI), and artificial superintelligence 
(ASI) (Wang et al., 2021). ANI systems are designed to 
perform specific, well-defined tasks—such as identifying 
pests through image recognition or optimizing irrigation 
schedules using predictive analytics. This is the form of 
AI relevant to current technologies and patent activity. In 
contrast, AGI (artificial general intelligence, or human-
equivalent intelligence) and ASI (artificial 
superintelligence, or beyond-human intelligence) remain 
theoretical and are not the focus of this analysis. In other 
words, when most people refer to “AI” in 2025, they are, 
in practice, referring to ANI. For clarity, this article uses 
“AI” and “ANI” interchangeably. 
 
To make the concept of AI more useful for policy 
analysis, we adopt a functional classification based on 
the human capabilities AI is designed to replicate: 
perception, cognition & learning, and execution (Wang et 
al., 2021). This typology aligns well with the structure of 
labor markets and allows us to assess where AI might 
substitute or augment human work. 

 

Perception-Oriented AI 
Perception-oriented AI systems replicate human sensory 
abilities by interpreting information from the physical 
environment. These systems enable machines to “see,” 
“hear,” or “sense” environmental cues. In agriculture, 
examples include 

 computer vision for identifying pests, weeds, 
or disease symptoms from imagery (e.g., 
Patent US8705017: Photonic fence, a 
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vision-based tracking system that identifies 
biological properties of airborne organisms); 

 remote sensing and Internet of Things (IoT)-
based monitoring for soil moisture, 
temperature, and nutrient levels (e.g., Patent 
US11521382: Machine vision plant tracking 
system, which uses convolutional neural 
networks and multisensor inputs to track 
individual plants in real time); 

 speech recognition systems for hands-free 
control of farm equipment (e.g., Patent 
US10580403B2, which enables voice-
controlled operation of agricultural 
machinery). 
 

These technologies may partially substitute for manual 
inspection and monitoring, particularly those involving 
routine or repetitive observation, while offering 
improvements in precision, frequency, and scope of 
observation. 
 

Cognition & Learning–Oriented AI 
This domain includes AI systems that simulate human 
reasoning, learning, and decision-making. These tools 
typically serve as decision aids, helping process 
complex data to generate predictions or optimize 
processes. Examples include 

 machine learning models for yield prediction, 
price forecasting, or resource allocation 
(e.g., Patent US11017306, which uses 
machine learning to predict seed harvest 
moisture and guide operational decisions); 

 knowledge representation and expert 
systems for agronomic diagnostics (e.g., 
Patent US7184859, which uses remote 
sensing and vegetation data to guide 
variable-rate chemical applications); 

 optimization algorithms for irrigation, 
machinery scheduling, or input delivery 
(e.g., Patent US10524406, which describes 
a system for managing and guiding field 
operations through automated control 
mechanisms). 

 
These AI tools often enhance managerial and planning 
functions on farms by enabling more informed decision-
making. However, they may also reduce demand for 
workers engaged in data interpretation or routine 
logistical tasks. 
 

Execution-Oriented AI 
Execution-oriented AI refers to systems capable of 
autonomous or semiautonomous physical action. These 
technologies often take the form of robotics, including 

 autonomous machinery for planting, spraying, or 
harvesting (e.g., Patent US20240306544, which 
describes a multicamera robotic harvester 
capable of remote-targeted action on delicate 
crops like berries); 

 human-robot collaboration systems for sorting, 
packing, or greenhouse work (e.g., Patent 
US20190138967A1, which outlines a system for 
coordinating human and machine activity in 
shared workspaces using real-time AI-driven 
feedback). 
 

Execution-oriented AI systems raise the most direct 
concerns about labor displacement, particularly for 
repetitive tasks. At the same time, their deployment often 
requires skilled operators and technicians, potentially 
shifting labor demand toward more technical roles. 
 
This functional classification reinforces that AI is not a 
single technology but rather a diverse set of tools with 
varied implications for agricultural work. By classifying AI 
based on the human functions it replicates, policy-
makers can better anticipate which jobs may be 
automated, which enhanced, and where retraining or 
workforce development may be most needed. This 
framework serves as the analytical foundation for the 
sections that follow, where we explore trends in AI 
patenting and their potential labor market effects. 
 

Using U.S. Patents Data to Identify AI-
Driven Innovation in Agriculture 
To examine the role of artificial intelligence in agricultural 
innovation, we analyze over 5 million utility patents 
granted by the U.S. Patent and Trademark Office 
(USPTO) between 2003 and 2023, obtained from the 
PatentsView public repository (USPTO, 2025a). The 
starting year aligns with the broader shift toward digital 
patent filings and the emergence of AI-relevant 
technologies in the USPTO corpus. The USPTO is 
considered a global benchmark for technological 
innovation, as it accepts applications from both domestic 
and international inventors and recognizes a broad 
spectrum of patentable technologies, including AI-driven 
inventions. Each patent record includes the date of 
issuance, the assignee’s country of origin, and a 
structured text corpus comprising the abstract, claims, 
and technical description. Patents are classified under 
the Cooperative Patent Classification (CPC) system, 
which allow researchers to track trends across specific 
technological areas—for example, walking robots are 
consistently labeled under B62D57/032. 
 
Figure 1 shows how patents are classified as agricultural 
patents and, if identified as AI-related, further 
categorized into functional AI domains—perception, 
cognition & learning, and execution—based on the 
technological capabilities likely embedded in the 
innovation. Figure 1 provides a detailed description of 
the classification process. As patents do not indicate 
where technologies are ultimately adopted, we first link 
patents to the sector most likely to adopt them based on 
the text description of the patent. Goldschlag et al. 
(2020) used natural language processing techniques to 
probabilistically map four-character CPC tags to three- 
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Figure 1. Workflow for Classifying Agricultural and AI-Enabled Patents 

 
 

 
 
 
 
 
Note: Patent-to-industry mapping adapted from Goldschlag et al. (2020); AI subdomain classification from Giczy, Pairolero, and 
Toole (2022); Pairolero et al. (2025). 
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digit North American Industry Classification System 
(NAICS) codes. For instance, CPC tag C05F—organic 
fertilizers—maps to NAICS 111 (crop production) with a 
64% probability and to NAICS 327 (non-metallic mineral 
product manufacturing) with a 16% probability, with 
several other NAICS industries splitting the remaining 
20%. The goal is to retain patents most likely used in 
agricultural subindustries: crop production (111), animal 
production and aquaculture (112), forestry and logging 
(113), and fishing, hunting, and trapping (114). If the 
mapping reveals no relationship with any of the four 
agricultural subindustries, then we omit those CPC tags 
from further calculations of subindustrial probabilities. 
Then, we look at all the remaining CPC tags attached to 
patents along with their industry-specific probabilities. If 
a patent has multiple CPC tags referring to the same 
agricultural subindustry, then we average those 
probabilities within an agriculture subindustry so that we 
have one sectoral probability per patent per subindustry. 
Next, we rank patents along with the maximum of their 
industrial classification probabilities. We retain the top 
20% of ranked patents to make sure we do not consider  

 
patents with very low subindustry probabilities relating to 
agriculture. Once we identify our pool of agricultural 
patents, we assign each retained patent to an 
agricultural subindustry if its probability of association 
with that agricultural subindustry exceeds 0.5. CPC tags 
mapped by Goldschlag et al. (2020) to NAICS 115 
(supporting services in agriculture) were remapped to 
their corresponding major subindustry (i.e., NAICS 1151 
to 111, 1152 to 112, and 1153 to 113). 
 
Next, to distinguish AI-enabled technologies from 
conventional technological innovations, we apply the 
crosswalk developed by Giczy, Pairolero, and Toole 
(2022) and Pairolero et al. (2025), which maps the 
parsed text of each patent to eight AI subdomains: 
Machine Learning, Evolutionary Computation, Natural 
Language Processing, Vision Recognition, Speech 
Knowledge, Knowledge Processing, Planning and 
Control, and Hardware. A patent has eight reported 
probabilities each corresponding to one of the eight AI 
subdomains above. We rank patents along with the 
maximum of their AI domain classification probabilities.  

 
Figure 2. Distribution of AI-Driven Innovation in Agriculture by Three Functional AI Domains and 

Their Dominant AI Subdomain, 2003–2023 
 

 
 
Source: Authors’ calculations using USPTO (2025a) data 
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We label the top 20% of ranked patents as patents 
containing AI innovation, or simply “AI patents”; the 
remaining 80% of patents with much smaller AI 
probabilities are labeled as “non-AI patents.” Finally, 
each AI patent is proportionally categorized into one or 
more of three functional domains—perception, cognition 
& learning, and execution—based on their relative 
domain-specific probabilities. These domains reflect the 
human capabilities AI technologies are designed to  

 
replicate and serve as a foundation for understanding 
potential effects on agricultural work. The following 
mapping aligns specific AI subdomains (Giczy, Pairolero, 
and Toole, 2022; Pairolero et al., 2025) with three 
broader functional domains identified in the previous 
section: 

1. perception: sensing and interpreting the physical 
or informational environment. Includes computer 

 
Figure 3. Trends in AI-Driven Agricultural Innovation in All Agriculture (11), Crop Agriculture (111) and Animal 

Agriculture (112 and 114) sectors, 2003–2023 
 

Figure 3a. All agriculture (NAICS: 11) 

 
 

Figure 3b. Crop agriculture (NAICS: 111) 

 

Figure 3c. Animal agriculture (NAICS: 112 and 114) 

 
 

 
Notes: In this figure, AI-containing patents are proportionally assigned to one or more functional domains—Perception, Cognition & 
Learning, and Execution—using relative domain-specific probabilities. 
 

Source: Authors’ calculations using the USPTO (2025a) patents data. 
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vision, natural language processing, and speech 
recognition. 

2. cognition & learning: reasoning, learning from 
data, and decision-making. Encompasses 
machine learning, knowledge processing, 
evolutionary computation, and planning and 
control. 

3. execution: performing physical tasks or 
operating machinery autonomously. Includes AI 
hardware such as robotics, embedded systems, 
and autonomous vehicles. 
 

Figure 2 illustrates the distribution of AI-driven  
innovation across functional domains in agriculture, 
based on USPTO patents granted between 2003 and 
2023. Each AI patent is categorized into one subdomain 
using probabilistic weights, then grouped into the three 
overarching domains: perception, cognition & learning, 
and execution. The inner ring displays the share of each 
functional domain, while the outer ring provides further 
detail on subdomains. The results show that cognition & 
learning accounts for the largest share (68.2%) of AI-
related agricultural innovation, with particularly high 
activity in planning and control (44.28%) and 
evolutionary computation (14.35%). Perception 
technologies represent 20.7% of AI innovation in 
agriculture, with notable contributions from vision 
recognition (15.94%) and natural language processing 
(3.36%). Finally, the execution domain—which 
encompasses AI hardware and robotic control 
systems—accounts for 11.1% of AI activity. This 
distribution suggests that most agricultural AI-containing 
patents are oriented toward enhancing decision-making 
and predictive capabilities, followed by sensing and 
automation of physical execution. The presence of  
execution-related technologies suggests a possible shift 
toward physical task automation, though this remains a 

smaller component of AI-driven agricultural innovation 
relative to the cognitive aspects of AI. 
 

Trends in AI-Driven Agricultural Innovation 
Figure 3 presents the trajectory of AI-related patenting 
activity in U.S. agriculture from 2003 to 2023, 
disaggregated by functional AI domain: perception, 
cognition & learning, and execution. Across the full 
agricultural sector (NAICS 11), AI innovation shows a 
clear upward trend, with growth accelerating after 2010. 
Cognition & learning technologies consistently dominate 
in patent counts. These technologies—which include 
machine learning, knowledge representation, and 
planning systems—likely reflect the growing integration 
of data analytics, predictive modeling, and decision-
support systems in modern agricultural management. 
Perception-oriented AI innovation, including computer 
vision and sensing technologies, also exhibit strong 
growth and converge to cognition patents in recent 
years. Execution-oriented AI, encompassing automation 
and robotics, lags in absolute numbers but exhibits the 
fastest growth in the last decade—suggesting increasing 
focus on autonomous farm operations. 
 
This pattern is especially pronounced in crop agriculture 
(NAICS 111), where AI activity has grown across all 
domains since 2010. Cognition & learning continues to 
lead, consistent with the data-intensive nature of 
cropping systems. Perception and execution have also 
gained traction, supporting applications in plant 
detection, precision input application, and mechanized 
harvesting. By contrast, animal agriculture (NAICS 112 
and 114) shows a more modest and gradual increase in  

 

 

 

Table 1. Patents in Agricultural and Nonagricultural Sectors by the Type of Innovation They Contain, 
2003–2023 

Type of Innovation 
Patents 

2003–2012 
Patents 

2013–2023 
Growth Rate 

(%) 

 Agricultural Sector (NAICS: 11) 

Non-AI 21,787 42,823 97 
Any AI 3,193 10,749 237 

1. Perception-oriented AI 679 2,029 199 
2. Cognition- and learning-oriented AI 1,913 6,640 247 
3. Execution-oriented AI 548 1,375 151 

 Nonagricultural Sectors 

Non-AI 80,227 158,473 98 
Any AI 14,879 47,007 216 

1. Perception-oriented AI 3,266 8,159 150 
2. Cognition- and learning-oriented AI 7,864 26,481 237 
3. Execution-oriented AI 3,371 9,519 182 

Notes: In this table, AI patents are assigned to one or more functional domains—perception, cognition & 
learning, and execution—according to whether their domain-specific probabilities exceed 0.5. 
 
Source: Authors’ calculations using USPTO (2025a) patents data. 
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AI uptake across domains. This slower adoption may 
reflect the greater biological complexity and variability 
inherent in animal systems, or it may indicate that 
existing non-AI technologies remain sufficient for many 
animal production tasks. 
 
Table 1 compares the growth of AI-related patents in the 
agricultural sector (NAICS 11) to those in nonagricultural 
sectors. Between the two decades (2003–2012 and 
2013–2023), AI patents in agriculture grew by 237%, 
outpacing the 97% growth in non-AI agricultural patents. 
Among functional domains, cognition & learning saw the 
largest increase (247%), followed by perception (199%) 
and execution (151%). While nonagricultural sectors had 
a higher baseline of AI patenting, their overall AI growth 
(216%) was similar in relative terms. These trends 
suggest a convergence in AI intensity of innovations 
between agriculture and other sectors, with agriculture 
closing the gap in domains such as prediction, decision-
support, and environmental sensing. 
 
Table 2 provides a more detailed look at AI trends within 
agricultural subsectors. In crop production (NAICS 111), 
AI-related patents increased from 1,065 in the 2003–
2012 period to 4,756 in 2013–2023—a 347% increase. 
The dominant domain remains cognition & learning (with 
3,456 patents in the recent decade), while perception 
grew most rapidly (417%), reflecting expanded use of 
sensors, imaging, and analytics for crop monitoring and 
yield prediction. In animal production and aquaculture 
(NAICS 112), the total number of AI patents remains 
smaller, rising from 72 to 208 patents (a 189% increase). 
Yet within this modest base, perception- and execution-
oriented AI both grew by 300%, indicating early-stage 
adoption of technologies like computer vision and 
automation for animal monitoring, behavior analysis, and 
facility operations. 

 
Together, these trends highlight the growing functional 
diversity of AI-driven innovation in agriculture. While 
most innovation to date has focused on decision-support 
and predictive systems (cognition & learning), we 
observe rising interest in complementary technologies 
for sensing (perception) and, to a lesser extent, 
automation (execution). Crop agriculture appears to be 
leading this technological transformation, while animal 
agriculture has room for future expansion. 
 

Potential Implications for Labor Markets 
The labor market implications of AI adoption in 
agriculture are theoretically ambiguous and depend on 
the nature of the tasks affected and the technological 
capabilities of the AI systems in question. Task-based 
models of technological change (Acemoglu and 
Restrepo, 2019; Caunedo, Jaume, and Keller, 2023) 
suggest that technologies can either displace or 
complement labor depending on whether they automate 
specific tasks or raise the productivity of workers 
engaged in nonautomated functions. If execution-
oriented AI technologies—such as robotic harvesters or 
milking machines—is adopted to perform routine, 
manual tasks, it may reduce labor demand by 
substituting for human effort in physically intensive 
activities. Similarly, if AI for perception-based tasks, 
including sensors and machine vision systems, is used 
to automate monitoring and detection tasks, it could 
displace labor in roles that rely on pattern recognition 
and routine inspection. However, these technologies 
may also increase productivity by enabling more timely 
and granular information, which could raise demand for 
labor in complementary tasks. 
 
Conversely, if AI for cognition is deployed to support 
decision-making in complex, uncertain, or data-rich 
environments, it may augment rather than replace labor. 

Table 2. Patents in Agricultural Subsectors by the Type of Innovation They Contain, 2003–2023 

Type of Innovation 
Patents 

2003–2012 
Patents 

2013–2023 
Growth Rate 

(%) 

 Crop Production (NAICS: 111) 

Non-AI 6,147 12,689 106 

Any AI 1,065 4,756 347 

1. Perception-oriented AI 109 563 417 

2. Cognition- and learning-oriented AI 851 3,456 306 

3. Execution oriented AI 89 352 296 

 Animal Production and Aquaculture (NAICS: 112) 

Non-AI 243 475 95 

Any AI 72 208 189 

1. Perception-oriented AI 15 60 300 

2. Cognition- and learning-oriented AI 52 124 138 

3. Execution-oriented AI 2 8 300 

Notes: In this table, AI patents are assigned to one or more functional domains—perception, cognition & 
learning, and execution—according to whether their domain-specific probabilities exceed 0.5. 
 

Source: Authors’ calculations using USPTO (2025a) patents data. 
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Cognitive AI systems—such as those used for predicting 
crop needs, optimizing resource allocation, or 
coordinating on-farm logistics—could increase the 
marginal productivity of agricultural workers by improving 
the quality and precision of their decisions. Under this 
scenario, AI adoption may shift the composition of tasks 
toward those requiring oversight, interpretation, and 
responsiveness, potentially creating new roles or 
expanding the scope of existing ones. Moreover, as 
emphasized by Caunedo et al. (2023), technologies that 
enhance productivity may induce within-sector 
reallocations and local spillovers that contribute to 
increased labor demand. The net employment effects of 
AI in agriculture, therefore, are contingent on the specific 
domains of innovation and their interaction with the task 
structure of agricultural production. 

Conclusion 
Artificial intelligence is no longer a distant or abstract 
concept in agriculture—it is already shaping how 
decisions are made, how crops and livestock are 
managed, and how labor is allocated. This article shows 
that AI-driven innovation in U.S. agriculture is 
accelerating, particularly in technologies that replicate 
human cognition and perception. Patent data from the 
past 2 decades reveal that AI is expanding not only in 
scale but also in functional diversity, with applications 
ranging from data-driven decision support to 
autonomous harvesting. 
 
Yet the implications for the agricultural workforce remain 
uncertain. Some AI technologies, especially those 
related to execution and perception, may displace 
workers in routine or manual roles. Others, particularly in  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

the cognition & learning domain, may augment human 
decision-making, boost labor productivity, and create  
new roles. The net effect on employment will depend on 
how these technologies are adopted, how tasks are 
reorganized, and whether complementary investments in 
skills and infrastructure are made. 
 
For policy-makers, the key challenge is to anticipate and 
shape the transition, not merely respond to it. This 
involves investing in workforce development for 
increasingly technical roles, supporting access to AI 
tools for smaller producers, and ensuring productivity 
gains are broadly shared. It also requires grounding AI 
policy in realistic assessments of existing technologies, 
rather than hype. Many agricultural AI tools remain 
narrow in scope, depend on extensive data 
infrastructure, or still require human oversight. Policy-
makers should invest in independent evaluations of AI 
performance, support open-access benchmarking of 
new AI tools, and promote evidence-based support 
programs that reflect usability and cost-effectiveness on 
farms. Functional classifications—like the one presented 
here—can help identify which technologies are most 
likely to affect farm labor needs and how. 
 
As AI continues to advance, a clearer understanding of 
its practical applications and labor implications is 
necessary for crafting policies that promote both 
innovation and equity in the future of food production. 
While this article offers a descriptive foundation, drawing 
causal links between AI adoption and labor market 
outcomes requires further empirical work. Studies that 
connect AI use to employment, wages, and productivity 
will be critical for crafting evidence-based agricultural 
policy. 
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