
Give to AgEcon Search

The World’s Largest Open Access Agricultural & Applied Economics Digital Library

This document is discoverable and free to researchers across the 
globe due to the work of AgEcon Search.

Help ensure our sustainability.

AgEcon Search
http://ageconsearch.umn.edu

aesearch@umn.edu

Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only. 
No other use, including posting to another Internet site, is permitted without permission from the copyright 
owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C.

No endorsement of AgEcon Search or its fundraising activities by the author(s) of the following work or their 
employer(s) is intended or implied.

https://shorturl.at/nIvhR
mailto:aesearch@umn.edu
http://ageconsearch.umn.edu/


The Stata Journal (2024)
24, Number 1, pp. 72–92 DOI: 10.1177/1536867X241233645

Ordinary least squares and
instrumental-variables estimators for any

outcome and heterogeneity

Myoung-jae Lee
Department of Economics

Korea University
Seoul, Republic of Korea
myoungjae@korea.ac.kr

Chirok Han
Department of Economics

Korea University
Seoul, Republic of Korea
chirokhan@korea.ac.kr

Abstract. Given an exogenous treatment d and covariates x, an ordinary least-
squares (OLS) estimator is often applied with a noncontinuous outcome y to find
the effect of d, despite the fact that the OLS linear model is invalid. Also, when d
is endogenous with an instrument z, an instrumental-variables estimator (IVE) is
often applied, again despite the invalid linear model. Furthermore, the treatment
effect is likely to be heterogeneous, say, µ1(x), not a constant as assumed in most
linear models. Given these problems, the question is then what kind of effect
the OLS and IVE actually estimate. Under some restrictive conditions such as a
“saturated model”, the estimated effect is known to be a weighted average, say,
E{ω(x)µ1(x)}, but in general, OLS and the IVE applied to linear models with a
noncontinuous outcome or heterogeneous effect fail to yield a weighted average
of heterogeneous treatment effects. Recently, however, it has been found that
E{ω(x)µ1(x)} can be estimated by OLS and the IVE without those restrictive
conditions if the “propensity-score residual” d − E(d|x) or the “instrument-score
residual” z−E(z|x) is used. In this article, we review this recent development and
provide a command for OLS and the IVE with the propensity- and instrument-score
residuals, which are applicable to any outcome and any heterogeneous effect.

Keywords: st0740, psr, OLS, IVE, propensity score, instrument score, overlap
weight

1 Introduction
Given an exogenous binary treatment d, an outcome y, and covariates x, consider the
ordinary least-squares (OLS) estimator of y on (x, d) for a linear model y = β′

xx +
βdd + error, where βx and βd are parameters. In reality, the treatment effect may not
be a constant (βd), as is assumed in the linear model, but an unknown heterogeneous
function, say, µ1(x), that results in µ1(x)d instead of βdd. This is clear if one thinks
of the COVID-19 vaccine effects, which can be highly heterogeneous; some individuals
suffer from extremely negative effects (that is, death), while others benefit from fully
positive effects. It is sometimes possible to account for µ1(x) using interaction terms dx,
but approximating µ1(x) with dx would generally be inadequate. Hence, an important
question arises: What kind of effect does the OLS slope of d estimate when the true
effect is an unknown function µ1(x) of x?
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An answer is that the OLS d-slope is consistent for a Var(d|x)-weighted average
of µ1(x), where Var(d|x) denotes the variance of d conditional on x (Angrist 1998;
Angrist and Krueger 1999; Angrist and Pischke 2009; and Aronow and Samii 2016).
Unfortunately, however, this answer requires that E(d|x) be the same as the linear
projection L(d|x), that is, the “population OLS predictor” of d using x.

Because E(d|x) = L(d|x) hardly holds in reality unless the model is saturated (that
is, x is discrete, and a full set of dummy variables is used for all possible values of x),
another question emerges: What effect does the OLS d-slope estimate under E(d|x) 6=
L(d|x), when the true effect is µ1(x)? In addition to this effect-heterogeneity problem,
y is often a limited dependent variable (LDV) for which the linear model does not hold
in general. This raises yet another question: What effect does the OLS d-slope estimate
under E(d|x) 6= L(d|x), when the true effect is µ1(x) or y is an LDV?

Going one step further, when d is endogenous with a binary instrument z, an in-
strumental-variables estimator (IVE) is often applied to an LDV y. Then an analogous
question emerges: What effect does the IVE d-slope estimate under E(d|x) 6= L(d|x),
when the true effect is µ1(x) or y is an LDV? Instead of simply raising the “passive” or
“negative” questions on the (biased) estimands of OLS and the IVE in difficult situations,
a more “active” or “positive” question might be, Is there any way to do a valid OLS or
IVE without E(d|x) = L(d|x) to estimate a meaningful treatment effect when the true
effect is µ1(x) or y is an LDV?

This article reviews the answers to the above questions as presented in Lee (2018,
2021) and Lee, Lee, and Choi (Forthcoming) and provides the command psr, which
implements the positive approaches in Lee (2018) for OLS and Lee (2021) for the IVE.
In essence, the approaches are that modified versions of OLS and the IVE are consistent
for some specific weighted averages of µ1(x) for any form of y. The generality of the
approaches is that they allow for an arbitrary µ1(x) and an arbitrary form of y, either
of which would invalidate the usual linear model.

The approach by Lee (2018, 2021) is related to, but more generally applicable than,
that of Angrist (2001), who advocates declaring the effect of interest first and then find-
ing ways to identify and estimate it—a point also made by van der Laan and Rose (2011)
later in the name “targeted learning”. Angrist (2001) argues that simple linear estima-
tors such as the IVE can be appropriately used even with noncontinuous outcome vari-
ables. However, such linear model estimators may exhibit bias unless E(d|x) = L(d|x),
which hardly holds for general nonsaturated models. Lee, Lee, and Choi (Forthcoming)
derive the bias in the context of linear probability models. Though Angrist (2001, 10)
mentions the use of nonlinear least squares as a solution for LDVs, the implementation is
practically inconvenient and often challenging because it may involve nuisance infinite
weights. Readers are referred to the comments by Moffitt (2001), Imbens (2001), and
Todd (2001) for other concerns.
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In contrast, the approach by Lee (2018, 2021) presented below yields estimators that
are always a weighted average of heterogeneous treatment effects, regardless of whether
E(d|x) = L(d|x). Furthermore, their approach is applicable to any form of y and is
straightforward to implement because it involves only linear regressions (for OLS and
IVE) and widely used probit or logit.

In the remainder of this article, section 2 closely examines the above questions and
answers in Lee (2018, 2021) and Lee, Lee, and Choi (Forthcoming). Section 3 presents
the command psr, which performs the modified OLS and IVE for any y (continuous,
binary, count, etc.) and estimates weighted averages of µ1(x). Section 4 provides two
empirical illustrations. Finally, section 5 concludes this article.

2 OLS and IVE valid for any outcome
2.1 Effect estimated by OLS

For the heterogeneous effect, µ1(x) ≡ E(y1 − y0|x), where y1 and y0 are the potential
outcomes, Angrist and Pischke (2009, eq. 3.3.7) show that the slope estimator β̂d of d
in the OLS regression of y on (x, d) is consistent for the weighted average

E{ω(x)µ1(x)}, ω(x) ≡ Var(d|x)
E{Var(d|x)}

=
πx(1− πx)

E{πx(1− πx)}
, πx ≡ E(d|x) (1)

if πx = λx ≡ L(d|x) ≡ L(dx′){E(xx′)}−1x, where πx is the propensity score (PS) and
Var(d|x) is the variance of d conditional on x.

The quadratic function πx(1−πx) reaches its maximum at πx = 0.5 and its minimum
at πx = 0, 1. Considering the popular “PS matching” targeting for E{E(y1 − y0|πx)},
because those subjects with πx ' 0.5 overlap well with subjects in the opposite group,
whereas those with πx ' 0, 1 do not, Li, Morgan, and Zaslavsky (2018) called ω(x)
the overlap weight (OW). That is, those subjects close to being randomized receive
high weights in OW (Thomas, Li, and Pencina 2020). PS matching avoids the poor
overlap problem by removing those with πx ' 0, 1, which amounts to targeting for
E{ωuni(x)E(y1 − y0|πx)}, where ωuni(x) is a step-shaped “uniform weight” equal to 0
for πx ' 0, 1 and a positive constant otherwise. In this context, OW ω(x) can be viewed
as a smoothed version of ωuni(x).

Using E{ω(x)µ1(x)} instead of E{µ1(x)} as one marginal effect accords many ben-
efits in causal analysis, such as 1) stabilizing “inverse probability weighting” estimators
(Li and Greene 2013), 2) making “regression adjustment/imputation” estimators robust
to misspecified outcome regression models (Vansteelandt and Daniel 2014), and 3) au-
tomatically ensuring the exact covariate balance when πx is logistic (Li, Morgan, and
Zaslavsky 2018). More advantages of OW can be seen in Choi and Lee (2023), who
provide a review on OW.

OW is far more pervasive in the statistical, medical, and epidemiological literature
than most researchers are aware. In recent years, in addition to the studies mentioned
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above, there appeared many studies advocating OW: Mao et al. (2018), Mao, Li, and
Greene (2019), Li and Li (2019), Li, Thomas, and Li (2019), Mlcoch et al. (2019), Mao
and Li (2020), and Cheng et al. (2022), among others. Bear in mind that OW ω(x) is not
something artificial, because it is a smooth version of ωuni(x) and it appears naturally
in partialing out β′

xx in y = β′
xx+ µ1(x)d+ error.

Turning back to the Angrist and Pischke (2009) derivation, we see the convergence
of the OLS estimator to the weighted average in (1) requires restrictively πx = λx, where
λx is the linear projection of d on x as defined above. To ensure πx = λx, Angrist and
Pischke (2009) assume a saturated model, but saturated models are rare.

In general, πx 6= λx (for example, probit for πx) and the OLS slope estimator may
not converge to a weighted average of µ1(x). For example, for binary y, Lee, Lee, and
Choi (Forthcoming) show that

β̂d
p−→ aols + bols

where β̂d is the OLS d-slope estimator,

aols = E

[
πx(1− πx) + (πx − λx)

2

E{πx(1− πx) + (πx − λx)2}
× µ1(x)

]
is a weighted average of µ1(x), and bols is a bias term. If πx = λx, aols reduces to
E{ω(x)µ1(x)} in (1) and bols = 0. Otherwise, aols + bols is hard to interpret. The
weighting function in aols makes little sense if πx 6= λx, and the bias term bols involves
E(y0|x) and µ1(x) (see Lee, Lee, and Choi [Forthcoming, eq. 11]) for the exact formula
of bols. In contrast, the methods proposed by Lee (2018, 2021) presented in the following
sections always yield estimators that are consistent for a specific weighted average of
treatment effects for any outcome and heterogeneity.

2.2 OLS with PS residual

For exogenous d, Lee (2018) shows that the OLS of y on d − πx is consistent for
E{ω(x)µ1(x)} for any form of y regardless of whether πx = λx, as long as y1 − y0

makes sense. y1 − y0 makes sense for continuous, count, or binary y; for categorical y,
turn each category to a dummy variable to use each dummy variable as an outcome. In
fact, Lee’s (2018) OLS was suggested much earlier by Robins, Mark, and Newey (1992)
for a constant-effect semilinear model y = µ0(x) + βdd+ error with a continuous y and
an unknown function µ0(x).

Although πx can be estimated nonparametrically, to make the OLS practical, Lee
(2018) uses the probit πx and proposed the OLS of y − E(y|πx) on d − πx. Using
y − E(y|πx) instead of y makes the OLS robust to misspecifications in πx to the extent
that the OLS of y−E(y|πx) on d−πx is close to the OLS of y−E(y|x) on d−πx, which
is “double debiased/orthogonalized” (Chernozhukov et al. 2017, 2018, 2022). Denote
the OLS of y −E(y|πx) on the PS residual (PSR) d− πx “OLSPSR”, and denote the OLS
as “β̂q

PSR”; q in β̂q
PSR is explained shortly.
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To implement OLSPSR, 1) obtain the probit of d on x to get the estimator π̂x ≡
Φ(x′α̂), where Φ(·) is the standard normal distribution function and x′α is the pro-
bit regression function with a parameter α, 2) obtain the OLS (γ̂0, . . . , γ̂q) of y on
{(x′α̂)0, . . . , (x′α̂)q} to get the predicted value

∑q
j=0 γ̂j(x

′α̂)j for E(y|πx)—Lee (2018)
suggested q = 2 or 3—and 3) do the OLS of y −

∑q
j=0 γ̂j(x

′α̂)j on d− π̂x:

β̂q
PSR ≡

∑
i (di − π̂xi

)
{
yi −

∑q
j=0 γ̂j (x

′
iα̂)

j
}

∑
i (di − π̂xi

)
2

p−→ βPSR ≡ E {ω(x)µ1(x)}

Because Φ(·) is one to one, E(y|πx) = E(y|x′α) holds, which implies that step 2
above can be done equivalently by the OLS regression of y on the polynomials of the
predicted probability π̂x instead of the linear index x′α̂. Although using x′α̂ and using
π̂x are theoretically equivalent, they can differ in practice. On one hand, if there are
outliers in x′α̂, then it is better to use π̂x because the outlier problem would be more
subdued in π̂x. On the other hand, if π̂x is too small, then π̂2

x and π̂3
x would be almost

zero, in which case it is better to use x′α̂.

For some Ωols and an independent and identically distributed sample of size n, we
have

√
n(β̂q

PSR − βPSR)
d−→ N(0,Ωols),

Ω̂ols ≡ (
1

n

∑
i

ε̂2i )
−2 · 1

n

∑
i

(v̂iε̂i + ̂̀′η̂i)2 p−→ Ωols

ε̂i ≡ di − Φ(x′
iα̂), v̂i ≡ yi −

q∑
j=0

γ̂j(x
′
iα̂)

j − β̂q
psrε̂i,

̂̀≡ − 1

n

∑
i

xiv̂iφ(x
′
iα̂), η̂i ≡ (

1

n

∑
i

ŝiŝ
′
i)

−1ŝi, ŝi ≡
ε̂iφ(x

′
iα̂)

Φ(x′
iα̂){1− Φ(x′

iα̂)}
xi

The probit score function ŝi involves h(t) ≡ φ(t)/[Φ(t){1 − Φ(t)}], which can be
difficult to evaluate numerically when |t| is large. In our experiments, h(t) seems difficult
to obtain precisely when t < −20 or t > 5. Hence, using the symmetry of h(t), we
compute h(t) by h(−|t|) so that h(t) can be found reliably for |t| < 20. For extreme t
values outside the range |t| > 20, using h(t)/|t| → 1 as |t| → ∞, we replace h(t) with
|t|. If logit were used for πx, then this kind of numerical problem would not appear,
because the part in logit corresponding to h(t) is equal to 1.

2.3 IVE with instrument-score residual

Generalizing Lee (2018), Lee (2021) allowed d to be endogenous with a binary instrument
z. Defining the “instrument score” (IS) ζx ≡ E(z|x), Lee (2021) proposed the IVE of
y − E(y|ζx) on d with the IS residual (ISR) z − ζx as the instrument.
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Let (d0, d1) be the potential treatments of d for z = 0, 1, and define “compliers”
(CPs) as those with d0 = 0 and d1 = 1. The IVE, dubbed “IVEISR”, is consistent for

βISR ≡ E{ωcp(x)µcp(x)}, µcp(x) ≡ E
(
y1 − y0|x,CP

)
ωcp(x) ≡

Cov(z, d|x)
E{Cov(z, d|x)}

= P (CP|x)× ζx(1− ζx), ζx ≡ E(z|x)

The weight is high for subjects with a high Cov(z, d|x), avoiding the “weak instrument
problem” in the IVE. More importantly, the weight becomes an OW when z is taken
as the underlying treatment, as in the “intent-to-treat effect” in clinical trials with an
assignment z and the actual (not well complied) treatment d. Note that βISR becomes
E{ω(x)µ1(x)} for exogenous d because then d = z and everybody is a complier.

To implement IVEISR, 1) obtain the probit of z on x to get the estimator ζ̂x ≡ Φ(x′ψ̂)

for ζx; 2) obtain the OLS (γ̂0, . . . , γ̂q) of y on {(x′ψ̂)0, . . . , (x′ψ̂)q} to get the predicted
value

∑q
j=0 γ̂j(x

′ψ̂)j for E(y|ζx) with q = 2 or 3; and 3) do the IVE of y−
∑q

j=0 γ̂j(x
′ψ̂)j

on d with the instrument z − ζ̂x,

β̂q
ISR ≡

∑
i

(
zi − ζ̂xi

){
yi −

∑q
j=0 γ̂j

(
x′
iψ̂
)j}

∑
i

(
zi − ζ̂xi

)
di

p−→ βISR

As was the case for OLSPSR, the linear index x′ψ̂ in step 2 can be replaced with the
probability ζ̂x.

For some ΩIVE,
√
n(β̂q

ISR − βISR)
d−→ N(0,ΩIVE), where

Ω̂ive ≡ (
1

n

∑
i

êidi)
−2 · 1

n

∑
i

(qviêi + q`′ qηi)
2 p−→ Ωive,

êi ≡ zi − Φ(x′
iψ̂), qvi ≡ yi −

q∑
j=0

γ̂j(x
′
iψ̂)

j − β̂q
isrdi,

q` ≡ − 1

n

∑
i

xiqviφ(x
′
iψ̂), qηi = (

1

n

∑
i

qsiqs
′
i)

−1
qsi, qsi ≡

êiφ(x
′
iψ̂)

Φ(x′
iψ̂){1− Φ(x′

iψ̂)}
xi

2.4 Finding covariate slopes

After β̂q
ISR is obtained, one may desire to find the slopes of x, as is typically done in

linear models. The following shows what could be provided for the slopes of x, although
they are irrelevant for the treatment effect of interest.

Note the “linear-in-d representation” for y in Lee (2021),

y = µ0(x) + µcp(x)d+ u, E(u|x, z) = 0

µ0(x) ≡ E{(y1 − y0)d0 + y0|x} − µcp(x)E(d0|x)
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which holds under d0 ≤ d1 for any y as long as y1 − y0 makes sense, where µ0(x) is an
unknown function of x and u is an error term. For exogenous d, set d = d0 +(d1 − d0)z
equal to z to obtain (d0 = 0, d1 = 1) (that is, everybody is a complier for exogenous d)
and

µcp(x) = µ1(x) ≡ E(y1 − y0|x) and µ0(x) = E(y0|x)

The linear-in-d representation is a “causal reduced form (RF)” because it is an RF, not an
structural form (that is, the data-generating model), which contains a causal parameter
µcp(x) of interest. The causal RF holds for any form of µcp(x) and y.

Rewrite the above linear-in-d representation as

y − βISRd = µ0(x) + {µcp(x)− βISR} d+ u

Then the estimand of the OLS of y − βISRd on x is, with E−1(·) ≡ {E(·)}−1,

E−1(xx′)E{x(y − βISRd)} = E−1(xx′)E(x[µ0(x) + {µcp(x)− βISR}d])
= βx if µ0(x) = x′βx and µcp(x) = βISR

which is a sufficient condition for the slopes of x to be consistent for βx. Note that
under the sufficient condition, we have a linear model because

y = µ0(x) + µcp(x)d+ u = x′βx + βISRd+ u

Denote the OLS of y − β̂ISRd on x as β̂x. Under the sufficient condition just men-
tioned, it holds that, with q in β̂q

ISR omitted,

β̂x ≡

(
1

n

∑
i

xix
′
i

)−1

× 1

n

∑
i

xi

(
yi − β̂ISRdi

)

=

(
1

n

∑
i

xix
′
i

)−1

× 1

n

∑
i

xi

(
x′
iβx + βISRdi + ui − β̂ISRdi

)

= βx +

(
1

n

∑
i

xix
′
i

)−1

×

{
1

n

∑
i

xiui −
1

n

∑
i

xidi ×
(
β̂ISR − βISR

)}

Be aware that β̂x here is not the same as the x-slope in the OLS of y on (x, d), because
the slope estimator of d in this OLS is not β̂ISR.

Let the influence function of β̂ISR be θi:
√
n(β̂ISR−βISR) = n−1/2

∑
i θi+ op(1); the

form of θi is shown shortly. Then, using the preceding display, we obtain

√
n
(
β̂x − βx

)
=

(
1

n

∑
i

xix
′
i

)−1
1√
n

∑
i

(
xiui − xd× θi

)
+ op(1)
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where xd ≡ n−1
∑

i xidi. Hence,
√
n(β̂x − βx) is asymptotically normal with the vari-

ance estimated with(
1

n

∑
i

xix
′
i

)−1

× 1

n

∑
i

(
xiûi − xdθ̂i

)(
xiûi − xdθ̂i

)′
×

(
1

n

∑
i

xix
′
i

)−1

ûi ≡ yi − β̂ISRdi − xiβ̂x, θ̂i ≡
qviêi + q`′qηi
n−1

∑
i êidi

Bear in mind that β̂x is not of primary interest. Rather, β̂x and its asymptotic
distribution derived under the restrictive conditions [µ0(x) = x′βx and µcp(x) = βISR]
are just to give some idea on the contribution of x to µ0(x) because having only one
estimate β̂ISR at the end of data analysis may leave the researcher feeling somewhat
“unfulfilled”.

3 The psr command
The command psr implements OLS with a PSR and an IVE with an ISR.

3.1 Syntax

The syntax for OLS with a PSR is

psr depvar treatment_var covariates
[

if
] [

in
] [

, logit order(#) useprob

auxiliary verbose vverbose
]

when the binary treatment variable is exogenous. The syntax for an IVE with ISRs is

psr depvar (treatment_var = instrument) covariates
[

if
] [

in
] [

, logit

order(#) useprob auxiliary verbose vverbose
]

when the endogenous binary treatment variable is instrumented by an exogenous binary
instrument. The covariates should be exogenous always.

3.2 Options

logit specifies to use logit instead of probit for propensity or IS regression.

order(#) specifies the maximum polynomial order q for predicting the dependent vari-
able by the fitted linear index or the fitted probability. The default is order(2).

useprob uses the fitted probability for the prediction of the dependent variable instead
of the fitted linear index. By default, the linear index is used.
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auxiliary reports results from auxiliary regression for covariate slopes with the stan-
dard errors.

verbose displays all intermediate step results.

vverbose is the same as the auxiliary and verbose options used together.

3.3 Stored results

psr stores the following in e():

Scalars
e(N) number of observations
e(q) polynomial order for outcome prediction

Macros
e(cmd) psr
e(depvar) name of outcome variable
e(model) ols or iv
e(pscmd) binary model classifier (probit or logit)
e(predictor) xb or pr

Matrices
e(b) coefficient vector (average treatment effect)
e(V) variance of the average treatment effect estimator
e(b_bin) coefficient vector from probit or logit regression
e(V_bin) variance–covariance matrix of the estimators from probit or logit re-

gression
e(b_aux) coefficient vector from auxiliary regression
e(V_aux) variance–covariance matrix from auxiliary regression

Functions
e(sample) marks estimation sample

4 Applications
We present two applications in this section: flu vaccine effect on hospitalization or not
(Lee 2021; Ding and Lu 2017) and education effect on wage (Lee 2021).

4.1 Flu vaccine effect on hospitalization

The first application is flu vaccine effect on hospitalization or not. flu.dta is prepared
using the Ding and Lu (2017) data. The outcome variable is outcome, the treatment
variable is receive, and the exogenous covariates are age, female, white, copd, heartd,
and renal. Lee (2021) allows the treatment to be endogenous and instruments it with
assign. We consider exogenous and endogenous treatments for the sake of illustration.

With the treatment assumed to be exogenous, the psr command invoked with the
default options gives the following results, where the OW average treatment effect is
small in magnitude and is statistically insignificant:
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. use flu

. psr outcome receive age female white copd heartd renal
(intermediate outputs suppressed; use verbose option to override)

outcome Coefficient Std. err. z P>|z| [95% conf. interval]

receive -.0033608 .0120239 -0.28 0.780 -.0269271 .0202056

Polynomial order of xb for output prediction = 2 obs = 2861
Treatment: receive (exogenous, fitted by probit)
Exogenous: age female white copd heartd renal

In this OLS result, the treatment effect (−0.0033608) is obtained as follows: The
treatment variable (receive) is regressed on the covariates (age, female, white, copd,
heartd, and renal) by probit, and the outcome prediction error is obtained by re-
gressing the outcome variable (outcome) on the linear index (xb) and its square. The
OW average treatment effect is then obtained by the OLS regression of the outcome
prediction error on the PSR.

A third-order polynomial of the linear index can be added to the outcome prediction
regression, which yields the following result:

. psr outcome receive age female white copd heartd renal, order(3)
(intermediate outputs suppressed; use verbose option to override)

outcome Coefficient Std. err. z P>|z| [95% conf. interval]

receive -.00328 .0120184 -0.27 0.785 -.0268356 .0202755

Polynomial order of xb for output prediction = 3 obs = 2861
Treatment: receive (exogenous, fitted by probit)
Exogenous: age female white copd heartd renal

The results change only marginally.

Logit can replace probit by using the logit option, as the following example illus-
trates:

. psr outcome receive age female white copd heartd renal, logit
(intermediate outputs suppressed; use verbose option to override)

outcome Coefficient Std. err. z P>|z| [95% conf. interval]

receive -.0033386 .0120322 -0.28 0.781 -.0269213 .0202441

Polynomial order of xb for output prediction = 2 obs = 2861
Treatment: receive (exogenous, fitted by logit)
Exogenous: age female white copd heartd renal

The results are almost identical to those by the probit regression.
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The auxiliary covariate slopes (derived under restrictive conditions in section 2.4 to
make the y model linear) are reported as follows when the auxiliary option is used:

. psr outcome receive age female white copd heartd renal, auxiliary
(intermediate outputs suppressed; use verbose option to override)

outcome Coefficient Std. err. z P>|z| [95% conf. interval]

receive -.0033608 .0120239 -0.28 0.780 -.0269271 .0202056

Polynomial order of xb for output prediction = 2 obs = 2861
Treatment: receive (exogenous, fitted by probit)
Exogenous: age female white copd heartd renal
Auxiliary results from OLS of Y - teffect*D on covariates (with robust
standard errors taking into account the first-stage estimation error for
teffect in Y - teffect*D):

Y-teffect*D Coefficient Std. err. z P>|z| [95% conf. interval]

age -.0006199 .000426 -1.46 0.146 -.0014549 .0002151
female -.016198 .0120737 -1.34 0.180 -.039862 .007466
white -.0191919 .0115777 -1.66 0.097 -.0418837 .0035
copd .023678 .0136739 1.73 0.083 -.0031224 .0504785

heartd .0509577 .0100869 5.05 0.000 .0311877 .0707278
renal .2234275 .0746846 2.99 0.003 .0770484 .3698066
_cons .1111083 .0317467 3.50 0.000 .0488859 .1733306

Caution: Linearity and effect homogeneity are assumed.
Treatment effect is valid without those restrictive assumptions.

The results from the auxiliary regression of y− β̂d on the covariates are displayed after
the estimated OW treatment effect. The reported standard errors are corrected for the
first-stage estimation error, and cautionary warnings are noted.

All the intermediate-step results are displayed if the verbose option is used:

. psr outcome receive age female white copd heartd renal, verbose
Step 1: probit regression of receive
Iteration 0: Log likelihood = -1609.6643
Iteration 1: Log likelihood = -1588.4349
Iteration 2: Log likelihood = -1588.3905
Iteration 3: Log likelihood = -1588.3905
Probit regression Number of obs = 2861

LR chi2(6) = 42.55
Prob > chi2 = 0.0000

Log likelihood = -1588.3905 Pseudo R2 = 0.0132

receive Coefficient Std. err. z P>|z| [95% conf. interval]

age .0104581 .0021883 4.78 0.000 .0061692 .014747
female -.0553546 .0560536 -0.99 0.323 -.1652177 .0545085
white -.0049985 .0555472 -0.09 0.928 -.113869 .1038721
copd .2618746 .0607797 4.31 0.000 .1427486 .3810007

heartd .0457934 .0523338 0.88 0.382 -.0567789 .1483657
renal .0216417 .2222316 0.10 0.922 -.4139243 .4572077
_cons -1.426146 .1621891 -8.79 0.000 -1.744031 -1.108261
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Step 2: regress outcome on xb's polynomials of order 2

outcome Coefficient Std. err. t P>|t| [95% conf. interval]

xb^1 .2972206 .1482517 2.00 0.045 .0065294 .5879118
xb^2 .1648161 .1021603 1.61 0.107 -.0354993 .3651316
_cons .2066716 .0530624 3.89 0.000 .1026271 .3107162

Note. Standard errors not adjusted for generated regressors.
Step 3: Regression of outcome prediction error on PSR

outcome Coefficient Std. err. z P>|z| [95% conf. interval]

receive -.0033608 .0120239 -0.28 0.780 -.0269271 .0202056

Polynomial order of xb for output prediction = 2 obs = 2861
Treatment: receive (exogenous, fitted by probit)
Exogenous: age female white copd heartd renal

The displayed results are self-evident. The vverbose option is identical to verbose and
auxiliary used together.

We have so far assumed that the treatment (receive) is exogenous. When it is
possibly endogenous and is instrumented by assign, the results (using the vverbose
option to display all intermediate steps and the auxiliary covariate slopes) are as follows:

. use flu, clear

. psr outcome (receive = assign) age female white copd heartd renal, vverbose
Step 1: probit regression of assign
Iteration 0: Log likelihood = -1981.89
Iteration 1: Log likelihood = -1978.6418
Iteration 2: Log likelihood = -1978.6417
Probit regression Number of obs = 2861

LR chi2(6) = 6.50
Prob > chi2 = 0.3699

Log likelihood = -1978.6417 Pseudo R2 = 0.0016

assign Coefficient Std. err. z P>|z| [95% conf. interval]

age .0016601 .0019013 0.87 0.383 -.0020664 .0053866
female .0867887 .0515592 1.68 0.092 -.0142656 .1878429
white .027004 .0508958 0.53 0.596 -.07275 .126758
copd -.004955 .0563516 -0.09 0.930 -.1154022 .1054921

heartd .0402458 .0478214 0.84 0.400 -.0534824 .1339739
renal .2083722 .2082433 1.00 0.317 -.1997772 .6165216
_cons -.1720573 .1405214 -1.22 0.221 -.4474743 .1033596
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Step 2: regress outcome on xb's polynomials of order 2

outcome Coefficient Std. err. t P>|t| [95% conf. interval]

xb^1 -.169189 .1115664 -1.52 0.130 -.3879478 .0495697
xb^2 2.739879 .7020163 3.90 0.000 1.36337 4.116389
_cons .0779886 .0061648 12.65 0.000 .0659007 .0900765

Note. Standard errors not adjusted for generated regressors.
Step 3: Regression of outcome prediction error on D using ISR as instrument

outcome Coefficient Std. err. z P>|z| [95% conf. interval]

receive -.1265733 .0895777 -1.41 0.158 -.3021424 .0489957

Polynomial order of xb for output prediction = 2 obs = 2861
Treatment: receive (instrumented by assign, fitted by probit)
Exogenous: age female white copd heartd renal
Auxiliary results from OLS of Y - teffect*D on covariates (with robust
standard errors taking into account the first-stage estimation error for
teffect in Y - teffect*D):

Y-teffect*D Coefficient Std. err. z P>|z| [95% conf. interval]

age -.0002391 .0004316 -0.55 0.580 -.0010851 .0006069
female -.0184638 .0122571 -1.51 0.132 -.0424872 .0055596
white -.0193098 .0117595 -1.64 0.101 -.0423579 .0037384
copd .0339783 .0138496 2.45 0.014 .0068336 .061123

heartd .0526859 .0102918 5.12 0.000 .0325144 .0728574
renal .2243149 .0751364 2.99 0.003 .0770503 .3715795
_cons .1147726 .0321669 3.57 0.000 .0517266 .1778185

Caution: Linearity and effect homogeneity are assumed.
Treatment effect is valid without those restrictive assumptions.

First, the instrument (assign) is regressed on the covariates. Second, the outcome
variable (outcome) is fit using the polynomials of the linear index up to the second
order. Finally, the outcome prediction error is regressed on the treatment variable
(receive) using the ISR as the instrument. The estimated OW average treatment effect is
−0.1265733, which is much larger than the one obtained under the treatment exogeneity
assumption, though it is still statistically insignificant at the 10% level (p-value = 0.158).
Lee (2021, 626) shows that the usual linear-model IVE yields almost the same effect
estimate, −0.13, with or without x controlled for. The estimated covariate slopes are
presented as the final output.

4.2 Education effect on wage

Our second empirical analysis is for education effect on wage (Lee 2021) based on Card
(1995). nlsdat.dta is prepared using files at https: //davidcard.berkeley.edu/data_
sets.html. The variable names to appear below are taken from the codebook provided
in this URL.

https://davidcard.berkeley.edu/data_sets.html
https://davidcard.berkeley.edu/data_sets.html
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The outcome variable is ln(wage) in 1976 (lwage76), the treatment variable (d) is
the binary indicator for the schooling years in 1976 (ed76) to exceed 12, the instrument
(z) is for whether one grew up near a four-year college (nearc4), and the covariates
(x) consist of 1, age (age76), dummy for black (black), dummies for nine residence
regions in 1966 (reg662–reg669, with reg661 as the base category), dummy for living
in a standard metropolitan statistical area in 1966 (smsa66r), dummy for living in a
standard metropolitan statistical area in 1976 (smsa76r), and dummy for living in the
South in 1976 (reg76r).

Lee (2021) presented two results with and without smsa76r and reg76r because of
the possibility of them being affected by d. With smsa76r and reg76r included, the
IVE regression of the outcome prediction error on the treatment using the instrument
propensity residual as the instrument gives the following results (with the vverbose
option used to show all the intermediate-step results and the auxiliary covariate slopes):

. use nlsdat, clear

. generate d = ed76 > 12

. global X0 age76 black reg662-reg669 smsa66r

. global X1 ${X0} smsa76r reg76r

. psr lwage76 (d = nearc4) ${X1}, vverbose
Step 1: probit regression of nearc4
Iteration 0: Log likelihood = -1882.1743
Iteration 1: Log likelihood = -1495.0081
Iteration 2: Log likelihood = -1488.4087
Iteration 3: Log likelihood = -1488.3888
Iteration 4: Log likelihood = -1488.3888
Probit regression Number of obs = 3010

LR chi2(13) = 787.57
Prob > chi2 = 0.0000

Log likelihood = -1488.3888 Pseudo R2 = 0.2092

nearc4 Coefficient Std. err. z P>|z| [95% conf. interval]

age76 .0118223 .008551 1.38 0.167 -.0049374 .028582
black .1820022 .068917 2.64 0.008 .0469274 .317077

reg662 .0499826 .1602549 0.31 0.755 -.2641112 .3640764
reg663 -.4619476 .1518162 -3.04 0.002 -.7595019 -.1643933
reg664 -.3846031 .1678376 -2.29 0.022 -.7135589 -.0556474
reg665 -.5841955 .1725978 -3.38 0.001 -.922481 -.2459101
reg666 -.9552103 .1831986 -5.21 0.000 -1.314273 -.5961477
reg667 -.82846 .1835112 -4.51 0.000 -1.188135 -.4687847
reg668 -.6587352 .2023066 -3.26 0.001 -1.055249 -.2622215
reg669 -.2381267 .1696908 -1.40 0.161 -.5707146 .0944612
smsa66r .9892418 .0697661 14.18 0.000 .8525026 1.125981
smsa76r .2880253 .0716101 4.02 0.000 .147672 .4283786
reg76r -.0816956 .0972298 -0.84 0.401 -.2722626 .1088713
_cons -.1616815 .2850832 -0.57 0.571 -.7204343 .3970712
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Step 2: regress lwage76 on xb's polynomials of order 2

lwage76 Coefficient Std. err. t P>|t| [95% conf. interval]

xb^1 .2122322 .0183157 11.59 0.000 .1763196 .2481448
xb^2 -.050734 .017508 -2.90 0.004 -.0850628 -.0164052
_cons 6.182557 .0118082 523.58 0.000 6.159404 6.20571

Note. Standard errors not adjusted for generated regressors.
Step 3: Regression of outcome prediction error on D using ISR as instrument

lwage76 Coefficient Std. err. z P>|z| [95% conf. interval]

d .4102675 .2511422 1.63 0.102 -.0819622 .9024973

Polynomial order of xb for output prediction = 2 obs = 3010
Treatment: d (instrumented by nearc4, fitted by probit)
Exogenous: age76 black reg662 reg663 reg664 reg665 reg666 reg667 reg668 reg669
> smsa66r smsa76r reg76r
Auxiliary results from OLS of Y - teffect*D on covariates (with robust
standard errors taking into account the first-stage estimation error for
teffect in Y - teffect*D):

Y-teffect*D Coefficient Std. err. z P>|z| [95% conf. interval]

age76 .0413973 .0024043 17.22 0.000 .036685 .0461096
black -.1540869 .0187519 -8.22 0.000 -.19084 -.1173339

reg662 .0747168 .0386603 1.93 0.053 -.0010561 .1504897
reg663 .1183685 .0377422 3.14 0.002 .044395 .1923419
reg664 .0217221 .045415 0.48 0.632 -.0672897 .1107339
reg665 .1180115 .0470947 2.51 0.012 .0257076 .2103155
reg666 .1179829 .0494027 2.39 0.017 .0211553 .2148104
reg667 .118484 .0493607 2.40 0.016 .0217389 .2152292
reg668 -.1347822 .0537282 -2.51 0.012 -.2400876 -.0294768
reg669 .0627177 .0427566 1.47 0.142 -.0210836 .1465191
smsa66r .0319594 .0198708 1.61 0.108 -.0069867 .0709055
smsa76r .1020951 .0207117 4.93 0.000 .0615009 .1426893
reg76r -.1818059 .0304977 -5.96 0.000 -.2415803 -.1220314
_cons 4.818898 .0781723 61.64 0.000 4.665683 4.972113

Caution: Linearity and effect homogeneity are assumed.
Treatment effect is valid without those restrictive assumptions.

The OW average treatment effect is estimated to be 0.4102675 (with the robust
standard error 0.2511422), as is shown in the Step 3 part of the output. Lee (2021,
628) shows that the usual linear-model IVE with x controlled yields the effect estimate
0.43 (with the robust standard error 0.24), which differs little from the OW average
treatment effect result.
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With smsa76r and reg76r excluded from the covariate list, the results change to
the following:

. psr lwage76 (d = nearc4) ${X0}, vverbose
Step 1: probit regression of nearc4
Iteration 0: Log likelihood = -1882.1743
Iteration 1: Log likelihood = -1503.6449
Iteration 2: Log likelihood = -1497.3817
Iteration 3: Log likelihood = -1497.3625
Iteration 4: Log likelihood = -1497.3625
Probit regression Number of obs = 3010

LR chi2(11) = 769.62
Prob > chi2 = 0.0000

Log likelihood = -1497.3625 Pseudo R2 = 0.2045

nearc4 Coefficient Std. err. z P>|z| [95% conf. interval]

age76 .0099669 .0085142 1.17 0.242 -.0067206 .0266544
black .2005843 .0685613 2.93 0.003 .0662067 .3349618

reg662 .0869013 .1589232 0.55 0.585 -.2245824 .398385
reg663 -.4377081 .1504965 -2.91 0.004 -.7326758 -.1427404
reg664 -.3763224 .1669333 -2.25 0.024 -.7035057 -.0491391
reg665 -.6445885 .1499743 -4.30 0.000 -.9385328 -.3506442
reg666 -.9993765 .1621363 -6.16 0.000 -1.317158 -.6815952
reg667 -.872297 .1589835 -5.49 0.000 -1.183899 -.560695
reg668 -.651649 .2012587 -3.24 0.001 -1.046109 -.2571892
reg669 -.2106687 .1685628 -1.25 0.211 -.5410457 .1197083
smsa66r 1.157478 .0555694 20.83 0.000 1.048564 1.266392

_cons -.0437532 .2825242 -0.15 0.877 -.5974904 .5099841

Step 2: regress lwage76 on xb's polynomials of order 2

lwage76 Coefficient Std. err. t P>|t| [95% conf. interval]

xb^1 .1862023 .0196759 9.46 0.000 .1476227 .2247818
xb^2 -.0319933 .0186826 -1.71 0.087 -.0686253 .0046387
_cons 6.18133 .0118389 522.12 0.000 6.158117 6.204543

Note. Standard errors not adjusted for generated regressors.
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Step 3: Regression of outcome prediction error on D using ISR as instrument

lwage76 Coefficient Std. err. z P>|z| [95% conf. interval]

d .5276801 .2259549 2.34 0.020 .0848165 .9705436

Polynomial order of xb for output prediction = 2 obs = 3010
Treatment: d (instrumented by nearc4, fitted by probit)
Exogenous: age76 black reg662 reg663 reg664 reg665 reg666 reg667 reg668 reg669
> smsa66r
Auxiliary results from OLS of Y - teffect*D on covariates (with robust
standard errors taking into account the first-stage estimation error for
teffect in Y - teffect*D):

Y-teffect*D Coefficient Std. err. z P>|z| [95% conf. interval]

age76 .0413565 .00255 16.22 0.000 .0363585 .0463544
black -.1189603 .0197279 -6.03 0.000 -.1576262 -.0802943

reg662 .0727586 .0415344 1.75 0.080 -.0086473 .1541645
reg663 .1098763 .0408153 2.69 0.007 .0298798 .1898729
reg664 .0068656 .0486819 0.14 0.888 -.0885491 .1022803
reg665 -.0407721 .040892 -1.00 0.319 -.1209189 .0393748
reg666 -.0386979 .0453898 -0.85 0.394 -.1276603 .0502644
reg667 -.0469446 .043589 -1.08 0.281 -.1323775 .0384882
reg668 -.1634314 .0570261 -2.87 0.004 -.2752005 -.0516622
reg669 .0505569 .0457973 1.10 0.270 -.039204 .1403179
smsa66r .0824573 .0168235 4.90 0.000 .049484 .1154307

_cons 4.790264 .0826818 57.94 0.000 4.628211 4.952317

Caution: Linearity and effect homogeneity are assumed.
Treatment effect is valid without those restrictive assumptions.

The estimated OW average treatment effect is 0.5276801 (with the robust standard
error 0.2259549), which is statistically significant at the 5% level (p-value = 0.020). Lee
(2021, 628) shows that the usual linear-model IVE with x controlled yields the effect
estimate 0.55 (with the robust standard error 0.22), which differs little from the OW
average treatment effect result.

5 Conclusions
In finding the effect of a binary treatment d, practitioners often apply OLS to LDVs y,
despite the fact that the linear model is untenable. Also, COVID-19 recently demon-
strated how heterogeneous treatment effects can be, yet linear models typically assume
a constant effect. This brought up an important question: What does the OLS estimate
when the effect is x-heterogeneous, being a function µ1(x) of x, and the linear model is
invalid?

The answer in the literature is that the effect estimated by the OLS is a weighted
average E{ω(x)µ1(x)}, where the weight ω(x) is high for those with their PS πx ≡
E(d|x) '0.5 and low for those with πx ' 0, 1; ω(x) is called the OW. However, this
answer requires that πx be equal to the linear projection of d on x, which unfortunately
rarely holds in reality. Without this condition, the OLS can be consistent for a nonzero
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number even when µ1(x) = 0. This brought up another question: Can E{ω(x)µ1(x)}
be estimated without the restrictive condition?

To this question, Lee (2018) showed that the OLS of y on d − πx (“OLSPSR”) is
consistent for E{ω(x)µ1(x)} without the restrictive condition. Going further, Lee (2021)
showed that when d is endogenous with a binary instrument z, the IVE of y on d
with instrument z − ζx (“IVEISR”), where ζx ≡ E(z|x) is the instrument score (IS),
is consistent for a modified OW average of µ1(x). This article reviewed OLSPSR and
IVEISR and then provided the command psr to implement OLSPSR and IVEISR, which
are applicable to any µ1(x) and any y (continuous, count, binary, etc.).

Because both OLSPSR and IVEISR are implemented by specifying πx and ζx as probit
(or logit), one concern in OLSPSR and IVEISR is misspecifications in the probit or logit
for πx or ζx. To make OLSPSR and IVEISR robust to such misspecifications, the actually
implemented version of OLSPSR and IVEISR uses, respectively, y−E(y|πx) and y−E(y|ζx)
instead of y. This idea is closely related to the recent “double debiasing” idea for
robustness to misspecifications in nuisance functions such as πx or ζx, where y−E(y|x)
is used instead of y and then a machine-learning method estimates E(y|x).

In our two empirical illustrations where one outcome is binary and the other is
continuous, OLSPSR and IVEISR yielded estimates very close to those of the usual linear-
model OLS and IVE. This demonstrates that OLSPSR and IVEISR reduce to the usual
linear-model OLS and IVE when πx is the same as the linear projection; otherwise,
OLSPSR and IVEISR would still provide the OW average treatment effect. By providing
the command, we hope that OLSPSR and IVEISR are more widely applied because they
require neither any linear approximation argument nor constant effect assumption.

As far as we can see, there are two remaining issues in OLSPSR and IVEISR; one is easy
to address, but the other is not. The first issue is the robustness to misspecifications in
πx and ζx because it is not “full” yet. If the x-centered variables {y−E(y|x), d−πx, z−
ζx} are used in the OLSPSR and IVEISR, then OLSPSR and IVEISR will be fully double
debiasing. This will be done in the near future, and a command will become available
before long because the research is underway. The other issue is the OW: If one objects
to OW, are there any other sensible weighting schemes to adopt? The answer would be
yes, but it is unlikely that any sensible weighting scheme other than OW is compatible
with OLS- and IVE-based approaches.
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7 Programs and supplemental material
To install the software files as they existed at the time of publication of this article,
type

. net sj 24-1

. net install st0740 (to install program files, if available)

. net get st0740 (to install ancillary files, if available)
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