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Transportation Disruptions and Corn Basis Volatility

along the Mississippi River
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Abstract

This study investigates how river-based transportation costs, particularly barge freight rates,
influence corn basis along the Mississippi River. The corn basis (the difference between local cash
and futures prices) captures key pricing dynamics affected by both local conditions and broader
logistical networks. Using weekly data from 2014 to 2024, we apply a Spatial Durbin Model
(SDM) with spatial and time fixed effects to account for both local and spillover effects across
markets. Two model specifications are estimated: one assuming directionally constrained spatial
spillovers, consistent with downstream trade patterns, and another allowing for unconstrained
spatial interactions. The results show that an increase in barge freight rates is associated with a
decline in the local corn basis, underscoring the negative impact of rising transportation costs on
prices paid at origin. Moreover, significant spillover effects reveal that barge rate changes in one
region affect basis values in adjacent markets, indicating that transportation shocks propagate
spatially. The analysis also highlights how river navigability and localized energy price variation
contribute to basis volatility, depending on how spatial relationships are structured. Overall,
the findings emphasize the importance of infrastructure, costs, and spatial connectivity in grain
pricing. This research offers important insights for policymakers, producers, and traders seeking
to manage transportation risks and improve market efficiency in the agricultural sector.
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1 Background and Relevant Literature

Understanding spatial price relationships in grain markets involves combining classical spatial equi-

librium theory with modern empirical insights regarding transportation and spillover effects. The

fundamental principle of spatial arbitrage states that, under competitive conditions, price differ-

entials between regions are limited by transportation costs (Takayama and Judge, 1971; Enke,

1951; Samuelson, 1952). Early work by Enke (1951) and Samuelson (1952) drew parallels between

commodity flows and electrical networks, establishing the foundation for formal spatial price equi-

librium models. Takayama and Judge (1971)’s seminal model further formalized how prices and

flows adjust to eliminate arbitrage opportunities, resulting in prices in surplus regions rising and

prices in deficit regions falling until the difference equals the cost of transporting the commodity.

In the context of U.S. corn markets, these equilibrium forces are reflected in the basis: the local

cash price minus the futures price. The corn basis at a specific location is primarily determined

by the cost of transporting corn to the delivery market (or export point) plus local supply and

demand factors. In an efficient market, persistent basis differences between two locations should

mirror transport costs and constraints; if the price gap exceeds transportation costs, arbitrage

through physical grain shipment or storage should occur to restore equilibrium. Consequently,

transportation costs are often regarded as the “anchor” of spatial price differentials, and movements

in the corn basis frequently correspond to changes in freight rates and infrastructure conditions. For

example, a recent panel analysis of U.S. soybean markets found that a $1 increase in barge shipping

costs led to approximately a $0.19 per bushel decrease in interior soybean basis (Lakkakula and

Wilson, 2021), highlighting how higher transport costs weaken local prices (or widen the basis) in

producing regions. Although that study focused on soybeans, the behavior of corn basis is similar

due to the shared reliance on the Mississippi River for bulk transport.

Numerous empirical studies confirm that Mississippi barge rates are a critical determinant of

corn and soybean basis in river markets (McKenzie, 2005; Yu et al., 2006; Haigh and Bessler, 2004).

Increases in barge rates tend to widen the inland–export price spread, which weakens the inland

basis and/or strengthens the Gulf basis because buyers in interior regions must bid lower to account

for the increased cost of transporting grain to the Gulf. Consistent with this, McKenzie (2005)

found that shocks to barge freight rates significantly impacted soybean basis at both the Arkansas

origin and the Gulf destination, demonstrating that inland and Gulf basis respond together to

changes in transportation costs.
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Moreover, the volatility of barge freight rates is also an important factor; barge rates are

several times more volatile than grain prices (Haigh and Bryant, 2001). Haigh and Bryant (2001)

demonstrated that Mississippi barge freight prices exhibit higher volatility than corn prices, which

can amplify basis risk for market participants. This persistent volatility in transport costs increases

uncertainty in local price relationships, as elevators and traders must navigate rapid fluctuations

in the cost of moving grain. Together, these studies highlight that changes in transportation costs,

whether gradual or shock-induced, are significant drivers of spatial basis dynamics in U.S. corn

markets.

Transportation plays a central role in shaping spatial price relationships, and understanding

these effects has evolved. Earlier literature primarily utilized pairwise market integration tests and

time-series methods to infer spatial linkages. A common approach was to test for cointegration

between prices at different locations, based on the expectation that well-integrated markets should

not diverge in the long run. However, McNew and Fackler (1997) warned that using cointegration

as a market integration test can be problematic when transportation costs are significant. Using

simulated spatial equilibrium examples, they demonstrated that perfectly efficient, arbitraged mar-

kets do not necessarily produce cointegrated price series. Price differences can fluctuate within a

“band” set by transaction costs, such as transport and handling fees, without establishing a sta-

ble long-term relationship. A direct consequence is that standard cointegration tests might falsely

indicate market segmentation, even if the Law of One Price holds within certain cost thresholds.

In response to this insight, subsequent research introduced threshold cointegration and parity

bound models, which explicitly allow for a neutral band where price gaps up to the transportation

cost do not invoke arbitrage (Baulch, 1997; Goodwin and Piggott, 2001; Barrett and Li, 2002).

These models recognize that spatial arbitrage only occurs when the price difference exceeds the

shipping costs, adding non-linearity to price adjustments. Such threshold-based analyses confirmed

that corn and soybean markets are often integrated in a conditional sense, and price disparities lead

to trade only when they are large enough to cover transportation fees. For example, Goodwin and

Piggott (2001) found that price transmissions in Midwestern corn markets exhibited inaction within

a band roughly equivalent to transport costs, alongside rapid adjustments once the prices moved

outside that band. These findings reinforce the theory that transportation costs create a buffer

for price differences, but also highlight a limitation of purely time-series approaches: the complex

network of spatial interactions, characterized by multiple competing routes and modalities, is not

easily captured by simply analyzing pairs of markets or assuming static thresholds.
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Recently, researchers (Elhorst, 2010; Weng et al., 2023; LeSage and Pace, 2009a; You and Lv,

2018; Wetzstein et al., 2019, 2021) have increasingly adopted spatial econometric techniques to

model agricultural markets’ interconnectedness more accurately. Spatial econometrics provides

a framework that quantifies spillover effects across multiple locations simultaneously, recognizing

that shocks in one region can impact others through the network of trade and arbitrage. Unlike

traditional time-series or panel regressions, which assume independence among locations, spatial

models use a spatial weight matrix to formally define which markets are “neighbors” and the

strength of their interactions (Weng et al., 2023; You and Lv, 2018; Wetzstein et al., 2019, 2021).

These techniques allow for estimating how much a price change in one area is transmitted to others,

beyond what common temporal factors can explain.

The Spatial Durbin Model (SDM) has been particularly favored for such analyses (LeSage

and Pace, 2009b). The SDM incorporates both spatially lagged dependent variables and spatially

lagged independent variables, enabling researchers to capture direct effects (the impact of local

factors on local prices) and indirect effects (the impact of local factors on neighboring prices)

within a single model. LeSage and Pace (2009b) suggests that the SDM is often superior for

applied work because it encompasses other spatial specifications and reduces bias from omitted

spatially correlated covariates. In the context of grain prices, an SDM can model how a shock to

corn basis in one location might influence nearby prices and how changes in transportation costs

or supply in one area (as an independent variable) can affect prices elsewhere through the trade

network. This approach shifts the literature from simply assessing whether two markets move

together to quantifying the network multiplier effects of local shocks.

Several applications of spatial econometric models to U.S. agricultural markets illustrate the

effectiveness of this approach. For instance, Jensen and Miller (2014) applied a spatial error correc-

tion model to regional milk prices in the U.S., revealing significant spatial error correlations due to

overlapping procurement areas. In the grain sector, Grashuis (2019) explored spatial competition

among Iowa corn elevators using a spatial lag and Durbin framework; interestingly, that study

found limited spatial dependence in cash bid levels once firm-specific factors were taken into ac-

count, suggesting that spatial price spillovers can be diminished in the presence of localized market

power or varied buyer behavior. Nonetheless, the general evidence indicates that spatial linkages

are economically significant in many agricultural markets, especially those connected by a common

infrastructure or flow path.

The Mississippi River corridor is an ideal “natural laboratory” for examining spatial spillovers
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driven by transportation costs. It operates as a quasi-linear market network where corn from

upriver states (such as Illinois, Iowa, and Minnesota) is systematically transported down to the Gulf

for export. This setup implies a directed chain of price influences that shapes market dynamics.

Numerous studies underscore the critical role of the Mississippi River system in U.S. grain logistics,

with over half of U.S. corn exports in certain years originating from the Gulf and predominantly

supplied by barges traveling along the Mississippi and Illinois Rivers.

Consequently, interior corn prices in regions adjacent to the river are closely tied to Gulf export

prices, adjusted for the barge rate. When barge costs increase, whether due to higher fuel prices,

strong demand, or physical constraints on river transport, inland elevators must lower their bids for

corn, resulting in a widening basis to maintain their profit margins. Conversely, declines in barge

freight prices or expansions in capacity usually strengthen the inland basis relative to the Gulf. Em-

pirical evidence associated with the Mississippi River corridor supports these mechanisms. Li and

Thurman (2013) examined the spatial distribution of corn basis across U.S. regions and explicitly

included barge rates as a crucial factor in their analysis. They concluded that waterway transport

costs account for inter-regional basis differentials and highlighted the critical upstream–downstream

price transmission along the river. While Li and Thurman’s work was presented as a conference

paper, its findings align closely with more recent and systematic analyses. For example, Lakkakula

and Wilson (2021) conducted a panel study assessing soybean basis at both interior and export

locations, estimating the interdependence among origin basis, Gulf basis, and shipping costs. They

reported that a $1 per ton increase in barge shipping rates typically leads to an approximate $0.19

per bushel decrease in interior basis, accompanied by a corresponding increase in Gulf basis. This

elasticity reflects a straightforward reality: higher barge costs are shared between upward adjust-

ments in farmgate prices in the interior and increased prices or higher basis at the Gulf to maintain

competitiveness in exports. Their findings emphasize that fluctuations in transportation costs

are effectively transmitted through the market, impacting buyers and sellers in different locations

throughout the river system. Additional studies have also explored exogenous disruptions to the

river transport network, such as infrastructure failures or extreme weather, to evaluate their effects

on spatial price relationships.

Yu et al. (2006) studied the influence of lock delays on the Upper Mississippi and Illinois

Rivers on grain barge rates. They discovered that prolonged lock congestion could elevate barge

tariffs, albeit modestly. When such cost increases occur, they invariably impact the local basis– if

barge delays raise the cost of transporting corn southward, elevators upriver will adjust their bids
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downward relative to futures to compensate. Moreover, Barrett (2021) illustrated this dynamic

through patterns observed in the Mid-South regional basis. During winter months, when the Upper

Mississippi is seasonally closed to navigation (Tuthill and Mamone, 1998), southern elevators (in

Memphis, Arkansas, and Louisiana) noted a strengthening of their basis compared to northern

areas. The inability to ship corn from the Upper Midwest effectively tightened supply in the

South, driving up southern cash prices while northern basis weakened due to surplus. This seasonal

divergence stands as consistent evidence that transport availability dictates price linkages. Episodic

disruptions, like floods or drought-induced low water levels, are even more pronounced. The USDA

and various university economists have documented significant events, such as the 2012 drought

and the autumn 2022 low water crisis on the Mississippi (Farm Policy News, 2024), both of which

resulted in record barge rate spikes and historically wide basis spreads. For instance, in late 2022,

the river’s low levels forced reductions in barge loads and slowed traffic. Barge tariffs from St.

Louis to the Gulf skyrocketed to over 2000% of the benchmark tariff (exceeding $90/ton, multiple

times the typical rate). In response, interior cash prices fell sharply: the Illinois corn basis, usually

only mildly negative post-harvest, diminished to exceptionally weak levels as elevators discounted

prices to offset exorbitant freight costs, while the Gulf export basis soared to unprecedented highs

as exporters offered premiums for limited supplies. This resulted in an “extreme divergence,” with

a nearly $3.00 per bushel gap between Gulf and interior corn prices, directly reflecting the soaring

transportation costs and the disruption of regular grain flows. This real-world scenario powerfully

illustrates how spatial equilibria can shift in response to changes in transport cost structures.

Furthermore, it underscores that spatial spillovers are far from theoretical; a shock in one region

(such as low water at a river chokepoint) can ripple through freight markets, ultimately impacting

farm prices across a wide area of the Corn Belt.

The literature collectively illustrates that transportation costs and spatial price adjustments are

closely connected in grain markets. Transportation infrastructure and rates act as the binding force

that integrates regional markets, meaning that changes in this infrastructure can have widespread

effects. A prime example of this is the market behavior along the Mississippi River; understanding

local corn basis requires consideration of influences from both upstream and downstream conditions.

From a methodological perspective, earlier studies using cointegration or simple regression meth-

ods indicated these connections but often faced challenges in accurately pinpointing price move-

ments to spatial factors versus other influences. The introduction of spatial econometric approaches

offers a more detailed viewpoint. By implementing an upstream-to-downstream spatial weighting
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scheme, essentially mapping the river’s network into the model, this research can directly test for

directed spillover effects. For instance, the study investigates whether price shocks or cost changes

in an upstream market significantly impact prices downstream, as theory suggests. It also assesses

how far along the river these effects extend.

This approach aligns with the southbound flow of corn and recognizes that spatial dependence

may not be symmetrical. Traditional spatial models typically assume mutual influence among

neighbors, but upstream locations can exert greater influence on downstream markets in a tree-like

transport network. The study refines insights from previous empirical findings within a robust

framework that distinguishes local effects from spillover effects by utilizing a Spatial Durbin Model

with a customized weighting matrix oriented from upstream to downstream.

In doing so, this study bridges the gap between the substantial theoretical literature on spa-

tial price equilibrium and arbitrage and the contemporary empirical literature focused on network

interactions and spatial econometric estimation. The theoretical expectation here is that trans-

portation cost variables will have both direct and indirect impacts on local basis. For example,

a rise in barge rates at a specific upriver location might reduce shipments from that point, which

could tighten supply downstream and potentially strengthen the basis at downstream locations or

induce substitution from nearby areas. The Spatial Durbin framework allows us to incorporate

both the local and spatially lagged barge rates of upstream markets as variables, capturing these

multiregional dynamics. Previous studies suggest that such spillovers are expected; for instance,

Yu et al. (2004) found that changes in barge rates accounted for a modest 2–4% of the variance in

grain prices, even in distant markets. A more comprehensive dynamic analysis revealed that shocks

to barge, rail, and ocean freight rates could collectively explain as much as 40–65% of the variation

in U.S. corn prices over time. Although ocean freight (linked to global demand) was the most

significant influence in this study, barge costs also played a notable role. These findings indicate

that local price effects from a transportation cost change transmit broadly, meaning a shock at one

location on the river can have measurable consequences for prices elsewhere.

In sum, the literature clearly shows that transportation costs are crucial in determining spa-

tial corn basis and spillovers. Foundational theories suggest that price spreads reflect transport

charges, and decades of empirical research, from static spatial equilibria to time-series and panel

analyses, have confirmed this relationship. The Mississippi River system has been a central fo-

cus, with numerous studies (see Haigh and Bryant, 2001; Lakkakula and Wilson, 2021; McKenzie,

2005; Yu and Fuller, 2005, for example) demonstrating how levels and volatility of barge rates
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influence relative prices between interior and Gulf markets. Furthermore, natural experiments such

as river disruptions have dramatically illustrated spatial spillover effects in real time. However,

the forms and magnitudes of these spillovers in a multivariate, spatially interactive context have

been less explored until recently. By quantifying how changes in one location’s basis or trans-

port cost affect other locations throughout the network, the application of a Spatial Durbin Model

with an upstream-downstream weighting structure effectively addresses this gap, leveraging spa-

tial econometric techniques to estimate those spillover coefficients. By synthesizing insights from

prior research and using this new approach, the present study aims to enhance our understanding

of the spatial dynamics of corn basis. Ultimately, this work contributes to both the agricultural

economics literature on market integration and the applied econometrics literature on modeling

directed network effects, providing a clearer picture of these relationships that can inform trans-

portation infrastructure decisions.

2 Data

We use weekly data from February 2014 to May 2024 (Table 1). Corn basis and barge freight rate

data were obtained from the USDA Agricultural Marketing Service (AMS). Corn is a particularly

relevant crop for this analysis due to its high volume of production, significant transportation

demand, and large share of exports moving through inland waterways Additionally, corn is a

staple U.S. crop with a strong reliance on river-based transport. The Mississippi River system

is a central export channel for corn shipments, especially during peak harvest. The data period

encompasses a range of economic disruptions and extreme weather events that are expected to

influence both freight costs and corn basis. This allows us to explore how transportation constraints

shape commodity price behavior over time, providing insights that are especially relevant in today’s

evolving agricultural markets.

2.1 Corn Basis

We examine corn basis as the primary outcome variable. Basis is defined as the difference between

local cash prices and futures prices, and captures localized market conditions that are distinct from

broader commodity market trends. By focusing on the basis, we can better assess how changes

in transportation costs, particularly those associated with barge freight rates on the Mississippi

River, affect regional pricing dynamics. Events such as low river water levels primarily impact
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Table 1: Variables, Units of Measurement, and Sources

Variable Definition Units Source

Corn Basis Difference between the local cash
price and futures price for corn

USD/bushel USDA Grain Trans-
portation Report

Barge Rates A direct measure of barge trans-
portation costs

USD per bushel USDA Grain Trans-
portation Report

Gauge Height The water level recorded at a river
gauge station, typically measured
relative to a fixed reference point.

Feet (ft) U.S. Geological Survey
(USGS) or Army Corps
of Engineers

Diesel Price Weekly PADD 2 diesel price
(USD/gal) × distance (miles) from
the basis market to the nearest
river terminal.

USD miles per
gallon

Energy Information Ad-
ministration (EIA)

transportation and, consequently, local basis rather than national or global corn price fundamentals.

As such, fluctuations in barge rates serve as an important source of basis risk for corn producers

who rely heavily on river transport for market access. Basis is computed as:

Basisj,t = Spot Pricej,t − Futures Pricej,t (1)

where j is the location, at time t. A positive basis indicates that the spot price is higher than

the futures price, often reflecting local supply shortages or high demand. Conversely, a negative

basis suggests that the futures price exceeds the spot price, potentially indicating an oversupply or

lower demand in the local market.

Basis guides producers who hedge early in the season by informing the expected cash price

they can protect through futures or options, despite potential differences between cash and futures

prices at the time of sale. Unlike spot or futures prices, which reflect global supply and demand,

the basis captures local market conditions, varying by crop, time, and location. It also reflects

transportation and storage costs and guides the flow of commodities from surplus to deficit regions.

We focus on fourteen (14) locations along the Mississippi River System with available data

on weekly barge rates and grain basis, enabling the analysis of how transportation costs influence

grain price dynamics. These sites span the Mississippi River and key tributaries, covering major

grain-producing and transit regions from the Upper Mississippi to the Gulf. Figure 1 maps out the

markets.

Corn basis data are from 2014 to 2024 USDA reports, which provide weekly cash bid and basis

data for the following 14 grain markets: Central Illinois, Chicago, Cincinnati, Gulf, Kansas City,
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Memphis, Mount Vernon (Ohio), Nebraska, North Peoria, Omaha, South Iowa, South Peoria, St.

Louis, and Toledo. Each market is reported using the name of a city, representing a broader grain

market rather than an individual elevator or facility. These regional markets reflect prevailing cash

bids and local basis conditions, capturing spatial variation in supply, demand, and transportation

access. These 14 locations span major grain-producing and export-oriented regions along the Upper,

Middle, and Lower Mississippi River, as well as key interior hubs linked to river transport.

2.2 Barge Rates

The barge freight rates1, collected for the Mississippi River, provide a direct measure of transporta-

tion costs, a crucial component influencing commodity prices due to the river’s role as a primary

route for grain exports. Barge operators utilize a barge percent-of-tariff (BPOT) system to deter-

mine transportation costs along the river. Fluctuating spot rates for grain shipments are typically

quoted for loadings expected within the next 30 days. The cost per ton to transport commodities

is calculated by multiplying the variable BPOT rate by the fixed historical tariff rate for specific

locks in each river segment, reflecting the cost from the origin to demand centers, usually export

hubs in the Gulf (Wetzstein et al., 2019). For instance, a 289-percent tariff for a St. Louis grain

barge, when multiplied by a benchmark rate of $3.99, results in a rate of $11.53 per ton. Each river

segment has distinct benchmark rates, with northern segments generally higher.

We examine six key locations along the Mississippi River System: Cairo-Memphis, Cincinnati,

Lower Illinois, Mid-Mississippi, and St. Louis. Spanning over 2,000 miles of navigable waterways

maintained by the Army Corps of Engineers, these locations encompass major grain-producing and

transit regions from the Upper Mississippi to the Gulf (See Figure 1).

2.3 Gauge Height

To understand how water levels on the Mississippi River affect corn basis through barge trans-

portation, we use gauge height data from official stream gauges managed by the U.S. Geological

Survey (USGS) and the National Weather Service (NWS). These gauges are located at key points

along the river, including Chester, IL; Winona, MN; and Belle Chasse, LA, capturing conditions in

the upper, middle, and lower sections of the river. Gauge height, measured in feet, represents the

1To make the freight rate easier to interpret, we convert the barge rate from a per-ton basis to a per-bushel basis.
Since one ton equals 2,000 pounds and one bushel of corn weighs 56 pounds, we calculate the rate per bushel by
dividing the rate per ton by 2,000 and then multiplying by 56. This gives us the equivalent cost to ship one bushel
of corn by barge, making it easier to compare transportation costs on a per-bushel basis.
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vertical distance from a fixed reference point (the river datum) to the water’s surface (Lurry, 2010).

This measure is location-specific and cannot be directly compared across gauges due to differences

in local riverbed elevations (Fahlquist and Hopkins, 2023).

Gauge height is a practical and widely used indicator of navigability, as it forms the basis

for flood and drought stage classifications by the NWS. For example, the NWS defines specific

threshold values at the Memphis, TN gauge: 28 feet for action stage and 5 feet or below for low-

stage conditions (National Weather Service, 2023). A low-stage event indicates river levels are

sufficiently shallow to pose risks to navigation, restrict barge traffic, or affect water intake systems.

These events, while relatively infrequent, can lead to considerable transportation disruptions and

costs.

As the Mississippi River water levels decline, transporting corn by barge becomes more expensive

and, in severe cases, barge traffic may be halted altogether. These disruptions influence corn basis,

depending on how easily grain elevators can switch to alternative transportation modes such as

rail or truck. River-adjacent terminals typically lack viable transportation substitutes, so they face

steeper basis declines during low water events. In contrast, grain elevators located farther inland

tend to rely more on rail or truck year-round. These elevators can adapt more easily when river

shipping is disrupted, leading to smaller changes in basis (Mitchell and Biram, 2025).

2.4 Diesel Price

Diesel fuel prices are a critical component of transportation costs, particularly for barge, truck, and

rail freight in agricultural supply chains. In this study, weekly diesel prices from the Petroleum

Administration for Defense District (PADD) 2 are used, as all basis markets analyzed fall within

this region. PADD 2 includes the Midwest, a core area for U.S. corn production and grain movement

The diesel price data were obtained from the U.S. Energy Information Administration (EIA) and

represent average wholesale diesel prices within PADD 2, expressed in dollars per gallon.

To approximate the cost of transporting grain from local basis markets to river terminals, the

PADD 2 diesel price is multiplied by the distance from each market to the nearest barge-loading

river location. This distance-weighted fuel cost proxy captures spatial variation in transportation

expenses driven by both fuel prices and location-specific access to river infrastructure. Higher diesel

prices or greater distances to the river increase the cost of moving grain, which can widen the basis

in inland markets. This approach enables a more nuanced understanding of how fuel price dynamics

impact regional basis patterns through their influence on transportation costs. This is computed
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as:

Diesel Distance Costit = Diesel Pricet ×Distance to Riveri (2)

where t: time index (weekly) and i: basis market location

2.5 Matching the Data

To further analyze the relationship between river conditions and corn basis, we then matched

each corn basis market to the nearest barge location based on geographic proximity. This ensures

that basis values reflect price dynamics most influenced by transportation conditions at nearby

barge loading points. Next, we linked each of these basis markets to the closest river gauge height

measurement, allowing us to assess how local river levels may impact barge traffic and, in turn,

grain prices. This stepwise matching process, basis-to-barge location, then to river gauge, provides

a spatially consistent framework for analyzing the effect of river system variability on corn pricing

(See Figure 1)

Each corn market in our dataset was matched to its nearest river gauge to ensure that local

water conditions are appropriately reflected. In cases where data were missing, we applied linear

interpolation to fill small gaps without distorting trends. Incorporating gauge height adds an

important physical dimension to our understanding of how barge freight costs influence corn basis.

River depth affects barge draft limits, which in turn shape transportation capacity. For example,

while the U.S. Army Corps of Engineers aims to maintain a navigable channel depth of nine feet,

river conditions may allow barges to load up to 12.5–13 feet in draft under optimal conditions.

Lower water levels reduce barge capacity, raise shipping costs, and ultimately affect local basis

(Wetzstein et al., 2019).

3 Empirical Method

Grain movement and export focus on downstream flow, and most upstream barges are either

empty or carry non-grain commodities. Downstream interactions form a one-way relationship,

where downstream rates affect upstream movements, but not vice versa. This is why we focus on

downstream barge rates, because the relationships across river segments are unidirectional. Barge

operators are primarily focused on the river levels downstream from their loading point, as these

determine navigability for the loaded vessel. Therefore, this analysis focuses on downstream-bound
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Figure 1: Corn Basis Markets, Barge Locations and Gauge stations along the Mississippi River
system

Note: This figure displays the 14 corn basis markets, barge rate reporting locations, and river gauge stations along
the Mississippi River system used in this study. The basis markets are represented by city-level locations. Barge
locations correspond to points where barge freight rates are reported, while gauge stations indicate monitoring sites
for river stage levels. Together, these spatial references capture the transportation and pricing dynamics across key
nodes of the grain export network, spanning the Upper, Middle, and Lower Mississippi River regions.
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shipments Wetzstein et al. (2021). Further, we focus on fourteen regions (Figure 1) crucial to

commodity movement along the Mississippi River and employ a Spatial Durbin Model (SDM) to

account for spatial dependencies and dynamic interactions between corn basis and other trans-

portation variables. This approach enables us to capture spatial spillover effects and the evolving

impacts of fluctuating barge rates on corn basis, particularly in response to volatile conditions.

3.1 Spatial Model

The Spatial Durbin Model (SDM) is used to analyze the spatial spillover effects, drawing on the

methodological framework established by Elhorst (2010). The SDM offers a versatile modeling

structure that extends beyond the capabilities of the Spatial Autoregressive (SAR) and Spatial

Error Model (SEM) (Weng et al., 2023). Consistent with the approaches outlined by LeSage and

Pace (2009a) and further refined by You and Lv (2018), the general form of the SDM in this research

is expressed as follows:

Bi,t = α+ ρ
N∑
j=1

WijBj,t + β1Xi,t +
M∑
k=2

βkZk,i,t

+ γ1

N∑
j=1

WijXj,t +
M∑
k=2

γk

N∑
j=1

WijZk,j,t

+ µi + ηt + ϵi,t. (3)

where i and j index spatial units, and t represents time period.

The dependent variable in Equation (3), Bi,t, represents corn basis in market i.Bj,t is the corn

basis at location j while the main explanatory variable is the barge freight rate (Xi,t, Xj,t) in loca-

tions i and j respectively. Additional controls (diesel price, gauge height, Fourier terms) account

for broader factors, represented by the vector {Zk}i,t and {Zk}j,t for locations i and j respectively..

The spatial weights matrix, W, quantifies spatial relationships between regions, with Wij repre-

senting the spatial weight between regions i and j. This specification allows us to isolate the effects

of transportation-related shocks on localized corn price dynamics.

The key model parameters include ρ, which measures the spatial autoregressive effect, or the

influence of neighboring regions’ corn basis values on region i. Fixed effects, µi and ηt, control for

unobserved region-specific and time-specific heterogeneity, respectively. Finally, the error term ϵi,t

is assumed to be independently and identically distributed with zero mean and constant variance,
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ensuring robustness of the model’s statistical properties.

3.1.1 Disentangling Direct and Indirect Effects

In contrast to the coefficients from non-spatial models, the parameter estimates of the Spatial

Durbin Model (SDM) cannot be directly interpreted as marginal effects because spatial dependence

introduces feedback effects (LeSage and Pace, 2009a). To address this, the coefficients are typically

separated into direct and indirect effects. Drawing from Elhorst (2010), the SDM equation (3) can

be expressed as:

Yt = (IN − ρW)−1(Xtβ +WXtγ) +Rt, (4)

where Yt is the dependent variable, Xt includes the independent variables, and Rt encompasses

additional terms such as the constant and error.

To determine the impact of the k-th independent variable on the dependent variable across all

units at time t, the matrix of partial derivatives is given by:

[
∂E(Y)

∂x1k
· · · ∂E(Y)

∂xNk

]
t

= (IN − ρW)−1


βk w12γk · · · w1Nγk

w21γk βk · · · w2Nγk
...

...
. . .

...

wN1γk wN2γk · · · βk

 (5)

= (IN − ρW)−1(βkIN + γkW)

The direct effect is obtained by averaging the diagonal elements of the matrix (IN−ρW)−1(βkIN+

γkW). This represents the mean effect of a one-unit change in an independent variable on the de-

pendent variable within the same unit. The indirect effect, also referred to as the spillover

effect, is calculated by averaging the row sums of the off-diagonal elements in the same matrix.

This captures the influence on a unit’s dependent variable resulting from a one-unit change in the

independent variable in other units. The total effect is the sum of the direct and indirect effects.

It is important to highlight that the direct effect differs from the estimated coefficient β̂ in the

original model equation (3) due to feedback effects. These effects occur because changes propagate

through neighboring units and may circle back to the originating unit (e.g., passing from unit

i → j → i or through more complex routes such as i → j → k → j → i).
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3.2 Spatial Weights Matrix

We define a spatial weight matrix2 to capture potential spatial interactions among river segments.

This nonnegative matrix, denoted as Wij ,
3 quantifies the spatial influence of segment i on segment

j (Bhattacharjee and Jensen-Butler, 2013; Wetzstein et al., 2021). A distance-based spatial weight

matrix assigns weights to neighboring segments inversely proportional to their distances, with

elements normalized by the sums of the rows to ensure comparability.

The choice of an appropriate spatial weights matrix is critical, as different weighting schemes

can reveal distinct spillover effects (LeSage and Pace, 2009a). For our baseline, we use geographical

distance. According to Tobler (1970), spatial correlations typically decrease as the geographical

distance between locations increases. To account for this, we employ an inverse distance matrix,

which captures spatial correlations that decay with distance (see, for example, (Weng et al., 2023;

You and Lv, 2018)). The elements of the spatial weights matrix are defined as:

wij =


1
dij

if i ̸= j,

0 if i = j,

(6)

where dij represents the geographical distance between regions i and j. Following standard

practice, we apply row-sum normalization so that the sum of the elements in each row equals one.

Specifically, W measures the relationships between the corn basis in one segment and both

current and historical values of the corn basis in adjacent segments, with distances calculated in

river miles between the midpoints of these segments. This approach is consistent with (Ollier et al.,

2003; Adjemian et al., 2011; Wetzstein et al., 2019), who used a spatial weight matrix to explore

interactions among segments with a common endpoint. In our model, the spatial weight matrix

captures one-way interactions where only downstream segments influence those upstream.

The spatial weight matrix W establishes lagged interactions among the corn basis of differ-

ent river segments, imposing spatially determined constraints on the cross-lag parameters. The

normalized inverse distance spatial weight matrix used in our analysis is shown in Table 2.

2Spatial weights define how “neighbors” are identified in spatial analysis. Based on Tobler (1970)’s First Law
of Geography (1970) — “near things are more related than distant things” — this principle supports methods like
spatial autocorrelation

3See Table 2
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3.2.1 Measuring Distances

To accurately capture the spatial structure of inter-market relationships, we compute geodesic

distances between all corn basis market locations. Each market is georeferenced using its latitude

and longitude coordinates, and the pairwise distances are calculated as the shortest path between

two points on the Earth’s surface (i.e., great-circle distances). These geodesic distances provide a

precise and realistic measure of physical proximity, which serves as the foundation for constructing

the spatial weight matrix used in the Spatial Durbin Model (SDM) (See Tables 2) The weight

matrix reflects how strongly each market is connected to others based on geographic closeness,

enabling the model to account for spatial spillovers in corn basis behavior. Incorporating distances

ensures that the analysis of spatial dependence is grounded in the actual transportation and trade

geography of the U.S. corn market.

Table 2: Normalized inverse distance spatial-weight matrix

Central IL Chicago Cinncinnati Gulf Kansas City Memphis Mt Vernon Ohio Nebraska N Peoria Omaha S Iowa S Peoria St Loius Toledo

Central IL 0.00 0.12 0.00 0.00 0.00 0.00 0.05 0.00 0.33 0.05 0.06 0.34 0.00 0.06
Chicago 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Cinncinnati 0.11 0.11 0.00 0.00 0.00 0.00 0.20 0.11 0.10 0.05 0.05 0.10 0.00 0.16
Gulf 0.08 0.06 0.07 0.00 0.08 0.15 0.06 0.08 0.07 0.06 0.07 0.07 0.09 0.06
Kansas City 0.09 0.07 0.00 0.00 0.00 0.00 0.04 0.09 0.10 0.17 0.31 0.10 0.00 0.05
Memphis 0.10 0.07 0.08 0.00 0.09 0.00 0.06 0.10 0.09 0.06 0.08 0.09 0.14 0.06
Mt Vernon Ohio 0.00 0.15 0.00 0.00 0.00 0.00 0.00 0.13 0.12 0.06 0.00 0.12 0.00 0.42
Nebraska 0.00 0.22 0.00 0.00 0.00 0.00 0.00 0.00 0.60 0.08 0.00 0.00 0.00 0.10
N Peoria 0.00 0.71 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.29
Omaha 0.00 0.34 0.00 0.00 0.00 0.00 0.00 0.00 0.44 0.00 0.00 0.00 0.00 0.23
S Iowa 0.00 0.10 0.00 0.00 0.00 0.00 0.06 0.13 0.15 0.33 0.00 0.15 0.00 0.07
S Peoria 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.03 0.96 0.00 0.00 0.00 0.00 0.00
St Loius 0.16 0.07 0.06 0.00 0.08 0.00 0.04 0.16 0.13 0.05 0.08 0.13 0.00 0.05
Toledo 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Note: This displays the corresponding spatial-weight matrix, where non-zero upstream relationships are weighted by
the normalized inverse geodesic distance between market pairs. This matrix is row-standardized so that the weights
for each row sum to one, ensuring comparability across markets within the Spatial Durbin Model framework.

3.3 Spatial Autocorrelation

Spatial autocorrelation analysis provides a framework for understanding the mechanisms of spa-

tial clustering and heterogeneity among research variables by describing the spatial distribution

patterns of observed phenomena (Anselin, 2001). It is typically divided into global and local spa-

tial autocorrelation measures. Global spatial autocorrelation evaluates the overall similarity of

observed values, such as corn basis, across adjacent regions, identifying whether a spatial pattern

exists across the entire study area. However, when the study area covers a broad geographic range,

global measures may overlook localized variations or spatial heterogeneity, failing to reflect the

specific spatial relationships within smaller units. To address this limitation, local spatial autocor-

relation can reveal fine-grained patterns, identifying high- or low-value clusters within and between
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neighboring regions (Anselin and Rey, 1997).

This study applies local spatial autocorrelation to investigate whether spatial clustering exists

in corn basis across regions along the Mississippi River system. The Moran scatterplot and Local

Indicators of Spatial Association (LISA) cluster maps are then utilized to analyze the extent of high-

value or low-value spatial clustering of corn basis between river-adjacent regions. The corresponding

formulas for these measures are as follows:

The Global Moran’s I is calculated as:

I =
n
∑n

i=1

∑n
j=1wij(xi − x̄)(xj − x̄)∑n

i=1

∑n
j=1wij ·

∑n
i=1(xi − x̄)2

The Local Moran’s I is given by:

Ii =
(xi − x̄) ·

∑n
j=1wij(xj − x̄)∑n

i=1(xi − x̄)2

Here, xi and xj represent the observed corn basis in regions i and j, x̄ denotes the mean corn

basis across all regions, and wij is a binary spatial weight matrix where wij = 1 if regions i and j

are spatially adjacent, and wij = 0 otherwise.

The Moran’s I index ranges from −1 to 1. A positive Moran’s I (I > 0) indicates spatial

clustering, where high (or low) corn basis values are located near other high (or low) values. A

negative Moran’s I (I < 0) suggests spatial dispersion, where high values are adjacent to low values,

and vice versa. An index close to zero (I ≈ 0) reflects no discernible spatial pattern, implying that

corn basis is randomly distributed across the study area (Li et al., 2020).

4 Results

This section presents the main empirical findings from our analysis of corn basis dynamics. We es-

timate four model specifications: (1) a Spatial Durbin Model (SDM) with directionally constrained

spatial interactions, (2) an unconstrained SDM, (3) a directionally constrained SDM excluding

winter months, and (4) an unconstrained SDM excluding winter months. Each model is estimated

with three types of fixed effects: spatial, time, and two-way (spatial and time). For brevity, we

report results from the first two specifications, which use the full sample with and without direc-

tional constraints, in the main text. Results from the additional specifications that exclude winter

months are presented in the Appendix (available on request).
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Before interpreting results, recall that the dependent variable is corn basis, defined as the

difference between the local cash price and the futures price. A negative basis implies that local

cash prices are below futures prices, while a positive basis indicates local prices exceed futures

prices. Basis is said to weaken or widen as it becomes more negative and to strengthen or narrow

as it becomes more positive. Accordingly, a negative coefficient on a covariate reflects a weakening

(widening) of the corn basis, while a positive coefficient indicates a strengthening (narrowing) of

the basis.

Our results are organized as follows. First, we discuss estimates from the constrained and

unconstrained SDMs, highlighting the effects of river conditions and barge freight rates on regional

corn basis. We also discuss the implications of spatial spillovers using the average direct and indirect

effects from the model. Next, we assess robustness across specifications and model variations.

Finally, we contextualize the magnitude of the estimated impacts, translating key coefficients into

economic losses or gains for corn producers along the Mississippi River system.

4.1 Model Selection & Validation

To evaluate the suitability of the Spatial Durbin Model (SDM), we follow the model selection

procedures outlined by Elhorst (2014). The test results are summarized in Table 3. We begin

by assessing whether a spatial model is appropriate using a series of Lagrange Multiplier (LM)

and Robust LM tests for spatial lag and spatial error dependence (Anselin et al., 2008; Debarsy

and Ertur, 2010). As shown in rows one through four of Table 3, all LM and Robust LM test

statistics are large and statistically significant at the 1% level.This provides strong evidence of

spatial dependence in the data and justifies the use of a spatial econometric model over a non-

spatial panel specification.

We then assess whether a simpler model, such as a Spatial Autoregressive (SAR) or Spatial

Error Model (SEM), is sufficient, or if the more general SDM is needed. Likelihood ratio (LR) and

Wald tests for spatial lag and spatial error (rows five through eight) all reject the null hypotheses at

the 1% significance level.These results support the SDM as the preferred specification, indicating

that neither the SAR nor SEM models alone adequately capture the spatial relationships in the

data.

Finally, to determine whether a fixed-effects or random-effects model is more appropriate, we

conduct the Hausman (1978) test (row nine). The test yields a p-value of 0.000, indicating rejection

of the null hypothesis that the random-effects estimator is consistent. Therefore, the fixed effects
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Table 3: Test Results of Model Selection

Test Statistic Test Statistic Value P Value

LM spatial lag 810.646 0.000
LM spatial error 1118.556 0.000
Robust LM spatial lag 133.413 0.000
Robust LM spatial error 441.323 0.000
LR spatial lag 80.98 0.000
LR spatial error 88.38 0.000
Wald spatial lag 10.31 0.016
Wald spatial error 11.81 0.008
Hausman test 0.000

Note: This table summarizes the results of various diagnostic tests used for spatial model selection. The LM, robust
LM, and LR tests all yield statistically significant results (p < 0.01), indicating the presence of spatial dependence
in the data. Among the robust LM tests, the spatial error model shows stronger significance than the spatial lag
model, suggesting that a Spatial Error Model (SEM) may be more appropriate. This is also supported by the Wald
tests, where the spatial error component is more significant (p = 0.008) than the spatial lag component (p = 0.016).
The Hausman test yields a p-value of 0.000, indicating a statistically significant difference between fixed and random
effects estimators and supporting the use of a fixed effects specification in a spatial panel context.

model is preferred. Since the coefficients in the SDM cannot be directly interpreted as marginal

effects, we compute and report the average direct and indirect effects in Table 5.

4.2 Directionally Constrained SDM

4.2.1 Spatial dependence test

We begin by testing for spatial dependence in the corn basis data using the global Moran’s I-

statistic introduced by Moran (1950). Table 4 reports the results of this spatial autocorrelation

analysis. Using a row-standardized, non-binary spatial weights matrix (W), we calculate Moran’s

I for corn basis over the period from 2014 to 2024. The average Moran’s I value for basis is 0.260,

with an expected value under the null hypothesis of no spatial autocorrelation of approximately

0, and a standard deviation of 0.007. The corresponding z-score of 36.715 and p-value less than

0.001 strongly indicate statistically significant positive spatial autocorrelation. This result implies

that regions with similar corn basis values tend to be geographically clustered, validating the use

of spatial econometric techniques in further analysis.

To provide a visual representation of local spatial dependence in the vicinity of each observation,

Figure 2 displays Moran’s I scatter plots for the corn basis and barge rates, using the specified

spatial weights matrix. The first and third quadrants of the scatter plots represent clusters of

similar values (i.e., high–high and low–low groupings), whereas the second and fourth quadrants
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Table 4: Moran’s I Statistics for Corn Basis

Variable I E(I) sd(I) z p-value

Corn Basis 0.260 -0.000 0.007 36.715 0.000

Note: This table reports the results of the global Moran’s I-statistic for corn basis using a row-standardized, non-
binary spatial weights matrix. The expected value E(I), standard deviation sd(I), and resulting z-score and p-value
are used to test the null hypothesis of no spatial autocorrelation. A statistically significant positive Moran’s I indicates
strong evidence of spatial clustering in corn basis across regions.

indicate concentrations of dissimilar values (i.e., high–low and low–high groupings). As Figure 2

illustrates, most observations exhibit positive spatial correlation.

4.2.2 Estimation Results

The Spatial Durbin Model (SDM) results presented in Table 5 analyze the determinants of the corn

basis while explicitly accounting for spatial dependence across markets. The SDM framework is

particularly well-suited for this analysis as it allows us to capture both the direct effects of explana-

tory variables within a given market and the indirect (spillover) effects from neighboring markets.

The model specification includes spatial fixed effects, which control for time-invariant unobserved

heterogeneity across the 14 geographic markets in our sample, and time fixed effects, which account

for temporal shocks or macroeconomic conditions that influence all markets simultaneously.

While alternative model specifications are explored, including those with only spatial only time

fixed effects our preferred specification includes both (Table 5). As detailed in the Appendix, we

report the results for all specifications for completeness. However, for the sake of brevity and clarity,

we focus our discussion on the model with both spatial and time fixed effects, as this specification

yields the lowest Bayesian Information Criterion (BIC) among the alternatives, indicating superior

model fit. This preferred model more accurately isolates the impact of barge rates and spatial

interactions on the corn basis while appropriately controlling for both cross-sectional and temporal

heterogeneity.

The findings from this study carry several important economic implications for grain markets,

particularly in how transportation conditions influence corn basis formation across space and time.

The strong and negative relationship between barge freight rates and corn basis suggests that

increases in transportation costs reduce the price that grain buyers and elevators are willing to

pay at origin markets. A one-dollar increase in barge rates per bushel is associated with a decline

in the local basis by approximately 4.2 cents, reflecting the direct cost pressure passed on to
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Figure 2: Moran’s I scatter plots of the Corn Basis (Directionally Constrained)

Note: Moran’s I scatter plots for corn basis and barge rates highlight local spatial dependence using the spatial
weights matrix. The first and third quadrants depict clusters of similar values (high–high and low–low), while the
second and fourth quadrants show clusters of dissimilar values (high–low and low–high). Positive spatial correlation
is evident in most cases, supporting the presence of spatial dependence.
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producers. This result highlights the sensitivity of local cash prices to upstream logistical costs and

underscores the importance of efficient and affordable transportation infrastructure in supporting

producer returns.

Beyond the direct effects, the model also identifies negative spillover effects from barge rates

across space. This means that higher freight rates in one location not only reduce the basis locally

but also depress basis in neighboring markets. Such spatial transmission of transportation costs

reflects the interconnected nature of grain marketing systems along the river network. For traders

and policymakers, this finding emphasizes that disruptions or cost increases in one region can

cascade downstream, affecting pricing and competitiveness throughout the system.

River gauge height, a proxy for navigability, has a more nuanced impact. In the directionally

constrained model, higher water levels are associated with a local increase in the basis but a

decline in neighboring markets. This pattern suggests that while improved navigability enhances

competitiveness in one region, it may do so at the expense of others by shifting market advantage.

However, when spatial spillovers are modeled in the unconstrained higher river levels yield a net

positive impact on the system-wide basis. This contrast illustrates that river conditions benefit

the grain transportation network as a whole, but the distribution of those benefits depends on the

direction and structure of market flows. The results imply that sustained investment in waterway

infrastructure can generate widespread gains but may also create regional disparities if access or

benefits are unevenly distributed.

The diesel price also plays a significant role in determining the corn basis. Regions experiencing

higher variability in diesel prices, due to differences in local supply chains or access to fuel infras-

tructure, tend to see reduced basis values. The effect is statistically and economically significant,

with more than 20 cents per bushel decline in the basis in areas with high diesel prices. Interest-

ingly, these effects appear to be largely localized, as no substantial indirect effects are observed.

This suggests that energy-related transportation frictions are more contained geographically and

do not transmit broadly across space, unlike barge rates or river conditions.

Lastly, the negative and significant spatial lag coefficients in both models confirm the presence

of spatial interdependence in corn basis pricing. A higher basis in one market tends to reduce the

basis in neighboring locations, consistent with arbitrage behavior and competitive pricing. This

finding reinforces the importance of accounting for spatial relationships when evaluating pricing

mechanisms in agricultural markets. It also supports the notion that basis values are not determined

in isolation, but rather as part of a broader, interconnected pricing system.
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Table 5: SDM with Spatial and Time Fixed Effects (Directionally Constrained)

Variable Direct Effect Indirect Effect Total Effect

Dependent Variable: Corn Basis ($/bu)

Main Variables

Barge Rates -0.042∗∗∗ -0.006∗∗ -0.049∗∗∗

(0.002) (0.002) (0.003)
River Gauge Height 0.185∗∗∗ -0.635∗∗∗ -0.449∗∗∗

(0.058) (0.157) (0.155)
Diesel Price -0.202∗∗∗ 0.051∗∗∗ -0.151∗∗∗

(0.011) (0.016) (0.019)

Seasonal Controls
Sine 1 1.472 1.075∗ 2.547∗∗

(1.031) (0.651) (1.266)
Sine 2 -8.997∗∗∗ 4.424∗∗∗ -4.574∗∗∗

(1.038) (0.680) (1.318)
Sine 3 -3.116∗∗∗ 0.404 -2.712∗∗∗

(0.672) (0.529) (0.911)
Sine 4 4.093∗∗∗ -1.573∗∗∗ 2.520∗∗∗

(0.712) (0.529) (0.948)
Cosine 1 1.589∗∗ -0.009 1.581∗

(0.631) (0.506) (0.860)
Cosine 2 -0.750 1.192∗∗ 0.442

(0.644) (0.512) (0.870)
Cosine 3 0.160 0.090 0.250

(0.705) (0.515) (0.924)
Cosine 4 0.854 -0.113 0.741

(0.689) (0.489) (0.917)

Corn basis (Spatial lag) -0.096∗∗∗

(0.024)

Diagnostics

Number of observations 7,518
Number of markets 14
Number of weeks 537
Log-likelihood -31259.06
AIC 62566.11
BIC 62732.31
Sigma2e 239.351

Standard errors in parentheses. ∗∗∗p < 0.01, ∗∗p < 0.05, ∗p < 0.1.

Notes: This table presents direct, indirect, and total effects from a Spatial Durbin Model with spatial and time fixed
effects, assuming downstream-constrained spillovers. The dependent variable is the corn basis ($/bu). Barge rates
and diesel prices have significant negative effects, indicating that higher transport costs reduce local basis values.
River gauge height shows mixed effects, positive locally but negative across space, suggesting reallocation of trade
flows. Seasonal variation is captured using Fourier terms. The negative spatial lag coefficient confirms competitive
pricing across markets.
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The key takeaway: the results demonstrate that transportation-related factors such as freight

rates, river conditions, and fuel prices are central to understanding corn basis behavior. They

influence not only local prices but also exert pressure across regions. These dynamics have criti-

cal implications for policy design, investment decisions, and risk management strategies in grain

markets. A spatially informed approach that considers regional interactions can better support

infrastructure planning and ensure more stable and efficient market outcomes.

5 Conclusion

This study examines the impact of river-based transportation variables, specifically barge freight

rates, river gauge height, and diesel prices, on corn basis across space and time. Using a Spatial

Durbin Model (SDM) with both spatial and time fixed effects, the analysis accounts for directional

and symmetric spatial spillovers to better understand the mechanisms through which transportation

frictions impact regional grain pricing.

The findings consistently show that barge freight rates exert a significant and negative effect

on the corn basis. A $1.00 increase in barge rates (in dollars per bushel) is associated with a 4.2-

cent decline in local basis values. This confirms that rising transportation costs reduce the price

that elevators and grain buyers are willing to pay at the origin. Additionally, the directionally

constrained model reveals statistically significant negative spillover effects, indicating that higher

freight costs in one region also depress basis in adjacent markets. This suggests that logistical

constraints are not contained locally but ripple through interconnected markets, reinforcing the

systemic nature of transportation shocks.

River gauge height, which reflects navigability, presents differentiated impacts based on spatial

assumptions. In the constrained model, higher river levels increase basis values by 18.5 cents

locally but reduce them in neighboring regions by 63.5 cents, resulting in a net total effect of –44.9

cents. This implies a reallocation of competitive advantage rather than a net system-wide gain.

These contrasting results underscore the importance of modeling spatial structure explicitly when

evaluating infrastructure impacts.

Diesel price has a large and statistically significant negative effect on the basis. Regions with

higher variability in fuel costs, owing to factors such as refinery access, local taxation, or distribution

bottlenecks, see basis reductions of 20.2 cents locally, partially offset by 5.1 cent positive spillovers,

for a total impact of –15.1 cents. Notably, the indirect effects, though significant, are modest,
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reinforcing that energy-related shocks are largely geographically contained.

The spatial lag coefficients are negative and significant, with a magnitude of –0.096, indicating

that higher basis values in neighboring markets reduce the local basis. This is consistent with spatial

arbitrage theory, where buyers factor in relative pricing across locations, leading to interdependent

price formation.

Overall, this study demonstrates that transportation infrastructure, energy costs, and naviga-

bility have economically meaningful and spatially diffuse effects on corn basis formation. These

dynamics are sensitive to how spatial relationships are modeled, affecting both the magnitude

and distribution of estimated impacts. The results have important implications for infrastructure

investment, grain procurement strategies, and price risk management, highlighting the need for

spatially informed policies that recognize the interconnected nature of commodity markets.

5.1 Policy Implications and Future Work

The aging infrastructure of the Mississippi River system presents a growing risk to maintaining

reliable and stable-cost transportation for bulk agricultural commodities. As highlighted by Farm

Policy News (2024), outdated locks and dams cause congestion and delay, which lead to higher

barge rates and ultimately suppress the corn basis. The spatial spillovers observed in this study

suggest that such effects extend beyond localized regions, threatening the competitiveness of U.S.

grain exports in global markets. Investments aimed at modernizing riverine infrastructure, such as

dredging, lock replacement, and climate-resilient engineering, could yield measurable improvements

in market access and farm-level profitability.

The positive impacts of higher river gauge levels on basis outcomes, particularly when spatial

trade is unconstrained, further underscore the value of infrastructure improvements that maintain

or raise navigability, such as sediment management and adaptive water-level regulation. Similarly,

regional coordination in addressing diesel price through targeted subsidies, regulatory harmoniza-

tion, or logistical upgrades may help to mitigate location-specific disadvantages in fuel-intensive

grain shipping corridors.

Several promising avenues emerge for future study. First, this framework can be extended to

other commodities, such as soybeans or wheat, to assess whether similar spatial and infrastructural

dynamics shape their basis behavior. Second, integrating rail and trucking cost measures would

allow for a more comprehensive multimodal assessment of transportation’s effect on pricing. Third,

introducing nonlinear components, such as thresholds for minimum navigable depths, could help
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capture regime-switching behavior during periods of extreme river conditions. Lastly, climate vari-

ability may differentially impact transportation modes and merit integration into future modeling

efforts.
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