

The World's Largest Open Access Agricultural & Applied Economics Digital Library

This document is discoverable and free to researchers across the globe due to the work of AgEcon Search.

Help ensure our sustainability.

Give to AgEcon Search

AgEcon Search
<http://ageconsearch.umn.edu>
aesearch@umn.edu

Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only. No other use, including posting to another Internet site, is permitted without permission from the copyright owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C.

No endorsement of AgEcon Search or its fundraising activities by the author(s) of the following work or their employer(s) is intended or implied.

**Enhancing Conservation Reserve Program Outcomes Through Durability-Informed
Enrollment Targeting**

Nazli Uludere Aragon, University of Montana

Nazli.Aragon@mso.umt.edu

Invited Paper prepared for presentation at the 2025 AAEA & WAEA Joint Annual Meeting

in Denver, CO; July 27-29, 2025

Copyright 2025 by Nazli Uludere Aragon. All rights reserved. Readers may make verbatim copies of this document for non-commercial purposes by any means, provided that this copyright notice appears on all such copies.

1 **Enhancing Conservation Reserve Program Outcomes Through Durability-
2 Informed Enrollment Targeting**

3

4 Nazli Uludere Aragon, University of Montana Nazli.Aragon@mso.umt.edu

5 Tyler J. Lark, University of Wisconsin-Madison lark@wisc.edu

6 Dave Naugle, University of Montana David.Naugle@mso.umt.edu

7 Scott Morford, University of Montana scott.morford@mso.umt.edu

8

9 **Abstract**

10 We evaluate the durability of conservation outcomes from the USDA Conservation Reserve Program (CRP),
11 the largest payment for ecosystem services program in the United States. Program durability, as indicated
12 by the longevity or persistence of perennial vegetative cover, is important given the ability of such
13 conservation cover to provide and sustain key ecosystem services relative to croplands. We use point-level
14 data on land use and land cover (NRI) to track outcomes over time. The data provides us with a unique
15 long-term perspective into particularly the early entrants into the program, for which we are able to track
16 post-CRP outcomes for 20 years. We find that the CRP has expanded conservation cover by incentivizing
17 landowners to replace croplands with non-crop grass and tree cover. Average durability (survival time) of
18 such conservation cover post-CRP is about 4.2 years, with most points in our sample reverting back to
19 cropland within the first year. Factors such as location, biomass productivity, drought, proportion of
20 irrigated areas in landscape, prevalence of land abandonment each contribute expected durability. We
21 discuss implications for program design and highlight tradeoffs with additionality and program cost
22 effectiveness when policymakers target durability.

23

24 **Keywords:** Agricultural policy

25 **Introduction**

26 **Overview.** With nearly 40 years of Conservation Reserve Program (CRP) history, we investigate the long-
27 term persistence of CRP land covers and practices pre- and post-enrollment across different geographies,
28 program eras, and economic conditions. Our research objectives are twofold: (1) to understand CRP
29 durability across full CRP program lifespan and across the contiguous United States (CONUS) and (2)
30 provide evidence-based guidance to improve prioritization and targeting within general CRP (e.g. adjusting
31 environmental scoring for enrollments, updating priority zones), and inform post-CRP transitions to extend
32 the durability of conservation cover. We leverage a long-term observational dataset on land use and land
33 cover to build a CONUS-wide panel for quantifying the durability of CRP land covers and outcomes through
34 space and time.

35 **Why is durability important?** Durability refers to sustaining conservation effort long enough to achieve
36 desired environmental outcomes and the subsequent persistence of conservation outcomes. Durability
37 can be thought of as a dimension of cost-effectiveness for conservation programs like CRP because
38 greater durability beyond the time spent in the program translates to a reduced lifetime cost of cumulative
39 benefits. Although the net public benefits of programs like CRP depend on the mix of enrolled fields and
40 the performance of conservation practices implemented on them a critical step in understanding the
41 program's effectiveness in conservation is to document temporal and spatial patterns of program
42 enrollment, reenrollment, and land use outcomes upon program exit.

43 **Background on the CRP.** Conversion of grasslands to croplands may contribute to the loss or degradation
44 of soil quality, wildlife habitat, agricultural production, and other natural resources, such that grassland
45 conservation is needed to mitigate impacts and outcomes for water, climate, and wildlife. The CRP is one
46 of the USDA's key voluntary conservation programs used for grassland conservation. Traditionally, it has
47 been deployed as a cropland set-aside program, in which landowners could replace crop cover with
48 perennial / grass or tree cover for a period of 10-15 years, in exchange for rental payments.

49 The Farm Service Agency (FSA) runs the CRP, one of the nation's two largest conservation programs by
50 dollar outlay (about \$2 billion as of 2021; the other is the *Environmental Quality Incentives Program*, or
51 EQIP) (Stubbs, 2022). The CRP has three sub-programs; the general CRP, the continuous CRP, and the
52 grasslands CRP. Landowners enrolled in the program receive a yearly rental payment, in exchange for
53 implementing conservation practices and removing environmentally sensitive croplands from production
54 (entirely, in case of general CRP).

55 Since its introduction in 1986, CRP has been amended to reflect the federal government's changing
56 priorities for agricultural conservation. In recent years, it has become less reliant on land retirement
57 (general CRP). General CRP acres were 35% of the total program acreage of about 23 million acres (2023).
58 Also, the majority of general CRP contracts involve installing more resource-conserving alternative cover—
59 like grasses (85% of acres). Meantime, the grassland CRP program, which offers lower rental payments for
60 simply maintaining existing grass cover (over non-croplands), has grown quickly to represent 30% of the
61 total program acres. Thus, combined, grassland practices represent nearly 60% of program acres,
62 indicating a sharpening focus on grassland conservation.

63 **Relevance and timeliness.** This sharpening focus on grasslands coincides with rising societal concern
64 over environmental degradation, particularly of biodiversity loss and climate change that are impacting
65 grasslands, an overlooked biome. In their natural or semi-natural states grasslands are important sources
66 of biodiversity and provide important ecosystem services such as water and nutrient cycling, climate
67 regulation, provisioning, recreation, and biocontrol (Murray et al., 2012). Conversion into higher intensity
68 agricultural use or urban uses, or land cover change (woody encroachment, or spread of invasive species
69 like cheatgrass) are key concerns for grasslands because they reduce forage for livestock, reduce the
70 quality of habitat for grassland-associated wildlife, and impact air and water quality. Once lost, grassland
71 habitats are expensive and take time to restore. While grass cover can be replanted, other ecosystem
72 components (forbs, vertebrate and invertebrate animals, and microorganisms in soil) cannot be easily

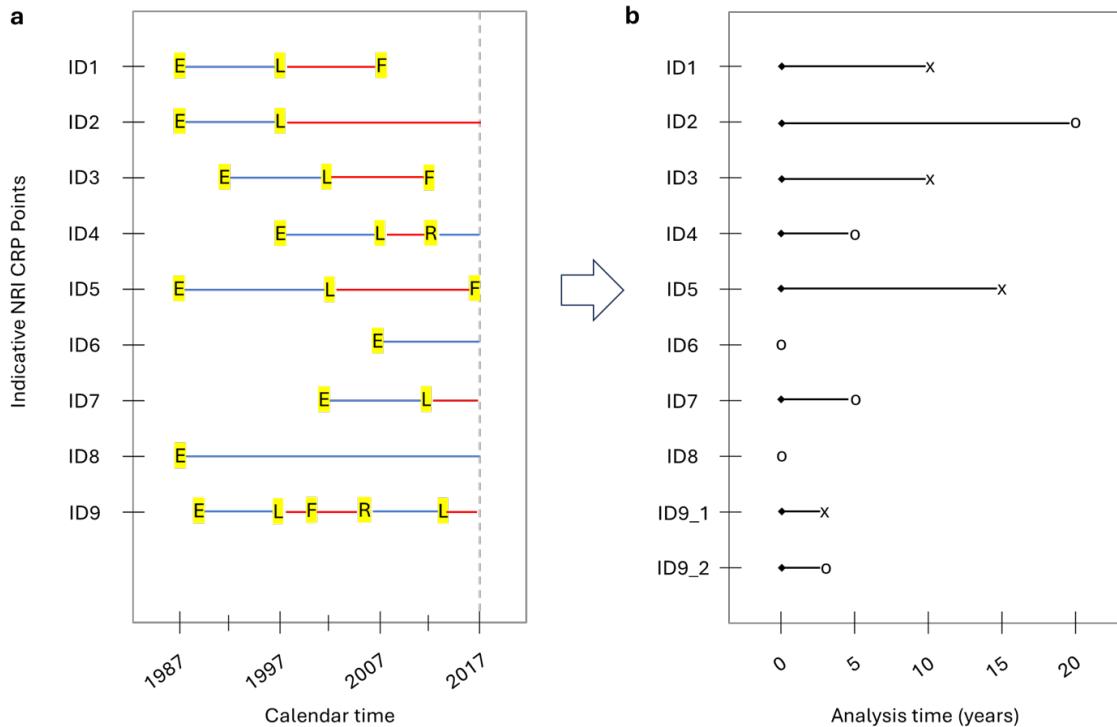
73 restored (Török et al., 2021; Lark, 2020; Jones et al., 2018; Isbell et al., 2015; Claassen et al., 2011; Dodds
74 et al., 2008; and Johnson, 1996). The alteration of grass cover can also have climate implications by
75 initiating loss of stored carbon in soil (Sanderman et al., 2017), reducing the land's ability to absorb carbon
76 dioxide from the atmosphere and may even result in more emissions per acre under higher intensity
77 use. Consequently, the benefits--or at least, the avoided harm--of moving from annual crops to (perennial)
78 grass cover could be large (Conant et al., 2017).

79 In the United States rangelands and pasture lands that primarily have grass cover, represent the largest
80 private land use in the country (~520 million acres in 2017 based on NRI data). Despite their importance,
81 grasslands in the United States remain under pressure from conversion to row crop production (Lark et al.,
82 2015 and Spawn et al., 2019) and woody encroachment (Twidell et al., 2021 and Morford et al., 2022). Prior
83 research also indicates, of the remaining U.S. grasslands, some areas appear to be more vulnerable to
84 future change than others (Olimb and Robinson, 2019). Durability-guided targeting of conservation policy
85 for grasslands is therefore crucial to ensure any environmental benefits (like carbon sequestration,
86 reestablishment of species or habitat retention) can be realized consistent with biophysical timelines and
87 the benefits are “retained” or are long-lasting, which can also improve program cost-effectiveness.

88 **Research objectives.** Assess how the U.S. Department of Agriculture's (USDA) Conservation Reserve
89 Program (CRP) can be deployed more strategically to further conservation objectives. Investigate the trade-
90 offs associated with achieving (or increasing) durability in conservation outcomes, cost-effectiveness of
91 program, and scale. Some specific research questions we aim to address are:

92 • What is the durability of conservation cover outcomes for croplands enrolled in the CRP program?

93 • Do durability of CRP outcomes vary in space? If yes, how do areas of high vs. low durability differ?


94 • What do the dimensions associated with variation in durability suggest in terms extending
95 durability?

96 • What are the implications of prioritizing enrollments with respect to durability?

97 **Data and Methods**

98 We estimate the durability of outcomes for general CRP contracts over a multi-decadal time frame. We
99 develop a predictive (hazard) model of durability. To develop durability variables and metrics, we use the
100 National Resources Inventory (NRI) a plot-level, longitudinal statistical survey from the U.S. Department of
101 Agriculture's (USDA) Natural Resources Conservation Service (NRCS) from 1987 to 2017 (31 years). The
102 NRI contains detailed information on land use and land cover nationally and it also has tracked general
103 CRP as a separate land use class over time, allowing us to observe the land use / land cover outcomes for
104 enrollments in the general CRP program starting from its inception in 1986. Typically, CRP contracts span
105 10 to 15 years.

106 We assess and model durability using a time-to-event approach. Enrollment into CRP is the conceptual
107 analog of “treatment” or “trial”. The survival period corresponds to program evaluation period. It starts at
108 the end of CRP contract (post-CRP). This is when land cover outcomes are not crop cultivation and ends
109 when conversion back into crop cultivation occurs. Thus, any conversion back to crop cultivation post-
110 CRP is the *event* of interest and the length of time that conversion does not occur constitutes durability.

111

112 **Figure 1. Illustrates how data organized in calendar time (panel a) translates into to time-to-event**

113 **format for analysis (panel b).** In panel a, the dashed vertical line indicates the last year of observation

114 (that corresponds to the last period of available NRI data). E=enter program (CRP), L=Leave CRP, F=Failure,

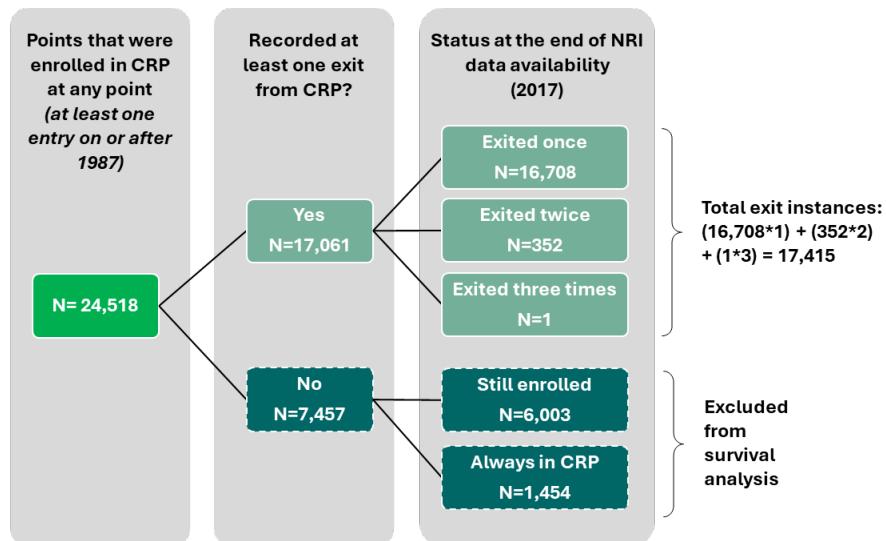
115 representing conversion event after CRP (as defined in text), R=reenroll into CRP. Blue lines indicate time in

116 CRP, and red lines indicate the assessment period after CRP (or time between two enrollments). In panel b,

117 we use information from panel a to measure analysis time. For points with failure event (F), analysis time is

118 the time elapsed between L and F; i.e. time to conversion after leaving the CRP (lines marked x at the end).

119 Points that do not fail (survive) experience no conversion event. For those, the analysis time is measured as


120 from T to end of NRI data (lines marked o at the end; right censored). Note point "ID" that enters and leaves

121 the program twice (panel a) is identified as a multiple-record ID variable in the data transformed for

122 analysis (panel b).

123

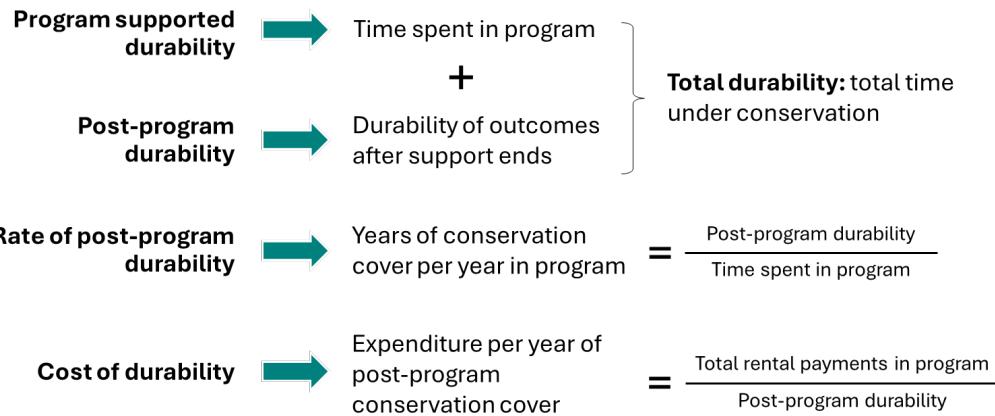
124 In this analysis, the length of survival is defined as the observed land cover of an NRI point staying in grass
 125 (range or pasture) or forest cover following exit from the CRP, whereas failure is defined as the land cover
 126 reverting back to crop cover (as all general CRP enrollees have crop cover prior to CRP) following exit from
 127 CRP. Note that we our use of the term “exit” signifies that in the NRI data we cannot distinguish CRP
 128 contract expirations but rather observe land cover changing to and from CRP for a given point. For
 129 inclusion in survival analysis, it is necessary that a point enrolls (enters) in CRP and also exits the program.
 130 Below in Figure 2 we summarize our sample data in terms of exits that is used for survival analysis. In the
 131 “No” (exits) branch, we show two subgroups that are not part of the survival analysis. The first are points
 132 that enroll (enter) in CRP toward the end of our sample period, and as of 2017 remain enrolled (“Still
 133 enrolled”). Next, points that have enrolled in CRP at the time of the program’s inception through 2017 are
 134 marked as “Always in CRP”.

135

136 **Figure 2. Sample for survival analysis.**

137

138 Notably, the CRP is not a one-time trial or treatment, but a repeated one. In other words, new producers /
 139 acres can be enrolled into the program as prior CRP enrollments leave the program, subject to statutory
 140 limits set by the Farm Bill (like the national enrollment cap). For the general CRP, the FSA is supposed to


141 hold annual enrollment events (dubbed “sign-ups”) but in practice sign-ups have occurred both more or
142 less frequently than a year.

143 This feature, combined with the length of our dataset, allows constructing cohorts that represent different
144 sign-ups / periods of enrollment. Here, we define different “cohorts” of CRP based on five-yearly
145 enrollment periods. However, because the temporal coverage of our dataset ends in 2017, we can track
146 outcomes for longer periods for CRP enrollments in the earlier years/cohorts than those in the later
147 years/cohorts. For example, an NRI point indicated as being in CRP in 1987, will have exited in 1997. For
148 this point, we can track outcomes from 1997-2017 (20 years). By contrast, a point that is marked as CRP in
149 the NRI data for the first time in 2015 will still be in the program in 2017, when (our version of) the NRI data
150 collection ends (comparable to the ending of a drug trial).

151 Next, we calculate simple durability metrics such as program-supported durability (time enrolled in CRP);
152 post-program durability (persistence of conservation cover after exiting program); and their interactions
153 (e.g. their sum, as total durability of grass cover and their ratio, as rate of post-program durability).
154 Combined with indicative data on average CRP rental rates, we also estimate the relative cost of the
155 program in achieving durable outcomes (Figure 4). Note that metrics that do not depend on years in
156 program will be more precise. We also assess these durability metrics across space. We identify areas
157 (county or state) to assess if there are areas where durability decays faster and map areas of high versus
158 low average durability.

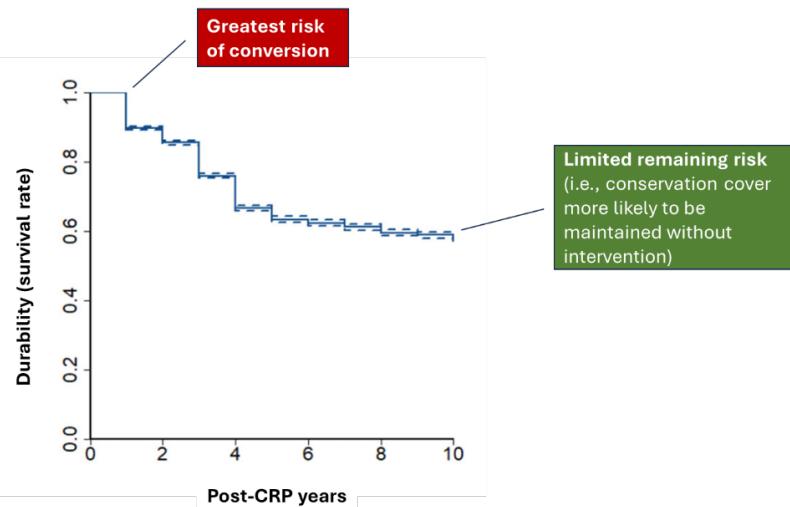
159

160

161

162 **Figure 3. Indicative durability metrics**

163


164 Another salient feature of the CRP is that it allows reenrollments. While we are not able to observe
 165 reenrollments at contract level in the NRI data, we can observe points that are identified as in CRP for more
 166 than one contract period with a break in between contract periods, allowing us to explore the influence of
 167 reenrollments on post-program durability. We also report on a special subset of points that appear
 168 enrolled in the CRP through the entire span of the NRI data, for which no durability metrics can be
 169 calculated since these points have never “exited” the program.

170 Our approach expands on prior assessments of CRP outcomes and their durability based on a single sign-
 171 up period, or a snapshot of CRP exits documented in a single year by collating multiple sign-up periods and
 172 associated CRP exits. In addition, our analysis permits distinguishing reenrollments into CRP after exit.

173 Next, we document durability using Kaplan-Meier curves that are commonly used to analyze time-to-event
 174 data. These curves serve as useful graphical representations of the survival function by plotting cumulative
 175 survival probabilities (y-axis) as a function of time (x-axis) (Figure 5). In the context of CRP, the relative
 176 steepness of slope captures a higher (lower) conversion rate back to crop cultivation, and therefore worse
 177 (better) survival of conservation cover. Sharp drops in the curve can indicate potential for regulatory

178 intervention to support or improve durability, whereas plateaus along the curve can indicate survival
 179 reaching relative stability.

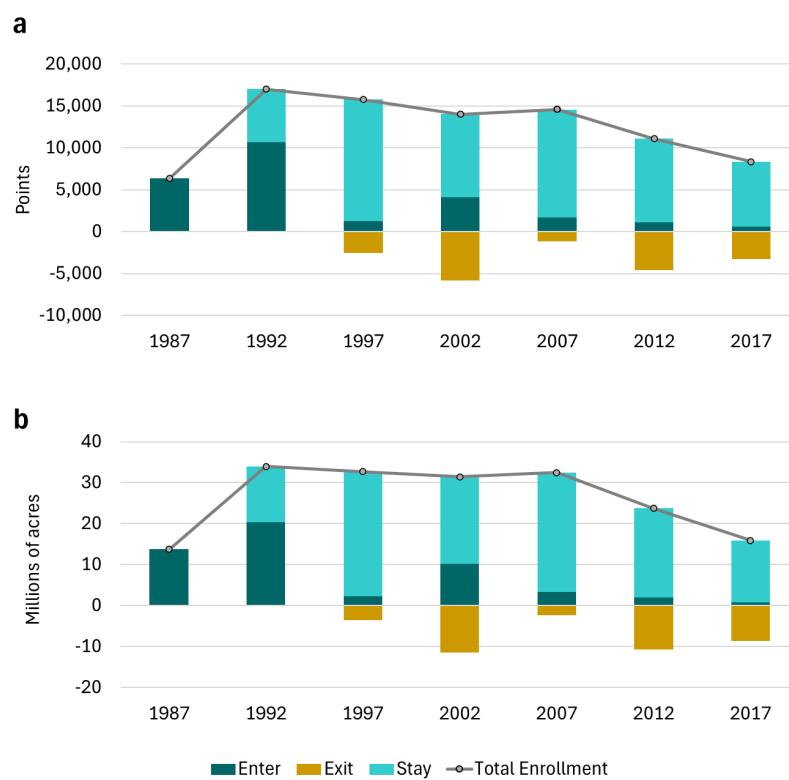
180

181

182 **Figure 4. Illustrative Kaplan-Meier curve and its interpretation**

183

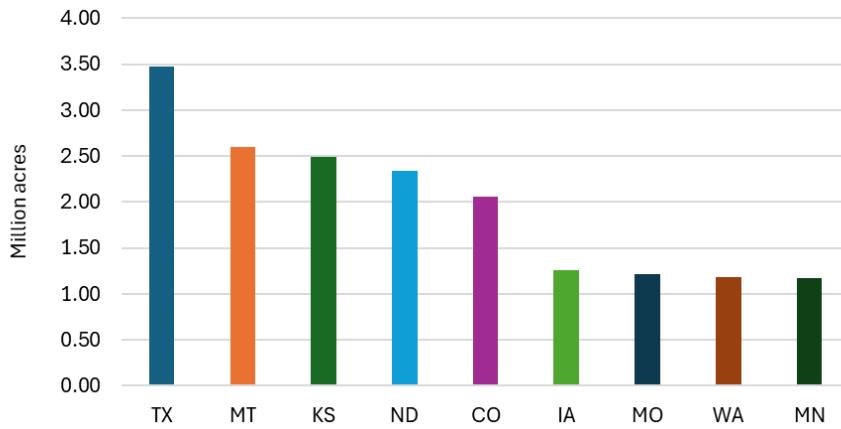
184 We further relate these durability metrics to several factors such as biomass productivity, land quality and
 185 landscape composition (e.g., percent cropland in county) (Table 1). We illustrate the contributions of these
 186 factors (if any) to the durability of post-CRP outcomes via Kaplan-Meier curves (where informative) that
 187 also inform the subsequent hazard modeling. We convert these explanatory variables into categorical
 188 (time invariant) ones. For example, location, a continuous variable as geographic coordinates, is
 189 categorized as north/south (located north of the 40th parallel or south), or east/west (located to the west of
 190 the 100th meridian or east). The corresponding Kaplan-Meier curve contains multiple lines, each measuring
 191 the estimated survival rate for a group, revealing similarity or difference of survival rates across groups
 192 (parallel slopes indicate similarity, divergent slopes indicate difference). Using the non-parametric tests
 193 (like the log-rank or the Wilcoxon), we can ascertain if any of these group differences are statistically
 194 significant.


195 **Table 1. Factors evaluated for their potential contribution to durability**

Variable	Original spatial and temporal frequency	Derived categorical variable	Source
Biomass productivity ✓	RAP data, annual, 1986-2017, 30m	Average above ground biomass (lbs/acre) for 1987-2017 by grid cell corresponding to NRI point Split into “high” and “low” classes of productivity at grid cell value of 1,000 lbs/acre (approximate mean)	Jones, M.O., et al. 2021. Annual and 16-day rangeland production estimates for the western United States. <i>Rangeland Ecology & Management</i> 77:112-117. http://dx.doi.org/10.1016/j.rama.2021.04.003 . Also see https://rangelands.app/products/ .
Drought ✓	PDSI data, weekly, 1987-2017, 4km from GRIDMet / Drought indices dataset	Derive median PDSI over time by grid cell Group at median	Abatzoglou J. T. (2012) Development of gridded surface meteorological data for ecological applications and modelling, <i>International Journal of Climatology</i> . doi:10.1002/joc.3413
Irrigation ✓	Irrigated area layers from LANID , 30 m, annual 1997-2017	Estimate maximum irrigated area over time by grid cell Group at zero (never irrigated) which is approximately the median (49 th percentile)	Xie, Y. and Lark, T. (2021). LANID-US: Landsat-based Irrigation Dataset for the United States. https://doi.org/10.5281/zenodo.5548555 .
Cropland abandonment ✓	Abandoned cropland area layers, 30 m, annual, 1990-2014	Average share of abandoned cropland (%) by county Group at median (7.5%)	Xie, Y. et al. (2024). Cropland abandonment between 1986 and 2018 across the United States: spatiotemporal patterns and current land uses. <i>Environ. Res. Lett.</i> https://doi.org/10.1088/1748-9326/ad2d12
Land quality ✓	Non-irrigated land capability class (LCC) index, 30 m, constant	Calculate average LCC by grid cell Group at breakpoint = 4 LCC >4 not suitable for cultivation LCC <=4 suitable for cultivation (median is 3.3)	Soil Survey Staff. Gridded Soil Survey Geographic (gSSURGO) Database for CONUS. USDA NRCS. https://gdg.sc.egov.usda.gov/ (2022 release).

Variable	Original spatial and temporal frequency	Derived categorical variable	Source
Location ✓	Latitude and longitude by point, constant	Split at 40 degrees N for North/South and at 97 degrees W for East/West	USDA. 2020. 2017 National Resources Inventory, NRCS, Washington, DC, and Center for Survey Statistics and Methodology, Iowa State University, Ames, Iowa. (not public).
Prime farmland status ✓	Farm Class, 90 m, constant string variable	Reclassify “Farm Class” to two main classes (prime and not prime; exclude null). Calculate prime share by grid cell Group at median share (58%)	Soil Survey Staff. Gridded Soil Survey Geographic (gSSURGO) Database for CONUS. USDA NRCS. https://gdg.sc.egov.usda.gov/ (2022 release).
Land use composition ✓	County level, yearly	Calculate average shares of cultivated; range; pasture; and forest by county	USDA. 2020. 2017 National Resources Inventory, NRCS, Washington, DC, and Center for Survey Statistics and Methodology, Iowa State University, Ames, Iowa. (not public).
Farm size ✓	U.S. Census of Agriculture, five yearly (1982 – 2017), county level data	Average farm size by county, group at median	LaMotte, A.E. (2015). Selected items from the Census of Agriculture at the county level for the conterminous United States, 1950-2012: U.S. Geological Survey data release, http://dx.doi.org/10.5066/F7H13016 .
Crop insurance ✓	Average loss ratio, by county- year, 1990-2017	Calculate average loss ratio over time by county, group county averages at breakpoint = 1.0 (indemnities equal to premiums)	USDA RMA Summary of Business Reports, available at https://public-rma.fpac.usda.gov/apps/SummaryOfBusiness
Time in program ✓	Point level, measured as first year not CRP minus first year CRP	Total time spent in program, 1987 – 2017	USDA. 2020. 2017 National Resources Inventory, NRCS, Washington, DC, and Center for Survey Statistics and Methodology, Iowa State University, Ames, Iowa. (not public).

198 **Results**199 **Enrollment patterns**


200 In our sample (NRI data), we are able to track 24,518 points, representing a total area of 50.2 million
 201 acres enrolled at any point in time. Our dataset shows new enrollments taper off over the years
 202 since reenrollments are permitted (Figure 5).

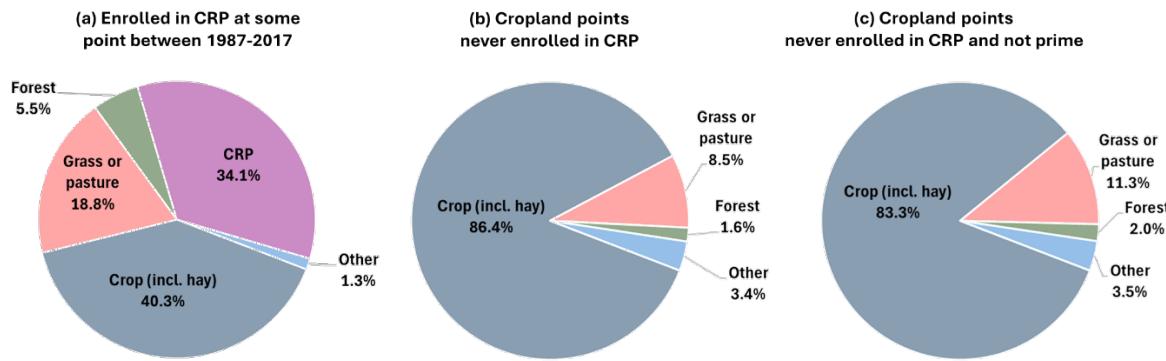
203

204 **Figure 5. Cumulative CRP enrollment tracked in the NRI data (a) number of points and (b)**
 205 **millions of acres**

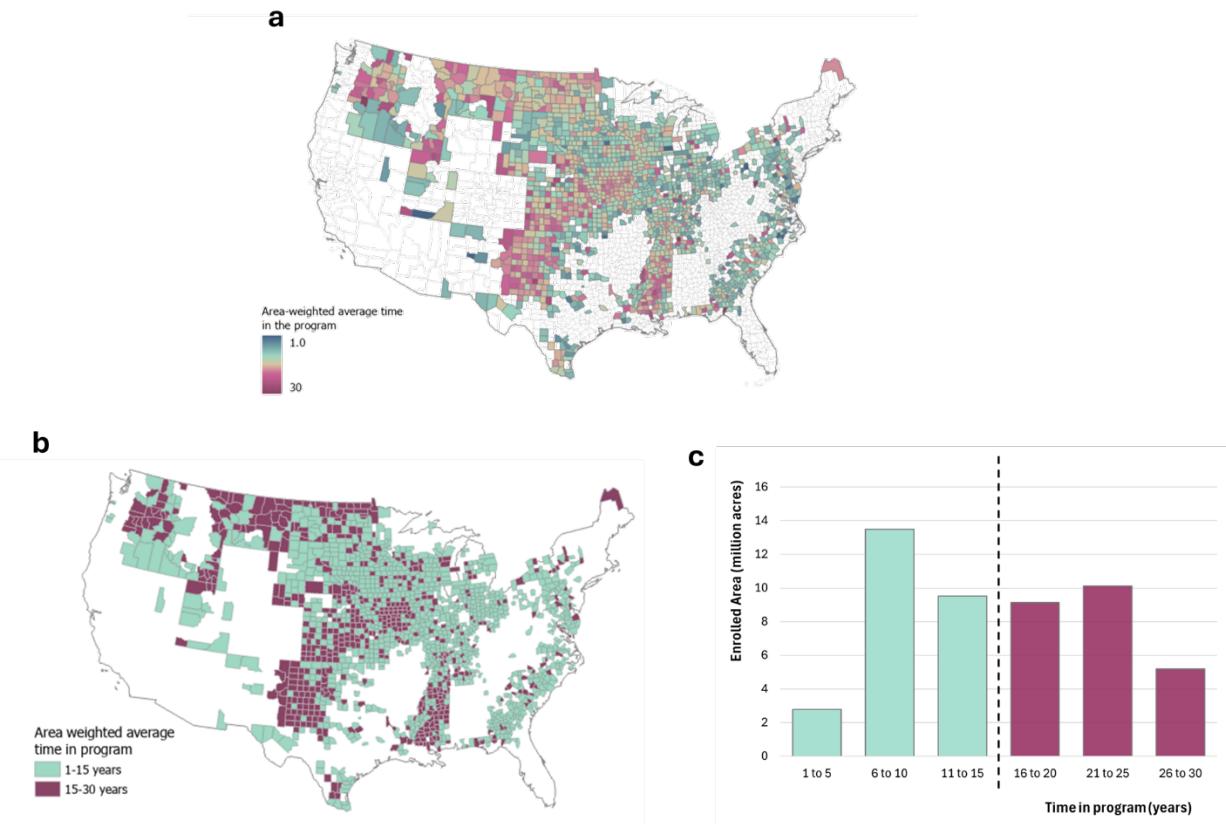
206 Although CRP is a national program, enrollments skew toward larger states with eligible croplands
 207 (croplands with resource concerns that are prioritized by the program). We observe average
 208 enrollment (from 1986 to 2017) of greater than 1 million acres for 10 states, whose combined
 209 enrollment surpassed the remaining 33 states with any enrollment in our sample (Figure 6).

210

211 **Figure 6. Average acres enrolled per NRI period by top ten states**


212

213 **Land use outcomes after leaving CRP**

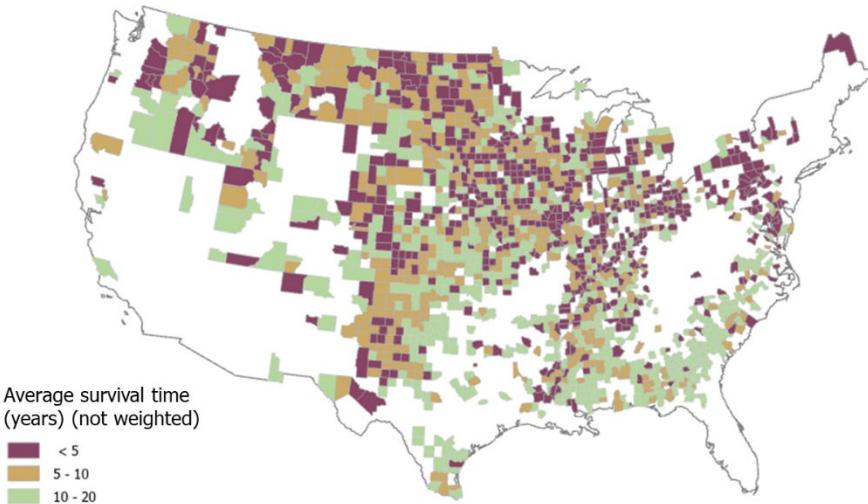

214 We find that the CRP program has had a transformational effect in encouraging conservation cover
 215 on croplands in the United States. Based on whole sample outcomes, we observe 40.3% of the
 216 acres that have enrolled in CRP at any point during 1986-2017 had reverted to cropland as of 2017.
 217 Of the 59.7% that were classified as non-cropland, 18.8% was in some type of grass (range) or
 218 pasture, and 5.5% was in forest cover (a combined 24.3%), and 1.3% in other uses (e.g.,
 219 developed). Notably, 34.1% of these acres either remained or were reenrolled in CRP as of the end
 220 of the sample period (2017) (Figure 6a). We construct a simple counterfactual for land use
 221 outcomes, using cropland points that were never enrolled in CRP over the same period. We select
 222 these points from the top 20 states with the most CRP enrollments by area to be broadly
 223 comparable. More than 85% of croplands remain cropland in this counterfactual group, and share
 224 of grass or tree cover is 10.1% (Figure 6b). Even after we further exclude cropland points that are
 225 prime farmlands from the counterfactual (using a prime indicator available in the data), since prime

226 farmlands are less likely to enroll in CRP, more than 83% of cropland acres remain cropped in 2017
 227 (Figure 6c), with the proportion going into grass/pasture or tree cover is 13.3%.

Outcomes in 2017 for cropland points in 1982:

228
 229 **Figure 7. Outcomes in 2017 for cropland points in 1982 (share of acres)**
 230
 231 **Time spent in program**
 232 In our data, about 50% of the acres were enrolled into CRP longer than a typical contract (of 10 to
 233 15 years), with an average duration of 15.9 years per acre enrolled. Spatially, we observe that longer
 234 times spent in the program broadly coincide with the counties that are outside of the traditional
 235 corn/soy belt, but not exclusively (Figure 8). As reenrollments into CRP are permitted, they do play
 236 a role in extending time in program. Nonetheless, the majority of the observations in our sample
 237 enter into CRP only once. In addition, a subset of points appear in CRP throughout the entire
 238 duration of the NRI data. Of the 24,518 points in our sample, we observe 1,454 points (3.2 million
 239 acres) enter at the time of inception of CRP and remain in CRP till the end of our observation period
 240 (2017). Although points in this group are found in all states with CRP enrollments, more than half (in
 241 terms area) are located in five states: Colorado, Texas, Kansas, Montana and Oregon. If we exclude
 242 this group, the average time in program adjusts downward to 14.4 years.

243

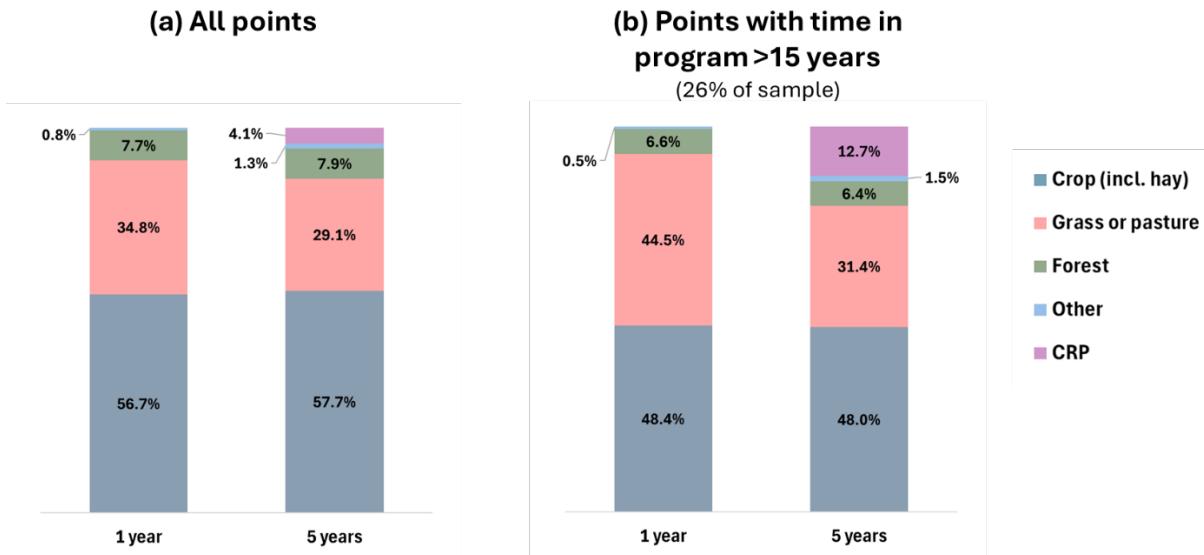

244 **Figure 8. Time spent in program (years) for all points indicated as entering CRP at any time**
 245 **between 1986-2017. (a) Unclassed (b) Grouped in two, with 15 years set as cutoff (c) Frequency**
 246 **distribution of acres by time spent in CRP, bar colors corresponding to (b).**

247

248 **Time to conversion**

249 For the subset of points that have enrolled in CRP and subsequently exited, we can track outcomes.
 250 For this group, the average survival time is 4.2 years. Still, we observe median survival is one year
 251 (also the mode). In other words, most reversions back to cropland (failures) occur in the first year
 252 after exiting the program. In Figure 9 below, we show the spatial distribution of average survival by
 253 county, and we find no evidence of clustering in space by survival time.

254


255

256 **Figure 9. Average post-program durability by county (years). Not weighted by area. Classified
257 in terciles.**

258

259 **Total durability and durability rate [in progress]**

260 Durability appears linked to total time spent in the program. In Figure 10, we show land use / land
261 cover outcomes observed at one and five years for the subset of points for which we can observe at
262 least five yearly outcomes. The group with longer time spent in program appears to have lower
263 initial rate of reversion back to cropping (comparing the 1-year outcomes in panel a vs. b). Also, the
264 proportion that reverts back to cropland by year five is lower (48% vs. 57.7%) for the group with
265 longer time spent in program. Still, regardless of time spent in program, at year 5, post-program
266 durability converges to about 37% (sum of shares for grass or pasture and forest cover) for both
267 groups, mainly due to reenrollments (see panel b, share going back into CRP).

268

269 **Figure 10. Outcomes as area shares by land use/land cover for (a) all points for which we can**
 270 **observe post-program outcomes for at least 5 years, (b) the subset whose time in program**
 271 **exceeds 15 years**

272

273 **Cost of durability [in progress]**

274 In this indicative analysis, we use county average rental rates rather than specific contract rates to
 275 calculate the cost of post-program durability. Also, we assume away additional cost share
 276 payments made under CRP contracts, which may affect estimates.

277

278 **Factors associated with durability [in progress]**

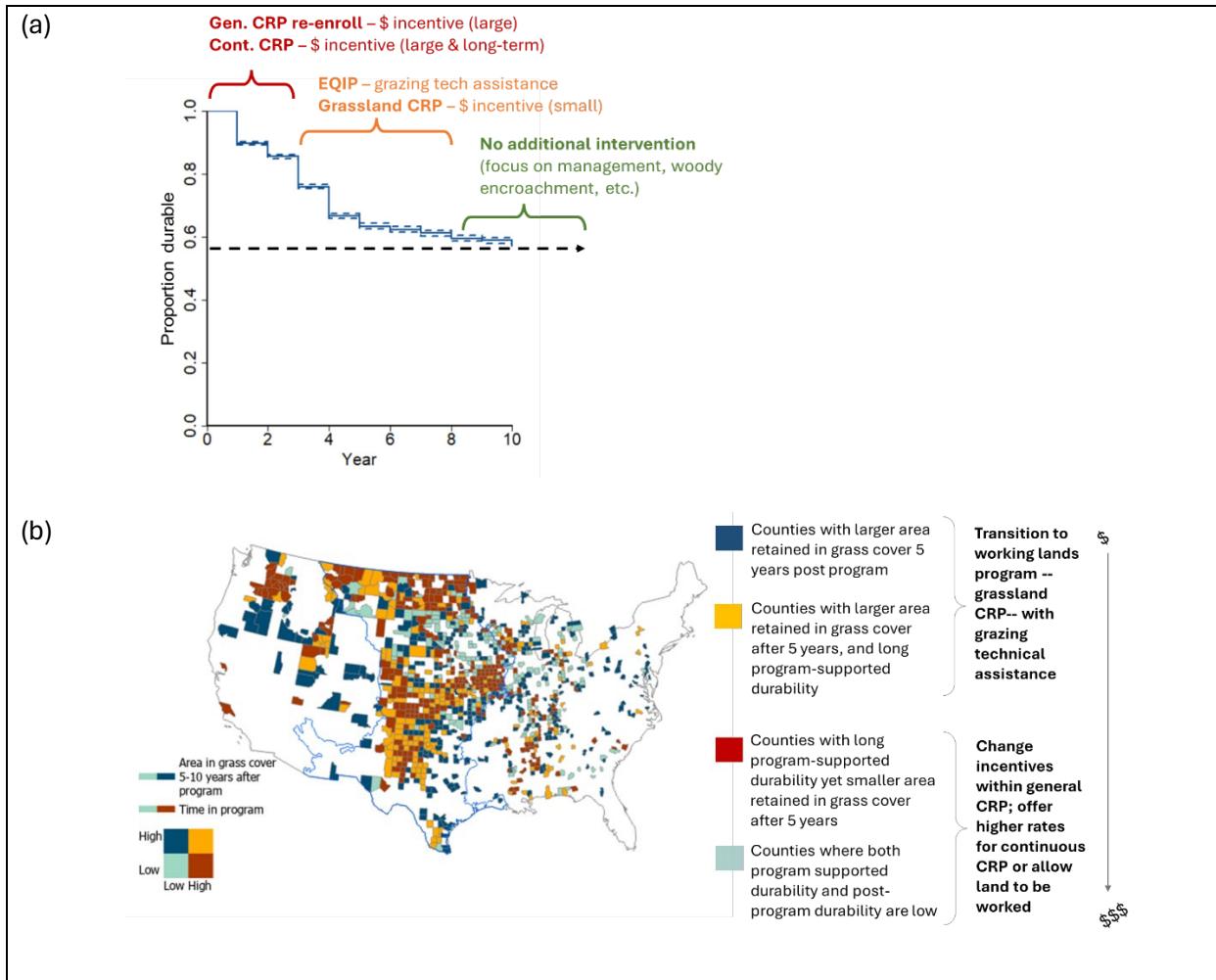
279 Here we report on the expected contribution of the factors summarized in Table 1 accompanied by a
 280 column graph of statistical significance based on the log-rank test. The higher the χ^2 (or Z, if using
 281 Wilcoxon) test statistic, the more important the variable is expected to be in a multivariate hazard model.
 282 In that sense this is a nice segue to hazard modeling (for the next iteration). We will discuss the intuition
 283 behind the factors included and their influence on survival time.

284 **Discussion**

285 **Contribution to literature**

286 We build on previous work (Bigelow et al., 2020; Sullins et al., 2020; Hendricks and Er, 2018; Jones
287 et al., 2013; Jacobson, 2014; Morefield et al., 2016; Hellerstein and Malcolm, 2011; and Roberts
288 and Lubowski, 2007) that studied land use outcomes of CRP program either over shorter periods
289 (sometimes involving a single cohort) and/or smaller geographic areas. Because our dataset spans
290 1986-2023 and covers entire CONUS, we improve on both the temporal and spatial coverage of
291 CRP enrollments. By extending the data, we are also able to investigate durability trends (e.g.,
292 faster decay in the first 5 years post-CRP). In addition, for earlier cohorts we are able to track
293 outcomes for 20 years or more.

294 In previous work Sullins et al (2020) analyzed a single cohort of CRP program enrollments in a 6-state
295 study area in the southern Great Plains of the US (NE, KS, CO, OK, NM, and TX). This cohort included
296 parcels that exited CRP in 2007 (and not re-enrolled), meaning most entered the program no later than
297 1997. Tracking their land cover outcomes for the subsequent 10 years using CDL data, the authors found
298 about 63% survival rate for grass cover at the 5-year mark. This survival rate remained at 58% at the end of
299 the 10-year evaluation period. This indicated most loss of grass cover post-CRP took place in the first 5
300 years. The factor that affected durability most was tillage risk (varying in space but not in time). Durability
301 estimates by state also indicated variability where NE and CO showing below average durability; NM, TX,
302 OK showing above average durability; and KS representative of the overall durability trend.


303 We build on Sullins et al (2020) work. We improve on both the spatial and temporal coverage of CRP
304 enrollments by using point-level data from the NRI for entire CONUS and for multiple CRP cohorts. Note
305 that the NRI data is limited to General CRP program. Each cohort is defined by the enrollment year into
306 CRP, and depending on the year can include one or more program “signups”.

307 **Durability informed targeting and associated trade-offs**

308 This is where we will present empirically supported exercises of targeting enrollment based on durability.

309 We will comment on the pros/cons of durability informed targeting, particularly in terms of program cost

310 and additionality considerations.

311 **Figure 11. Durability informed targeting [preliminary / indicative]**

312 What does a policy that targets areas are expected to have more durable conservation outcomes look

313 like? Or should the goal be more about improving durability everywhere? What does an extra year of

314 durability “buy” in terms of conservation outcomes?

315 Limitations and next steps / ongoing work

316 Limitation: right censored data. This is not unusual for survival analysis, but without the most
317 recent NRI data we cannot extend our assessment window. We are considering using satellite-
318 based data on land use/land cover, such as the USDA's Crop Data Layer. In subsequent iterations of
319 this manuscript, we will add (time varying) covariates of net returns to alternative agricultural land
320 uses (crop vs. non-crop, excluding urban) and program parameters (e.g., national enrollment cap)
321 and extend univariate analyses presented here to develop a multivariate hazard model for
322 prediction to evaluate prioritization with respect to durability.

323 Conclusion

324 Lasting conservation requires policies to be informed by durability of outcomes. We analyze the
325 durability of grass cover associated with the general CRP since program inception and over entire
326 CONUS to identify areas and the determinants of persistence. Based on these findings, we discuss
327 what a spatiotemporal prioritization scheme for CRP could look like to extend conservation
328 outcomes and implications for other program considerations like additionality and cost
329 effectiveness. We will further inform this prioritization scheme with the results from the proposed
330 hazard model (see next steps) that will explicitly incorporate economic variables like net returns.

331

332 **References**

333 Dirac Twidwell, D. Twidwell, Dillon T. Fogarty, D. T. Fogarty, & John R. Weir, J. R. Weir. 2021. Reducing Woody
334 Encroachment in Grasslands: A Guide for Understanding Risk and Vulnerability.
335 <https://naldc.nal.usda.gov/catalog/7548409>

336 Morford, S. L., Allred, B. W., Twidwell, D., Jones, M. O., Maestas, J. D., Roberts, C. P., & Naugle, D. E., 2022.
337 “Herbaceous production lost to tree encroachment in United States rangelands.” J of Applied
338 Ecology, 59(12):2971-82.

339 Olimb, S. K., & Robinson, B., 2019. Grass to grain: Probabilistic modeling of agricultural conversion in the
340 North American Great Plains. Ecological Indicators, 102, 237-245.

341 Sanderman, J., Hengl, T., Fiske, G.J., 2017. “Soil carbon debt of 12,000 years of human land use.” PNAS
342 114:9575–80. <https://doi.org/10.1073/pnas.1706103114>

343 Török, P., Brudvig, L.A., Kollmann, J., N. Price, J., Tóthmérész, B., 2021. “The present and future of grassland
344 restoration.” Restoration Ecology 29, e13378. <https://doi.org/10.1111/rec.13378>.

345 Claassen, R., Cooper, J.C., Carriazo, F., 2011. “Crop Insurance, Disaster Payments, and Land Use Change:
346 The Effect of Sodsaver on Incentives for Grassland Conversion.” J of Agricultural and Applied
347 Economics 43, 195–211. <https://doi.org/10.1017/S1074070800004168>.

348 Stubbs, M., 2022. Agricultural Conservation: A Guide to Programs. Updated July 2022. CRS Report No.
349 R40763. Congressional Research Service. <https://crsreports.congress.gov/product/pdf/R/R40763>.

350 Sullins, D.S., Bogaerts, M., Verheijen, B.H.F., Naugle, D.E., Griffiths, T., Hagen, C.A., 2021. “Increasing
351 durability of voluntary conservation through strategic implementation of the Conservation Reserve
352 Program,” Biological Conservation 259:109177. <https://doi.org/10.1016/j.biocon.2021.109177>

353 Bigelow, D., Hellerstein, Daniel, Claassen, Roger, Breneman, V., Williams, R., You, C., 2020. The Fate of Land
354 in Expiring Conservation Reserve Program Contracts, 2013-16 (EIB-215). U.S. Department of
355 Agriculture, Economic Research Service.

356 Roberts, M.J. and R.N. Lubowski. 2007. "Enduring Impacts of Land Retirement Policies: Evidence from the
357 Conservation Reserve Program," *Land Economics* 83 (4):516-538.

358 Hellerstein, D. and S. Malcolm. 2011. The Influence of Rising Commodity Prices on the Conservation Reserve
359 Program, ERR-110, U.S. Department of Agriculture, Economic Research Service.

360 Hendricks, N.P., Er, E., 2018. "Changes in cropland area in the United States and the role of CRP." *Food Policy*
361 75, 15–23. <https://doi.org/10.1016/j.foodpol.2018.02.001>

362 Jones, C.A., C.J. Nickerson, and P.W. Heisey. 2013. "New Uses of Old Tools? Greenhouse Gas Mitigation with
363 Agricultural Sector Policies," *Applied Economics Perspectives and Policy*, 35 (3):398-434.

364 Jacobson, S. 2014. "Temporal Spillovers in Land Conservation," *J of Economic Behavior and Organization*,
365 107:366-379.

366 Morefield, P.E., S.D. LeDuc, C.M. Clark, and R. Iovanna. 2016. "Grasslands, Wetlands, and Agriculture: The
367 Fate of Land Expiring from the Conservation Reserve Program in the Midwestern United States,"
368 *Environmental Research Letters* 11:1-9.

369 Johnson, D.H., 1996. Management of northern prairies and wetlands for the conservation of neotropical
370 migratory birds (Report No. NC-187), General Technical Report. St. Paul, MN. U.S. Department of
371 Agriculture, Forest Service, North-Central Experiment Station.

372 Jones, H.P., Jones, P.C., Barbier, E.B., Blackburn, R.C., Rey Benayas, J.M., Holl, K.D., McCrackin, M., Meli, P.,
373 Montoya, D., Mateos, D.M., 2018. "Restoration and repair of Earth's damaged ecosystems."
374 *Proceedings of the Royal Society B: Biological Sciences* 285, 20172577.
375 <https://doi.org/10.1098/rspb.2017.2577>

376 S. A. Spawn, T. J. Lark, H. K. Gibbs, 2019. "Carbon emissions from cropland expansion in the United States."
377 *Environmental Research Letters* 14:045009.

378 Lark, T.J., Spawn, S.A., Bougie, M., Gibbs, H.K., 2020. "Cropland expansion in the United States produces
379 marginal yields at high costs to wildlife." *Nat Commun* 11:4295. [https://doi.org/10.1038/s41467-020-18045-z](https://doi.org/10.1038/s41467-020-
380 18045-z)

381 Lark, T.J., Meghan Salmon, J., Gibbs, H.K., 2015. "Cropland expansion outpaces agricultural and biofuel
382 policies in the United States." *Environmental Research Letters* 10:044003.
383 <https://doi.org/10.1088/1748-9326/10/4/044003>.

384 Dodds, W. K., K. C. Wilson, R. L. Rehmeier, G. L. Knight, S. Wiggam, J. A. Falke, H. J. Dagleish, K. N. Bertrand,
385 2008. "Comparing Ecosystem Goods and Services Provided by Restored and Native Lands."
386 *BioScience*. 58:837–45.

387 Isbell, F., D. Craven, J. Connolly, M. Loreau, B. Schmid, C. Beierkuhnlein, T. M. Bezemer, C. Bonin, H.
388 Bruelheide, E. de Luca, A. Ebeling, J. N. Griffin, Q. Guo, Y. Hautier, A. Hector, A. Jentsch, J. Kreyling, V.
389 Lanta, P. Manning, S. T. Meyer, A. S. Mori, S. Naeem, P. A. Niklaus, H. W. Polley, P. B. Reich, C.
390 Roscher, E. W. Seabloom, M. D. Smith, M. P. Thakur, D. Tilman, B. F. Tracy, W. H. van der Putten, J. van
391 Ruijven, A. Weigelt, W. W. Weisser, B. Wilsey, N. Eisenhauer, 2015. "Biodiversity increases the
392 resistance of ecosystem productivity to climate extremes." *Nature*. 526: 574–77.

393 Murray, P., F. Crotty, N. van Eekeren, 2012. Management of Grassland Systems, Soil, and Ecosystem Services
394 in Soil Ecology and Ecosystem Services, D. H. Wall, R. D. Bardgett, V. Behan-Pelletier, J. E. Herrick, T.
395 H. Jones, K. Ritz, J. Six, D. R. Strong, W. H. van der Putten, Eds. (Oxford University Press;
396 <https://doi.org/10.1093/acprof:oso/9780199575923.003.0024>)

397 Conant, R.T., Cerri, C.E.P., Osborne, B.B., Paustian, K., 2017. "Grassland management impacts on soil carbon
398 stocks: a new synthesis." *Ecological Applications* 27: 662–68. <https://doi.org/10.1002/eap.1473>.

399

400