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Introduction  

Accurate estimation of economic models underpins reliable inferences, driving effective policy 

and business decisions. Sample selection bias, which occurs when the sample used in the 

analysis is not representative of the population due to a systematic exclusion of certain 

observations, threatens accuracy when data derives from a non-random sample, leading to biased 

and inconsistent estimates (Winship & Mare, 1992). When researchers fail to address this bias, 

they risk drawing conclusions that do not reflect the broader population (Sartori, 2003; Puhani, 

2000). One widely used method for correcting sample selection bias is the Heckman model 

(Heckman, 1976). The Heckman model is a two-step procedure to alleviate selection bias by 

treating the selection problem as an omitted variable problem. To gain consistent estimates from 

the Heckman model, it is imperative to meet the assumptions under which the model effectively 

corrects for selection bias. 

Collinearity between independent variables and the Inverse Mills Ratio (IMR) in the 

second stage of the Heckman model can severely compromise its performance by inflating 

standard errors, and destabilizing parameter estimates (Leung & Yu, 1996). This issue becomes 

particularly problematic when exclusion restrictions are absent as it increases the correlation 

between the IMR and the regressors. Leung and Yu demonstrated how collinearity is worsened 

with narrow regressor distributions, such as Uniform (0,3), compared to broader ones like 

Uniform (0,10) and how these undermine the Heckman model’s reliability. The authors used 

condition numbers to measure the correlation between the independent variables and the IMR 

and suggested the Heckman model can be productively estimated if the condition number is less 

than 20. Their suggested threshold of 20 may be more specific to the experimental designs and 

the conditions they examined and may not universally apply across different datasets. 



 
 

Subsequent research, such as Puhani (2000), Bushway et al. (2007), and Thapa, Morrison, and 

Parton (2021), has adopted Leung and Yu's threshold to diagnose collinearity problems in the 

Heckman model, reflecting the influence of their work. The reliance on this specific threshold 

without considering alternative experimental conditions could overlook whether the threshold 

remains valid across different scenarios or datasets. Building on their work, this study 

investigates how alternative distributions, such as Normal and Gamma distributions, influence 

the correlation between regressors and the IMR, aiming to provide a deeper understanding of the 

model’s limitations and enhance its application in diverse empirical contexts. Specifically, this 

research seeks to answer: How do different distributions of the independent variable and varying 

strengths of exclusion restrictions affect the correlation between the independent variable and the 

IMR, and consequently, the performance of the Heckman model? 

This study aims to (1) assess how different distributions of the independent variable 

influence the correlation between the independent variable and the Inverse Mills Ratio (IMR) in 

the outcome equation of the Heckman model using metrics like correlation coefficients and 

condition numbers, and how this correlation affects model performance using bias and mean 

squared error (MSE) metrics, (2) to investigate whether the condition number threshold of 20, 

proposed by Leung and Yu (1996), consistently holds across different distributions of the 

independent variable, (3) to assess how different levels of strengths of exclusion restrictions 

affect the correlation between the independent variable and the IMR, (4) to explore how to 

identify the strength of exclusion restrictions.  

The effectiveness of the Heckman model does not only rely on the correlation between 

the independent variable and the IMR in the outcome equation of the Heckman model but also 

on certain assumptions that need to be met to identify the effect correlation in independent 



 
 

variable and the IMR on the performance of the Heckman model. The primary identifying 

assumption of the Heckman estimator is that the error terms in both the selection equation and 

the outcome equation follow a joint normal distribution (Sartori, 2003). As demonstrated by 

Arabmazar and Schmidt (1982) and Robinson (1982), the estimator becomes inconsistent when 

the errors deviate from this normality assumption, leading to biased estimates (Lai and Tsay, 

2018). According to Certo et al. (2016), researchers testing for potential sample selection bias 

should check the significance of the independent variables of interest in the first stage of the 

Heckman model. If the independent variables of interest are not statistically significant in the 

initial selection equation, it suggests that sample selection bias may not be present. In such cases, 

alternative estimators, such as ordinary least squares (OLS), can be used. If the independent 

variable is statistically significant in the first stage, a Heckman model can be utilized to assess 

the significance of lambda (𝜆) in the model's second stage, where lambda represents the Inverse 

Mills Ratio (IMR). The IMR is included as a regressor in the second stage of the Heckman 

model to correct for sample selection bias (Tucker, 2011). A significant lambda indicates the 

presence of sample selection bias. In terms of hypothesis tests, the null hypothesis (𝐻0) is 𝜆 = 0 

meaning there is no sample selection bias, while the alternative hypothesis (𝐻1) is 𝜆 ≠ 0 

meaning sample selection is present. If the estimated coefficient for 𝜆 is statistically significant 

we reject the null hypothesis and conclude that sample selection bias is present, however, if 𝜆 is 

not statistically significant, we fail to reject the null hypothesis and conclude that sample 

selection bias is not present.  

A key component of the Heckman model's implementation is the assumption of valid 

exclusion restrictions, which are variables that affect the selection process (the first stage) but not 

the outcome of interest (the second stage). The Heckman model's effectiveness depends on the 



 
 

proper selection and validity of these exclusion restrictions (Gomes et al., 2020; Sundaram-

Stukel, 2021).  The Heckman model tends to produce inflated standard errors when exclusion 

restrictions are absent, meaning all variables included in the first stage are identical to the 

covariates used in the second stage (Bushway et al., 2007). Stolzenberg and Relles (1990) 

suggest that when identical covariates are used in both stages of the Heckman model, the Two-

Part Model (TPM) which separately models the probability of selection and the level of the 

outcome assuming independence between the two stages, may be a preferable approach, despite 

its estimates being inherently biased in the presence of selection. Other research has explored 

alternative approaches to address identical covariates in both stages of the Heckman model, such 

as maximum likelihood (Sartori, 2003) and semiparametric extensions (Honoré & Hu, 2022). 

The Heckman model is more preferred when exclusion restriction is present (Leung & Yu, 1996). 

The strength and validity of this exclusion restriction in the Heckman model are vital as weak 

exclusion restrictions are unlikely to yield significant lambda, even when sample selection bias is 

present (Certo et al., 2016).  

 

Conceptual Framework 

Leung and Yu (1996) conducted a series of Monte Carlo simulations to evaluate how collinearity 

between the regressors and the Inverse Mills Ratio (IMR) affects the performance of the 

Heckman sample selection model. They specifically varied the regressor’s distribution from a 

narrow uniform interval (𝑈(0,3)) to a wider one (𝑈(0,10)) to see how this change influenced 

collinearity and model’s performance. They showed that when regressors were drawn from a 

narrow uniform distribution (𝑈(0,3)), the regressors and the IMR becomes highly correlated. By 

widening the regressor range to 𝑈(0,10), they observed that collinearity was reduced, resulting 



 
 

in better performance of the Heckman model. They measured collinearity using the condition 

number of the matrix formed by the regressors and the IMR, proposing a threshold of 20 as an 

indicator of collinearity problems. 

However, Leung and Yu’s work primarily focused on uniform regressor distributions and 

a specific range of sample sizes, leaving open the question of whether their recommended 

condition number threshold of 20 holds more broadly across different regressor distributions 

(e.g., normal, gamma) and varying sample sizes. This paper extends their work by exploring 

broader regressor distributions and sample sizes to evaluate the robustness of their proposed 

condition number threshold and its applicability across diverse scenarios. Leung and Yu’s design 

approach focused only on positive-valued regressors. Extending the distribution to include 

distributions with both positive and negative values, such as from 𝑁(0,3) and 𝐺(1,1), may result 

in different IMR–regressor correlation patterns. Having negative value included could influence 

correlation as the IMR behaves different both the negative and positive region. This is due to 

how the IMR is being calculated, that is,  

(3)     𝜆(𝒘𝒊
′𝜸) =

𝜙 (𝒘𝒊
′𝜸)

Φ(𝐰𝐢
′𝛄)

 

where 𝜙 (𝒘𝒊
′𝜸) is the probability density function of the standard normal distribution and 

Φ(𝐰𝐢
′𝛄) is the cumulative distribution function of the standard normal distribution (Heckman, 

1979). 𝒘𝒊
′𝜸 is the estimated latent index obtained from the first stage probit model. For example, 

a regressor having all negative values (𝑈(−100,0)) results in 𝒘𝒊
′𝜸 being negative. When 𝒘𝒊

′𝜸 is 

large and negative, Φ(𝐰𝐢
′𝛄) becomes very small, making the IMR very large. As 𝒘𝒊

′𝜸 increases 

toward 0, that is the regressor value increases toward 0, Φ(𝐰𝐢
′𝛄) increases, and the IMR 

declines. The IMR flattens near zero with higher positive values of the regressor. Therefore, 



 
 

increasing the range of regressor with negative may not necessarily decrease the correlation 

between the regressor and IMR (figure 1).  

Figure 1. Inverse Mills Ratio Behavior Across Negative Values of the Regressor (U(0,-100)) 

 

Also, having the regressor drawn from both positive and negative values may follow the rule of 

increasing the range of the variable will reduce the correlation between the regressor and IMR. 

For example, a regressor that is generated from 𝑈(−3,3) will have a higher correlation between 

the regressor and IMR than a regressor that is generated from 𝑈(−10,10) since the latter will 

have the IMR flattens near zero for the more positive values is have (figure 2).  

Figure 2. Inverse Mills Ratio Behavior Across Negative and Positive Values of the 

Regressor (U(-3,3) and U(-10,10)) 

 



 
 

Alternative regressor distributions may affect the correlation between the IMR and the regressor 

differently. Normal distributions are symmetric and concentrate most values around the mean. In 

this case, simply increasing the range may not meaningfully reduce the correlation between the 

regressor and IMR, since the bulk of values still lie in the nonlinear middle portion of the IMR 

curve However, increasing the variance of a normal distribution causes values to spread more 

widely into the tails, placing more observations into regions where the IMR declines rapidly 

toward zero (in the left tail) or flattens around zero (in the right tail). This spread weakens the 

correlation between the regressor and IMR (figure 3). 

Figure 3. Inverse Mills Ratio Behavior Across Negative and Positive Values of the 

Regressor ((0,3) and N(0,10)) 

 

Data 

The Monte Carlo simulation is conducted to evaluate the performance of the Heckman model 

under varying conditions, using metrics such as bias and mean squared error (MSE) to assess its 

effectiveness. First, datasets with known parameters that follow the structure of the Heckman 

model are generated. The simulation aims to compare the performance of the Heckman model 

against the true parameters and evaluate its performance in the presence of collinearity of the 

independent variable and IMR in the outcome equation. 



 
 

Data was generated with different distributions of the independent variable, varying 

degrees of censoring, and exclusion restriction strength. First, a full population of 1,000 

observations (N) was generated and nine different percentages of censoring are considered, 

which are 10% up to 90%. An effect of the dependent and independent variable was modeled 

using the linear regression model specified as  

(1) ln (𝑦𝑖) = 𝛼 + 𝛽𝑥𝑖 + 𝜀𝑖 

 where 𝑦𝑖 is the dependent variable for observation 𝑖 (𝑖 = 1,…,𝑛), 𝑥𝑖 is the independent variable 

of interest, 𝛼 and 𝛽 are the intercept and slope parameters to be estimated respectively and 𝜀𝑖 is 

the error term which is independently and identically distributed and expressed as 𝜀𝑖  ~ 𝑁(0, 𝜎𝜀
2). 

In line with the model presented by Certo et al. (2016), a small effect of the independent variable 

on the dependent variable was considered for this study. The coefficient, 𝛽, was set at 1 for all 

simulations. The independent variable of interest, 𝑥, was generated under six distinct scenarios: 

two following a normal distribution with a mean of 0 and variances of 3 and 10, and two 

following a gamma distribution with parameters (1, 1) and (5, 1). In comparison, Leung and Yu 

(1996), independent variable of interest, 𝑥, was also drawn from a uniform distribution with two 

different ranges: (0, 3), and (0, 10). Therefore, this study extends the work of Leung and Yu 

(1996) who focused on uniform distribution by drawing the independent variable from a normal 

and gamma distribution to evaluate how it affects collinearity between the independent variable 

of interest and the IMR.  

After the relationship between the dependent and independent variable has been 

established, sample selection is then introduced through the following equation:  

(2) 𝑑𝑖 = 𝛿 +  𝜆1𝑧1𝑖 + 𝜆2𝑧2𝑖 + 𝜆3𝑧3𝑖 + 𝜆4𝑥𝑖 + 𝑢𝑖 



 
 

where 𝑑𝑖  is a latent variable that determines whether an observation 𝑖 is included in the selected 

sample, 𝛿 is the intercept, 𝑧1𝑖, 𝑧2𝑖 and 𝑧3𝑖   are exclusion restriction variables, 𝑥𝑖 is the 

independent variable of interest, 𝜆1, 𝜆2, 𝜆3 and 𝜆4 are coefficients to be estimated and 𝜇𝑖 is the 

error term is independently and identically distributed and expressed as 𝑢𝑖  ~ 𝑁(0, 𝜎𝑢
2). In the 

first stage, the dependent variable 𝑑𝑖 represents a continuous latent variable. When 𝑑𝑖 exceeds a 

specified threshold, the selection indicator 𝐷 is set to 1 (indicating that the observation is 

included in the selected sample). Otherwise, 𝐷 is set to 0 (indicating that the observation is 

excluded from the sample). The value intercept δ determines the percentage of observations 

censored. Three exclusion restrictions were included to model small, moderate, and large effects. 

The exclusion restrictions 𝑧1𝑖, 𝑧2𝑖 and 𝑧3𝑖 are all assumed to follow a normal distribution with a 

mean of 0 and variances of 1. The coefficients of the exclusion restrictions which are, 𝜆1, 𝜆2 and 

𝜆3 are set to a number to model the strength of the exclusion restriction  

using McFadden pseudo-𝑅2 values as a guide. According to Cohen’s (1992) pseudo 𝑅2 values of 

0.02, 0.10, and 0.20 indicate small, medium and large effect respectively. These pseudo 𝑅2 value 

were used as guides to in generating the coefficient of the exclusion restrictions.  

For each scenario that incorporates an exclusion restriction, only one of the exclusion 

restriction variables is included in the Heckman model. Although data will be generated using 

three exclusion restrictions as shown in equation 2, in the analysis, we assume access to only one 

exclusion restriction, simulating a realistic research scenario where data availability is limited. 

Correlation between the error terms of the selection and outcome equation (𝜌) is 

considered to be 0.5 which indicates the presence of selection bias since 𝜌 ≠ 0 (Campbell & 

Nagel, 2016). For each experiment, we generate a dataset of size N and conduct 1,000 Monte 



 
 

Carlo simulations. The results are summarized by reporting the average values of the statistics 

obtained across these simulations. 

 

Procedure 

This research will first replicate the work of Leung and Yu, that is, replicating their 

experimental design using uniform distribution of the regressor and sample size before 

alternative distribution of the regressors as well as the sample size is the changed for comparison. 

As Belsley (1991) cautions, condition indexes like 28 and 35 are “essentially the same,” given 

the nonlinear progression of the condition index scale (1, 3, 10, 30, 100, 300, 1,000, …). This 

means that small numerical differences between close to a considered high condition index do 

not necessarily reflect meaningful differences in collinearity severity. As a result, strictly 

applying a threshold like 20 can be misleading, as it may label a condition index of 21 as 

problematic while overlooking a value like 19, even though both fall within the same general 

range of collinearity intensity. As further emphasized by Callaghan and Chen (2008) who applied 

a threshold of 30 but they considered a condition index of 29 as noteworthy, despite it falling just 

below the threshold of 30.   

Unlike Certo et al., (2016) who used limited scenarios to examine the relationship 

between varying exclusion restriction strengths and the correlation between IMR and regressors, 

this study also includes various regressor distributions, censoring levels, and exclusion restriction 

strengths, to establish practical benchmarks for the correlation between regressors and the IMR 

that signify strong, moderate, or weak exclusion restrictions. 



 
 

To assess how different regressor distributions and varying exclusion restriction strengths 

influence the correlation between the regressor and the IMR, we employ the condition number 

diagnostic approach, as outlined by Belsley et al. (1980). The condition number measures the 

sensitivity of the regression estimates to linear dependencies among the predictors. The condition 

number (𝜅) is computed using the singular value decomposition (SVD) of the matrix X (matrix 

of predictors). In our analysis, matrix X includes the independent variable and the IMR from the 

outcome equation of the Heckman model. The decomposition expresses the matrix X as 

(4) 𝑋 = 𝑈Σ𝑉′ 

where 𝑈 is an orthogonal matrix, Σ is a diagonal matrix containing singular values and 𝑉′ is the 

transpose of an orthogonal matrix. The condition number is then calculated as 

(5) 𝜅 =
𝑠𝑚𝑎𝑥

𝑠𝑚𝑖𝑛
  

where 𝑠𝑚𝑎𝑥 is the maximum singular value of X and 𝑠𝑚𝑖𝑛 is the minimum singular value of X. 

Belsley et al. (1980) suggest that a condition number and condition index above 30 indicates 

serious multicollinearity. The condition number is computed after estimating the Heckman 

model.  

To measure the impact of the correlation between the regressor and the IMR on the 

performance of the model, two key metrics were used: bias and MSE. These metrics will help 

determine how accurately and precisely the Heckman model estimates the true parameters under 

different conditions. Bias is calculated as 

(6)  𝐵𝑖𝑎𝑠(𝜃) = 𝐸[𝜃] − 𝜃 



 
 

where 𝐸[𝜃] is the expected value of the estimator 𝜃 and 𝜃 is the true parameter. This measures 

how consistently the estimator aligns with the true parameter value across simulations. A nonzero 

bias indicates systematic deviation of the estimate from the true parameter. The MSE sums the 

bias and variance of the estimator 𝜃 capturing overall estimation accuracy. The MSE is 

calculated as  

(7) 𝑀𝑆𝐸(𝜃) = 𝑉𝑎𝑟(𝜃) + 𝐵𝑖𝑎𝑠(𝜃)
2
   

where 𝑉𝑎𝑟(𝜃) is the variance of the estimator and 𝐵𝑖𝑎𝑠(𝜃) is the bias calculated in 

equation 6. 

To examine whether the Stock and Yogo (2005) framework can assess the strength of 

exclusion restrictions in the Heckman model, the F-statistic will be computed for the first stage 

of the Heckman model and compared to the Stock-Yogo weak ID F-test critical values. When the 

F-statistic is greater or smaller than all the critical values, the exclusion restriction is deemed 

strong or weak, respectively. These results will then be cross-checked with the actual strength of 

the exclusion restrictions used that are generated from the Monte Carlo simulations. This ensures 

that the Stock and Yogo framework can reliably diagnose the strength of exclusion restrictions 

within the Heckman model. 

Results 

This study first we replicate the simulation setup of Leung and Yu (1996), focusing on their 

experimental design involving a uniform regressor distribution and a fixed sample size 0f 1,000. 

Leung and Yu's original simulations used regressors drawn from a uniform distribution 𝑈(0,3) to 

illustrate the impact of severe collinearity between the regressor and the IMR and later expanded 

to 𝑈(0,10) to demonstrate improvement when the regressor range is widened. This study 



 
 

replication follows Leung and Yu's specification closely, though differences in random seed 

generation naturally yield numerical discrepancies, however, the patterns remain consistent with 

their results. From tables 1 and 2, it can be observed that collinearity is exacerbated by a narrow 

regressor range and high censoring rates. Also, high collinearity between the regressor and the 

IMR, as indicated by high condition numbers and strong negative correlation, undermines the 

performance of the Heckman estimator.  

Table 1. Effect of Censoring Rate on Collinearity and Estimation Accuracy under U(0,3) 

Regressor Distribution 

Proportion of 

Censored 

Observation (%) 

Corr(x, IMR) Condition Number Bias  MSE 

10 -0.9205 13.66 -0.00505 0.00755 

20  -0.9559 19.54 -0.00762 0.01514 

30 -0.974 26.99 0.00009 0.03048 

40 -0.9844 36.97 0.01396 0.05514 

50 -0.9907 50.82 -0.00386 0.11789 

60 -0.9945 70.54 -0.03180 0.32573 

70 -0.997 101.46 -0.03931 0.85527 

80 -0.9985 156.2 0.01848 3.08957 

90 -0.9994 272.4 -0.07536 19.22484 

 

Table 2. Effect of Censoring Rate on Collinearity and Estimation Accuracy under U(0,10) 

Regressor Distribution 

Proportion of 

Censored 

Observation (%) 

Corr(x, IMR) Condition Number Bias  MSE 

10 -0.7005 6.087 -0.00015 0.00021 

20  -0.7845 7.341 0.00047 0.00033 

30 -0.8477 8.993 -0.00159 0.00051 

40 -0.898 11.37 -0.00247 0.00096 

50 -0.9375 15.15 -0.00532 0.00171 

60 -0.9671 21.97 -0.00202 0.00418 

70 -0.9858 35.45 -0.00181 0.01630 

80 -0.9951 64.29 0.02115 0.09357 

90 -0.9988 139.4 0.25235 2.16613 

 



 
 

Figure 4. Relationship Between Condition Number and MSE for Different Regressor 

Distributions 

 

Figure 3 shows below condition number 20 MSE remains very low and stable for both 

distributions and continues to stay low between 20 and 30. Beyond the condition number of 30, 

MSE rises sharply, especially beyond 50 to 100, where the detrimental effects of collinearity on 

estimator precision become substantial. This indicates Leung and Yu’s condition number of 20 is 

more conservative and an early-warning threshold, especially if the goal is to flag incipient 

multicollinearity before it escalates. The difference in MSE under both regressor distributions 

demonstrates that this threshold does not universally correspond to degradation in estimator 

performance. Under the 𝑈(0,3) regressor distribution (Table 1), a condition number of 19.54, 

which is just below the threshold, corresponds to MSE of 0.01514. In contrast, under the 

𝑈(0,10) distribution (Table 2), a condition number of 21.97, slightly above the threshold, is 

associated with a considerably smaller MSE of 0.00418. This result reveals that an estimator 

with a condition number above the threshold of 20 (21.97 under 𝑈(0,10)) performs significantly 

better in terms of estimation accuracy than one just below the threshold (19.54 under 𝑈(0,3)). 

When the independent variable is generated from a normal distribution, the results show 

overall lower condition numbers and improved model performance (in terms of MSE) compared 



 
 

to the uniform distribution scenarios. At a high censoring rate of 90%, the condition numbers for 

the 𝑁(0,3) and 𝑁(0,10) cases are 17.91 and 10.24, respectively, both falling below Leung and 

Yu’s threshold of 20 and Belsley’s threshold of 30 (Tables 3 and 4). Across all censoring rates 

under the normal distribution, the model consistently yields MSE values below 0.0300, 

outperforming uniform distribution scenarios. This supports Leung and Yu’s observation that 

increasing the variability of the independent variable reduces its correlation with the IMR. The 

results suggest that collinearity between the regressor and the IMR is less of a concern when the 

independent variable is normally distributed. However, despite a lower condition number of 

17.91 under 𝑁(0,3) with 90% censoring, the model's MSE is 0.02186, worse than the MSE of 

0.00418 observed under the 𝑈(0,10) scenario with a higher condition number of 21.97. This 

indicates that a model with a slightly higher condition number may perform better than one with 

a lower condition number, challenging the strict application of condition number thresholds 

which may be misleading.  

Table 3. Effect of Censoring Rate on Collinearity and Estimation Accuracy under N(0,3) 

Regressor Distribution 

Proportion of 

Censored 

Observation (%) 

Corr(x, IMR) Condition Number Bias  MSE 

10 -0.7317 5.14 0.01003 0.00123 

20  -0.7247 5.07 0.00006 0.00128 

30 -0.7256 5.09 -0.00398 0.00122 

40 -0.7222 5.04 0.00731 0.00080 

50 -0.7274 5.09 0.00000 0.00115 

60 -0.7614 6.64 0.00047 0.00194 

70 -0.7922 8.70 0.00178 0.00330 

80 -0.8257 11.88 -0.00761 0.00545 

90 -0.8617 17.91 0.00718 0.02186 

 

 



 
 

Table 4. Effect of Censoring Rate on Collinearity and Estimation Accuracy under N(0,10) 

Regressor Distribution 

Proportion of 

Censored 

Observation (%) 

Corr(x, IMR) Condition Number Bias  MSE 

10 -0.4002 3.47 -0.00001 0.00006 

20  -0.4014 3.48 0.00119 0.00008 

30 -0.4027 3.49 0.00002 0.00005 

40 -0.4026 3.50 -0.00094 0.00007 

50 -0.4033 3.49 -0.00206 0.00008 

60 -0.4259 4.39 -0.00056 0.00010 

70 -0.4502 5.66 -0.00149 0.00011 

80 -0.4780 7.51 -0.00130 0.00025 

90 -0.5191 10.24 0.00434 0.00073 

 

Independent variables generated from the gamma distribution also produced lower 

condition numbers and better model performance (in terms of MSE) compared to those from the 

uniform distribution. However, normal distributions outperformed gamma distributions, 

exhibiting even lower condition numbers and MSE values. As the variability of the gamma-

distributed regressor increases from the more skewed 𝐺(1,1) to the more dispersed 𝐺(5,1), 

condition numbers tend to rise, particularly at higher censoring rates. Despite this increase, 

model performance under 𝐺(5,1) remains superior. For example, at a 90% censoring rate, the 

condition number under 𝐺(1,1) was 19.45 with an MSE of 0.04990, whereas 𝐺(5,1) yielded a 

higher condition number of 24.22 but a much lower MSE of 0.00920. This suggests that higher 

condition numbers do not always indicate poorer model performance, particularly when the 

regressor distribution is more dispersed. 

 

 

 



 
 

Table 5. Effect of Censoring Rate on Collinearity and Estimation Accuracy under G(1,1) 

Regressor Distribution 

Proportion of 

Censored 

Observation (%) 

Corr(x, IMR) Condition Number Bias  MSE 

10 -0.8511 9.44 0.00230 0.00474 

20  -0.8515 9.46 -0.01060 0.00377 

30 -0.8665 10.29 0.00124 0.00591 

40 -0.8808 11.22 -0.00302 0.00584 

50 -0.8848 11.62 0.00247 0.00557 

60 -0.9049 13.44 -0.00383 0.00906 

70 -0.9116 14.56 -0.01614 0.01521 

80 -0.9158 15.93 -0.00341 0.01740 

90 -0.9250 19.45 -0.00298 0.04990 

 

Table 6. Effect of Censoring Rate on Collinearity and Estimation Accuracy under G(5,1) 

Regressor Distribution 

Proportion of 

Censored 

Observation (%) 

Corr(x, IMR) Condition Number Bias  MSE 

10 -0.6047 7.28 0.00148 0.00043 

20  -0.6649 8.66 0.00029 0.00054 

30 -0.6959 9.74 -0.00060 0.00061 

40 -0.7226 11.04 -0.00162 0.00073 

50 -0.7459 12.50 0.00305 0.00118 

60 -0.7655 14.00 -0.00561 0.00161 

70 -0.7819 16.12 -0.00696 0.00266 

80 -0.7921 18.50 0.01066 0.00544 

90 -0.8248 24.22 0.01228 0.00920 

 

When no exclusion restriction is present, relying solely on condition numbers to assess whether 

collinearity affects model performance can be misleading. In such cases, introducing a valid 

exclusion restriction can help reduce collinearity between the independent variable and the IMR, 

thereby enhancing the model’s performance. However, the question remains, how strong must 

the exclusion restriction be to effectively mitigate collinearity across different regressor 

distributions? Figures 5 through 10 illustrate how varying levels of exclusion restriction strength 



 
 

influence the correlation between the independent variable and the IMR across different 

distributional scenarios. The inclusion of a strong exclusion restriction consistently lowers the 

correlation below -0.85 across all distributions and censoring rates. Even a medium-strength 

exclusion restriction brings correlations below -0.90, suggesting that moderate exclusion strength 

may be sufficient to address collinearity concerns in most cases. 

Figure 5. Impact of Exclusion Restriction Strengths on Correlation Between Regressor and 

IMR (U(0,3)) 

Figure 6. Impact of Exclusion Restriction Strengths on Correlation Between Regressor and 

IMR (U(0,10)) 

 

 



 
 

 

Figure 7. Impact of Exclusion Restriction Strengths on Correlation Between Regressor and 

IMR (N(0,3)) 

 

Figure 8. Impact of Exclusion Restriction Strengths on Correlation Between Regressor and 

IMR (N(0,10)) 

 



 
 

Figure 9. Impact of Exclusion Restriction Strengths on Correlation Between Regressor and 

IMR (G(1,1)) 

 

Figure 10. Impact of Exclusion Restriction Strengths on Correlation Between Regressor 

and IMR (G(5,1)) 

 

 

Conclusion 

This study investigated how the performance of the Heckman selection model is affected by the 

correlation between the regressor and the Inverse Mills Ratio (IMR), focusing on the role of 

regressor distributions and the strength of exclusion restrictions. Through Monte Carlo 

simulations, this paper examined model performance across different censoring rates, regressor 

types (Uniform, Normal, Gamma), and three levels of exclusion restriction strength (weak, 



 
 

medium, strong). Collinearity was measured using correlation coefficients, and condition 

numbers and model performance was assessed using bias and mean squared error (MSE). 

The findings of this research reaffirm the work of Leung and Yu (1996) that collinearity 

between the regressor and IMR can severely degrade the accuracy of the Heckman estimator, 

particularly under narrow uniform distributions such as 𝑈(0,3). Across all scenarios, high 

censoring rates produced extremely large condition numbers and MSE values. It was also 

observed that even when the narrow and broader variance distributions yield similar condition 

numbers, the broader variance scenarios tend to result in lower MSE values. For instance, both 

𝑁(0,3) and 𝑁(0,10) may produce condition numbers below 20, yet the latter consistently 

provides more accurate estimates. This suggests that condition numbers alone may not fully 

capture the impact of distributional shape and spread on estimator performance. 

Additionally, while Leung and Yu proposed a condition number threshold of 20 as a 

diagnostic benchmark, our results show that this threshold may be too rigid. In several cases, 

models with condition numbers just above 20 demonstrated better performance (lower MSE) 

than those just below the threshold. This indicates that relying solely on condition numbers to 

assess whether collinearity affects model performance can be misleading.  

Rather than relying solely on condition number thresholds, especially in scenarios where 

no exclusion restriction is present and it becomes unclear whether the model is performing 

reliably, researchers should prioritize including a valid exclusion restriction. A strong exclusion 

restriction consistently reduces correlation below -0.85 across all distributional settings, while a 

medium-strength restriction generally brings correlations below -0.90 levels that correspond with 

significant improvements in MSE. These findings suggest that moderate to strong exclusion 

restrictions are typically sufficient to mitigate collinearity-related estimation issues. 
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