

The World's Largest Open Access Agricultural & Applied Economics Digital Library

This document is discoverable and free to researchers across the globe due to the work of AgEcon Search.

Help ensure our sustainability.

Give to AgEcon Search

AgEcon Search
<http://ageconsearch.umn.edu>
aesearch@umn.edu

Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only. No other use, including posting to another Internet site, is permitted without permission from the copyright owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C.

No endorsement of AgEcon Search or its fundraising activities by the author(s) of the following work or their employer(s) is intended or implied.

1 **Effects of Aerobic and Strength-Based Exercise on Consumer Preference for Protein**

2

3

Abstract

4 The role of protein consumption in adaptations to physical exercise is well documented in prior
5 research. However, little is known about how physical exercise and associated protein needs
6 impact consumers' protein demand. This study pairs matching methods with discrete choice
7 experiments to estimate the impacts of physical exercise on willingness-to-pay for protein while
8 reducing the confounding influences of other consumer characteristics. Aerobic and strength-based
9 exercise, and fitness-driven protein consumption, increase willingness-to-pay for retail protein by
10 up to \$1.91 per pound for ribeye steak and foodservice protein by up to \$2.47 for a ribeye steak
11 meal. These results indicate that the physically active population is a reliable consumer base that
12 bolsters U.S. domestic protein purchases during periods of price increases.

13 Keywords: choice model, physical exercise, protein, willingness-to-pay

14 **Effects of Aerobic and Strength-Based Exercise on Consumer Preference for Protein**

15 **1 Introduction**

16 Various government, private, and academic sources suggest that physical exercise is an
17 increasingly common leisure time activity among U.S. residents. From the U.S. Bureau of Labor
18 Statistics, 21.1 percent of citizens aged 15 years and over participated in sports, exercise, or
19 recreation in 2023—an increase by 2.5 percentage points over 2013 levels (U.S. Bureau of Labor
20 Statistics, 2024). On average, these participants spent nearly 1.5 hours per day in those activities.
21 This growth in exercise prevalence is also observed by firms within the fitness industry. In its 2023
22 Form 10-K to the U.S. Securities and Exchange Commission, Planet Fitness—a major national
23 gym chain—reported operating 2,575 stores and having 18.7 million members nationwide,
24 reflecting compound annual growth rates of 6.5 and 6.8 percent, respectively, from 2019 (Planet
25 Fitness, 2024). Further assessing these trends using data from the National Health and Nutrition
26 Examination Survey (NHANES), Bina and Tonsor (2024b) find that the average time spent in
27 physical exercise among U.S. adults increased from 21 minutes per day in 2007-2008 to nearly 24
28 minutes per day in 2017-2018, with relatively larger increases observed for younger individuals.

29 Importantly, trends in exercise and fitness have spillover effects on the U.S. food industry
30 and, specifically, on the consumption of protein. Wilson and Wilson (2006) provide an overview
31 of sports nutrition literature on protein requirements for resistance-trained athletes (i.e., athletes
32 who lift weights/strength train) and the efficacy of various protein sources in stimulating muscle
33 growth. They note that a number of sources recommend protein intakes of between 1.2 and 2.2
34 grams per kilogram of bodyweight per day for athletes. This is substantially higher than the 0.80
35 grams per kilogram of bodyweight per day recommended for the average adult (National
36 Academies of Sciences, Engineering, and Medicine, 2006). Further, Bina and Tonsor (2024b)

37 directly quantify the association of physical exercise with protein consumption among U.S. adults,
38 noting that exercise is positively associated with the consumption of total protein, poultry, seafood,
39 eggs, and dairy.

40 Though the role of protein consumption in physical exercise pursuits is largely understood,
41 what is less certain are the impacts on consumer purchasing behavior in the U.S. protein industry.
42 To my knowledge, Bina et al. (2024) is the first of a very small collection of economic studies to
43 focus on the topic. The authors assess the impact of exercise-related news media on U.S. demand
44 for meat and find little evidence that beef, pork, and chicken demand is sensitive to media
45 information on protein and exercise. However, that effort reflects a nationally-aggregated demand
46 assessment that does not consider consumers' actual exercise behavior or demand at the product
47 level. Later work defines "trainees" as those who intentionally consume protein to aid in strength
48 training or other fitness-related goals, concluding that those individuals are less own-price
49 sensitive than non-trainees in their demand for various retail protein products (Bina & Tonsor,
50 2024a). However, that work i) does not consider consumer decisions made in a foodservice setting,
51 which reflects 58 percent of U.S. food spending in 2023 (U.S. Department of Agriculture
52 Economic Research Service, 2025b); ii) does not consider heterogeneity in methods of exercise;
53 and iii) does not consider that underlying consumer characteristics other than exercise-related
54 factors may drive demand for protein.

55 Related to the latter point, efforts to understand decisions made in the U.S. meat and
56 livestock supply chain and, specifically, how those decisions vary across individuals have not
57 typically considered potential confounding influences of the individuals' characteristics. This is
58 not particularly surprising since the characteristics of decision makers evaluated in these efforts
59 are usually exogenous (i.e., randomly assigned) and researchers' objectives are to illustrate

60 variation across groups, rather than to estimate effects. For instance, Tonsor and Marsh (2007) and
61 Lusk and Tonsor (2016) evaluate differences in demand for meat by consumers' nationalities and
62 incomes, respectively, using split-sample demand estimation. Other researchers assess variation in
63 meat purchasing and production technology adoption across city of purchase and age by interacting
64 those characteristics of decision makers with other variables of key interest [e.g., alternative-
65 specific constants in a logit model] (Klain et al., 2014; Olynk et al., 2012). However, I will show
66 that these standard heterogeneity assessments are not appropriate when we are interested in
67 individuals' "selection into treatment" (i.e., physical exercise) and corresponding demand
68 behavior, as a host of other characteristics simultaneously influence that selection and protein-
69 related decision making.

70 This study expands on a relatively small body of economic literature, shedding further light
71 on the implications of physical exercise for consumer purchasing behavior and in the context of
72 U.S. protein demand. Specifically, my objective is to quantify the impacts of physical exercise on
73 consumers' willingness-to-pay (WTP) for protein products, considering heterogeneity in location
74 of purchase and method of exercise, and accounting for confounding influences of other consumer
75 characteristics. This objective directly addresses the limitations of prior research and provides a
76 series of contributions to consumer behavior and food demand literature, and to industry
77 practitioners.

78 First, animals and animal products—characterized by greater protein content relative to
79 other commodities—accounted for \$250 billion in cash receipts in 2023 (U.S. Department of
80 Agriculture Economic Research Service, 2025a), reflecting a sector of U.S. agriculture that is
81 economically important. Further, retail prices of beef, pork, and chicken products have consistently
82 increased since around 2021 (Federal Reserve Bank of St. Louis, 2025c, 2025b, 2025a), but U.S.

83 meat purchases remain at record levels (Shike, 2025). Little is known about what is causing this
84 phenomenon. Considering these observations, this research improves our understanding of which
85 consumers are most likely to stay in the market for protein as prices increase and how industry can
86 leverage demand heterogeneity and high-margin product offerings to offset potential reductions in
87 quantities purchased. Related work suggests that intentional, fitness-driven consumers of protein
88 may boost aggregate protein purchases and strengthen economic outcomes for the meat and
89 livestock sector (Bina & Tonsor, 2024a). However, that work makes a strong assumption that
90 protein demand is not driven by other underlying consumer characteristics. If that assumption is
91 incorrect, the effectiveness of health- and fitness-related marketing campaigns or other initiatives
92 aimed at bolstering domestic protein demand may be limited.

93 In that context, this work additionally contributes to traditional structural demand modeling
94 by showing how heterogeneity assessments can be improved through the use of causal inference
95 methods. To explain variation in demand, it is common practice to i) interact subgroup indicators
96 with other variables of key interest (Kilders et al., 2024; Klain et al., 2014; Lusk, 2017) or ii)
97 estimate demand models separately between subgroups (Lusk & Tonsor, 2016; Tonsor & Marsh,
98 2007; Tonsor & Shupp, 2011; Yang et al., 2020). These strategies, while important and useful, do
99 not consider that consumer characteristics other than that of primary interest may drive demand
100 (Vass et al., 2022). When the objective is to estimate the effect of a treatment, conclusions derived
101 using these strategies may not accurately portray the true effects of the treatment if it is not
102 randomly assigned. Thus, any associated marketing or policy prescriptions are likely ill-informed.

103 Last, demand transformations are typically caused by factors that are exogenous to the
104 consumer including, firm-level product design decisions, advertising, and extension of product
105 lines (Johnson & Myatt, 2006). These transformations can reflect a pure shift, a pure rotation, or

106 both a shift and rotation of the demand curve. In this study, physical exercise serves as an
107 endogenous shock (i.e., self-selected treatment) to consumers' demand for protein that may shift
108 the demand schedule. This has obvious implications for the economic welfare of individuals who
109 participate in physical exercise and also has indirect impacts on non-exercising individuals who
110 experience adjustments in aggregate protein prices as markets respond to changes in physical
111 exercise prevalence. This assessment of endogenous demand shifts provides a framework for
112 future research that likewise seeks to estimate the economic impacts of consumers' diet- and
113 health-related decision making.

114 The remainder of this study is as follows. First, I overview my conceptual framework, data,
115 and empirical strategy. I then provide and discuss key results of my analysis. I conclude with brief
116 comments on the direction of future research.

117 **2 Materials and Methods**

118 Changes in consumers' WTP for protein products due to physical exercise habits reflect an
119 endogenous shift in valuations of the products. Standard structural demand modeling is not
120 sufficient to estimate the demand-shifting impacts of physical exercise on protein demand
121 schedules in the presence of confounding factors. This section overviews my method of identifying
122 these impacts.

123 ***2.1 Conceptual Model***

124 Following the random utility framework of McFadden (1973), I first suppose that an individual
125 with characteristics k is faced with a variety of alternatives, having characteristics x , and has a
126 utility function for each alternative that can be written as:

$$(1) \quad U = V(k, x) + \varepsilon(x)$$

127 where V is the nonstochastic, or observable, portion of utility and ε reflects the idiosyncrasies of
128 the individuals' tastes for the alternative.

129 Now recall the aforementioned relationship between physical exercise and protein
130 consumption. If two individuals exist who differ *only* in their physical exercise behavior—letting
131 $T = 1$ denote the individual who participates in physical exercise and $T = 0$ denote the individual
132 who does not—and they are both faced with a variety of protein-dense food alternatives, it stands
133 to reason that:

$$(2) \quad V(\bar{k}, x|T = 1) \neq V(\bar{k}, x|T = 0)$$

134 where \bar{k} is all consumer characteristics except for T , which are identical between the two
135 individuals. That is, the two individuals may not obtain the same utility from protein products
136 *ceteris paribus*.

137 Equation (2) reflects my assumption that the parameters in V are different between those
138 who participate in physical exercise and those who do not. As an example, an individual who
139 exercises may have a preference for protein over other foods if they perceive protein consumption
140 as aiding them toward their muscle-building or performance goals. These effects of physical
141 exercise on preferences may also vary across protein sources that are heterogeneous in
142 characteristics (i.e., calorie content, fat content, convenience, etc.) and may not align with
143 exercisers' perceived dietary needs. Additionally, those who exercise may be financially invested
144 in their fitness goals (e.g., they purchase gym memberships, exercise equipment, dietary
145 supplements, etc.) such that they have lower price sensitivity than other individuals when
146 purchasing protein. In all, preferences and price sensitivity may be influenced by individuals'

147 physical exercise behavior, which then impacts the utility obtained from purchasing protein and
148 any associated economic measures of interest.

149 **2.2 Data**

150 Publicly available survey data supporting this study is obtained from the Meat Demand Monitor
151 (MDM). The MDM is a long-running project funded by the U.S. Beef and Pork Checkoff programs
152 that is intended to capture preferences and purchase behavior in the domestic meat industry, with
153 separate consideration of retail and foodservice markets (Tonsor, 2020). As part of the MDM
154 project, an online, national survey is distributed each month to a subset of the population that is
155 designed to be representative in terms of age, sex, race, income, educational attainment, and region
156 of residence. Roughly 3,000 usable responses are obtained each month with the data having a
157 pooled cross-sectional structure (i.e., a different sample of the population is surveyed each month).

158 In addition to key sociodemographic information, the MDM includes two components that,
159 combined, are necessary to fulfill the stated objective. These components are i) retail- and
160 foodservice-framed discrete choice experiments (DCE) capturing stated preferences for protein-
161 dense food products and ii) questions capturing respondents' physical exercise behavior.
162 Regarding the former, MDM respondents are randomly assigned to a DCE that is based in either
163 a grocery retail or restaurant setting [one half of respondents are assigned to each] (Tonsor, 2020).
164 In each DCE, eight protein products are presented, along with a ninth "opt out" option. Prices are
165 the only attributes that are displayed, with these having three levels for each product. Products and
166 price levels for both DCEs are depicted in Table 1, while Appendix Figures A1 and A2 depict
167 example choice tasks.

168 **Table 1. Retail and Foodservice DCE Products and Price Levels**

	<u>Retail DCE (\$/lb)</u>							
	Ribeye Steak	Ground Beef	Pork Chop	Bacon	Chicken Breast	Plant-Based Patty	Shrimp	Beans & Rice
Price level 1	14.49	1.99	2.49	2.99	1.49	9.49	8.49	0.49
Price level 2	16.99	4.49	4.99	5.49	3.99	11.99	10.99	2.99
Price level 3	19.49	6.99	7.49	7.99	6.49	14.49	13.49	5.49

	<u>Foodservice DCE (\$/meal)</u>							
	Ribeye Steak	Hamburger	Pork Chop	Baby Back Ribs	Chicken Breast	Plant-Based Patty	Shrimp	Salmon
Price level 1	18.99	9.49	14.49	12.99	10.49	12.49	10.99	14.49
Price level 2	21.49	11.99	16.99	15.49	12.99	14.99	13.49	16.99
Price level 3	23.99	14.49	19.49	17.99	15.49	17.49	15.99	19.49

169

170 Both DCEs are characterized by a main effects orthogonal fractional factorial design with
 171 a D-efficiency of 95.3 and 27 unique choice tasks (Tonsor, 2020). The choice tasks are blocked
 172 into three sets of nine such that each MDM participant, after being assigned to either the retail- or
 173 foodservice-framed DCE, are further assigned to one set of nine choice tasks. The nine choice
 174 tasks are then randomly presented to participants to mitigate the potential impacts of respondent
 175 fatigue. This design is akin to Lusk (2017) and the Food Demand Survey.

176 Regarding the second key component of the MDM, respondents are asked a sequence of
 177 exercise-related questions. The first is “*Thinking about your typical 7-day week, combined how*
 178 *much moderately-intense (e.g., brisk walking) and vigorously-intense (e.g. running or jogging)*
 179 *aerobic activity (exercise and/or work) do you get?* (Tonsor, 2024).” The second is then “*Thinking*
 180 *about your typical 7-day week, how much muscle-strengthening activity (exercise and/or work) do*
 181 *you get?*” For each, respondents report their weekly activity level in interval form from “less than
 182 30 minutes per week” to “over 240 minutes per week.” Last, respondents are asked “*Do you*
 183 *intentionally eat protein to aid in meeting strength-training or other fitness-related goals?*” This
 184 final question and broader survey data are utilized in related work estimating protein demand

185 elasticities among health- and fitness-focused consumers (Bina & Tonsor, 2024a). Importantly,
186 the choice experiments precede all exercise-related questions, mitigating concerns of possible
187 framing effects and resulting bias in the reporting of protein choices.

188 This study uses MDM data from November 2022 through December 2024. Prior to my
189 analyses, MDM respondents are omitted who i) are under the age of 18, ii) are not the primary
190 grocery shopper in their household, iii) do not successfully pass two embedded attentiveness
191 checks, or iv) do not provide complete information on key sociodemographic characteristics,
192 exercise behavior, and DCE choices. This leaves 72,761 usable responses. Table 2 depicts
193 descriptive statistics of the sample, distinguishing between exercise behavior. Importantly, 71
194 percent of respondents report spending at least 30 minutes per week (m/wk) in aerobic exercise,
195 53 percent report spending at least 30 m/wk in strength-based exercise, and 32 percent report
196 intentionally consuming protein to meet some fitness-related goal.

197 **Table 2. Descriptive Statistics of the Sample by Exercise Behavior**

Variable	Full ^a	Relative Frequency					
		30+ m/wk Aerobic Exercise		30+ m/wk Strength Exercise		Intentional Consumer	
		Yes	No	Yes	No	Yes	No
30+ m/wk aerobic exercise	0.71	1.00	0.00	0.94	0.45	0.86	0.64
30+ m/wk strength exercise	0.53	0.70	0.11	1.00	0.00	0.78	0.41
Intentional consumer	0.32	0.39	0.15	0.47	0.15	1.00	0.00
Sex							
Female	0.53	0.49	0.62	0.46	0.61	0.45	0.57
Male	0.47	0.51	0.38	0.54	0.39	0.55	0.43
Age							
18 to 24 years	0.05	0.06	0.03	0.07	0.02	0.09	0.03
25 to 34 years	0.12	0.14	0.09	0.16	0.08	0.19	0.09
35 to 44 years	0.18	0.20	0.15	0.23	0.14	0.26	0.15
45 to 54 years	0.16	0.16	0.16	0.17	0.16	0.17	0.16
55 to 64 years	0.24	0.22	0.28	0.19	0.29	0.17	0.27
65 years and over	0.24	0.22	0.29	0.18	0.31	0.13	0.30
Annual household income							

Variable	Relative Frequency							
	30+ m/wk Aerobic Exercise		30+ m/wk Strength Exercise		Intentional Consumer		Yes	No
	Full ^a	Yes	No	Yes	No	Yes		
Less than \$20,000	0.15	0.11	0.23	0.11	0.19	0.13	0.16	
\$20,000 to \$39,999	0.22	0.20	0.26	0.20	0.24	0.20	0.23	
\$40,000 to \$59,999	0.21	0.21	0.21	0.21	0.22	0.21	0.22	
\$60,000 to \$79,999	0.17	0.18	0.14	0.17	0.16	0.16	0.17	
\$80,000 to \$99,999	0.08	0.09	0.06	0.09	0.07	0.08	0.08	
\$100,000 to \$119,999	0.05	0.06	0.03	0.06	0.04	0.06	0.05	
\$120,000 to \$139,999	0.03	0.04	0.02	0.04	0.03	0.04	0.03	
\$140,000 to \$159,999	0.04	0.05	0.01	0.05	0.02	0.06	0.03	
\$160,000 and over	0.05	0.06	0.02	0.06	0.03	0.06	0.04	
Educational attainment								
High school degree or less	0.27	0.24	0.34	0.24	0.30	0.25	0.28	
Some college	0.42	0.41	0.45	0.40	0.44	0.39	0.43	
4-year degree or higher	0.31	0.36	0.21	0.36	0.26	0.36	0.29	
Race								
White	0.73	0.72	0.74	0.70	0.77	0.65	0.76	
Black	0.15	0.15	0.15	0.17	0.13	0.20	0.12	
Other	0.12	0.13	0.11	0.14	0.11	0.15	0.11	
Census region								
Midwest	0.21	0.20	0.23	0.20	0.23	0.19	0.22	
Northeast	0.18	0.18	0.17	0.18	0.18	0.18	0.18	
South	0.38	0.38	0.39	0.38	0.39	0.39	0.38	
West	0.23	0.24	0.20	0.24	0.21	0.25	0.22	
Household size								
1 person	0.27	0.25	0.30	0.24	0.29	0.24	0.28	
2 people	0.38	0.37	0.39	0.34	0.42	0.30	0.42	
3 people	0.16	0.17	0.15	0.18	0.14	0.20	0.15	
4 people	0.12	0.13	0.09	0.15	0.09	0.18	0.09	
5 people or more	0.07	0.07	0.07	0.08	0.06	0.09	0.06	
Diet								
Regularly consumes meat	0.76	0.74	0.81	0.71	0.82	0.67	0.80	
Abstains from meat	0.07	0.08	0.04	0.10	0.04	0.13	0.04	
Flexitarian/other	0.17	0.18	0.15	0.19	0.15	0.20	0.16	
Body mass index								
Underweight (lower than 18.5 kg/m ²)	0.03	0.04	0.03	0.04	0.03	0.05	0.03	
Normal weight (18.5 to 24.9 kg/m ²)	0.37	0.40	0.29	0.43	0.30	0.42	0.35	
Overweight (25 to 29.9 kg/m ²)	0.33	0.34	0.28	0.33	0.32	0.33	0.32	
Obese (30 kg/m ² or greater)	0.27	0.22	0.40	0.20	0.35	0.20	0.30	
Quarter								
1	0.21	0.21	0.22	0.21	0.22	0.21	0.22	

Variable	Relative Frequency							
	30+ m/wk Aerobic Exercise		30+ m/wk Strength Exercise		Intentional Consumer		Yes	No
	Full ^a	Yes	No	Yes	No	Yes		
2	0.23	0.24	0.23	0.24	0.23	0.24	0.23	0.23
3	0.23	0.24	0.22	0.24	0.23	0.24	0.23	0.23
4	0.32	0.32	0.33	0.32	0.32	0.31	0.32	0.32
Number of observations	72,761	51,763	20,998	38,621	34,140	23,253	49,508	

198 Note: ^aColumns are the full usable sample, those who spend at least 30 m/wk in aerobic exercise,
 199 those who do not spend at least 30 min/wk in aerobic exercise, those who spend at least 30 m/wk
 200 in strength-based exercise, those who do not spend at least 30 min/wk in strength-based exercise,
 201 those who intentionally consume protein to meet a fitness-related goal, and those who do not
 202 intentionally consume protein to meet a fitness-related goal.

203

204 Notable differences are observed in individuals' exercise behavior. Among those who
 205 spend at least 30 m/wk in strength-based exercise, 54 percent are male and 46 percent are female.
 206 This difference by sex is similar for the group that intentionally consumes protein for fitness-
 207 related goals. Additionally, individuals under the age of 45 more frequently exercise and
 208 intentionally consume protein than not. For example, among individuals who spend at least 30
 209 m/wk in aerobic exercise, 40 percent are between the ages of 18 and 44. This is compared to
 210 individuals who do not participate in at least 30 m/wk of aerobic exercise, of which 27 percent are
 211 between the ages of 18 and 44. Discrepancies in income are also observed with annual household
 212 incomes of at least \$80,000 consistently reported at a higher frequency among the exercising and
 213 intentional protein consumption groups relative to the other groups. For brevity, further differences
 214 in exercise behavior are observed across educational attainment, race, region of residence,
 215 household size, diets, and (expectedly) body mass index (BMI). As a final note, Bina and Tonsor
 216 (2024b) find that in 2017-2018 males, younger individuals, college graduates, and higher earners
 217 spent more time per day in physical exercise. That effort uses NHANES data and illustrates
 218 correlations that are broadly consistent with those depicted in Table 2.

219 **2.3 Reducing Confounding Influences**

220 From Table 2 descriptive statistics, a host of consumer characteristics are correlated with aerobic
221 exercise, strength-based exercise, and intentional (fitness-driven) consumption of protein. Prior
222 work notes that these sociodemographic factors are likewise correlated with meat consumption
223 (Daniel et al., 2011; Wang et al., 2010; Zeng et al., 2019). Thus, these consumer characteristics
224 likely confound the relationship between physical exercise behavior and preferences for protein-
225 dense foods. This is problematic in the sense that industry efforts to market to health- and fitness-
226 conscious consumers or, at the least, understand the consumer segment may be implicitly tailored
227 to certain sociodemographic groups rather than to true exercise behavior. Any costs of production
228 (e.g., package labels) and marketing intended to capture revenue from physically-active consumers
229 may not be necessary if demand heterogeneity is driven by other underlying consumer
230 characteristics.

231 To minimize the confounding influences of age, sex, income, and other factors on the
232 relationship between physical exercise behavior and protein demand, I implement a series of
233 matching procedures prior to outcome estimation (i.e., logit choice modeling). In each procedure,
234 I consider three self-selected (i.e., not randomly assigned) treatments. These are i) spending at least
235 30 m/wk in aerobic exercise, ii) spending at least 30 m/wk in strength-based exercise, and iii)
236 intentionally consuming protein to meet some fitness-related goal. I use age, sex, annual household
237 income, educational attainment, race, region of residence, household size, and diet as matching
238 variables as they exhibit at least slight correlation with exercise behavior and have been noted in
239 prior work as being correlated with meat consumption. Though seasonality appears to be unrelated
240 to physical exercise, I follow related work that accounts for seasonality in meat demand (Brester
241 & Schroeder, 1995; Coffey et al., 2011; Piggott & Marsh, 2004) by including when participants

242 completed the survey (i.e., quarter dummy variables) in each matching procedure. As additional
243 justification, variables that are unrelated to the treatment but related to the outcome (i.e.,
244 preferences for protein-dense foods), such as seasonality, should be included in treatment
245 modeling to i) remove bias due to chance associations between those variables and the treatment
246 and ii) to decrease the variance of the estimated treatment effect (Brookhart et al., 2006). In
247 contrast, I omit respondents' BMI from the matching procedures because it is necessarily impacted
248 by the treatments and will create selection bias comparable in size to bias from classical
249 confounding if used (Greenland, 2003; Stuart, 2010).

250 As a final note on variable selection, the matching procedures using "intentional protein
251 consumption" as the treatment indicator further stratify by binary aerobic and strength-based
252 exercise variables because these variables likely influence individuals' proclivity to consume
253 protein to meet fitness-related goals. However, binary aerobic (strength-based) exercise variables
254 are not included in the matching procedures using strength-based (aerobic) exercise as the
255 treatment indicator because they are likely influenced by the treatment, yielding selection bias if
256 included as stratification variables (Greenland, 2003; Stuart, 2010).

257 The first matching procedure I consider is coarsened exact matching (CEM). Exact
258 matching is the "gold standard" among matching techniques, replicating a randomized experiment
259 where treated and control groups are randomly different on all covariates (Stuart, 2010; Vass et
260 al., 2022). In exact matching, treated and control units are placed into strata such that all units
261 in a stratum are perfectly identical across all characteristics. Thus, characteristics are perfectly
262 balanced both within a stratum and on average between treated and control subgroups. No
263 assumptions on functional form are needed to completely eliminate confounding due to measured
264 covariates. The coarsened version of exact matching that I implement simply entails matching on

265 aggregated characteristics [e.g., categorical income rather than continuous] (Iacus et al., 2011).
266 This procedure limits sample losses experienced when units cannot be matched, though at the
267 expense of introducing some imbalance of characteristics within a stratum (Vass et al., 2022), and
268 has been implemented in prior food-related consumer studies (Beatty & Tuttle, 2015).

269 To test the sensitivity of my findings, I also consider generalized full matching [GFM]
270 (Sävje et al., 2021). This procedure retains all observations and begins with a first-stage logistic
271 regression to derive the probabilities of treatment given a set of predictors (i.e., the matching
272 variables I discuss above). These probabilities are used as a distance measure in the second-stage
273 matching process. In full matching, “optimal” matched sets are created such that i) each set
274 contains at least one treated and one control individual and ii) the average distance between treated
275 and control units is minimized within each set (Hansen, 2004; Sävje et al., 2021; Stuart, 2010).
276 The GFM method is a generalization of traditional full matching, which computes quickly even in
277 large samples and produces near optimal matched sets (Sävje et al., 2021).

278 After CEM- and GFM-based stratum assignment, stratum propensity scores (SP) are
279 calculated as the proportion of individuals in each stratum that are treated. Each participant in a
280 stratum is then given the same SP. To estimate the average treatment effects on the treated (ATT),
281 treated individuals are assigned a weight of one and control individuals are assigned a weight of
282 $SP/(1-SP)$ to ensure that the weighted average of characteristics are balanced between treated and
283 control subgroups (Austin & Stuart, 2015; Stuart, 2010; Vass et al., 2022).

284 A total of 12 matching procedures are conducted across the two DCEs (i.e., retail and
285 foodservice), three treatments (i.e., aerobic exercise, strength-based exercise, and intentional
286 protein consumption), and two matching methods (i.e., CEM and GFM). This allows for a robust
287 demand heterogeneity assessment that considers the location of protein purchase, the method of

288 exercise, and confounding influences of other consumer characteristics. Appendix Figure A3
289 provides a summary of all matching procedures while Appendix Figures A4 through A9 depict the
290 absolute standardized mean differences in measured covariates between treated and control
291 subgroups using the GFM method (the CEM method is omitted as covariates are perfectly balanced
292 between subgroups by design). Matching procedures are conducted using the MatchIt package (Ho
293 et al., 2024) in R version 4.4.1.

294 **2.4 Empirical Model**

295 Consumer preferences are estimated via the multinomial logit (MNL) model. I again suppose that
296 consumer i obtains from alternative j the utility $U_{ij} = V_{ij} + \varepsilon_{ij}$. The observable portion of utility
297 takes the form:

$$(3) \quad V_{ij} = \theta_{ij} + \gamma_i p_j$$

298 where θ_{ij} is an alternative-specific constant that reflects the marginal utility of alternative j relative
299 to the opt out option (which is normalized to zero), γ_i is the marginal utility of a price change, and
300 p_j is the price of alternative j . Train (2009) notes that the ratios of coefficients in most discrete
301 choice models have an economic meaning. Using my proposed utility specification, the ratio
302 $-\theta_{ij}/\gamma_i$ represents individual i 's WTP for alternative j over the opt out option.

303 Price effects are restricted to being linear and identical across alternatives because flexible
304 price response (e.g., adding quadratic terms) can yield undesirable predictions (Lusk & Tonsor,
305 2016). This is especially true when leveraging the three-price level design of the MDM DCEs.
306 Additionally, I restrict preference and price parameters to be non-random. Well-documented
307 limitations of the MNL model include i) parameters that are constant across individuals and ii)
308 substitution patterns that are identical across alternatives (Train, 2009). The random parameters

309 logit (RPL) model has been designed to address both of these limitations. However, Bina and
310 Tonsor (2024a) have already addressed the relationship between exercise-driven protein
311 consumption and protein demand elasticities in related work, finding that the differences in
312 substitution patterns between behavioral groups are small in magnitude. Additionally,
313 heterogeneity in preferences and price responsiveness can be assessed by interacting observed
314 consumer characteristics with the alternative-specific constants and the price term and without the
315 added complexity and computational expense introduced through RPL designs. Thus, equation (3)
316 allows for the estimation of doubly robust treatment effects (which I discuss shortly), fulfilling the
317 stated objective of this study in a pragmatic manner.

318 Following my assumption that those who exercise have different preference and price
319 parameters, θ_{ij} and γ_i are allowed to vary across individuals such as in Lusk (2017). I let $\theta_{ij} =$
320 $\delta_j + \sum_{k=1}^K \delta_{jk} z_{ik} + \pi_j Treatment_i$, where z_{ik} is the vector of survey participant characteristics
321 that is used in the matching procedures and influence choice through the parameters δ_{jk} ; and
322 $Treatment_i$ is a treatment indicator that influences choice through the parameters π_j , allowing
323 for the impacts of physical exercise behavior on utility to vary across protein sources. Further, I
324 allow price responsiveness to vary across physical exercise behavior by letting $\gamma_i = \alpha +$
325 $\omega Treatment_i$. It should be noted that price responsiveness can also be allowed to vary by survey
326 participant characteristics other than physical exercise behavior. However, that level of flexibility
327 yields marginal utility of a price change (rather than disutility) and nonsensical WTP estimates for
328 numerous participants.

329 As an additional sensitivity assessment, I also estimate the effects of physical exercise on
330 WTP for protein when i) restricting the treatment (i.e., physical exercise, intentional protein

331 consumption) impacts on the alternative-specific constants to equal zero (i.e., $\pi_j = 0 \forall_j$) and ii)
332 restricting the treatment impacts on price responsiveness to equal zero (i.e., $\omega = 0$). These
333 sensitivity assessments are conducted using CEM-derived choice data, with the results indicating
334 how robust the WTP effects are to my assumption that those who exercise have different
335 preferences and sensitivity to price.

336 **2.5 Outcome and Effect Estimation**

337 The outcome models described by equation (3) are estimated via maximum likelihood and
338 separately using retail and foodservice choice data; using aerobic exercise, strength-based exercise,
339 and intentional (fitness-driven) protein consumption treatments; and using the full sample, CEM,
340 and GFM. Thus, the primary results of this study reflect the estimation of 18 choice models using
341 the Apollo package (Hess & Palma, 2019) in R version 4.4.1. The matching weights obtained from
342 the aforementioned matching procedures are incorporated into estimation of the respective
343 outcome models. The outcome models using the full retail- and foodservice-framed DCE choice
344 data are unweighted and reflect traditional heterogeneity assessments that do not consider
345 confounding influences of other consumer characteristics.

346 After estimation of the weighted outcome models (i.e., those using CEM- and GFM-
347 derived samples), I follow prior developments in causal inference to estimate doubly robust
348 treatment effects (Chatton & Rohrer, 2024; Funk et al., 2011; Snowden et al., 2011; Vansteelandt
349 & Keiding, 2011). This procedure reduces the confounding influences of other consumer
350 characteristics on the relationship between physical exercise behavior and protein demand. The
351 multi-step doubly robust standardization begins with (after estimating the weighted outcome
352 models) i) predicting θ_{ij} and γ_i among the treated assuming that $Treatment_i = 1$ and ii)

353 predicting θ_{ij} and γ_i among the treated assuming that $Treatment_i = 0$. In the second step, I
354 calculate the mean WTP for each alternative across all treated individuals, and separately for each
355 counterfactual exposure regimen. Last, the ATT estimates are obtained by calculating the
356 difference in the mean WTP estimates between the counterfactuals.

357 These ATT estimates are unbiased if either the outcome model described by equation (3)
358 is correctly specified or the matching procedure sufficiently reduces imbalance in covariates
359 between those who exercise and those who do not (Chatton & Rohrer, 2024; Funk et al., 2011).
360 Regarding the latter, the CEM method eliminates much of the confounding due to imbalance in
361 measured covariates, though it must be considered that some variation may be present between
362 individuals within a stratum either due to the coarsening of measured covariates or the presence of
363 unmeasured confounders. In all, my use of covariate balancing techniques prior to choice modeling
364 is not intended to estimate true “causal” effects of physical exercise on WTP for protein. Rather,
365 it demonstrates how demand heterogeneity assessments can be improved by minimizing
366 confounding influences of other factors when the effect of a specific, self-selected subgroup
367 indicator (e.g., physical exercise) is the primary interest.

368 There is debate among researchers whether uncertainty in the matching procedure needs to
369 be considered when estimating the variance of treatment effects (Stuart, 2010). Further, bootstrap
370 confidence intervals prescribed by Funk et al. (2011) and Snowden et al. (2011) are not practical
371 in my application to discrete choice modeling, requiring many estimations of equation (3) across
372 all sets of choice data. Thus, I do not consider uncertainty in the matching procedures, but rather
373 construct Krinsky and Robb (1986) confidence intervals to account for uncertainty in outcome
374 estimation.

375 **3 Results and Discussion**

376 Appendix Tables A1 and A2 provide parameter estimates obtained from the 18 choice models.
 377 These models include between 258 and 274 parameters. For the purposes of readability, I report
 378 only the price effects, interactions with the treatment indicator, and model fit measures.

379 Mean WTP estimates and differences in mean WTP between treated and control groups
 380 are the primary interest in this study. Table 3 depicts the mean WTP of those who exercise or
 381 intentionally consume protein for fitness goals (i.e., the treated) and those who do not using the
 382 full, unmatched sample. These reflect standard demand estimation results that do not consider
 383 confounding characteristics of other consumer traits. Also depicted are the effects of treatment on
 384 WTP that are obtained by the doubly robust standardization procedure using CEM and GFM,
 385 which illustrate how demand heterogeneity conclusions are impacted by confounding
 386 characteristics of consumers.

387 **Table 3. Physical Exercise Effects on WTP for Retail Protein (\$/lb)**

Product	Treated ^a	Untreated	Difference	Doubly Robust ATT	
				CEM	GFM
<u>30+ Min/Week Aerobic Exercise^b</u>					
Ribeye steak	16.88	15.00	1.88	0.14*	0.97*
Ground beef	8.53	6.79	1.74	0.42*	1.19*
Pork chop	7.24	5.53	1.71	0.46*	1.27*
Bacon	5.91	4.76	1.16	0.29*	0.94*
Chicken breast	8.47	6.34	2.12	0.67*	1.55*
Plant-based patty	7.69	5.84	1.85	0.97*	1.93*
Shrimp	9.71	8.27	1.43	0.46*	1.13*
Beans and rice	3.56	1.88	1.68	0.65*	1.40*
<u>30+ Min/Week Strength Exercise</u>					
Ribeye steak	17.99	14.90	3.09	0.55*	1.78*
Ground beef	9.58	6.66	2.92	0.74*	1.96*
Pork chop	8.14	5.51	2.63	0.74*	2.00*
Bacon	6.58	4.71	1.87	0.49*	1.32*
Chicken breast	9.39	6.46	2.93	0.92*	2.07*
Plant-based patty	8.12	6.33	1.79	0.60*	1.20*
Shrimp	10.18	8.52	1.66	0.43*	1.23*
Beans and rice	4.08	2.15	1.93	0.70*	1.31*

Product	Treated ^a	Untreated	Difference	Doubly Robust ATT	
				CEM	GFM
<u>Intentional Consumer</u>					
Ribeye steak	20.63	15.09	5.54	1.91*	3.49*
Ground beef	12.02	6.87	5.15	1.31*	3.06*
Pork chop	10.15	5.75	4.40	1.15*	2.77*
Bacon	8.18	4.86	3.32	0.92*	2.13*
Chicken breast	11.62	6.73	4.89	1.23*	3.12*
Plant-based patty	9.09	6.62	2.47	0.82*	1.18*
Shrimp	11.49	8.69	2.80	0.78*	2.20*
Beans and rice	5.53	2.35	3.19	1.02*	1.86*

388 Note: ^aColumns are mean WTP across treated individuals in the full
 389 sample, mean WTP across untreated individuals in the full sample,
 390 the difference in mean WTP between treated and untreated
 391 individuals in the full sample, the treatment effect using coarsened
 392 exact matching (CEM), and the treatment effect using generalized
 393 full matching (GFM). ^bTreatments are spending at least 30 m/wk in
 394 aerobic exercise, spending at least 30 m/wk in strength-based
 395 exercise, and intentionally consuming protein to meet a fitness-
 396 related goal. Asterisks (*) denote statistically significant treatment
 397 effects using 95 percent Krinsky and Robb (1986) confidence
 398 intervals.

399

400 It is immediately obvious that individuals who exercise or who intentionally consume
 401 protein to meet fitness-related goals are willing to pay more for all evaluated retail protein sources.
 402 Differences in mean WTP between subgroups range from \$1.16 per pound for bacon (aerobic
 403 exercise treatment) to \$5.54 per pound for ribeye steak (intentional consumption treatment). These
 404 differences are, with the exception of plant-based patty, smallest when separating subgroups by
 405 aerobic exercise activity and largest when separating by intentional protein consumption. These
 406 results align with my expectations as aerobic exercise is not generally intended to result in muscle
 407 growth (requiring protein) and intentionally consuming protein to meet fitness-related goals is a
 408 distinct indicator of commitment to those goals and, more broadly, nutrition. Further, higher mean
 409 WTP for protein among those who exercise indicates that, *ceteris paribus*, these individuals may

410 i) purchase relatively higher volumes of protein products in a retail setting than those who do not
411 exercise or ii) purchase at a similar volume but have relatively higher expenditures as they shift to
412 products with higher quality or value added (e.g., “high in protein” labels, convenient protein
413 snacks, etc.).

414 Discrepancies between the standard heterogeneity assessment and causal inference
415 approaches are more interesting. For example, those who participate in aerobic exercise are willing
416 to pay \$1.88 more per pound for ribeye steak than those who do not, on average. However, when
417 I implement covariate balancing methods—considering that sex, age, income, and other factors
418 influence both the proclivity to exercise and preference for protein goods—the effect of the aerobic
419 exercise treatment declines to between \$0.14 (CEM) and \$0.97 (GFM) per pound. This is
420 consistent across products, treatments, and matching methods (with the exception of plant-based
421 patty, aerobic exercise, and GFM). These results illustrate that other consumer traits may underpin
422 heterogeneity in food demand and, thus, bias estimates of the consumer characteristic of interest,
423 as evident when comparing simple associations to CEM- and GFM-derived effects of treatment
424 on WTP. This is problematic in that food marketing or healthy-eating campaigns may not have the
425 intended result if focused on a specific consumer type. As a simplistic example, a retailer may
426 believe that those who participate in physical exercise have higher WTP for lean protein sources
427 (i.e., chicken breast) and, correspondingly, market those products with a “low in calorie” or
428 physical activity calorie equivalent label. In reality, factors such as income (if correlated with both
429 physical exercise and preferences for chicken breast) may drive the higher WTP and the new labels
430 introduce an unnecessary cost of production.

431 That said, balancing covariates prior to demand estimation still results in increases in WTP
432 (i.e., rightward shift effects on protein demand) ranging from \$0.14 per pound for ribeye steak

433 (aerobic exercise treatment) to \$1.91 per pound also for ribeye steak (intentional consumption
434 treatment) using CEM. Further, these impacts of physical exercise reflect sizable premiums over
435 the mean WTP of those who do not exercise. For instance, participating in strength-based exercise
436 yields higher WTP for chicken breast of \$0.92 per pound, which is a roughly 14 percent increase
437 over the mean WTP reported among those who are not involved in strength-based exercise (\$6.46
438 per pound). These results suggest that i) there is potential for food manufacturers and retailers to
439 capture meaningfully higher WTP among the physically active population through targeted
440 product development and marketing and ii) these fitness-conscious individuals exit the market for
441 protein later than other consumers in instances of increasing prices. Importantly, positive shift
442 effects on protein demand are observed across each treatment group. Thus, firm-level decisions
443 and aggregate market participation depend on a multitude of physical exercise methods.

444 Further, market trends such as recently experienced cattle inventory contractions (U.S.
445 Department of Agriculture Economic Research Service, 2023)—which, all else equal, yield higher
446 beef prices—and observed price increases across other protein sources (Federal Reserve Bank of
447 St. Louis, 2025a, 2025b) may cause the physically active population to represent a progressively
448 larger share of the market for protein as other consumers alter their purchasing habits.
449 Additionally, higher WTP for protein among the physically active may serve to offset recent
450 reductions (or stagnation) in per capita red meat and poultry consumption (U.S. Department of
451 Agriculture Economic Research Service, 2024). Put another way, behavioral determinants of
452 protein demand such as physical exercise may bolster domestic livestock and meat industries in
453 periods of distress. This is consistent with Lusk and Tonsor (2016) remarks that higher income
454 households, if less price sensitive than lower income households, may compose a larger share of
455 total purchases as meat prices increase. However, upstream players in the livestock and meat

456 supply chain should recognize that, while those who exercise may be “reliable consumers” and
457 bolster demand in periods of industry distress, price-induced changes in the composition of the
458 market (in terms of which consumers are participating) require flexibility in marketing and product
459 offerings in order to meet the changing needs of consumers. Such flexibility in firm- and industry-
460 level decision making should consider consumers’ wide variety of methods of physical exercise,
461 as suggested by positive and meaningful effects on WTP for protein observed across every
462 treatment group.

463 Similar results are observed in a foodservice setting. Table 4 depicts mean WTP for
464 foodservice protein among those who exercise (i.e., the treated) and those who do not using the
465 full, unmatched sample. Also depicted are the CEM- and GFM-derived differences in WTP that
466 account for confounding characteristics of consumers. Again, those who participate in physical
467 exercise or otherwise intentionally consume protein to meet fitness-related goals are willing to pay
468 more for all evaluated protein goods, and by a magnitude of up to \$8.56 for a meal including ribeye
469 steak as the entrée (intentional consumption treatment). Like in the retail assessment, this
470 association of WTP with physical exercise is smallest (largest) in magnitude for aerobic exercise
471 (intentional, fitness-driven protein consumption), with the exception of plant-based patty. Higher
472 WTP among those who exercise in a foodservice setting are less likely to result in higher volumes
473 purchased (relative to those who do not exercise), as meals in many dine-out settings have a
474 standardized quantity of protein. More likely, higher WTP for foodservice protein found in this
475 study may materialize as physically active consumers purchasing higher-quality protein items or
476 purchasing protein in higher-quality food outlets, increasing their aggregate expenditures on
477 protein.

478 **Table 4. Physical Exercise Effects on WTP for Foodservice Protein (\$/lb)**

Product	Treated ^a	Untreated	Difference	Doubly Robust ATT	
				CEM	GFM
<u>30+ Min/Week Aerobic Exercise^b</u>					
Ribeye steak	26.55	23.85	2.70	0.20	1.35*
Hamburger	19.73	17.05	2.68	0.47*	1.53*
Pork chop	16.21	13.00	3.22	0.94*	2.45*
Baby back ribs	18.90	16.68	2.22	0.34*	1.50*
Chicken breast	18.78	15.39	3.38	1.26*	2.63*
Plant-based patty	12.51	8.36	4.15	2.36*	3.40*
Shrimp	18.39	16.10	2.29	0.46*	1.62*
Salmon	19.96	16.04	3.91	1.78*	2.68*
<u>30+ Min/Week Strength Exercise</u>					
Ribeye steak	28.33	23.57	4.76	1.37*	3.25*
Hamburger	21.43	16.80	4.63	1.27*	3.18*
Pork chop	17.46	13.36	4.11	1.51*	3.32*
Baby back ribs	20.02	16.74	3.28	1.11*	2.60*
Chicken breast	19.99	15.87	4.12	1.56*	3.31*
Plant-based patty	13.20	9.71	3.49	1.81*	2.31*
Shrimp	19.46	16.22	3.24	1.28*	2.77*
Salmon	20.99	16.91	4.07	2.17*	3.24*
<u>Intentional Consumer</u>					
Ribeye steak	32.47	23.92	8.56	2.47*	6.06*
Hamburger	25.47	17.16	8.31	1.96*	5.17*
Pork chop	20.29	13.88	6.42	1.11*	4.31*
Baby back ribs	22.62	17.10	5.53	1.11*	3.93*
Chicken breast	23.10	16.32	6.78	2.11*	5.06*
Plant-based patty	14.33	10.49	3.84	1.01*	1.68*
Shrimp	21.86	16.60	5.26	1.34*	3.86*
Salmon	23.90	17.39	6.52	2.20*	4.93*

479 Note: ^aColumns are mean WTP across treated individuals in the full
480 sample, mean WTP across untreated individuals in the full sample,
481 the difference in mean WTP between treated and untreated
482 individuals in the full sample, the treatment effect using coarsened
483 exact matching (CEM), and the treatment effect using generalized
484 full matching (GFM). ^bTreatments are spending at least 30 m/wk in
485 aerobic exercise, spending at least 30 m/wk in strength-based
486 exercise, and intentionally consuming protein to meet a fitness-
487 related goal. Asterisks (*) denote statistically significant treatment
488 effects using 95 percent Krinsky and Robb (1986) confidence
489 intervals.

490

491 The effect estimates using CEM and GFM methods are again consistently smaller in
492 magnitude than the associations of WTP with physical exercise. However, these demand-shifting
493 effects are always positive and generally statistically significant at the five percent level (with the
494 exception of ribeye steak, aerobic exercise treatment, CEM). As an example, those who participate
495 in strength-based exercise are willing to pay \$4.63 more for a hamburger meal than those who do
496 not, on average. However, the impact of strength-based exercise participation falls to \$1.27 and
497 \$3.18 for CEM and GFM methods, respectively. That said, these effects still reflect notable
498 increases in WTP. The \$1.27 increase in WTP for a hamburger meal in foodservice is a roughly
499 7.6 percent increase over the mean WTP of individuals who do not participate in strength-based
500 exercise (\$16.80).

501 Like in the retail setting, the magnitude of effects in foodservice suggests that substantial
502 price increases in protein-based menu items could be experienced before fitness-focused
503 consumers elect not to purchase. Additionally, decisions made on restaurant location (i.e., in
504 proximity to a gym), theme, and menu offerings may need to seriously consider broad trends in
505 consumers' exercise behavior in order for foodservice outlets to capture additional revenue. I leave
506 marketing, pricing, and other retail and foodservice strategies to industry decision makers but,
507 given my findings, emphasize that the economic outcomes observed by U.S. livestock and meat
508 producers are in part driven by nontraditional sources of demand heterogeneity (i.e., physical
509 exercise habits).

510 As a final note on the implications of my results, the rightward-shift effects of physical
511 exercise and intentional, fitness-driven protein consumption in both retail and foodservice settings
512 additionally reflects a *rotation* effect on aggregate protein demand. That is, physical exercise yields
513 a uniform increase in the valuation of protein among individuals who participate in those activities.

514 However, this increases the overall dispersion of preferences for protein as individuals who begin
515 to exercise move into the upper end of the distribution of valuation. As discussed by Johnson and
516 Myatt (2006), this increase in dispersion reflects a clockwise rotation of the aggregate inverse
517 demand curve for protein and lessens aggregate own-price price sensitivity (i.e., aggregate protein
518 demand becomes more inelastic). Thus, the increasing prevalence of physical exercise among U.S.
519 citizens may explain industry observations that consumers are purchasing meat products at record
520 levels despite being in a high-price environment (Shike, 2025).

521 ***3.1 Sensitivity and Limitations***

522 The CEM-derived differences in WTP estimates are generally robust to my specification of θ_{ij}
523 and γ_i . That is, omitting the interactions of the treatment indicator with the alternative-specific
524 constants or price term yields similar conclusions regarding consumer preferences. Appendix
525 Tables A3 and A4 depict these differences. Physical exercise effects on WTP for protein are still
526 positive across all products, outlets, and treatments. The magnitudes of effects are generally lower
527 than the primary results when the alternative-specific constant interactions are omitted, but similar
528 when the price term interaction is omitted. Further, omitting the intentional consumption treatment
529 interaction with the price term in foodservice results in some effects not being statistically
530 significant at the five percent level (i.e., hamburger, baby back ribs, and shrimp). However, all
531 other sensitivity assessment results are aligned with my primary findings in terms of direction and
532 statistical significance.

533 Though the primary results reported in this study are robust to matching method and utility
534 specification, several limitations should be discussed. First, and most important, my identification
535 strategy relies on the selection on observables assumption. That is, after having controlled for
536 observed sociodemographic characteristics, the decision to participate in physical exercise is as

537 good as randomly assigned. However, a limitation of matching techniques exists in that
538 unobserved variables may determine both physical exercise habits and WTP for protein,
539 confounding the effect estimates. When selection on unobservables is a concern, instrumental
540 variable (IV) approaches are often utilized instead to derive causal effects; however, I am unable
541 to identify variables in the MDM survey that satisfy both the relevance and exclusion criteria for
542 IV estimation. Thus, the effects I present should not be interpreted as truly causal.

543 Second, MDM-based choice data reflects stated preferences and, thus, is subject to
544 hypothetical bias in reported WTP. Various *ex post* approaches have been developed to reduce the
545 effects of hypothetical bias in stated preference studies, including data screening, related market
546 calibration, and uncertainty recoding (Loomis, 2014). I rely on the data screening method by
547 omitting MDM participants from analysis if they are not their household's primary grocery
548 shopper or if they fail one of two attentiveness checks. Further, since my research objective is to
549 estimate the impacts of physical exercise on WTP for protein products, hypothetical bias would
550 have to exist *disproportionately* between treated (i.e., those who exercise) and control groups to
551 be a major concern. I have no reason to believe that this is the case, especially since treated and
552 control groups are balanced on all observable sociodemographic characteristics.

553 **4 Conclusions**

554 This study is motivated by substantial price increases recently experienced across a variety of
555 protein sources, a new body of economic literature focused on exercise- and fitness-related protein
556 demand, and concerns that erroneous conclusions are drawn when evaluating endogenous demand
557 transformations. I estimate the effects of physical exercise on consumers' WTP for retail and
558 foodservice protein products by balancing exercising and non-exercising subgroups on measured
559 covariates and then utilizing the matched samples in multinomial logit-based choice modeling. My

560 findings indicate that those who participate in aerobic or strength-based exercise, or otherwise
561 intentionally consume protein to meet fitness-related goals, are uniformly willing to pay more for
562 protein-dense food items in retail and foodservice outlets. The effects of physical exercise on WTP
563 are sizable, ranging from \$0.29 per pound for bacon (aerobic exercise, retail setting) to \$2.47 per
564 ribeye steak meal (intentional protein consumption, foodservice setting) after controlling for
565 observed confounders.

566 Moving forward, future researchers should consider that the effects of physical exercise
567 pursuits may carry over to industries other than meat and livestock. My results related to plant-
568 based patties and beans and rice suggest as much. Fruits, vegetables, dairy, and dietary
569 supplements (e.g., plant- or dairy-based protein powders) may be impacted similarly by societal
570 trends in health and fitness. Future researchers should address how consumers change their
571 consumption and purchasing patterns for those food groups and how the economic outcomes of
572 the respective industries are impacted. Tangentially related, such future research efforts should
573 also address how overall diet composition and quality changes as consumers begin to participate
574 in physical exercise. Physical exercise and any corresponding dietary changes may have joint
575 downstream impacts on medical expenses, health insurance enrollment, or any other market related
576 to the physical health of consumers.

577 Additionally, various other health-related demand transformations are impacting the food
578 system and their economic impacts are not well understood. For instance, “food is medicine”
579 interventions have arisen as a method to combat diet-related chronic disease by providing patients
580 with medically tailored meals and groceries, and produce prescriptions (Downer et al., 2020). Such
581 interventions typically call for increased consumption of food products such as fruit and
582 vegetables. More recently, glucagon-like peptide-1 (GLP-1) receptor agonists have changed how

583 many consumers purchase and consume food (Dilley et al., 2025; Roe, 2024). Notably, these
584 weight loss medications are highly correlated with factors such as sex and income. Thus,
585 consumers who self-select into GLP-1 treatment are already likely to exhibit fundamentally
586 different food demand schedules, necessitating methods of causal inference—such as those that
587 appear in this study—to accurately identify how the medications affect food demand.

588 My hope is that this study provides a framework and inspiration for other researchers to
589 tackle those emerging issues related to health- and fitness-trends and food purchasing behavior.

590 **References**

591 Austin, P. C., & Stuart, E. A. (2015). Moving Towards Best Practice When Using Inverse
592 Probability of Treatment Weighting (IPTW) Using the Propensity Score to Estimate
593 Causal Treatment Effects in Observational Studies. *Statistics in Medicine*, 34(28), 3661–
594 3679. <https://doi.org/10.1002/sim.6607>

595 Beatty, T. K. M., & Tuttle, C. J. (2015). Expenditure Response to Increases in In-Kind Transfers:
596 Evidence from the Supplemental Nutrition Assistance Program. *American Journal of
597 Agricultural Economics*, 97(2), 390–404. <https://doi.org/10.1093/ajae/aau097>

598 Bina, J. D., & Tonsor, G. T. (2024a). Behavioral Correlates of U.S. Retail Protein Demand: The
599 Case of Exercise-Driven Protein Consumption. *Journal of the Agricultural and Applied
600 Economics Association*, 3(4), 690–705. <https://doi.org/10.1002/jaa2.142>

601 Bina, J. D., & Tonsor, G. T. (2024b). Non-Linear Association of Exercise with Animal Protein
602 Consumption Among U.S. Adults. *Nutrients*, 16(10), 1438.
603 <https://doi.org/10.3390/nu16101438>

604 Bina, J. D., Tonsor, G. T., & Coffey, B. K. (2024). No Beef with Increased Media: The Impacts
605 of Fitness Media on US Meat Demand. *Journal of Agricultural and Resource Economics*,
606 49(3), 593–609. <https://doi.org/10.22004/ag.econ.343517>

607 Brester, G. W., & Schroeder, T. C. (1995). The Impacts of Brand and Generic Advertising on
608 Meat Demand. *American Journal of Agricultural Economics*, 77(4), 969–979.
609 <https://doi.org/10.2307/1243820>

610 Brookhart, M. A., Schneeweiss, S., Rothman, K. J., Glynn, R. J., Avorn, J., & Stürmer, T.
611 (2006). Variable Selection for Propensity Score Models. *American Journal of
612 Epidemiology*, 163(12), 1149–1156. <https://doi.org/10.1093/aje/kwj149>

613 Chatton, A., & Rohrer, J. M. (2024). The Causal Cookbook: Recipes for Propensity Scores, G-
614 Computation, and Doubly Robust Standardization. *Advances in Methods and Practices in*
615 *Psychological Science*, 7(1). <https://doi.org/10.1177/25152459241236149>

616 Coffey, B. K., Schroeder, T. C., & Marsh, T. L. (2011). Disaggregated Household Meat Demand
617 with Censored Data. *Applied Economics*, 43(18), 2343–2363.
618 <https://doi.org/10.1080/00036840903194238>

619 Daniel, C. R., Cross, A. J., Koebnick, C., & Sinha, R. (2011). Trends in Meat Consumption in
620 the USA. *Public Health Nutrition*, 14(4), 575–583.
621 <https://doi.org/10.1017/S1368980010002077>

622 Dilley, A., Adhikari, S., Silwal, P., L. Lusk, Jayson., & McFadden, B. R. (2025). Characteristics
623 and Food Consumption for Current, Previous, and Potential Consumers of GLP-1s. *Food*
624 *Quality and Preference*, 129, 105507. <https://doi.org/10.1016/j.foodqual.2025.105507>

625 Downer, S., Berkowitz, S. A., Harlan, T. S., Olstad, D. L., & Mozaffarian, D. (2020). Food is
626 Medicine: Actions to Integrate Food and Nutrition Into Healthcare. *BMJ*.
627 <https://doi.org/10.1136/bmj.m2482>

628 Federal Reserve Bank of St. Louis. (2025a, January 15). *Average Price: All Other Pork*
629 *(Excluding Canned Ham and Luncheon Slices) (Cost per Pound/453.6 Grams) in U.S.*
630 *City Average*. FRED Economic Data. <https://fred.stlouisfed.org/series/APU0000FD4101>

631 Federal Reserve Bank of St. Louis. (2025b, January 15). *Average Price: Chicken, Fresh, Whole*
632 *(Cost per Pound/453.6 Grams) in U.S. City Average*. FRED Economic Data.
633 <https://fred.stlouisfed.org/series/APU0000706111>

634 Federal Reserve Bank of St. Louis. (2025c, January 15). *Average Price: Ground Beef, 100%*
635 *Beef (Cost per Pound/453.6 Grams) in U.S. City Average*. FRED Economic Data.
636 <https://fred.stlouisfed.org/series/APU0000703112>

637 Funk, M. J., Westreich, D., Wiesen, C., Stürmer, T., Brookhart, M. A., & Davidian, M. (2011).
638 Doubly Robust Estimation of Causal Effects. *American Journal of Epidemiology*, 173(7),
639 761–767. <https://doi.org/10.1093/aje/kwq439>

640 Greenland, S. (2003). Quantifying Biases in Causal Models: Classical Confounding vs Collider-
641 Stratification Bias. *Epidemiology*, 14(3), 300–306.
642 <https://doi.org/10.1097/01.EDE.0000042804.12056.6C>

643 Hansen, B. B. (2004). Full Matching in an Observational Study of Coaching for the SAT.
644 *Journal of the American Statistical Association*, 99(467), 609–618.
645 <https://doi.org/10.1198/016214504000000647>

646 Hess, S., & Palma, D. (2019). *Apollo*: A Flexible, Powerful and Customisable Freeware Package
647 for Choice Model Estimation and Application. *Journal of Choice Modelling*, 32, 100170.
648 <https://doi.org/10.1016/j.jocm.2019.100170>

649 Ho, D., Imai, K., King, G., Stuart, E., Whitworth, A., & Griefer, N. (2024). *MatchIt*:
650 *Nonparametric Preprocessing for Parametric Causal Inference* (Version 4.6.0) [R].
651 <https://doi.org/10.32614/CRAN.package.MatchIt>

652 Iacus, S. M., King, G., & Porro, G. (2011). Multivariate Matching Methods That Are Monotonic
653 Imbalance Bounding. *Journal of the American Statistical Association*, 106(493), 345–
654 361. <https://doi.org/10.1198/jasa.2011.tm09599>

655 Johnson, J. P., & Myatt, D. P. (2006). On the Simple Economics of Advertising, Marketing, and
656 Product Design. *American Economic Review*, 96(3), 756–784.

657 <https://doi.org/10.1257/aer.96.3.756>

658 Kilders, V., Caputo, V., & Lusk, J. L. (2024). Consumer Preferences for Food Away From
659 Home: Dine in Versus Delivery. *American Journal of Agricultural Economics*, 106(2),
660 496–525. <https://doi.org/10.1111/ajae.12428>

661 Klain, T. J., Lusk, J. L., Tonsor, G. T., & Schroeder, T. C. (2014). An Experimental Approach to
662 Valuing Information. *Agricultural Economics*, 45(5), 635–648.
663 <https://doi.org/10.1111/agec.12112>

664 Krinsky, I., & Robb, A. L. (1986). On Approximating the Statistical Properties of Elasticities.
665 *The Review of Economics and Statistics*, 68(4), 715–719.
666 <https://doi.org/10.2307/1924536>

667 Loomis, J. B. (2014). 2013 WAEA Keynote Address: Strategies for Overcoming Hypothetical
668 Bias in Stated Preference Surveys. *Journal of Agricultural and Resource Economics*,
669 39(1), 34–46.

670 Lusk, J. L. (2017). Consumer Research with Big Data: Applications from the Food Demand
671 Survey (FoodS). *American Journal of Agricultural Economics*, 99(2), 303–320.
672 <https://doi.org/10.1093/ajae/aaw110>

673 Lusk, J. L., & Tonsor, G. T. (2016). How Meat Demand Elasticities Vary with Price, Income,
674 and Product Category. *Applied Economic Perspectives and Policy*, 38(4), 673–711.
675 <https://doi.org/10.1093/aepp/ppv050>

676 McFadden, D. (1973). Conditional Logit Analysis of Qualitative Choice Behavior. *Frontiers in
677 Econometrics*, 105–142.

678 National Academies of Sciences, Engineering, and Medicine. (2006). *Dietary Reference Intakes: 679 The Essential Guide to Nutrient Requirements*. National Academies Press.

680 <http://www.nap.edu/catalog/11537>

681 Olynk, N. J., Wolf, C. A., & Tonsor, G. T. (2012). Production Technology Option Value: The 682 Case of rbST in Michigan. *Agricultural Economics*, 43(s1), 1–9.

683 <https://doi.org/10.1111/j.1574-0862.2012.00615.x>

684 Piggott, N. E., & Marsh, T. L. (2004). Does Food Safety Information Impact U.S. Meat 685 Demand? *American Journal of Agricultural Economics*, 86(1), 154–174.

686 Planet Fitness. (2024, September 30). *SEC Filings*. Planet Fitness.

687 <https://investor.planetfitness.com/investors/financial-information/sec-filings/default.aspx>

688 Roe, B. E. (2024). Food Demand in a Post-Ozempic World. *Choices*.

689 [https://www.choicesmagazine.org/choices-magazine/submitted-articles/food-demand-in-
a-post-ozempic-world](https://www.choicesmagazine.org/choices-magazine/submitted-articles/food-demand-in-690 a-post-ozempic-world)

691 Sävje, F., Higgins, M. J., & Sekhon, J. S. (2021). Generalized Full Matching. *Political Analysis*, 692 29(4), 423–447. <https://doi.org/10.1017/pan.2020.32>

693 Shike, J. (2025, March 24). *Consumer Meat Sales Are Higher Than Ever*. Drovers.

694 <https://www.drovers.com/news/industry/consumer-meat-sales-are-higher-ever>

695 Snowden, J. M., Rose, S., & Mortimer, K. M. (2011). Implementation of G-Computation on a 696 Simulated Data Set: Demonstration of a Causal Inference Technique. *American Journal 697 of Epidemiology*, 173(7), 731–738. <https://doi.org/10.1093/aje/kwq472>

698 Stuart, E. A. (2010). Matching Methods for Causal Inference: A Review and a Look Forward.

699 *Statistical Science*, 25(1), 1–21. <https://doi.org/10.1214/09-STS313>

700 Tonsor, G. T. (2020, March 5). *Meat Demand Monitor—Project Methodology*. AgManager.Info.
701 https://agmanager.info/livestock-meat/meat-demand/monthly-meat-demand-monitor-
702 survey-data/meat-demand-monitor-project

703 Tonsor, G. T. (2024, October 31). *Meat Demand Monitor—October 2024*. AgManager.Info.
704 https://www.agmanager.info/livestock-meat/meat-demand/monthly-meat-demand-
705 monitor-survey-data/meat-demand-monitor-october-2024

706 Tonsor, G. T., & Marsh, T. L. (2007). Comparing Heterogeneous Consumption in U.S. and
707 Japanese Meat and Fish Demand. *Agricultural Economics*, 37(1), 81–91.
708 https://doi.org/10.1111/j.1574-0862.2007.00224.x

709 Tonsor, G. T., & Shupp, R. S. (2011). Cheap Talk Scripts and Online Choice Experiments:
710 “Looking Beyond the Mean.” *American Journal of Agricultural Economics*, 93(4), 1015–
711 1031. https://doi.org/10.1093/ajae/aar036

712 Train, K. (2009). *Discrete Choice Methods with Simulation* (2nd ed.). Cambridge University
713 Press. https://eml.berkeley.edu/books/choice2.html

714 U.S. Bureau of Labor Statistics. (2024, September 30). *American Time Use Survey*. U.S. Bureau
715 of Labor Statistics. https://www.bls.gov/tus/database/tusa-1tabs.htm

716 U.S. Department of Agriculture Economic Research Service. (2023, April 20). *U.S. Beef Cow
717 Inventory Settling at Progressively Lower Levels, Drought Contributing to Most Recent
718 Declines*. Economic Research Service. http://www.ers.usda.gov/data-products/chart-
719 gallery/gallery/chart-detail/?chartId=106369

720 U.S. Department of Agriculture Economic Research Service. (2024). *Livestock, Dairy, and
721 Poultry Outlook: July 2024* (Livestock, Dairy, and Poultry Outlook No. LDP-M-361).
722 U.S. Department of Agriculture Economic Research Service.

723 <https://downloads.usda.library.cornell.edu/usda-esmis/files/g445cd121/2j62tw21b/8g84pb98h/LDP-M-361.pdf>

724

725 U.S. Department of Agriculture Economic Research Service. (2025a, January 5). *Farm Income and Wealth Statistics—Cash Receipts by Commodity*. Economic Research Service.

726

727 <https://data.ers.usda.gov/reports.aspx?ID=4057>

728 U.S. Department of Agriculture Economic Research Service. (2025b, February 19). *Food Expenditure Series*. Economic Research Service. <https://www.ers.usda.gov/data-products/food-expenditure-series>

729

730

731 Vansteelandt, S., & Keiding, N. (2011). Invited Commentary: G-Computation—Lost in Translation? *American Journal of Epidemiology*, 173(7), 739–742.

732

733 <https://doi.org/10.1093/aje/kwq474>

734 Vass, C. M., Boeri, M., Poulos, C., & Turner, A. J. (2022). Matching and Weighting in Stated Preferences for Health Care. *Journal of Choice Modelling*, 44, 100367.

735

736 <https://doi.org/10.1016/j.jocm.2022.100367>

737 Wang, Y., Beydoun, M. A., Caballero, B., Gary, T. L., & Lawrence, R. (2010). Trends and

738 Correlates in Meat Consumption Patterns in the US Adult Population. *Public Health Nutrition*, 13(9), 1333–1345. <https://doi.org/10.1017/S1368980010000224>

739

740 Wilson, J., & Wilson, G. J. (2006). Contemporary Issues in Protein Requirements and

741 Consumption for Resistance Trained Athletes. *Journal of the International Society of*

742 *Sports Nutrition*, 3(1), 7–27. <https://doi.org/10.1186/1550-2783-3-1-7>

743 Yang, O., Sivey, P., de Silva, A. M., & Scott, A. (2020). Parents' Demand for Sugar Sweetened

744 Beverages for Their Pre-School Children: Evidence from a Stated-Preference

745 Experiment. *American Journal of Agricultural Economics*, 102(2), 480–504.
746 <https://doi.org/10.1002/ajae.12033>
747 Zeng, L., Ruan, M., Liu, J., Wilde, P., Naumova, E. N., Mozaffarian, D., & Zhang, F. F. (2019).
748 Trends in Processed Meat, Unprocessed Red Meat, Poultry, and Fish Consumption in the
749 United States, 1999-2016. *Journal of the Academy of Nutrition and Dietetics*, 119(7),
750 1085-1098.e12. <https://doi.org/10.1016/j.jand.2019.04.004>
751

752 **Appendix**

753

754 The following text precedes the presented retail-framed choice tasks. *“Imagine you are at the*
 755 *grocery store buying the ingredients to prepare a meal for you or your household. Each product*
 756 *would be boneless and uncooked for you to prepare at home as desired. For each of the following*
 757 *9 questions, please indicate which you would most likely buy. The only difference across these 9*
 758 *questions is the price (\$/lb) of each option.”*

759 **Figure A1. Retail DCE Example Choice Task**

Which of the following would you purchase?

								If these were the only options, I would buy something else.
Ribeye Steak \$19.49/lb	Ground Beef \$6.99/lb	Pork Chop \$7.49/lb	Bacon \$5.49/lb	Chicken Breast \$1.49/lb	Plant-Based Patty \$14.49/lb	Shrimp \$10.99/lb	Beans and Rice \$2.99/lb	

760 I would choose:

761

762 The protein contents of these retail products per 100 grams are as follows:

Product	NDB Number	Protein Content (per 100 g)
Ribeye steak (boneless, choice, grilled)	23267	24.2 g
Ground beef (85% lean, crumbles, pan-brown)	23570	27.7 g
Pork chop (boneless, broiled)	10068	27.6 g
Bacon (pan fried)	10862	33.9 g
Chicken breast (roasted)	5064	31.0 g
Plant-based patty (Beyond Burger)	-	17.7 g
Shrimp (cooked)	15271	24.0 g
Beans and rice (white)	-	6.5 g

763 Note: The FDC ID for plant-based patty is 2367272. The FDC ID for beans and rice is 2708990.

764 U.S. Department of Agriculture Agricultural Research Service. (2025). FoodData Central. USDA
 765 Agricultural Research Service. <https://fdc.nal.usda.gov/>

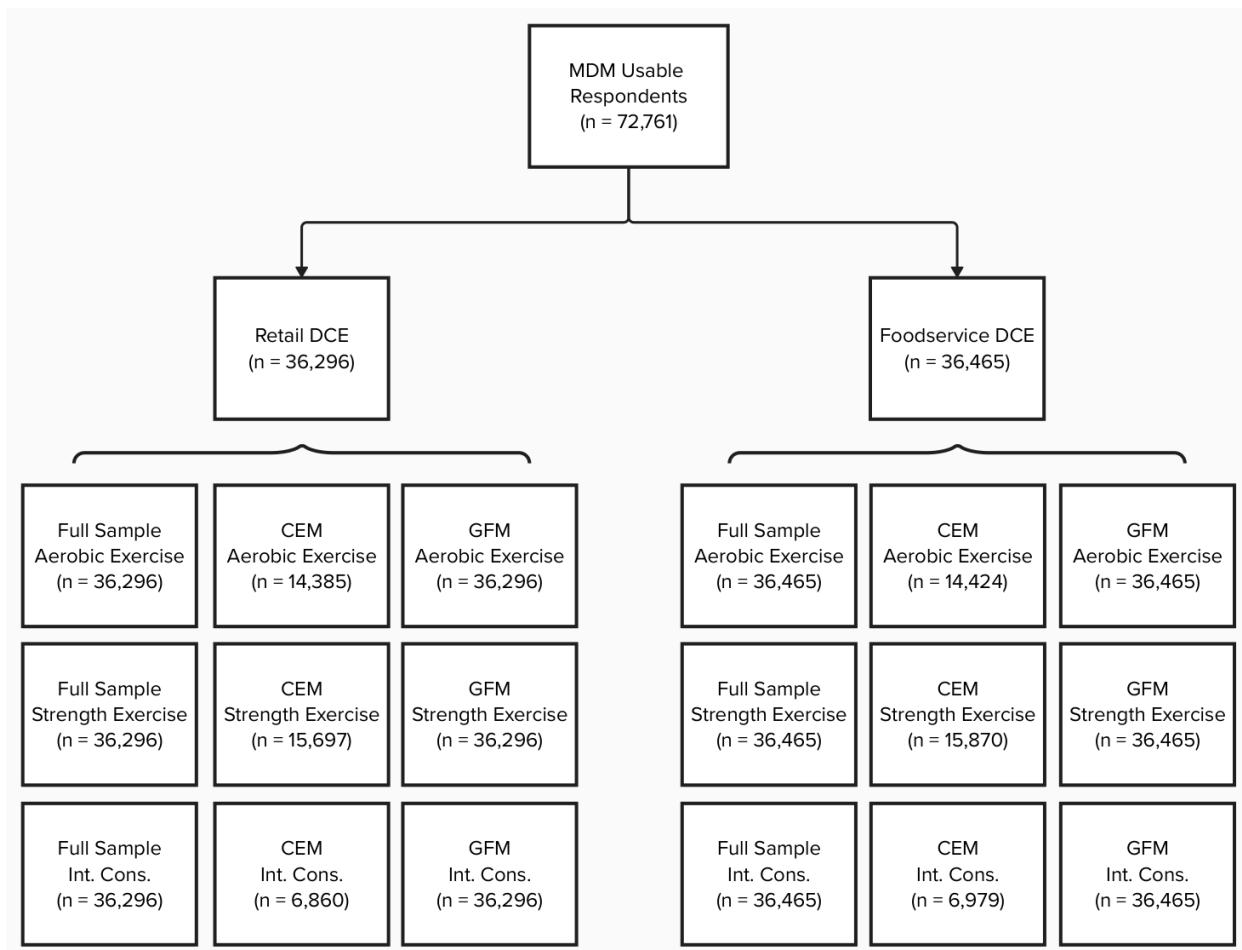
766 The following text precedes the presented foodservice-framed choice tasks. “*Imagine you are at
767 your local restaurant for dinner. For each of the following 9 questions, please indicate which main
768 entrée you would most likely select for your meal. Each product would be the dinner meal's main
769 entree, would be prepared as you desire, and served with two side dishes of your choosing. The
770 only difference across these 9 questions is the meal price associated with each main entrée option.*”

771 **Figure A2. Foodservice DCE Example Choice Task**

Which of the following would you purchase?

772 I would choose:

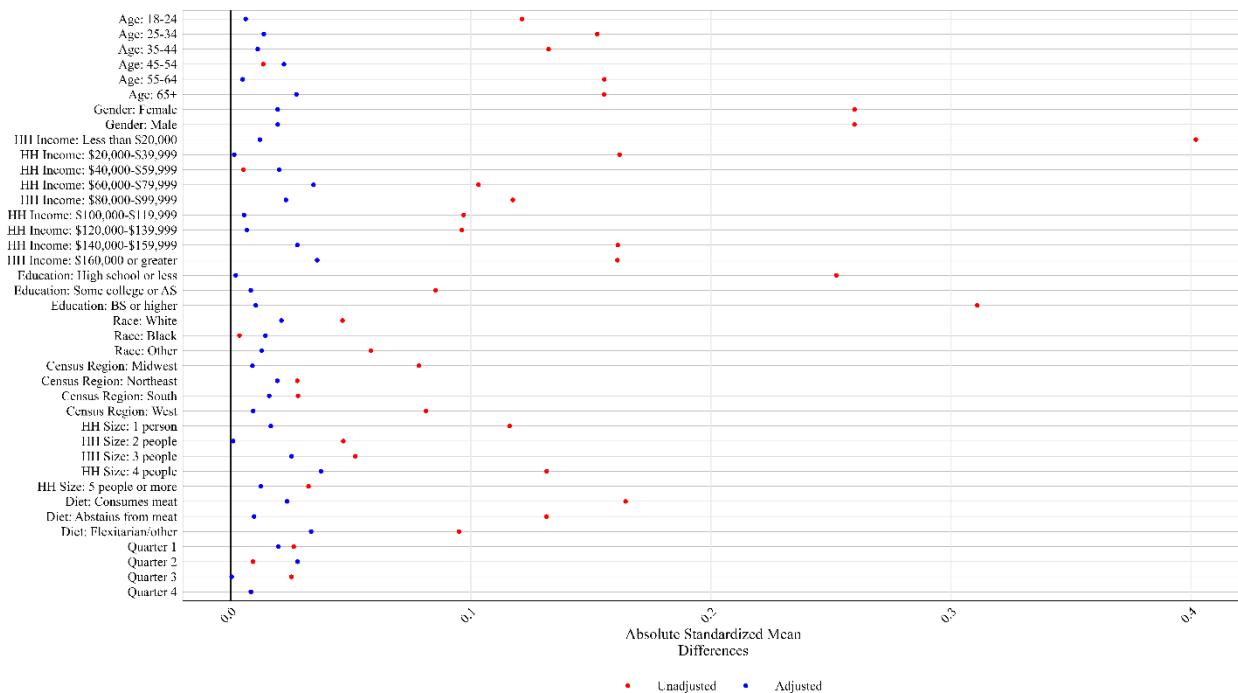
773


774 The protein contents of these foodservice products per 100 grams are as follows:

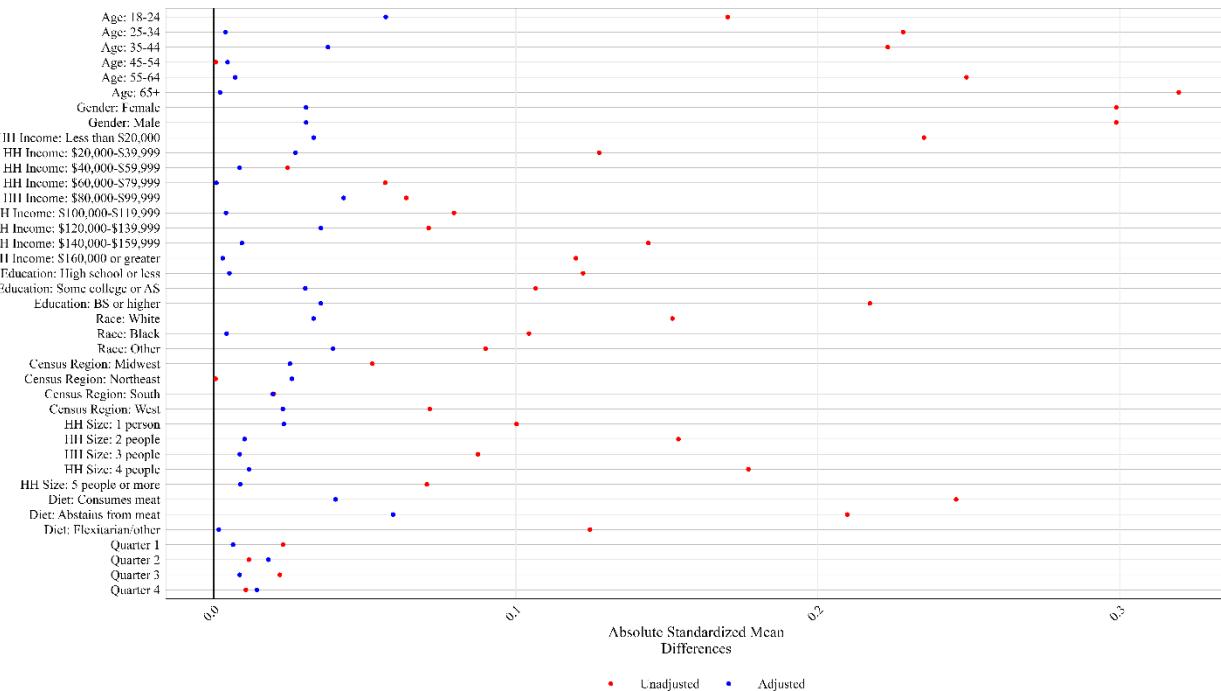
Product	NBD Number	Protein Content (per 100 g)
Ribeye steak (boneless, choice, grilled)	23267	24.2 g
Beef hamburger (85% lean, pan-broiled)	23569	24.6 g
Pork chop (boneless, broiled)	10068	27.6 g
Baby back ribs (boneless, braised)	10195	26.3 g
Chicken breast (roasted)	5064	31.0 g
Plant-based patty (Beyond Burger)	-	17.7 g
Shrimp (cooked)	15271	24.0 g
Salmon (smoked)	15077	18.3 g

775 Note: These protein contents reflect the entrée and do not consider any side dishes. The FDC ID
776 for plant-based patty is 2367272.

777 U.S. Department of Agriculture Agricultural Research Service. (2025). FoodData Central. USDA
778 Agricultural Research Service. <https://fdc.nal.usda.gov/>

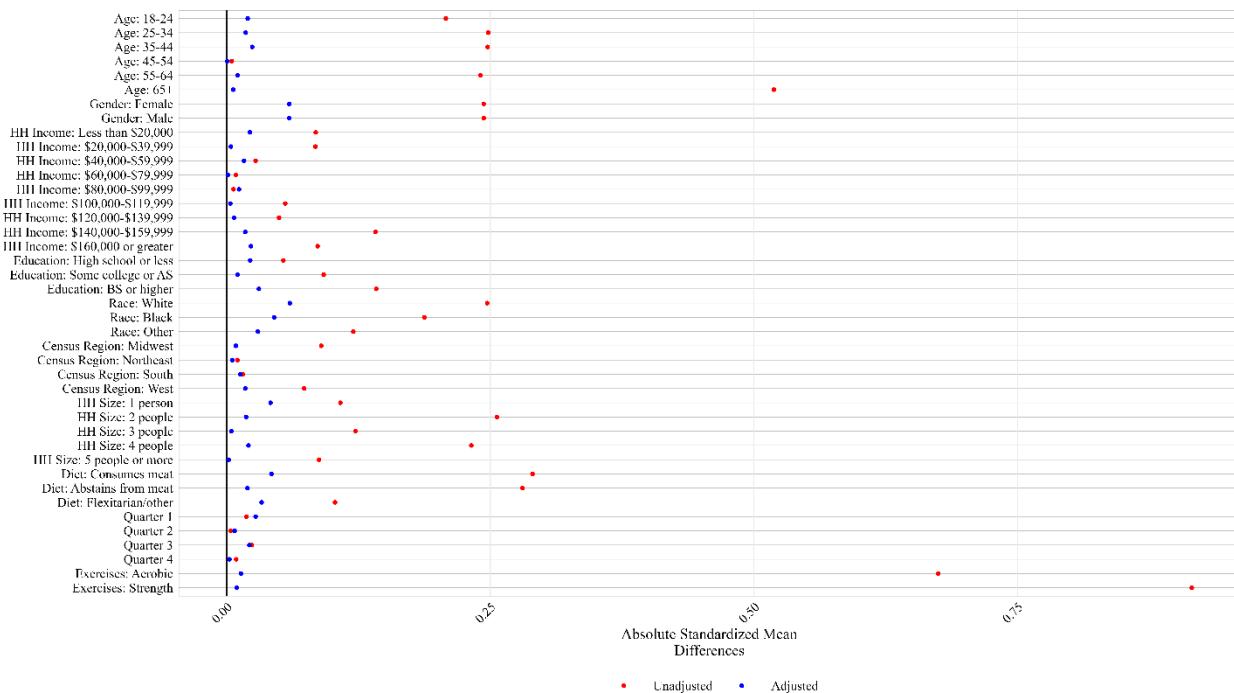

779 **Figure A3. Overview of Full and Matched Samples**

780


781

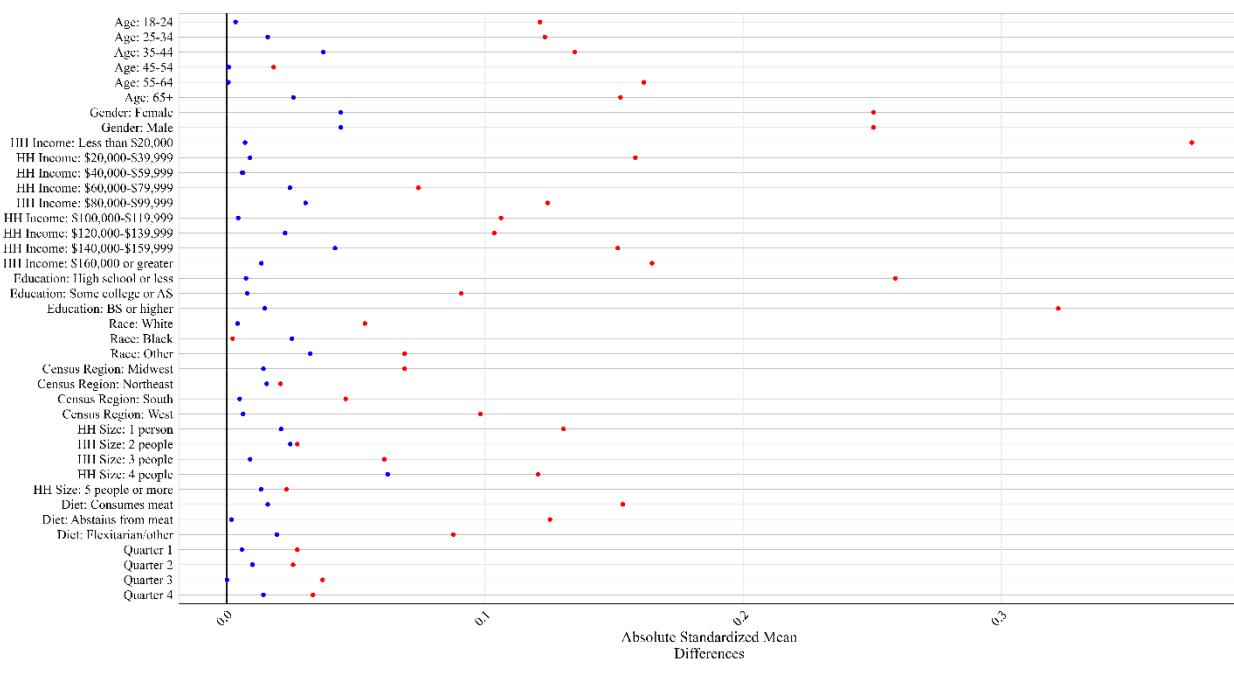
782 **Figure A4. GFM Covariate Balance—Retail DCE, Aerobic Exercise Treatment**

783


784 **Figure A5. GFM Covariate Balance—Retail DCE, Strength-Based Exercise Treatment**

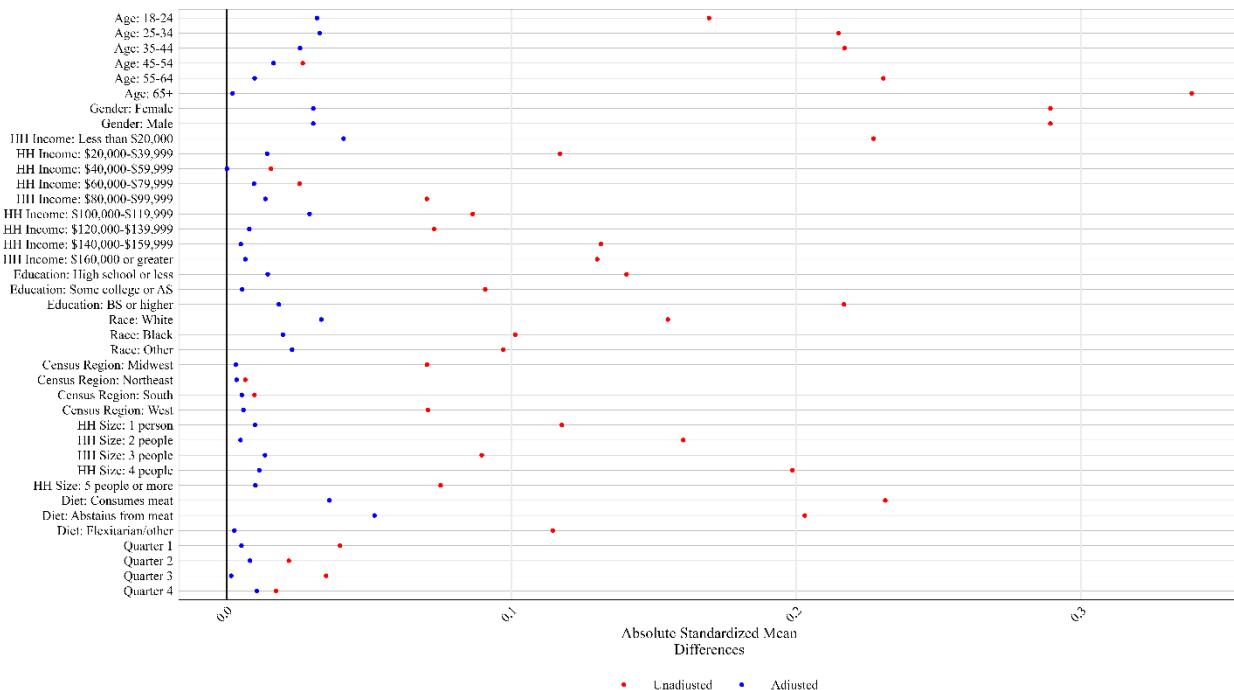
785

786


787 **Figure A6. GFM Covariate Balance—Retail DCE, Intentional Consumption Treatment**

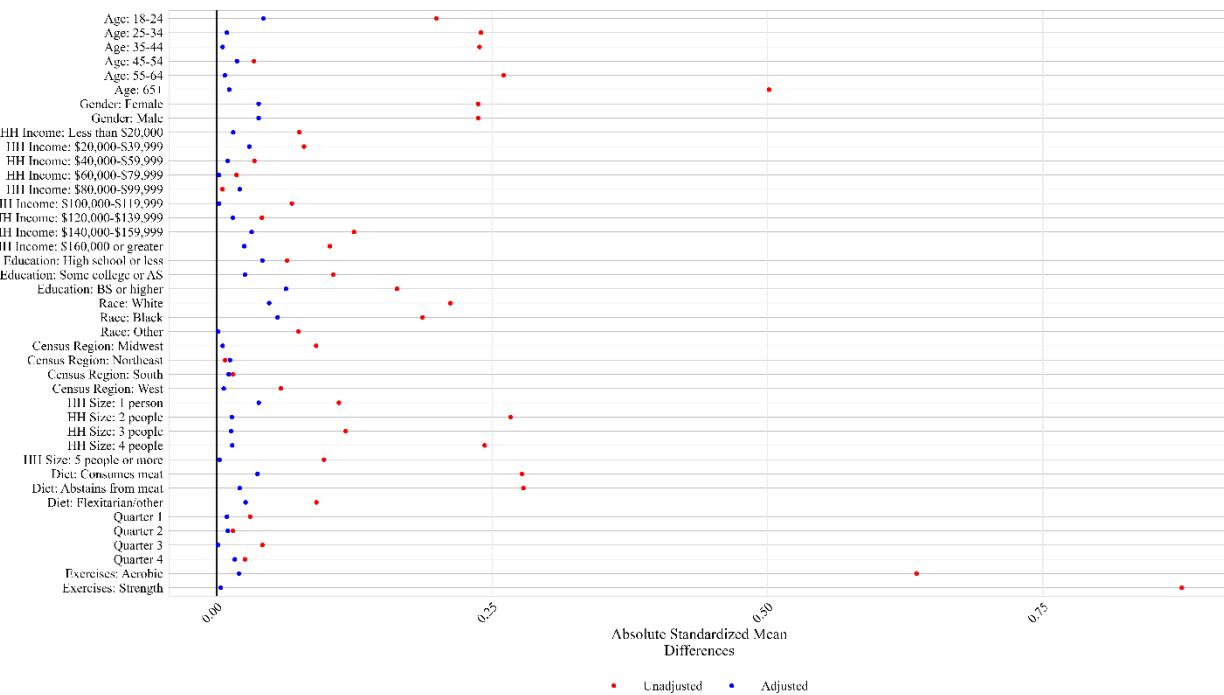
788

789


790 **Figure A7. GFM Covariate Balance—Foodservice DCE, Aerobic Exercise Treatment**

791

792


793 **Figure A8. GFM Covariate Balance—Foodservice DCE, Strength-Based Exercise**
794 **Treatment**

795

796

797 **Figure A9. GFM Covariate Balance—Foodservice DCE, Intentional Consumption**
798 **Treatment**

799

800 **Table A1. Retail MNL Parameter Estimates**

Variable	30+ Min/Week Aerobic Exercise ^a			30+ Min/Week Strength Exercise			Intentional Consumer		
	Full ^b	CEM	GFM	Full	CEM	GFM	Full	CEM	GFM
Linear price effect	-0.44*	-0.50*	-0.38*	-0.46*	-0.48*	-0.36*	-0.44*	-0.40*	-0.30*
Linear price effect x Treatment	0.11*	0.03*	0.05*	0.17*	0.05*	0.08*	0.22*	0.07*	0.07*
Alternative-specific constants									
Ribeye steak x Treatment	-1.40*	-0.31*	-0.46*	-2.24*	-0.59*	-0.72*	-2.65*	-0.47*	-0.49*
Ground beef x Treatment	-0.24*	0.04	0.04	-0.46*	-0.05	-0.02	-0.52*	-0.12	0.01
Pork chop x Treatment	-0.16*	0.08	0.13*	-0.37*	0.01	0.10*	-0.49*	-0.10	0.06
Bacon x Treatment	-0.26*	0.02	0.07	-0.48*	-0.05	-0.02	-0.59*	-0.09	0.02
Chicken breast x Treatment	-0.06	0.16*	0.17*	-0.34*	0.04	0.04	-0.44*	-0.14	0.06
Plant-based patty x Treatment	-0.41*	0.34*	0.35*	-1.11*	-0.06	-0.18	-1.69*	-0.20	-0.34*
Shrimp x Treatment	-0.68*	0.01	-0.04	-1.30*	-0.29*	-0.33*	-1.64*	-0.40*	-0.20*
Beans and rice x Treatment	0.24*	0.27*	0.36*	0.00	0.19*	0.16*	-0.11*	0.13	0.13*
.
# of individuals	36,296	14,385	36,296	36,296	15,697	36,290	36,296	6,860	36,291
# of choices	326,664	129,465	326,664	326,664	141,273	326,610	326,664	61,740	326,619
Log-likelihood	-564,526	-201,514	-571,249	-562,497	-225,320	-581,263	-560,256	-104,358	-597,279
AIC	1,129,569	403,543	1,143,015	1,125,510	451,157	1,163,041	1,121,059	209,265	1,195,105
BIC	1,132,328	406,064	1,145,774	1,128,270	453,700	1,165,801	1,123,990	211,739	1,198,036

801 Note: ^aTreatments are spending at least 30 m/wk in aerobic exercise, spending at least 30 m/wk in
802 strength-based exercise, and intentionally consuming protein to meet a fitness-related goal.

803 ^bChoice data is Full = the full, unmatched sample; CEM = the coarsened exact matched sample;
804 and GFM = the generalized full matched sample. Asterisks (*) denote statistical significance at the
805 five percent level using robust standard errors.

806

807 The number of individuals included in models using GFM-derived choice data do not always
808 exactly match the number of individuals included in models using the full sample. A small number
809 of untreated individuals are substantially upweighted using the GFM procedure, which causes the
810 respective MNL models to fail to converge. To bypass this issue, I omit untreated individuals with
811 GFM weights greater than 20.0 from outcome estimation (re-normalizing the weights of all other
812 untreated individuals back to 1.0).

Table A2. Foodservice MNL Parameter Estimates

Variable	30+ Min/Week Aerobic Exercise ^a			30+ Min/Week Strength Exercise			Intentional Consumer		
	Full ^b	CEM	GFM	Full	CEM	GFM	Full	CEM	GFM
Linear price effect	-0.24*	-0.27*	-0.21*	-0.26*	-0.27*	-0.22*	-0.25*	-0.26*	-0.19*
Linear price effect x Treatment	0.03*	-0.01	0.01	0.08*	0.02*	0.04*	0.11*	0.05*	0.05*
Alternative-specific constants									
Ribeye steak x Treatment	-0.48*	0.18	0.10	-1.21*	-0.25*	-0.34*	-1.71*	-0.78*	-0.36*
Ground beef x Treatment	-0.15*	0.22*	0.19*	-0.65*	-0.10	-0.10	-0.95*	-0.54*	-0.20*
Pork chop x Treatment	-0.08	0.33*	0.41*	-0.63*	0.03	0.08	-1.07*	-0.59*	-0.12
Bacon x Treatment	-0.25*	0.18	0.19	-0.83*	-0.15	-0.17*	-1.24*	-0.73*	-0.30*
Chicken breast x Treatment	0.07	0.43*	0.43*	-0.53*	-0.01	-0.02	-0.92*	-0.49*	-0.12
Plant-based patty x Treatment	0.26*	0.68*	0.64*	-0.51*	0.24*	0.01	-1.25*	-0.36*	-0.38*
Shrimp x Treatment	-0.15*	0.21*	0.21*	-0.69*	-0.09	-0.12	-1.12*	-0.65*	-0.28*
Beans and rice x Treatment	0.03	0.57*	0.43*	-0.72*	0.11	-0.07	-1.17*	-0.52*	-0.18*
.
.
# of individuals	36,465	14,424	36,464	36,465	15,870	36,464	36,465	6,979	36,459
# of choices	328,185	129,816	328,176	328,185	142,830	328,176	328,185	62,811	328,131
Log-likelihood	-627,283	-240,939	-629,760	-626,813	-266,286	-632,290	-625,076	-118,902	-636,685
AIC	1,255,082	482,395	1,260,036	1,254,143	533,089	1,265,096	1,250,700	238,351	1,273,917
BIC	1,257,842	484,916	1,262,797	1,256,904	535,635	1,267,857	1,253,632	240,830	1,276,850

Note: ^aTreatments are spending at least 30 m/wk in aerobic exercise, spending at least 30 m/wk in strength-based exercise, and intentionally consuming protein to meet a fitness-related goal.

^bChoice data is Full = the full, unmatched sample; CEM = the coarsened exact matched sample; and GFM = the generalized full matched sample. Asterisks (*) denote statistical significance at the five percent level using robust standard errors.

Table A3. CEM Effect Sensitivity to Utility Specification—Retail

Product	30+ Min/Week Aerobic Exercise ^a			30+ Min/Week Strength Exercise			Intentional Consumer		
	Primary ^b	No Asc	No Px	Primary	No Asc	No Px	Primary	No Asc	No Px
Ribeye steak	0.14*	0.17*	0.15*	0.55*	0.61*	0.55*	1.91*	1.89*	1.67*
Ground beef	0.42*	0.07*	0.28*	0.74*	0.28*	0.36*	1.31*	0.96*	0.42*
Pork chop	0.46*	0.06*	0.36*	0.74*	0.24*	0.47*	1.15*	0.84*	0.49*
Bacon	0.29*	0.05*	0.25*	0.49*	0.20*	0.38*	0.92*	0.69*	0.57*
Chicken breast	0.67*	0.07*	0.52*	0.92*	0.28*	0.51*	1.23*	0.95*	0.29*
PB patty	0.97*	0.06*	1.21*	0.60*	0.24*	1.11*	0.82*	0.81*	1.42*
Shrimp	0.46*	0.10*	0.51*	0.43*	0.35*	0.52*	0.78*	1.11*	0.76*
Beans and rice	0.65*	0.02*	0.63*	0.70*	0.09*	0.61*	1.02*	0.38*	0.71*

820 Note: ^aTreatments are spending at least 30 m/wk in aerobic exercise, spending at least 30 m/wk in
 821 strength-based exercise, and intentionally consuming protein to meet a fitness-related goal.

822 ^bPrimary = primary effect estimates obtained using coarsened exact matching (CEM); No Asc =
 823 effect estimates obtained using CEM and setting $\pi_j = 0 \forall_j$ in the alternative-specific constants;
 824 No Px = effect estimates obtained using CEM and setting $\omega = 0$ in the price term. Asterisks (*)
 825 denote statistically significant treatment effects using 95 percent Krinsky and Robb (1986)
 826 confidence intervals.

Table A4. CEM Effect Sensitivity to Utility Specification—Foodservice

Product	30+ Min/Week Aerobic Exercise ^a			30+ Min/Week Strength Exercise			Intentional Consumer		
	Primary ^b	No Asc	No Px	Primary	No Asc	No Px	Primary	No Asc	No Px
Ribeye steak	0.20	0.40*	0.27*	1.37*	1.62*	1.01*	2.47*	2.57*	1.23*
Hamburger	0.47*	0.28*	0.57*	1.27*	1.15*	0.72*	1.96*	1.88*	0.25
Pork chop	0.94*	0.24*	0.90*	1.51*	0.97*	1.63*	1.11*	1.63*	1.01*
Baby back ribs	0.34*	0.29*	0.39*	1.11*	1.16*	0.84*	1.11*	1.90*	0.11
Chicken breast	1.26*	0.27*	1.33*	1.56*	1.12*	1.13*	2.11*	1.85*	0.67*
PB patty	2.36*	0.14*	2.24*	1.81*	0.63*	2.22*	1.01*	1.13*	1.54*
Shrimp	0.46*	0.28*	0.53*	1.28*	1.12*	0.87*	1.34*	1.84*	0.02
Salmon	1.78*	0.29*	1.80*	2.17*	1.20*	1.97*	2.20*	1.96*	1.32*

829 Note: ^aTreatments are spending at least 30 m/wk in aerobic exercise, spending at least 30 m/wk in
 830 strength-based exercise, and intentionally consuming protein to meet a fitness-related goal.

831 ^bPrimary = primary effect estimates obtained using coarsened exact matching (CEM); No Asc =
 832 effect estimates obtained using CEM and setting $\pi_j = 0 \forall_j$ in the alternative-specific constants;
 833 No Px = effect estimates obtained using CEM and setting $\omega = 0$ in the price term. Asterisks (*)
 834 denote statistically significant treatment effects using 95 percent Krinsky and Robb (1986)
 835 confidence intervals.