

The World's Largest Open Access Agricultural & Applied Economics Digital Library

This document is discoverable and free to researchers across the globe due to the work of AgEcon Search.

Help ensure our sustainability.

Give to AgEcon Search

AgEcon Search
<http://ageconsearch.umn.edu>
aesearch@umn.edu

Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only. No other use, including posting to another Internet site, is permitted without permission from the copyright owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C.

No endorsement of AgEcon Search or its fundraising activities by the author(s) of the following work or their employer(s) is intended or implied.

**Designing Cost-Effective Carbon Payments to Induce Cellulosic Feedstock Production for
Sustainable Aviation Fuel**

**Fahd Majeed^{1*} (fmajeed2@illinois.edu), Madhu Khanna^{1,2} (khanna1@illinois.edu), Ruiqing Miao³
(rzm0050@auburn.edu)**

**1 DOE Center for Advanced Bioenergy and Bioproducts Innovation; 2 Department of Agriculture
and Consumer Economics, University of Illinois at Urbana-Champaign, Urbana, IL; 3 Department
of Agricultural Economics and Rural Sociology, Auburn University, Auburn, AL**

*Selected Paper prepared for presentation at the 2025 AAEA & WAEA Joint Annual Meeting
in Denver, CO; July 27-29, 2025*

*Copyright 2025 by authors. All rights reserved. Readers may make verbatim copies of this document for
non-commercial purposes by any means, provided that this copyright notice appears on all such copies.*

1 **Designing Cost-Effective Carbon Payments to Induce Cellulosic Feedstock**
2 **Production for Sustainable Aviation Fuel**
3

4

5 **Abstract**

6 Perennial bioenergy crops, such as miscanthus and switchgrass, and crop residues have the potential to
7 scale up Sustainable Aviation Fuel (SAF) production and mitigate carbon emissions. However, high
8 establishment costs, establishment lags, and risk and return profiles with bioenergy crops that differ from
9 those of conventional crops can adversely affect incentives to produce them. We develop an economic
10 model that incorporates spatially varying joint yield and price distributions for the multiple crop choices a
11 farmer faces and apply it to examine the incentives for risk-averse, present-biased, and credit-constrained
12 farmers to produce cellulosic feedstocks under various biomass prices. We link this model to a
13 biogeochemical model to quantify the spatially varying carbon mitigation benefits from these feedstocks in
14 the rainfed region of the United States. We also analyze the cost-effectiveness of two carbon payment
15 policies: annual and upfront. We find that risk-averse, present-biased, or credit-constrained farmers prefer
16 to grow the lower-yielding but less risky switchgrass and harvest corn stover instead of producing the lower
17 carbon, higher-yielding but riskier feedstock miscanthus, resulting in lower SAF production. Upfront
18 carbon payments incentivize higher quantities of less carbon-intensive SAF production by risk-averse,
19 credit-constrained, and present-biased farmers because they offset a part of the establishment costs of
20 miscanthus. We also find that when farmers are credit-constrained, upfront payments are more cost-
21 effective in terms of carbon mitigation per dollar spent. In contrast, annual payments are more cost-effective
22 when farmers can access credit.

23

24

25 **Keywords:** Bioenergy crops, risk and time preferences, carbon mitigation, sustainable aviation
26 fuel

Designing Cost-Effective Carbon Payments to Induce Cellulosic Feedstock Production for Sustainable Aviation Fuel

29 1 **Introduction**

30 There is growing policy support in the United States (US) for scaling up the production of Sustainable
31 Aviation Fuel (SAF) to decarbonize the aviation sector, which accounts for about 2.5% of US greenhouse
32 gas (GHG) emissions.¹ The US has set a Grand Challenge of meeting 100% of its aviation fuel demand,
33 35 billion gallons per year (132.5 billion liters per year), with SAF by 2050.² Recent policies, 40B and
34 40Z, have taken the form of performance-based tax credits that increase as the carbon intensity of SAF
35 decreases below 50% less carbon intensive than petroleum jet fuel. Scaling up SAF production from the
36 current level of approximately 115.8 million liters per year³⁴ will require transitioning from using food
37 crops as feedstocks to high-yielding non-food crops and crop residues as feedstocks that require less land
38 diversion from food to fuel production than food crops.

39 Crop residues and high-yielding perennial bioenergy crops, such as miscanthus and switchgrass, are
40 appealing feedstocks for low-carbon intensity SAF. While corn stover is a low-yielding but low-cost
41 source of biomass readily available to farmers planting corn, it has a relatively higher carbon intensity
42 than high-yielding bioenergy crops. Bioenergy crops can produce negative carbon SAF due to their
43 potential to sequester a substantial amount of carbon in the soil (Fan et al., 2024). Among these,
44 miscanthus has a significantly higher yield and lower carbon intensity than switchgrass. However, its
45 production involves high upfront costs and longer establishment lag than switchgrass. These bioenergy
46 crops also require a long-term land commitment compared to annual crops, such as corn and soybeans,
47 and impose risks that differ from those of annual crops (Bocquého & Jacquet, 2010; Miao & Khanna,
48 2017a, 2017b; Ouattara et al., 2019). While bioenergy crops can provide diversification benefits, they

49 require farmers to trade off future returns for current costs, mainly when they are credit-constrained and
50 need to bear the upfront establishment costs through their own sources.

51 Incentives to convert land from annual conventional crops to bioenergy crops will differ with farmer
52 risk and time preferences and the availability of credit to cover upfront costs of establishment. The risks
53 and returns from producing these bioenergy crops differ across crop residues and bioenergy crops,
54 miscanthus and switchgrass, and also vary spatially due to differences in land suitability and growing
55 conditions for these crops (Fan et al., 2024; Miao & Khanna, 2017a, 2017b). Additionally, the carbon
56 intensity of these feedstocks also differs spatially due to differences in yields and effects on soil carbon
57 sequestration. Thus, policy incentives that pay farmers to produce cellulosic feedstocks based on the
58 carbon intensity of the SAF will result in payments per unit of land that differ across feedstocks and
59 locations. The effects of a carbon payment on incentives to produce biomass and on the choice of feedstock
60 to produce will depend on the price of biomass, the cost of producing the feedstock, the riskiness of the
61 returns and the trade-off it involves between upfront costs and future returns, particularly if the farmer is
62 credit constrained. The farmer's decision to produce feedstocks, the choice between the two bioenergy
63 crops in particular, and the quantity of feedstock produced will depend on the farmer's risk-aversion, time-
64 discounting, and credit-constraint profile.

65 The problem of establishment costs as a deterrent to risk-averse, present-biased, and credit-constraint
66 farmers to produce bioenergy crops is a well-recognized problem (Miao & Khanna, 2017a, 2017b).
67 Previously, the Biomass Crop Assistance Program (BCAP) was established and offered payments that
68 would partially cover the establishment costs for bioenergy crops through a cost-share program. These
69 payments did not differ with a feedstock's carbon mitigation potential and thus could not be targeted based
70 on a feedstock's spatial and temporal carbon intensity.

71 The purpose of this paper is to examine the potential supply of SAF from crop residues and bioenergy
72 crops from croplands in the rainfed region of the US at various biomass (and equivalent SAF prices) and
73 carbon payments. To this extent, we have three objectives. First, we examine the effect of farmer risk-
74 aversion, time-discounting, and access to credit on the potential production and mix of cellulosic
75 feedstocks (miscanthus, switchgrass, and corn stover harvest). Second, we examine the effect of carbon
76 payment design on the mix of cellulosic feedstock production and the cost per ton of carbon mitigated.
77 We examine the effects of two types of mechanisms to pay farmers for carbon mitigation services
78 provided: an annual payment per ton of carbon mitigated relative to petroleum jet and a lump sum upfront
79 payment per ton of the carbon that will be mitigated by that feedstock over 15 years. While annual
80 payments are likely to appeal to less risk-averse and credit-constrained farmers, upfront carbon payments
81 are likely to appeal to more risk-averse farmers with credit-constraints. We examine the extent to which
82 this is the case and its implications for the supply and cost of SAF. Third, we consider how the spatial
83 pattern of production of cellulosic feedstocks for SAF differs with different designs of carbon payments.

84 We undertake this analysis using a stylized integrated numerical simulation framework that links an
85 economic model with a biogeochemical model, DayCent, to analyze farmers' cropping decisions while
86 accounting for spatial and temporal heterogeneity in crop yields and carbon intensities at a county scale
87 across the rainfed region of the US. Each county is represented by a utility-maximizing farmer with given
88 risk and time preferences who chooses the allocation of land to conventional and bioenergy crops and
89 whether to harvest a portion of corn stover from areas under corn production over a 15-year horizon under
90 a range of biomass (and corresponding SAF) prices. We then consider the effect of offering a price per
91 ton of carbon credits generated, which could be paid as an annual payment per ton of carbon credits or a
92 lump sum payment for carbon credits generated over 15 years. The carbon intensity of a feedstock includes
93 the life-cycle emissions generated in the feedstock production process and conversion to SAF and the soil

94 carbon sequestration. We examine the effects of varying degrees of risk-aversion and time-preferences
95 and the presence or absence of credit-constraints at exogenously set SAF and carbon prices on the amount
96 of land allocated to producing the two bioenergy crops and harvesting corn stover.

97 Our research contributes to the literature on the economics of SAF production using cellulosic
98 feedstocks (Fan et al., 2024; Gautam et al., 2023). Fan et al. (2024) conducted spatially varying technoeconomic
99 and life-cycle analyses to compare the cost of SAF and GHG-intensity with various bioenergy
100 crops and crop residues but did not directly explore the effect of temporally varying costs, yields, and
101 carbon effects or the effect of yield and price riskiness in feedstock production. Gautam et al. (2023)
102 examine the potential for bioenergy feedstock production from one feedstock at a time, at exogenous
103 carbon and jet fuel prices, but did not explore how farmers choose between these feedstocks and the mix
104 of feedstocks that would be produced at a given biomass and carbon price. Neither of these studies
105 considers the effect of farmer profiles (risk-aversion, time-discounting, and credit-constraints) or policy
106 design (such as upfront payments or annual payments for carbon mitigation) on feedstock adoption.
107 Previous research has shown that long maturity periods with high establishment costs and uncertain yields
108 due to weather variations reduce incentives for risk-averse, present-biased, and credit-constrained farmers
109 to produce these bioenergy crops (Miao & Khanna, 2017a, 2017b). This research has not examined the
110 role that carbon-based payments can play in inducing farmers to convert cropland to produce miscanthus
111 and switchgrass or the impact of carbon mitigation payments on the cost-effectiveness of SAF adoption
112 and carbon mitigation. We build on the framework developed by Miao & Khanna (2017a and 2017b) and
113 the economic literature on the design of payments for incentivizing bioenergy crop adoption (such as
114 Alexander et al., 2012; Brandes et al., 2018; McCarty & Sesmero, 2021; Miao & Khanna, 2017a; 2017b)
115 by considering the effect of alternative mechanisms for payments based on carbon mitigation on the extent
116 and costs of carbon mitigation with SAF.

117 The rest of the paper is as follows. Section 2 outlines a modeling framework to simulate spatially
118 explicit incentives for producing cellulosic feedstocks by a representative risk-averse and time-
119 discounting farmer. Section 3 details the data sources and model calibration used in the simulation model.
120 Section 4 presents the results of the numerical simulation model, and Section 6 concludes by discussing
121 the policy implications of efforts to induce SAF adoption.

122 **2 Conceptual Framework**

123 In this section, we describe the conceptual framework presented in more technical detail in Appendix
124 A.1. We simulate the spatially heterogeneous economic incentives for producing cellulosic feedstocks
125 by a representative risk-averse and present-biased expected utility-maximizing farmer at the county level
126 for the rainfed region of the US. The farmer maximizes their expected net present value of utility
127 derived from returns from land over a given time horizon (fifteen years in this study to represent one
128 lifespan of perennial bioenergy crops).⁵ Farmers allocate land between a bioenergy crop and
129 conventional crops and choose whether to harvest crop residue from their conventional crops. As the
130 yield risks of perennial bioenergy crops are not fully correlated with conventional crops, farmers may
131 grow bioenergy crops on some of their land to diversify their crop portfolio and reduce overall return
132 riskiness. Our model allows the farmer to choose a spatially heterogeneous optimal crop mix while
133 considering the riskiness of alternative land uses and the correlations among these risks.

134 Our model considers the production of three cellular feedstocks, two bioenergy crops, and one crop
135 residue. The perennial bioenergy crops in the model are miscanthus and switchgrass. We separate the
136 lifespan of each bioenergy crop into an establishment period and a mature period. During the
137 establishment period of bioenergy crops, yields are low or reduced. In the mature period, the farmer
138 harvests the bioenergy crop annually.⁶ To reduce the dimensionality of the simulation, we assume that

139 the representative farmer for the county only chooses one bioenergy crop between the two.⁷
140 Additionally, the crop residue in this model is corn stover, a by-product of corn production. Corn stover
141 and conventional crops are planted and harvested annually over the simulation period. Corn can be
142 grown continuously in a corn-soybean or continuous corn rotation over the simulation period. The
143 portion of corn stover that can be harvested is fixed and higher if no-till is practiced instead of
144 conventional tillage.⁸ Yield and inputs for conventional crops vary by rotation and tillage choices,
145 resulting in different returns from each rotation-tillage combination choice. Crop and feedstock yields
146 are subject to weather shocks, and returns to land are subject to price risk. We assume that the farmer
147 knows the joint distribution of yields of miscanthus, switchgrass, corn and soybeans, and corn and
148 soybean prices.

149 Yields and their riskiness vary across counties. Corn stover yields (per hectare of corn) are highest in
150 the Midwest region and lower in the Great Plains and Southern states. Bioenergy crops have higher
151 yields than corn stover, with Switchgrass having its highest yields in the southern states. Miscanthus
152 yields are highest in the Midwest (see Appendix B.1).

153 Feedstock profit calculations: Each crop's profit is determined by its yield, price, production cost
154 with a fixed per-hectare and variable per-unit-of-output component, and policy payment. For bioenergy
155 crops, costs vary between the establishment and mature stages of the crop's lifespan (calculation of
156 bioenergy costs are described in Appendix B.2). Implicit in the model is the opportunity cost of land;
157 farmers who adopt bioenergy crops forgo profits that they would have made on that portion of land from
158 growing conventional crops (cost and stochastic prices of conventional crops are detailed in Appendix
159 B.3 and Appendix B.4). This opportunity cost of converting land from conventional crops to bioenergy
160 crops is highest in the Midwest and along the Mississippi river basin (Delta region) due to higher corn
161 and soybean profits in these areas. For farmers that can obtain credit, the establishment cost of bioenergy

162 crops is met by borrowing in the first year and paying back the cost through an annuity in the mature
163 period. Farmers that are credit constrained need to bear the upfront cost of establishment from their own
164 resources, which adds to the extent of temporal variability in the return profile with negative net returns
165 in the early establishment years and positive returns in later years.

166 In the case of conventional crops, the net returns from any given rotation and tillage choice include
167 the returns from corn grain and soybeans returns from the possible harvest of corn stover (calculation of
168 corn stover costs are described in Appendix B.5). For simplicity, we assume that conventional crop and
169 corn stover costs are time-invariant over the model period. When farmers harvest corn stover for a
170 profit, it implicitly increases the opportunity cost of land for bioenergy crops. Bioenergy crops and corn
171 stover receive a fixed payment per ton of biomass at the farm-gate level through a fixed-price long-term
172 contract over a 15-year period. We assume that the cost of converting cellulosic biomass to SAF is the
173 same for all feedstocks (biomass conversion costs are described in Appendix B.12). We add the cost of
174 converting biomass to SAF to calculate a cost per liter for producing SAF from each feedstock.

175 Carbon mitigation with SAF: The carbon intensity of SAF includes the following three components:
176 (a) the belowground soil carbon sequestration per unit of land, which varies spatially and temporally
177 over the bioenergy crop lifespan. Establishing bioenergy crops may incur initial soil carbon losses
178 followed by an accrual period (Chen et al., 2021). Harvesting of corn stover has a negative impact on
179 soil carbon that varies spatially and by rotation-tillage combination (b) Life-cycle emissions generated
180 during biomass production each year. These emissions vary by feedstock and over the lifespan of
181 bioenergy crops and include carbon emissions associated with fertilizer application, electricity, and
182 diesel use on the farm and to transport biomass to the processing plant and (c) Carbon emissions during
183 the processing of biomass to SAF, which includes the conversion of biomass to cellulosic ethanol, which
184 is then converted to SAF through the ATJ-SPK pathway. This conversion process is assumed to be

185 uniform for all three feedstocks in the model. These emissions are net of the co-product credit due to the
186 cogenerated electricity used during the conversion of biomass to SAF. We compare the carbon credits
187 from displacing petroleum jet with SAF as the difference in carbon emissions per unit of energy.

188 The carbon intensity of SAF from the three feedstocks considered here differs across feedstocks and
189 locations. We find that SAF from corn stover has higher carbon intensity than bioenergy crop-based
190 SAF. The carbon intensity of SAF from corn stover is lower in the Midwest and higher in the rest of the
191 rainfed region. SAF from switchgrass has the lowest carbon intensity in the southern states, but its
192 carbon intensity is higher than that of miscanthus in the Midwest region. SAF from miscanthus has the
193 lowest carbon intensity in the Midwest.

194 Policy schemes: We simulate outcomes under three different policy schemes: (a) *No Carbon*
195 *Payment* scheme in which farmers receive a biomass price but no payment for carbon mitigation; (b)
196 *Annual Payment* scheme in which farmers receive a biomass price and a carbon price per ton of carbon
197 mitigated per year and (c) *Upfront Payment* scheme in which farmers receive a biomass price and a
198 lump sum payment of a carbon price per ton of carbon mitigated over the lifespan of 15 years. The
199 lumpsum payment per ton of carbon mitigated is the net present value of the annual price of carbon over
200 a 15-year period. The per-ton price of carbon is the same under the *Upfront Payment* policy and the
201 *Annual Payment* policy to enable comparison. For example, under *Upfront Payment* at a discount rate of
202 2%, a farmer receiving \$60 per Mg CO₂ would receive \$828 in the first year (net present value of
203 abating a ton of carbon annually over the 15-year lifespan) and no payment afterward. At a 10%
204 discount, they would receive \$488 in the first year and no payment in other years (a detailed description
205 of these calculations is provided in Appendix A.1). We assume that the entire carbon mitigation value
206 from SAF production passes through to the farmer and is ultimately capitalized in the value of the land.

207 As such, our analysis provides a lower bound to the carbon price needed to incentivize feedstock
208 production.

209 **3 Data and Materials**

210 We perform our analysis for 2,168 counties to the east of the 100th meridian within the continental
211 US that produce corn or soybeans and for which data was available to simulate bioenergy and
212 conventional crop yields and soil carbon sequestration rates using the biogeochemical model DayCent.
213 Counties that produce corn or soybeans are determined based on pixel-level satellite data from CDL
214 (Jiang et al., 2021). We consider corn-soybean and continuous corn rotations in counties where satellite
215 data show soybean cultivation and consider only continuous corn in counties where satellite data shows
216 no soybean cultivation.

217 We apply a 25% penalty on corn yields for conservation tillage in our primary analysis following
218 Chen et al. (2021), who show that yield under conservation tillage is not statistically different from
219 conventional tillage; however, a yield penalty could arise when farmers adopt conservation tillage but do
220 not change other management practices. We assume that the stover removal rate is 30% for conventional
221 till and 50% for no-till, as determined by Hudiburg et al. (2016), to have a low impact on corn yield.

222 We assume that miscanthus reaches maturity after two years of establishment and provides zero and
223 50% harvestable yields in those two years. It reaches maximum yield in year three, which is assumed to
224 be constant for the remaining life of the crop. In contrast, switchgrass reaches maturity within the first
225 year (Miao & Khanna, 2017a). Following Skevas et al. (2014), we set a limit of 25% on the land that can
226 be converted to bioenergy crops in each county to allow for the possibility of other unknown behavioral
227 factors that may affect land use and prevent extreme changes in land use. Assumptions about production
228 practices and fertilizer quantities for bioenergy crops, corn stover, and corn and soybeans across

229 rotation-tillage combinations are described in Majeed et al. (2023), Chen et al. (2021), and Lee et al.
230 (2023).

231 We simulate the change in soil carbon levels for each year of the planting period for miscanthus and
232 switchgrass and eight combinations of rotation, tillage, and corn stover removal rates with conventional
233 crops using the DayCent model. Other life-cycle analysis components for the carbon intensity of SAF
234 from biomass and cellulosic ethanol production are calculated using carbon mitigation parameters from
235 Dwivedi et al. (2016), Fan et al. (2024), and GREET. The carbon intensity of converting cellulosic
236 ethanol to SAF is taken from the GREET aviation module (ANL et al., 2023).

237 We calculate bioenergy crop costs at the county level for each year in the establishment and mature
238 periods with input quantities from the Iowa State Extension and input prices from the National
239 Agricultural Statistics Service (NASS). The cost of converting biomass to cellulosic ethanol and
240 cellulosic ethanol to SAF is based on Fan et al. (2024). All costs are based on inputs and prices from
241 2016, implying that the biomass price suggested in our model should be inflated to compare to
242 contemporary prices.⁹ The cost of conversion of farm gate biomass price at 13% moisture is set
243 exogenously from \$0 to \$150 per metric ton (\$ per Mg) of biomass at intervals of \$10 and is assumed
244 constant over time.

245 In the carbon payment schemes (*Annual Payment* and *Upfront Payment*), the carbon price is set
246 exogenously per metric ton of CO₂ mitigated (per Mg of CO₂) and assumed to be constant over time.
247 We assume that soil carbon sequestered during the lifespan of the crop will be permanent because the
248 bioenergy crops are produced under long term contracts.

249 A joint yield-price distribution is assumed where the farmer knows the distribution of conventional
250 crop prices and yields for all crops estimated for their county to calculate stochastic returns. We model
251 the joint distributions using the copula approach (a modeling process that first describes and then

replicates the dependence structure between multiple stochastic variables) following Miao and Khanna (2017a), Yan (2007), and Du and Hennessy (2012). The joint yield-price distribution consists of crop yields linked to eight conventional crop rotations, tillage, corn stover harvest choices, two bioenergy crop choices, and prices for corn and soybean. We use these joint yield-price distributions, associated carbon mitigation benefits, spatially varying input costs, biomass, and carbon mitigation payments to calculate stochastic returns for each crop option as described in the numerical simulation for a fifteen-year planting period at exogenously varying biomass and carbon mitigation prices.

We assume a Constant Absolute Risk-aversion (CARA) utility function for a farmer. We follow Hennessy, Babcock, and Hayes (1997) to set the Absolute Risk-Aversion (ARA) parameter to imply a risk premium of 10% for low risk-aversion (*Low Risk-Averse*) and 50% for high risk-aversion (*High Risk-Averse*). We consider two rates of discount, 2% as a low discount rate (*Low Time-Discount*) and 10% as a high discount rate (*High Time-Discount*), following Miao and Khanna (2017b). These rates are similar to those used by the Environmental Protection Agency (EPA) for determining the social cost of carbon (US Environmental Protection Agency, 2022) and allow a comparison of carbon mitigation prices to the social cost of carbon. High discount rates indicate less willingness to wait for future returns. They will lower the value the farmer assigns to future bioenergy crop returns relative to present returns. Further, we assume that farmers either have access to credit to pay for the costly establishment of bioenergy crops (*Not Credit-Constrained*) or do not (*Credit-Constrained*). Those with access to credit can borrow to pay for the establishment costs of bioenergy crops and pay it back principle with interest in the mature period. Farmers without access to credit are assumed to pay for bioenergy crop establishment out-of-pocket. We use stochastic returns to simulate land allocation to rotation and tillage change across the eight permutations of risk-aversion (*Low Risk-Averse* and *High Risk-Averse*) and time-discounting (*Low Time-Discount* and *High Time-Discount*), with and without access to credit (*Not Credit-Constrained*).

275 *Credit-Constrained* and *Credit-Constrained*) without carbon mitigation payment and under two carbon
276 mitigation payment schemes (i.e., *No Carbon Payment*, *Annual Payment*, *Upfront Payment*) under
277 exogenously varying carbon mitigation payment levels and biomass prices. For ease of discussion, we
278 refer to the farmer profile of *Low Time-Discount*, *Low Risk-Averse*, and *Credit-Constrained* as the *Low-*
279 *Constraint* farmer profile and the *High Time-Discount*, *High Risk-Averse*, and *Credit-Constrained* as the
280 *High-Constraint* farmer profile. For each combination of risk-aversion, time-discounting, and access to
281 credit, we can aggregate the total carbon mitigated and area under various cropping practices across the
282 rainfed US and examine the spatial distribution of adoption of bioenergy crops.

283 **4 Simulation Results**

284 **4.1 Effect of farmer profiles on supply of SAF and mix of feedstocks**

285 Under all farmer profiles, the production of SAF from cellulosic feedstocks (under *No Payment*)
286 requires a biomass price of at least \$40 per Mg biomass in 2016 dollars (with an equivalent SAF price of
287 \$1.10 per liter) (Figure 1). As biomass prices increase beyond that, farmer time-discounting, risk-
288 aversion, and credit-constraints affect the overall level and mix of feedstocks chosen. Under the *Low-*
289 *Constraint* farmer profile (Figure 1 (h)), where farmers are not present-biased, risk-averse, or credit-
290 constrained, the overall SAF that can be produced at \$60 per Mg biomass (with an equivalent SAF price
291 of \$1.25 per liter) is 57.3 billion liters per year. At this price, the feedstock sources are mostly
292 miscanthus (48.6 billion liters per year), with some switchgrass (1.4 billion liters per year) and corn
293 stover (7.4 billion liters per year). While corn stover is harvested on a much larger land acreage and is
294 the dominant feedstock in terms of land use (Figure A.1 (h)) (accounting for approximately 55% of land
295 growing corn), it is not the dominant feedstock in terms of SAF production. This is due to bioenergy
296 crop yield being significantly larger than the standing corn stover yield per hectare. Additionally,
297 farmers only remove 30% of corn stover under conventional tillage and 50% under no-till from a field
298 so as not to reduce conventional crop yield.¹⁰

299 However, under the *High-Constraint* farmer profile (Figure 1 (a)), where farmers are present-biased,
300 risk-averse, and credit-constrained, the overall SAF that can be produced at \$60 per Mg biomass is 48
301 percent (%) lower (at 29.7 billion liters per year) than in the *Low-Constraint* farmer profile. The
302 feedstock sources in this case are mainly switchgrass (21.5 billion liters per year) with some corn stover
303 (8.1 billion liters per year). The reduced SAF production in *High-Constraint* farmer profile is primarily
304 due to risk-averse, present-biased, and credit-constrained farmers choosing lower-yielding switchgrass
305 over miscanthus because the latter has riskier returns, a longer establishment period, and higher

306 establishment costs. At \$60 per Mg biomass, lack of access to credit has the largest effect in reducing
307 SAF production with miscanthus as the feedstock relative to the *Low-Constraint* farmer profile (63%
308 miscanthus production in Figure 1 (d) relative to Figure (h)) followed by high time-discounting (58% in
309 Figure 1 (f)) and high risk-aversion (19% in Figure 1 (g)).

310 At a biomass price of \$80 per Mg (with an equivalent SAF price of \$1.40 per liter), overall SAF
311 production increases, but the feedstock mix does not change significantly relative to the \$60 per Mg
312 biomass price in each farmer profile. As biomass price increases in the *Low-Constraint* farmer profile,
313 miscanthus production increases further, while in the *High-Constraint* farmer profile, switchgrass
314 production increases further (Figure 1 (h) and Figure 1 (a) respectively). Across all farmer profiles, corn
315 stover production increases at higher biomass prices because of an increase in the corn area from which
316 stover is harvested. At this price, corn stover is harvested from 34 million hectares while miscanthus
317 and switchgrass are grown on 17 million hectares of cropland. At \$80 per Mg biomass, SAF produced
318 under the *High-Constraint* farmer profile is 26% lower than under the *Low-Constraint* farmer profile at
319 the same price due to the adoption of higher yielding miscanthus in the *Low-Constraint* scenario. At this
320 price, lack of access to credit has the largest effect in reducing SAF production because it discourages
321 miscanthus production, followed by high risk-aversion and then high time-discounting. This implies that
322 higher biomass payments may induce higher SAF production when farmers have high time-discounting;
323 however, higher biomass payments are less effective in incentivizing higher SAF production when
324 farmers are credit-constrained or risk-averse. The higher feedstock production at a price of \$80 per Mg
325 is due to increases at the intensive and extensive margins. As the biomass price increases, more counties
326 partially adopt bioenergy crops, and the number of counties that adopt bioenergy crops and harvest corn
327 stover increases. Crop diversification is our model, is driven part due to the yield risks of bioenergy
328 crops are being fully correlated with yield and price risks from conventional crops.

329 At a biomass price of \$80 per Mg, both bioenergy crops and corn stover have higher SAF production
330 relative to \$60 per Mg biomass as different mechanisms drive their adoption. Farmers may adopt more
331 bioenergy crops on a portion of their land while also deciding to harvest their corn stover from the
332 conventional crop portion. Additionally, farmers may choose to expand their production of feedstocks in
333 other counties.”

334 Feedstock supply from bioenergy crops becomes relatively inelastic at prices higher than \$80 per Mg
335 due to assumed constraints on land conversion. At higher biomass prices, more corn stover is produced
336 as farmers switch rotation and tillage (Figure 1 and Figure A.1). For example, corn stover is harvested
337 from 39 million hectares at a biomass price of \$120 per Mg (up from 34 million hectares at a biomass
338 price of \$60 per Mg). We also find that at higher biomass prices, farmers who are risk-averse but have
339 access to credit (Figure 1 (e) and (g) for *High Risk-Averse* profiles with *No Credit-Constraint*) choose to
340 substitute away from miscanthus towards switchgrass; this is likely due to the higher riskiness of
341 miscanthus relative to switchgrass.

342 **4.2 Effect of carbon policies on feedstock production**

343 We analyze the effects of an annual carbon payment of \$60 per Mg CO₂ on the mix of feedstocks and
344 the quantity of feedstocks that will be supplied at each biomass price. At low biomass prices, annual
345 payments incentivize mostly switchgrass in cases where farmers are credit-constrained, which has a
346 smaller effect on corn stover production. In this case, farmers prefer miscanthus over switchgrass when
347 they have access to credit. For example, at \$40 per Mg, in the *High-Constraint* farmer profile (Figure 2
348 (a)), *Annual Payments* incentivize 38.5 billion liters per year mainly through switchgrass production
349 (relative to near-zero production without carbon payments (Figure 1 (a)). In the *Low-Constraint* farmer
350 profile (Figure 2 (h)), *Annual Payments* incentivize 56.7 billion liters per year (relative to near-zero
351 production without carbon payments (Figure 1 (a)) through mainly miscanthus production. Risk-averse

352 farmers substitute away from miscanthus at higher biomass prices in favor of switchgrass, reducing the
353 potential for SAF production. For example, at \$100 per Mg, in the case where farmers have access to
354 credit but are risk-averse (Figure 2 (e) and Figure 2 (g)), *Annual Payments* incentivize farmers to
355 substitute switchgrass over miscanthus, resulting in a 3-5% drop in SAF production compared to *No*
356 *Carbon Payment*.

357 Upfront payments are less effective than annual payments at incentivizing greater SAF production at
358 lower biomass prices since, with low biomass prices, farmers receive all their payments in the first year
359 and have very low or negative returns from biomass production for the remaining lifespan of the crop.
360 For example, at a payment of \$40 per Mg biomass, *Upfront Payments* incentivize 40% and 31% of the
361 SAF quantity that *Annual Payments* do in the *High-Constraint* and the *Low-Constraint* farmer profiles
362 (Figure 2(i) compared to Figure 2 (a), and Figure 2(p) compared to Figure 2 (h)).

363 Upfront payments are more effective than annual payments at increasing SAF production at
364 moderate biomass prices, especially under *High-Constraint* and other credit-constrained farmer profiles.
365 At these prices, upfront payments incentivize credit-constrained, risk-averse, or present-biased farmers
366 to substitute lower-yielding switchgrass to miscanthus. For example, at a payment of \$60 per Mg
367 biomass, *Upfront Payments* incentivize 154% of the SAF quantity that *Annual Payments* do in the *High-*
368 *Constraint* farmer profile (Figure 2 (i) compared to Figure 2 (a)). Upfront payments are less effective
369 than annual payments in incentivizing additional SAF production when farmers have *Low-Constraint*
370 profiles, as farmers with access to credit prefer annual payments instead of a reduction in establishment
371 costs. For example, in the *Low-Constraint* farmer profiles, an *Upfront Payment* incentivizes only 75% of
372 the SAF quantity that *Annual Payments* do (Figure 2(p) compared to Figure 2 (h)). A similar
373 relationship holds at higher biomass prices, where upfront payments in the *High-Constraint* farmer

374 profile increase SAF production more than annual payments. There is little difference between the two
375 payment policies in the *Low-Constraint* farmer profile.

376 Under annual payments, farmers with access to credit but are risk-averse adopt miscanthus at low
377 biomass prices but substitute it away from miscanthus back to switchgrass at high biomass prices,
378 leading to a drop in SAF production relative to no payment. Under equivalent payments through upfront
379 payments, farmers continue to produce miscanthus under higher biomass prices, resulting in higher SAF
380 production. For example, at \$100 per Mg biomass price, *Upfront Payments* incentivize 12.5 % more
381 than under *No Carbon Payment* (Figure 2(m) compared to Figure 1 (e)).

382 **4.3 Spatial pattern of feedstock adoption**

383 In the *No Carbon Payment* scheme, farmers not constrained by high time-discounting, risk-aversion, and
384 access to credit choose a crop mix based on where each one has the lowest cost per Mg of biomass. In
385 this case, at a biomass payment of \$60 per Mg, farmers harvest miscanthus in the Midwest, switchgrass
386 in the southern states, and harvest stover primarily in the Midwest and Delta regions (Figure 3 (a-c)).¹¹
387 In the *High-Constraint* farmers profile (Figure 3 (d-f)), farmers find it cost-prohibitive to adopt
388 miscanthus in the Midwest, resulting in switchgrass adoption across the US (including the Midwest,
389 where switchgrass is more costly and lower yielding than miscanthus). There is no significant difference
390 in corn stover production patterns across farmer profiles. There doesn't appear to be any fragmentation
391 of feedstock adoption patterns across counties at a regional level. Under *No Carbon Payment*, the total
392 share of land used to produce SAF feedstocks in each county (through bioenergy crops and corn stover
393 harvest) remains low across the rainfed region, with little adoption in the high-yielding region of the
394 Midwest (for example, see cropland share of feedstock adoption in the *High-Constraint* scenario (Figure
395 A.2)).

396 In the *High-Constraint* farmer profile, annual payments incentivize more SAF production than
397 without payments but do not change the spatial pattern of feedstock production. For example, at a
398 biomass payment of \$60 per Mg (Figure 4 (d-f)), the spatial pattern of production under *Annual*
399 *Payment* favoring switchgrass and corn stover throughout the rainfed US is similar to that under *No*
400 *Carbon Payment* (Figure 4(a-c)). Under upfront payments farmers who are *High-Constraint* can adopt
401 feedstocks that are cost-prohibitive for them, resulting in the production of higher-yielding and lower
402 carbon-intensive feedstocks. For example, under *Upfront Payments*, farmers adopt miscanthus in the
403 Midwest and switchgrass in the southern states and Great Plains at a biomass payment of \$60 per Mg
404 (Figure 4 (g-i)). Similar to under no carbon payments, there doesn't appear to be any fragmentation of
405 feedstock adoption patterns across counties when farmers receive carbon payments. The total share of
406 land used to produce SAF feedstocks in each county remains under carbon payments, which is spatially
407 heterogeneous and depends on the biomass price, carbon price, and payment scheme. For example, at a
408 biomass price of \$40 per Mg, carbon mitigation payments of \$20 per Mg CO₂ (Figure A.2 (c, d))
409 incentivize low shares (as a percentage of county cropland area) of feedstock production outside the
410 high yielding Midwest region and very little within the Midwest. At these prices, annual payments are
411 also more effective than upfront payments. However, there is little difference in the share of land
412 dedicated to feedstocks at higher biomass prices (Figure A.2 (e, f)) or higher carbon prices (Figure A.2
413 (g, h, i, j)) despite differing SAF production largely due to bioenergy crop choice.

414 **4.4 Costs to mitigate carbon under carbon mitigation schemes**

415 Next, we compare the cost-effectiveness of carbon mitigation policies in incentivizing aggregate carbon
416 mitigation across farmer risk-aversion, time-discounting, and credit-constraint profiles. Without loss of
417 generality, we consider results at a biomass price of \$60 per Mg and incrementally increase the carbon
418 payment at intervals of \$20 per Mg CO₂ to calculate the quantity of carbon mitigation that can be

419 provided from SAF production. We find that when farmers do not have access to credit (Figure 5(a-d)),
420 there is little difference between payment schemes in the cost to mitigate up to 180 million Mg CO₂ of
421 abatement per year (with an abatement cost of approximately \$ 2 billion per year). However, the cost to
422 mitigate beyond 180 million Mg CO₂ per year rises steeply under *Annual Payments*. This is because the
423 pervasive feedstock of choice under *Annual Payments* for credit-constraint profiles is switchgrass, which
424 has lower carbon mitigation potential. Under the same credit-constraints, *Upfront Payments* incentivize
425 up to 220 million Mg CO₂ of abatement per year (with an abatement cost of approximately \$ 4.5 billion
426 per year) because they incentivize miscanthus production in the Midwest.

427 When farmers are not credit-constrained but are otherwise present-biased or risk-averse (Figure 5(e-
428 g)), annual payments are generally more cost-effective than upfront payments. In this case, credit-
429 constraints are not a barrier to miscanthus adoption, and annual payments incentivize crops with the
430 highest carbon mitigation potential in each region. In this case, *Annual Payments* can incentivize up to
431 210 million Mg CO₂ of abatement per year (with an abatement cost of approximately \$ 4.5 billion per
432 year when farmers are not risk-averse or present-biased, and \$ 8 billion per year when they are) and
433 *Upfront Payments* are less effective in these cases as farmers already have access to credit.

434 When farmers are not constrained (Figure 5(h)), there is little difference between the cost of carbon
435 mitigation between the two payment schemes. This is due first to high adoption without carbon
436 payments and second to both payments having similar effects when there are no risk-aversion, time-
437 discounting, or credit-constraint barriers.

438 5 Discussion and Conclusion

439 This paper examines the potential supply of SAF from crop residues and bioenergy crops from croplands
440 in the rainfed region of the US at various biomass (and equivalent SAF) prices and carbon payments. We

441 analyze the choice and quantity of various feedstocks by risk-averse, present-biased, and credit-
442 constrained farmers under various biomass prices and carbon payment schemes. In doing so, we consider
443 life-cycle carbon mitigation along the entire SAF value chain by producing cellulosic feedstock.

444 We find that high risk-aversion, time-discounting, and credit-constraints can significantly reduce
445 supply and raise the cost of producing SAF from cellulosic feedstocks. This is due to risk-averse, present-
446 biased, or credit-constrained farmers preferring to grow the lower yielding but less risky switchgrass
447 instead of producing the lower carbon intensive and higher yielding but more-risky feedstock miscanthus.
448 We find that upfront carbon payments incentivize higher quantities of less carbon-intensive SAF
449 production among risk-averse, credit-constrained, and present-biased farmers by reducing the
450 establishment costs of miscanthus. We also find that when farmers are credit-constrained, upfront
451 payments are more cost-effective in terms of carbon mitigation per dollar spent and incentivize more SAF
452 production. In contrast, annual payments are more cost-effective and incentivize SAF production when
453 farmers can access credit.

454 Our work stresses the role of farmer risk-aversion, time-discounting, and credit-constraints in SAF
455 production. Studies that have not considered farmer profiles in cellulosic feedstock production (for
456 example, the Billion-Ton Report (Langholtz et al., 2016), Fan et al. (2024), and Gautam (2023)) are likely
457 overestimating the potential bioenergy crops and the SAF that can be produced without incentives.
458 Further, our work highlights the importance of designing carbon-based incentive payments that consider
459 farmer profiles. Tax credits such as 40B and 45Z, similar to *Annual Payments*, may be ineffective in
460 incentivizing credit-constrained farmers with high risk-aversion to produce crops with lower carbon
461 intensities and higher yields. Crops like miscanthus, which have higher establishment costs and higher
462 return riskiness relative to switchgrass, will be less likely to be adopted by credit-constrained or risk-
463 averse farmers. Our analysis also emphasizes the importance of considering the spatially varying carbon

464 mitigation that each feedstock provides. We find the suitability of switchgrass in the southern states and
465 Great Plains region of the rainfed US while miscanthus has a relative advantage in the Midwest.
466 Policymakers could consider an incentive payment with a component that includes funding for
467 establishment costs (for example, a BCAP-style cost-share payment) or one that includes funding for
468 insurance to reduce return riskiness and is based on the carbon mitigation provided by different feedstock.

469 Our work is an ex-ante analysis by a farmer, assuming biomass prices remain the same over 15 years.
470 Uncertainty about biomass prices will disincentivize bioenergy crop production. The adoption of SAF
471 feedstocks will reduce conventional crop land and, at higher biomass prices, may have a disproportional
472 effect on soybean production. However, our model does not adjust corn and soybean prices as farmers
473 change their conventional crop production levels. A change in conventional crop prices due to reduced
474 aggregate production may further disincentivize bioenergy crop production. Our analysis therefore
475 presents an upper bound on bioenergy crop production levels. Existing research has shown that bioenergy
476 crop production will be limited to procurement areas near biofuel plants due to high transportation costs
477 (Li et al., 2019; Sesmero et al., 2021). Unlike Sesmero et al. (2021) and Li et al. (2019), we do not model
478 how plant behavior would affect feedstock production. Instead, we consider production up to the farm-
479 gate and construct a county-level supply response to biomass and carbon prices under differing policy
480 scenarios and farmer profiles. Additionally, we explore how crops and feedstocks may act as spatial
481 substitutes, adding another layer of interaction to the supply structure of feedstocks. Our research,
482 therefore, provides an upper bound to the potential supply of SAF feedstocks and explores how the spatial
483 mix of feedstocks may differ due to the spatially heterogeneous return profiles of each feedstock. Existing
484 research also shows that bioenergy crops can be produced productively on relatively low-quality
485 (marginal), idle (non-cropland) land but that economic incentives could induce farmers to convert
486 cropland to bioenergy crops as well (Khanna et al., 2021; Sesmero et al., 2021; Yang et al., 2021). Here,

487 we focus on examining economic incentives for the conversion of cropland only to bioenergy crops
488 (similar to Gautam et al., (2023b) and Majeed et al., (2023)) because we are interested in examining the
489 extent to which the adoption of bioenergy crops could be motivated by a desire for diversification of crops
490 by a risk-averse farmer as a mechanism to reduce riskiness. Assessment of the economic opportunity costs,
491 their relative riskiness, and the foregone carbon storage opportunities on that land is subject to significant
492 uncertainty. We leave this to future research to explore.

¹ <https://www.epa.gov/greenvehicles/fast-facts-transportation-greenhouse-gas-emissions>

² The White House has set a goal of supplying at least 3 billion gallons (11.5 billion liters) of SAF per year by 2030 and 35 billion gallons (132.5 billion liters) per year by 2050, sufficient SAF to meet 100% of aviation fuel demand.

<https://www.whitehouse.gov/briefing-room/statements-releases/2021/09/09/fact-sheet-biden-administration-advances-the-future-of-sustainable-fuels-in-american-aviation/>.

³ 2023 SAF production was 0.6 billion liters, representing 0.2% of global jet fuel use <https://www.iata.org/en/iata-repository/pressroom/fact-sheets/fact-sheet-sustainable-aviation-fuels/#:~:text=Aviation%20fuel%20suppliers%20will%20have,rising%20to%2070%25%20in%202050>.

⁴ At the end of 2024, total US SAF production totaled 2 thousand barrels per day (115.8 million liters per year).

<https://www.eia.gov/todayinenergy/detail.php?id=62504>

⁵ Here we assume that the farmer cannot change her land allocation plan once the land-use decision has been made. We do not undertake a dynamic analysis in which new information in future periods can lead to a change in land use decisions.

⁶ For simplicity, we do not consider yield reduction at the end of the lifecycle for bioenergy crops.

⁷ It is arguable that the farmer may find it optimal to adopt both miscanthus and switchgrass on her land to obtain the benefit of crop diversification. However, for simplicity we have assumed that the farmer chooses a single perennial crop instead of a mix of two perennial crops. Relaxing this assumption will only obscure, but not obviate, the insights we seek to provide in the study.

⁸ We do not consider in our model the additional carbon benefits of adopting no-till in order to separate out the soil carbon effects of stover harvest from other climate smart practices.

⁹ We note that the biomass price and carbon prices analyzed here are in 2016 dollars; with significant inflation since 2016 these prices are expected to be substantially higher under current prices. However, we do not expect a change to the qualitative insights from this analysis.

¹⁰ Figure A.1 shows the land use of each feedstock in which corn stover is shown to be the dominant feedstock in terms of land coverage, for example in the Low-Constraint farmer profile, at a biomass payment of \$60 per Mg, 18 million hectares of cropland harvest stover (accounting for corn approximately 55% of land growing corn), whereas the total bioenergy crop acreage is 14 million hectares respectively. At higher biomass prices of \$80 per Mg, 34 million hectares of cropland harvest stover (accounting for most of the land growing corn in the model) relative to 15.9 million hectares under bioenergy crops. However corn stover in our model is not the dominant feedstock for two reasons. First, bioenergy crop yield is significantly larger than corn stover yields, and second, we only remove 30% of corn stover (under conventional tillage, and 50% under no-till) from a field in order to not reduce row crop yield. Due to this, bioenergy crops have much higher output per hectare than corn stover.

¹¹ We observe that there is no feedstock production in Indiana at \$60 per Mg while there is production in Illinois and Iowa at this price. This is because a biomass price slightly higher than 60 is required for production to be initiated. These differences across state lines arise because we are using state-level crop budgets to construct the costs of producing various feedstocks and then downscaling them to the county level due to variations in yield-driven changes in variable costs of production.

493 **References**

494 Alexander, C., Ivanic, R., Rosch, S., Tyner, W., Wu, S. Y., & Yoder, J. R. (2012). Contract theory and
495 implications for perennial energy crop contracting. *Energy Economics*, 34(4), 970–979.
496 <https://doi.org/10.1016/J.ENEKO.2011.05.013>

497 ANL, Wang, M., Elgowainy, A., Lee, U., Baek, K., Bafana, A., ... Zaimes, G. (2023). Summary of
498 Expansions and Updates in R&D GREET. *Argonne National Laboratory*, (ANL/ESIA-23/10).
499 <https://doi.org/10.2172/1891644>

500 Bocquého, G., & Jacquet, F. (2010). The adoption of switchgrass and miscanthus by farmers: Impact of
501 liquidity constraints and risk preferences. *Energy Policy*, 38(5), 2598–2607.
502 <https://doi.org/10.1016/j.enpol.2010.01.005>

503 Brandes, E., Plastina, A., & Heaton, E. A. (2018). Where can switchgrass production be more profitable
504 than corn and soybean? An integrated subfield assessment in Iowa, USA. *GCB Bioenergy*, 10(7),
505 473–488. <https://doi.org/10.1111/GCBB.12516>

506 Chen, B., Gramig, B. M., & Yun, S. D. (2021). Conservation tillage mitigates drought-induced soybean
507 yield losses in the US Corn Belt. *Q Open*, 1(1), 1–29. <https://doi.org/10.1093/QOPEN/QOAB007>

508 Chen, L., Blanc-Betes, E., Hudiburg, T. W., Hellerstein, D., Wallander, S., Delucia, E. H., & Khanna,
509 M. (2021). Assessing the Returns to Land and Greenhouse Gas Savings from Producing Energy
510 Crops on Conservation Reserve Program Land. *Environmental Science & Technology*, 55(2),
511 1301–1309. <https://doi.org/10.1021/ACS.EST.0C06133>

512 Du, X., & Hennessy, D. A. (2012). The planting real option in cash rent valuation. *Applied Economics*,
513 44(6), 765–776. <https://doi.org/10.1080/00036846.2010.522524>

514 Dwivedi, P., Wang, W., Hudiburg, T., Jaiswal, D., Parton, W., Long, S., ... Puneet Dwivedi, Weiwei
515 Wang, Tara Hudiburg, Deepak Jaiswal, William Parton, Stephen Long, Evan DeLucia, M. K.

516 (2015). Cost of abating greenhouse gas emissions with cellulosic ethanol. *Environmental Science
517 and Technology*, 49(4), 2512–2522. <https://doi.org/10.1021/es5052588>

518 Fan, X., Khanna, M., Lee, Y., Kent, J., Shi, R., Guest, J. S., & Lee, D. K. (2024). Spatially Varying
519 Costs of GHG Abatement with Alternative Cellulosic Feedstocks for Sustainable Aviation Fuels.
520 *Environmental Science & Technology*, 58(26), 11352–11362.
521 <https://doi.org/10.1021/acs.est.4c01949>

522 Gautam, S., Baral, N. R., Mishra, U., & Scown, C. D. (2023). Impact of bioenergy feedstock carbon
523 farming on sustainable aviation fuel viability in the United States. *Proceedings of the National
524 Academy of Sciences of the United States of America*, 120(51), e2312667120.
525 <https://doi.org/10.1073/PNAS.2312667120>

526 Hudiburg, T. W., Wang, W., Khanna, M., Long, S. P., Dwivedi, P., Parton, W. J., ... Delucia, E. H.
527 (2016). Impacts of a 32-billion-gallon bioenergy landscape on land and fossil fuel use in the US.
528 *Nature Energy*, 1(1), 1–7. <https://doi.org/10.1038/nenergy.2015.5>

529 Jiang, C., Guan, K., Khanna, M., Chen, L., & Peng, J. (2021). Assessing Marginal Land Availability
530 Based on Land Use Change Information in the Contiguous United States. *Environmental Science &
531 Technology*, 55(15), 10794–10804. <https://doi.org/10.1021/acs.est.1c02236>

532 Khanna, M., Chen, L., Basso, B., Cai, X., Field, J. L., Guan, K., ... Zipp, K. Y. (2021). Redefining
533 marginal land for bioenergy crop production. *GCB Bioenergy*, 13(10), 1590–1609.
534 <https://doi.org/10.1111/GCBB.12877>

535 Langholtz, M. H., Stokes, B. J., & Eaton, L. M. (2016). *2016 Billion-Ton Report: Advancing Domestic
536 Resources for a Thriving Bioeconomy* (Vol. 12). <https://doi.org/10.2172/1271651>

537 Lee, Y., Khanna, M., Chen, L., Shi, R., Guest, J., Blanc-Betes, E., ... De Lucia, E. H. (2023).
538 Quantifying uncertainties in greenhouse gas savings and abatement costs with cellulosic biofuels.

539 *European Review of Agricultural Economics*, 50(5), 1659–1684.

540 <https://doi.org/10.1093/ERAEBJAD036>

541 Li, Y., Miao, R., & Khanna, M. (2019). Effects of ethanol plant proximity and crop prices on land-use
542 change in the United States. *American Journal of Agricultural Economics*, 101(2), 467–491.
543 <https://doi.org/10.1093/ajae/aay080>

544 Majeed, F., Khanna, M., Miao, R., Blanc-Betes, E., Hudiburg, T., & DeLucia, E. (2023). Carbon
545 mitigation payments can reduce the riskiness of bioenergy crop production. *Journal of the
546 Agricultural and Applied Economics Association*, 2(2), 181–197. <https://doi.org/10.1002/jaa2.52>

547 McCarty, T., & Sesmero, J. (2021). Contracting for perennial energy crops and the cost-effectiveness of
548 the Biomass Crop Assistance Program. *Energy Policy*, 149, 112018.
549 <https://doi.org/10.1016/J.ENPOL.2020.112018>

550 Miao, R., & Khanna, M. (2017a). Costs of meeting a cellulosic biofuel mandate with perennial energy
551 crops: Implications for policy. *Energy Economics*, 64, 321–334.
552 <https://doi.org/10.1016/j.eneco.2017.03.018>

553 Miao, R., & Khanna, M. (2017b). Effectiveness of the Biomass Crop Assistance Program: Roles of
554 Behavioral Factors, Credit Constraint, and Program Design. *Applied Economic Perspectives and
555 Policy*, 39(4), 584–608. <https://doi.org/10.1093/aep/pxp031>

556 Ouattara, P. D., Kouassi, E., Egbendéwé, A. Y. G., & Akinkugbe, O. (2019). Risk aversion and land
557 allocation between annual and perennial crops in semisubsistence farming: a stochastic
558 optimization approach. *Agricultural Economics (United Kingdom)*, 50(3), 329–339.
559 <https://doi.org/10.1111/agec.12487>

560 Parton, W. J., Ojima, D. S., Cole, C. V., & Schimel, D. S. (1994). A General Model for Soil Organic
561 Matter Dynamics: Sensitivity to Litter Chemistry, Texture and Management. *Quantitative*

562 *Modeling of Soil Forming Processes. Proc. Symposium, Minneapolis, 1992*, 147–167.

563 <https://doi.org/10.2136/SSSASPEC PUB39.C9>

564 Risk Management Agency (RMA), 2011. Commodity Exchange Price Provisions (CEPP). (2011).

565 Retrieved September 8, 2014, from <http://www.rma.usda.gov/policies/cepp.html>

566 Sesmero, J. P., Trull, N. U., & Gramig, B. M. (2021). Economic viability and carbon footprint of

567 switchgrass for cellulosic biofuels: Insights from a spatial multi-feedstock procurement landscape

568 analysis. *GCB Bioenergy*, 13(7), 1054–1070. <https://doi.org/10.1111/GCBB.12843>

569 Skevas, T., Swinton, S. M., & Hayden, N. J. (2014). What type of landowner would supply marginal

570 land for energy crops? *Biomass and Bioenergy*, 67, 252–259.

571 <https://doi.org/10.1016/j.biombioe.2014.05.011>

572 US Environmental Protection Agency. (2022). *Supplementary Material for the Regulatory Impact*

573 *Analysis for the Supplemental Proposed Rulemaking, "Standards of Performance for New,*

574 *Reconstructed, and Modified Sources and Emissions Guidelines for Existing Sources: Oil and*

575 *Natural Gas Sector Climate Re.*

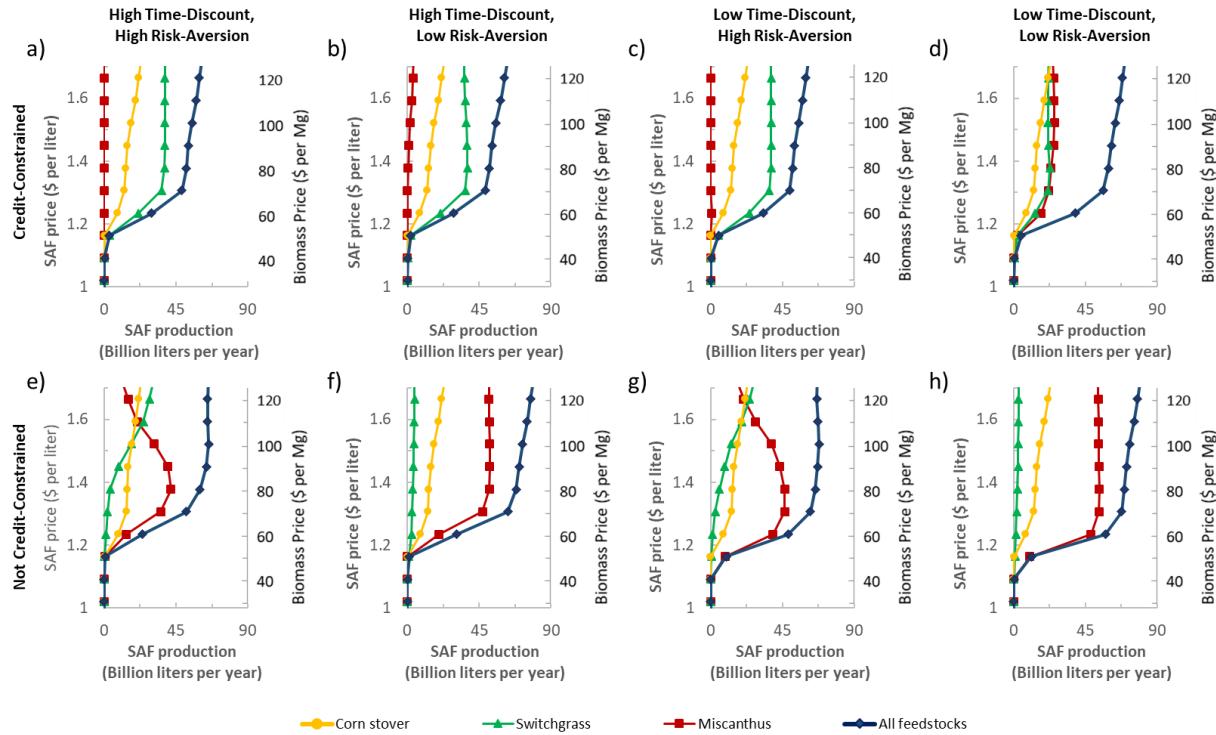
576 US Environmental Protection Agency, C. C. D. (n.d.). *Social Cost of Carbon, December 2015*.

577 Retrieved from <https://www.whitehouse.gov/sites/default/files/omb/inforeg/scc-tsd-final-july-2015.pdf>.

579 Yan, J. (2007). Enjoy the Joy of Copulas: With a Package copula. *Journal of Statistical Software*, 21(4),

580 1–21. <https://doi.org/10.18637/jss.v021.i04>

581 Yang, P., Cai, X., & Khanna, M. (2021). Farmers' heterogeneous perceptions of marginal land for


582 biofuel crops in US Midwestern states considering biophysical and socioeconomic factors. *GCB*

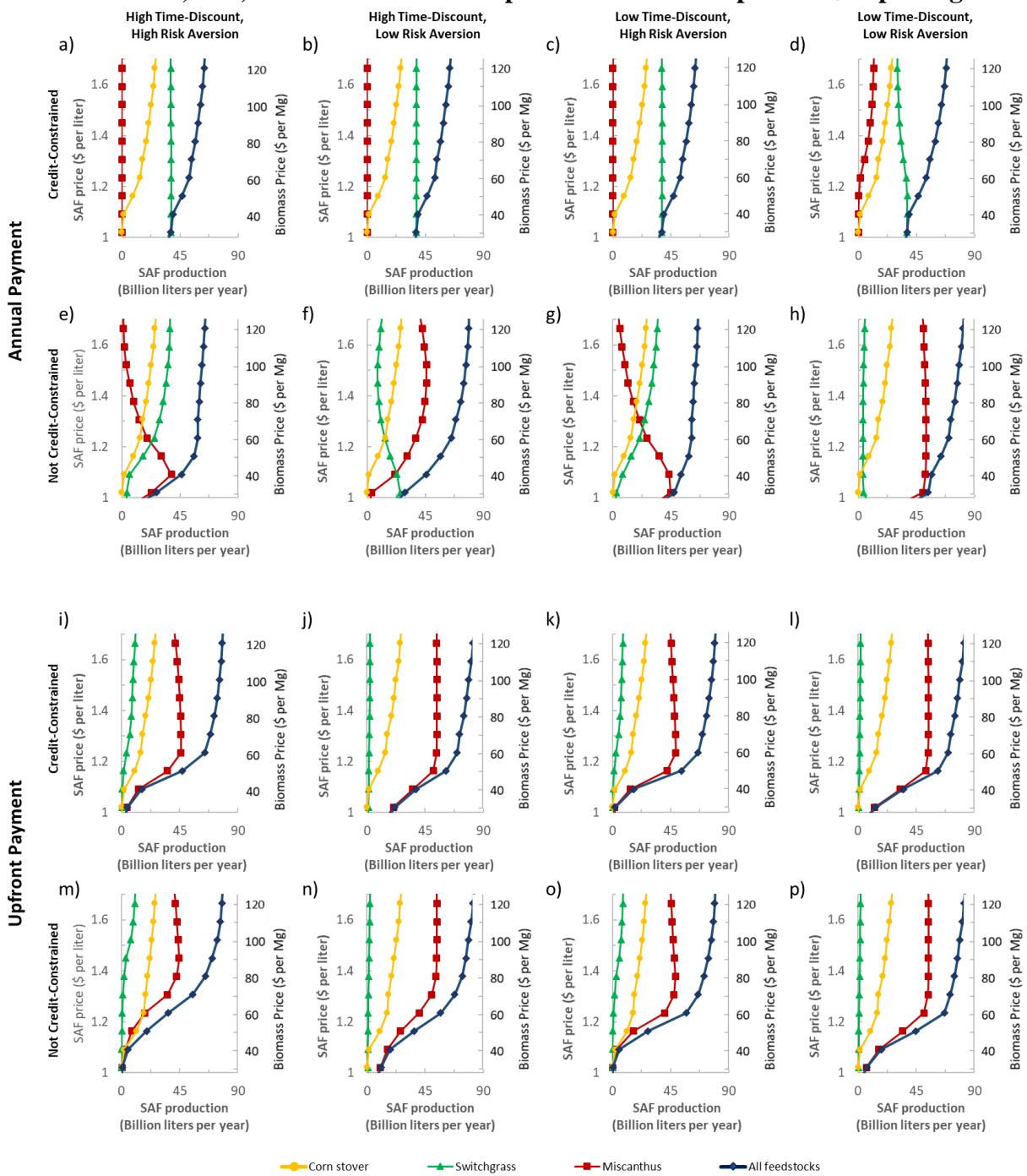
583 *Bioenergy*, 13(5), 849–861. <https://doi.org/10.1111/GCBB.12821>

584

Figures

587 **Figure 1: Sustainable Aviation Fuel production with no carbon payment under various biomass**
prices for differing farmer discount, risk, and credit-constraint profiles

589 This figure shows the adoption of cellulosic feedstocks under no carbon mitigation payments (*No*
590 *Carbon Payment*). The production of SAF from cellulosic feedstocks requires a biomass price of at least
591 \$40 per Mg biomass in 2016 dollars (with an equivalent SAF price of \$1.10 per liter).


592 At a price of \$60 per Mg biomass (with an equivalent SAF price of \$1.25 per liter), under the *Low-*
593 *Constraint* farmer profile (h), the overall SAF that can be produced is 57.3 billion liters per year from
594 mostly miscanthus with some switchgrass and corn stover. Under the *High-Constraint* farmer profile (a),
595 the overall SAF that can be produced is 48 percent (%) lower (at 29.7 billion liters per year) than in the
596 *Low-Constraint* farmer profile, mainly from switchgrass with some corn stover.

597 At a biomass price of \$80 per Mg (with an equivalent SAF price of \$1.40 per liter), overall SAF
598 production increases, but the feedstock mix does not change significantly relative to the \$60 per Mg
599 biomass price under each farmer profile. The SAF produced under the *High-Constraint* farmer profile is
600 26% lower than under the *Low-Constraint* farmer profile at the same price.

601 At biomass prices higher than \$80 per Mg, the feedstock supply from bioenergy crops becomes
602 relatively inelastic. At higher biomass prices, most additional feedstock is produced by corn stover
603 harvesting. Also farmers who are risk-averse but have access to credit (e and g) choose to substitute
604 away from miscanthus towards switchgrass.

605
606

Figure 2: SAF production by feedstock under annual and upfront carbon payment for differing farmer discount, risk, and credit-constraint profiles at a carbon price of \$60 per Mg CO₂

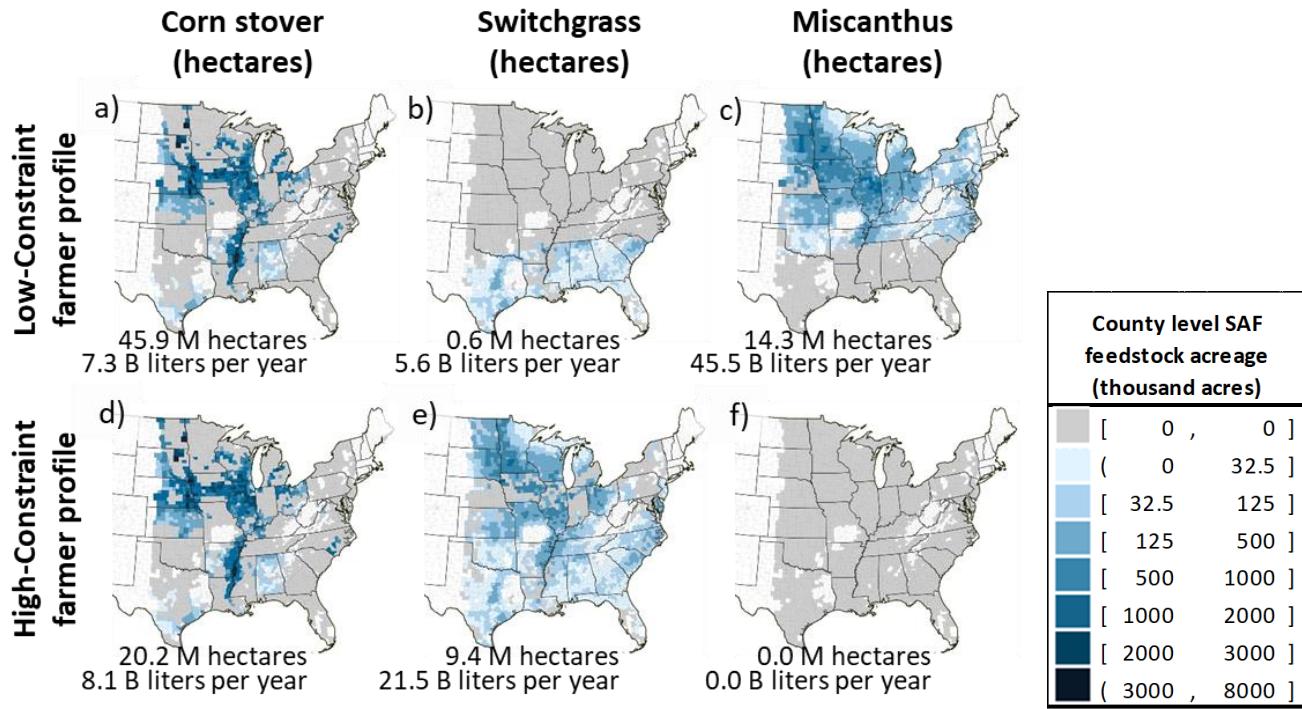
607
608
609

This figure shows the effect of *Annual Payment* (a-h) and *Upfront Payment* (i-p) of \$60 per Mg CO₂ on the mix of feedstocks at each biomass price.

610
611
612
613

Annual Payments: At \$40 per Mg, in the *High-Constraint* farmer profile (a), *Annual Payments* incentivize 38.5 billion liters per year mainly through switchgrass production. In the *Low-Constraint* farmer profile (h), *Annual Payments* incentivize 56.7 billion liters per year through mostly miscanthus production. Risk-averse farmers substitute away from miscanthus at higher biomass prices in favor of switchgrass, reducing the potential for SAF

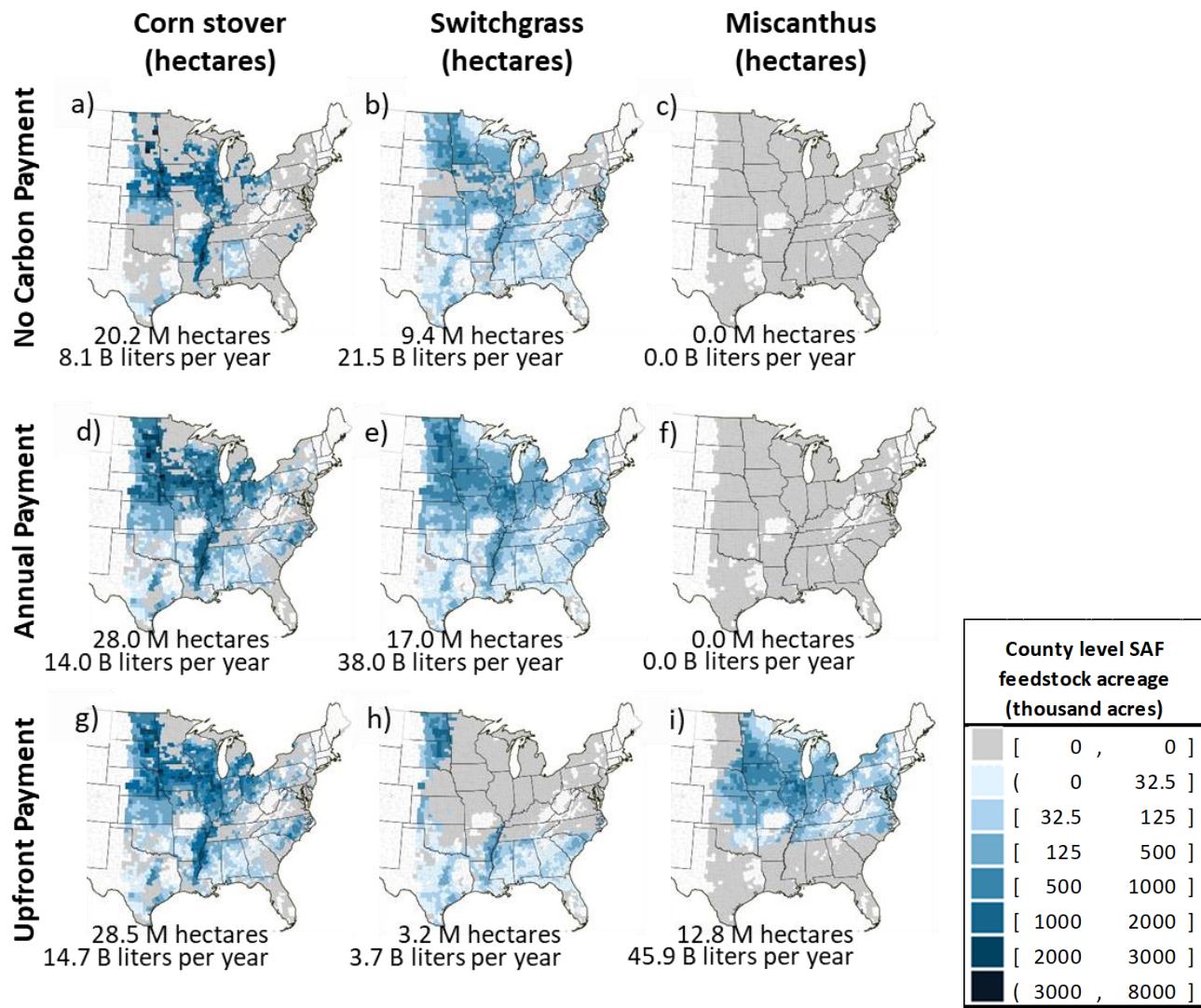
614 production. For example, at \$100 per Mg, in the case where farmers have access to credit but are risk-averse
615 (Figure 2 (e) and Figure 2 (g)), *Annual Payments* incentivize farmers to substitute switchgrass over miscanthus,
616 resulting in a 3-5% drop in SAF production compared to *No Payment*.


617 *Upfront Payments*: At a payment of \$40 per Mg biomass, *Upfront Payments* incentivize 40% and 31% of the SAF
618 quantity that *Annual Payments* do in the *High-Constraint* and the *Low-Constraint* farmer profiles (i compared to
619 a) and (p compared to h).

620 At a payment of \$60 per Mg biomass, *Upfront Payments* incentivize 154% of the SAF quantity that *Annual*
621 *Payments* do in the *High-Constraint* farmer profile (i compared to a). In the *Low-Constraint* farmer profiles, an
622 *Upfront Payment* incentivizes only 75% of the SAF quantity that *Annual Payments* do (p compared to h).

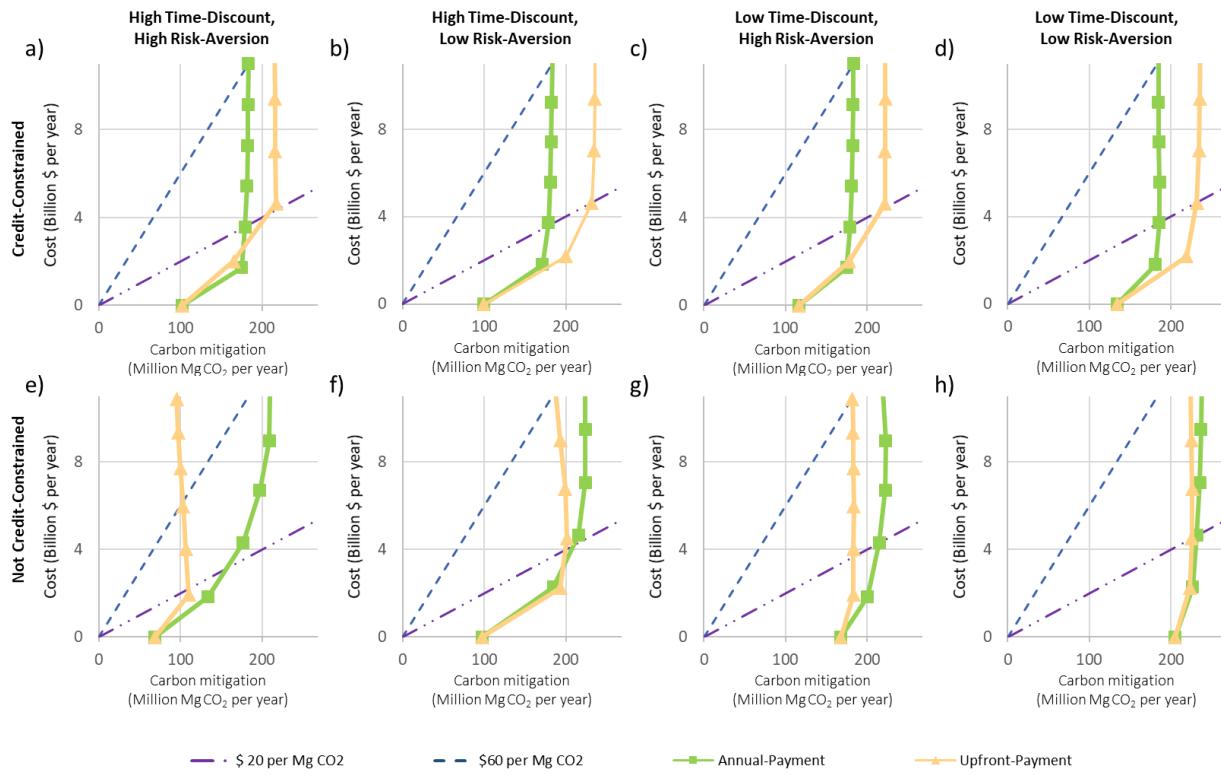
623 *Additional*: Under *Annual Payments*, farmers with access to credit but were risk-averse adopted miscanthus at low
624 biomass prices but substituted miscanthus for switchgrass at high biomass prices, leading to a drop in SAF
625 production relative to *No Payment*. Under equivalent payments through *Upfront Payments*, farmers continue to
626 produce miscanthus under higher biomass prices, resulting in higher SAF production. At \$100 per Mg biomass
627 price, *Upfront Payments* incentivize 12.5 % more than under *No Payment* (m compared to e).

628
629
630


Figure 3: Spatial adoption pattern across cellulosic feedstocks (hectares) under high and low farmer discount, risk, and credit-constraint profiles at biomass prices of \$60 per Mg (equivalent to approximately \$1.25 per liter SAF) and no carbon payment

631
632
633
634
635
636
637
638
639
640
641

This figure shows feedstock adoption in the *High-Constraint* and *Low-Constraint* farmer profiles without carbon mitigation payments (*No Carbon Payment*) at a biomass payment of \$60 per Mg. We assume that the representative farmer in a county chooses a portion of their land to produce bioenergy crops and the portion of the remaining land under corn from which to harvest stover. We restrict a county to choosing to produce only one bioenergy crop (either switchgrass or miscanthus). Farmers not constrained by high time-discounting, risk-aversion, and access to credit produce miscanthus in the Midwest, switchgrass in the southern states, and harvest stover primarily in the Midwest and Delta regions (a-c). In the *High-Constraint* farmer profile (d-f), farmers produce switchgrass adoption across the US with no significant difference in corn stover production patterns across farmer profiles.


642
643 **Figure 4: County-level spatial adoption pattern across cellulosic feedstocks (million hectares) under**
644 **annual payment and upfront payment of \$60 per Mg CO₂ at biomass prices of 60 per Mg (equivalent**
645 **to approximately 1.25 per liter SAF) for high risk-aversion high time-discount and credit-**
646 **constrained farmer profile**

647
648 This figure shows the spatial distribution of feedstock production in the *High-Constraint* farmer profile.
649 *Annual Payments* incentivize more SAF production over *No Carbon Payment*, but do not change the
650 spatial pattern of feedstock production. At a biomass payment of \$60 per Mg (d-f), the spatial pattern of
651 production favoring switchgrass and corn stover throughout the rainfed US is similar to that under *No*
652 *Carbon Payment* (a-c).
653 Under *Upfront Payments*, farmers adopt miscanthus in the Midwest and switchgrass in the southern
654 states and Great Plains at a biomass payment of \$60 per Mg (g-i).

655
656

Figure 5: Carbon mitigation from SAF production under annual and upfront carbon payment for differing farmer discount, risk, and credit-constraint profiles at a biomass price of \$60 per Mg

657
658
659
660
661
662
663
664
665
666
667
668
669
670
671

This figure shows the cost-effectiveness of *Upfront Payment* and *Annual Payment* carbon mitigation policies in incentivizing aggregate carbon mitigation. When farmers do not have access to credit (a-d), there is little difference between payment schemes in the cost to mitigate up to 180 million Mg CO₂ of abatement per year (with an abatement costs of approximately \$ 2.5 billion per year). *Upfront Payments* incentivize up to 220 million Mg CO₂ of abatement per year (with an abatement cost of approximately \$ 4.5 billion per year). When farmers are not credit-constrained but are otherwise present-biased or risk-averse (e-g), *Annual Payments* are generally more cost-effective than *Upfront Payments*. Here, *Annual Payments* can incentivize up to 210 million Mg CO₂ of abatement per year (with an abatement cost of approximately \$ 4.5 billion per year when farmers are not risk-averse or present-biased, and \$ 8 billion per year when they are). *Upfront Payments* are less effective in these cases as farmers already have access to credit. When farmers are not constrained (h), there is little difference between the cost of carbon mitigation between the two payment schemes.

672 **Appendices**673 **Appendix A.1. Numerical Simulation**

674 We simulate the economic incentives for adopting cellulosic feedstocks on cropland in each county by a
675 risk-averse, present-biased, and credit-constrained representative farmer at the county level, maximizing
676 their expected utility over a given period. The farmer optimally allocates L units of cropland between
677 perennial bioenergy crops and annual conventional crops on which they can harvest corn stover. Let $x \in$
678 $[0,1]$ be the share of land farmers allocate to bioenergy crops and $1 - x$ the share of land to the
679 conventional crops. Our model considers two bioenergy crop feedstocks: miscanthus and switchgrass. We
680 use e to denote the bioenergy crop such that $e \in E \equiv \{misc, swit\}$. Further, we consider two types of
681 rotation for conventional crops, corn-corn (cc) and corn-soybean (cs) rotation, and two types of tillage,
682 conventional tillage (ct) and reduced/no-tillage (nt). We use c to denote the rotation and tillage
683 combination of conventional crops such that $c \in C \equiv \{(cc, ct), (cc, nt), (cs, ct), (cs, nt)\}$. Farmers may
684 harvest corn stover as a by-product of corn as a cellulosic feedstock. For each rotation-tillage combination
685 c , the corn stover harvest choice is represented by h_c , such that $h_c \in \{1, 0\}$ is the condition to harvest
686 stover or not. Let \bar{T} be land tenure and t depict the discrete years during this period such that $t \in$
687 $\{1, 2, \dots, \bar{T}\}$. Perennial bioenergy crops complete one life-cycle in \bar{T} while conventional crops complete
688 one life-cycle each year and stover can be harvested annually.

689 In addition to being used as a cellulosic feedstock, bioenergy crops, and corn stover provide carbon
690 mitigation services from conventional aviation fuel displacement, which varies with feedstock yield, and
691 from belowground soil carbon sequestration per unit of land, which may vary temporally over the crop
692 life-cycle. Farmers may receive no carbon payment (*No Carbon Payment*) or a carbon mitigation payment
693 for the value of carbon mitigated in the year it was mitigated (*Annual Payment*) or the full value of carbon
694 mitigated over the crop life-cycle at the start of the establishment period (*Upfront Payment*). We use *Pay*

695 to denote the payment policy scheme such that $Pay \in PAY \equiv \{No\ Carbon\ Payment, Annual\ Payment,$
 696 *Upfront Payment*\}. The profit per unit of land at time t under each payment policy scheme in PAY is
 697 $\pi_t^{PAY,e}$ for bioenergy crops and $\pi_t^{PAY,stover}$ for corn stover.

698 To reduce the dimensionality of the simulation, we assume that the representative farmer in a county
 699 only chooses one bioenergy crop between the two and only one rotation-tillage combination between the
 700 four. The farmer's overall utility function is given by $V_{x,e,c,h_c} = \sum_{t=1}^{\bar{T}} \beta^{t-1} E[u(L[x\pi_t^{PAY,e} + (1 - x)(\pi_c^{crop} + h_c\pi_c^{PAY,stover})]|\lambda)]$ where $u(\cdot)$ is the farmer's annual utility function. The utility function
 701 takes the form of a Constant Absolute Risk-Aversion (CARA) with properties $u''(\cdot) \leq 0 \leq u'(\cdot)$ and their
 702 measure of risk-aversion is λ . The farmers discount factor is given by $\beta = 1/(1 + \gamma)$, with $\gamma \in [0,1]$ as
 703 the discount rate. For any given conventional crop choice and bioenergy crop combination, the farmer
 704 chooses x to maximize the following problem:
 705

$$V_{x,e,c,h_c} = \max_x \sum_{t=1}^{\bar{T}} \beta^{t-1} E[u(L[x\pi_t^{PAY,e} + (1 - x)(\pi_c^{crop} + h_c\pi_c^{PAY,stover})]|\lambda)] \quad (1.1)$$

706 Bioenergy crop profit: We separate the bioenergy crop life-cycle into an establishment period and a
 707 maturity period, with \hat{t} being the number of years in the establishment period. In the bioenergy crop
 708 establishment period, the farmer incurs a cost, w_t^e , per unit of land to establish the bioenergy crop for each
 709 year. The farmer borrows the establishment cost if they have access to credit and pays back the annuity at
 710 interest rate i , $A(w_t^e, \dots, w_{\hat{t}}^e, i)$, in the mature period. The farmer harvests the bioenergy crop, where the
 711 bioenergy crop yield, y^e , is stochastic with distributions known to the farmer and yield realized at
 712 harvesting. Miscanthus is harvested only in the mature period, while switchgrass produces harvestable
 713 yield in the establishment period. Farmers harvesting cellulosic feedstocks receive a biomass payment of
 714 p^b per unit of biomass yield. For crop e at time t without carbon mitigation payments, bioenergy crop
 715 profits, $\pi_t^{No-Payment,e}$, can be written as

$$\pi_t^{No-Payment,e} = \begin{cases} -Iw_t^e, t \leq \hat{t}_m, e = misc \\ -Iw_t^e + (p^b - v^e)y^e - f^e, t \leq \hat{t}_s, e = swit \\ (p^b - v^e)y^e - f^e - (1 - I)A(w_t^e, \dots w_{\hat{t}}^e, i), t > \hat{t}_e, \end{cases} \quad (1.2)$$

716 where I is an indicator of whether the farmer has credit-constraint ($I = 1$) or not ($I = 0$), f^e is the fixed
 717 cost, v^e a variable cost, and p^b is the price per unit of biomass.

718 Farmers mitigate l^e per unit of biomass through life-cycle carbon mitigated from SAF production, not
 719 including belowground soil carbon sequestration, which is denoted as b_t^e and varies temporally. The
 720 farmer receives payment, p^g , per unit per unit of carbon mitigated. Under *Annual Payment*, where the
 721 farmer receives each year the value of carbon mitigated in that year, the returns per unit of land for crop
 722 e in year t can be written as

$$\pi_t^{Annual-Payment,e} = \begin{cases} \pi_t^{No-Payment,e} + p^g b_t^e, t \leq \hat{t}_m, e = misc \\ \pi_t^{No-Payment,e} + p^g l^e y^e + p^g b_t^e, t \leq \hat{t}_s, e = swit \\ \pi_t^{No-Payment,e} + p^g l^e y^e + p^g b_t^e, t > \hat{t}_e. \end{cases} \quad (1.3)$$

723 Alternatively, farmers may receive a lump sum upfront carbon mitigation payment (*Upfront*
 724 *Payment*) in the first year of planting bioenergy crops, which is determined by the total value of carbon
 725 mitigated as given by $G = \sum_t^T \beta^{t-1} p^g (b_t^e + l^e E[y^e])$. For bioenergy crops, profit per unit of land in
 726 year t under upfront carbon payments can be written as

$$\pi_t^{Upfront-Payment,e} = \begin{cases} G + \pi_t^{No-Payment,e} & t = 1 \\ \pi_t^{No-Payment,e} & t > \hat{t}_e \end{cases} \quad (1.4)$$

727 Conventional crop and corn stover profit: The yields and prices of corn grain and soybeans are denoted
 728 by y_c^{corn} , $y_c^{soybean}$, p^{corn} , and $p^{soybean}$, respectively. The yields and prices of conventional crops are
 729 stochastic, with distributions known to the farmer and the yields and prices realized at harvesting. The
 730 fixed and variable costs of producing corn and soybeans are represented by f_c^{corn} , $f_c^{soybean}$, v_c^{corn} ,
 731 $v_c^{soybean}$ respectively, where fixed costs (denoted by f_c^{corn} , and $f_c^{soybean}$) are per unit of land and variable

732 costs (denoted by v_c^{corn} , and $v_c^{soybean}$) are per unit of yield produced. Conventional crop returns per unit
 733 of land for corn grain and soybeans under each rotation-tillage combination in set C can then be written
 734 as $\pi_c^{corn} = (p^{corn} - v_c^{corn}) \times y_c^{corn} - f_c^{corn}$ and $\pi_c^{soybean} = (p^{soybean} - v_c^{soybean}) \times y_c^{soybean} -$
 735 $f_c^{soybean}$. For corn-soybean rotation, we assume that half of the land is used for corn and half for soybeans.
 736 The profit from conventional crops without corn stover harvest under rotation-tillage combination c is

$$\pi_c^{crop} = \begin{cases} 0.5 \pi_c^{corn} + 0.5 \pi_c^{soybean}, & c \in \{(cs, ct), (cs, nt)\} \\ \pi_c^{corn}, & c \in \{(cc, ct), (cc, nt)\}. \end{cases} \quad (1.5)$$

737 Additionally, farmers may produce corn stover as a by-product of corn production. It may be harvested
 738 for biomass as an SAF only if the farmer deems it profitable. For stover, the farmer can receive a biomass
 739 price at p^b per unit of biomass. The fixed and variable costs of producing corn stover under corn
 740 production in rotation-tillage combination c are represented by f_c^{stover} and v_c^{stover} respectively, where
 741 fixed costs are per unit of land and variable costs are per unit of yield produced. As corn-soybean rotations
 742 produce corn on half the land, only half the quantity of stover will be produced relative to continuous corn
 743 production. Additional returns from corn stover for land under corn production in each rotation-tillage
 744 combination c without carbon payments can then be written as

$$\pi_c^{No-Carbon-Payment,stover} = \begin{cases} 0.5 ((p^b - v_c^{stover}) y_c^{stover} - f_c^{stover}), & c \in \{(cs, ct), (cs, nt)\} \\ (p^b - v_c^{stover}) y_c^{stover} - f_c^{stover}, & c \in \{(cc, ct), (cc, nt)\}. \end{cases} \quad (1.6)$$

745 We assume that one unit of stover biomass generates l_c^{stover} units of life-cycle carbon mitigation and
 746 that one unit of land harvesting stover will produce b_c^{stover} units of carbon mitigation through soil carbon
 747 sequestration each year and does not vary temporally. As payments conventional crops can be replanted
 748 and corn stover can be harvested every year, returns under *Annual Payment* and *Upfront Payment* are
 749 equivalent. For each rotation-tillage combination c , corn stover returns under carbon payment can be
 750 written as

$$\pi_c^{Annual-Payment,stover}, \pi_c^{Upfront-Payment,stover} \quad (1.7)$$

$$= \begin{cases} \pi_c^{No-Carbon-Payment,stover} + 0.5 ((p^g l_c^{stover}) y_c^{stover} + p^g b_c^{stover}), c \in \{(cs, ct), (cs, 1)\} \\ \pi_c^{No-Carbon-Payment,stover} + (p^g l_c^{stover}) y_c^{stover} + p^g b_c^{stover}, c \in \{(cc, ct), (cc, 1)\} \end{cases}$$

751 We assume that farmers harvest stover only if the expected gains, $E[\pi_c^{stover}]$, of doing so are positive. The
 752 condition to harvest ($h_c = 1$) or not ($h_c = 0$) is calculated on expected stover returns such that

$$h_c = \begin{cases} 1, E[\pi_c^{Pay,stover}] > 0 \\ 0, E[\pi_c^{Pay,stover}] \leq 0. \end{cases} \quad (1.8)$$

753 Farmer cropping choice: The farmer maximizes eq (1.1) to choose the land share allocated to
 754 bioenergy crops ($x \in [0, \alpha]$), the choice bioenergy crop ($e \in E$), whether to harvest corn stover ($h_c \in$
 755 $\{0, 1\}$), along with conventional crop rotation and tillage ($c \in C$), to select the highest expected utility,
 756 V_{x,e,c,h_c} . We solve land allocation and cropping choices at various exogenous biomass price levels (p^b),
 757 carbon prices (p^g), and policy payments (Pay), under various assumptions about the farmer's risk (λ) and
 758 time (β) preferences and her credit-constraint situation (I).

759 To reduce the dimensionality of the simulation, we assume that the representative farmer for the
 760 county only chooses a rotation-tillage combination between the four. Farmers adopt a rotation-tillage
 761 combination for their county based on each combination's relative returns and riskiness. Farmers who
 762 change their rotation-tillage combination when harvesting corn stover may reduce conventional crop
 763 returns through lower yields or increased costs offset by returns through biomass production. For
 764 example, continuous corn requires more fertilizer than corn-soybean rotations, and no-till may have
 765 lower yields than conventional tillage. Under each policy payment scheme and risk and discount
 766 factors, the farmer will adopt cover crops if their expected utility with nonzero cellulosic feedstock
 767 adoption (i.e., either $x > 0$ or $h_c = 1$) is greater than without cover crops (i.e., $x = 0$ and $h_c = 0$). As
 768 such, farmers can be incentivized to produce cellulosic feedstocks through payments that are large

769 enough to make their expected utility with nonzero cellulosic feedstock production at least as high as
770 their expected utility without cellulosic feedstocks under each policy payment scheme. The level of
771 payment needed under each policy and the mix of feedstocks adopted may, however, differ by farmer
772 profile of risk-aversion, time-discounting, and credit-constraint and across counties due to spatial
773 heterogeneity in carbon mitigation, cost of feedstocks, and feedstock and conventional crop yield and
774 price riskiness.

775 **Appendix B.1. Crop Yield Details**

776 We take simulated yields of corn, corn stover, soybean, miscanthus, and switchgrass from the
777 biogeochemical model, DayCent, using output mass and conversion rates provided by DayCent
778 (Hudiburg et al., 2016). We use yield data for conventional crops for corn-soybean and corn-corn
779 rotations, conventional and no-tillage, and corn stover removed and not removed. DayCent is the daily
780 version of the CENTURY model.(Parton et al., 1994) It simulates changes in carbon and nitrogen in the
781 ecosystem, including simulation of plant production and changes in soil organic matter where plant
782 production is a function of genetic potential, phenology, nutrient availability, water/temperature stress,
783 and solar radiation.

784 As large-scale commercial production of bioenergy crops is yet to commence in the United States,
785 we use data from field experiments with miscanthus and switchgrass across the rainfed region to
786 calibrate the productivity parameters in the DayCent model that relate soil attributes and weather with
787 yields.(Hudiburg et al., 2016) We use DayCent to obtain simulated yields of miscanthus and
788 switchgrass, assuming that the previous thirty years of historical weather conditions for each county
789 cycle are randomly distributed. Table A.1 presents the summary statistics of the average mature yields
790 and standard deviation across counties for bioenergy crops. Yields for all crops are considered dry yields
791 with 13 percent moisture and no storage, transportation, or harvest loss. There is a slight difference in
792 the DayCent yields of corn's four rotation/tillage options. Additionally, switchgrass yields have a higher
793 variation, making it possible to have higher switchgrass yields in certain counties.

794 As there is no consensus on the optimal removal rate of corn stover and whether to maintain soil
795 carbon levels or corn yields, corn stover removal rates depend on the DayCent model parameters. We set
796 the removal rates at 0% for no stover removal, 50% for stover removal under no-till, and 30% for stover
797 removal under tillage. These removal rates have little effect on soil nutrients and allow for more

798 significant removal of corn stover. DayCent Corn yields for when farmers remove corn stover and when
799 they do not remove corn stover do not differ significantly, so we only consider corn yield farmers
800 remove when corn stover for each rotation/tillage and use for both corn stover removal and non-
801 removal.

802 For corn-soybean rotations, the DayCent simulated two schemes for each tillage option, corn-
803 soybean and soybean-corn, with the base year starting with corn and soybeans, respectively. As yields
804 are independent year-by-year, but each year shares the same weather draw, we assume that for planting a
805 mixed rotation conventional crop, half planted corn and the other half soybeans. Further, nitrogen
806 application rates are those assumed by the DayCent model for bioenergy crops and conventional crops
807 based on public databases (USDA), published historical data, and recommended fertilization rates.
808 Additionally, we take potassium and phosphorus application rates from Dwivedi et al.(2015).

809 **Appendix B.2. Bioenergy crop costs**

810 Table A.2 shows the fixed cost per hectare over the life of the crop. The farmers' most considerable
811 expense is the high establishment and fixed costs in the first few years before bioenergy crops produce
812 yield at a mature level.

813 We calculate bioenergy crop costs at the county level for each year in the establishment and mature
814 periods with input quantities from the Iowa State Extension and input prices from the National
815 Agricultural Statistics Service (NASS). In the establishment period, the farmer incurs a cost per unit of
816 land to establish the bioenergy crop. For miscanthus, the establishment cost per hectare is above \$2,200,
817 while switchgrass is cheaper at around \$690 per hectare; however, the fixed cost after the establishment
818 period for miscanthus is lower. In the mature period, the farmer harvests the bioenergy crop annually
819 and incurs costs associated with harvesting. Establishment period costs include land preparation and
820 planting, such as disking, rhizomes or seed drilling, soil finishing, and chemical sprays. Table A.3

821 presents the operating cost per ton of biomass produced, using the farmer's expected yield in each
822 county.

823 **Appendix B.3. Conventional Crop Costs**

824 We construct conventional crop costs for each rotation and tillage option at the state level using crop
825 budget quantities and prices provided by state extension services. These include chemicals, seeds,
826 harvesting, storage, drying, and inputs. N, P, and K prices are applied using prices consistent with corn
827 and soybean crops. We present a summary of conventional crop costs in Table A.3. We construct state-
828 level production costs of conventional crops (corn and soybean) for each rotation and tillage option
829 using quantities and prices provided by state extension service budgets; these include chemicals, seeds,
830 harvesting, drying, fuel, insurance, labor, machinery, and interest on capital costs.

831 **Appendix B.4. Conventional Crop Prices**

832 Table A.4 shows the mean of the three prices used to generate a distribution of prices for corn and
833 soybeans. The prices for conventional crops (corn and soybean) are estimated first at the national level
834 using 30-year national-level harvest prices (NASS) and futures prices (Chicago Board of Trade) to
835 reflect the riskiness of conventional crop prices. We use the difference in historical harvest and futures
836 prices for each year from 1986-2015 to calculate a distribution of national-level projected crop prices
837 following RMA("Risk Management Agency (RMA), 2011. Commodity Exchange Price Provisions
838 (CEPP)," 2011) rules. We then scale national prices to state-level prices using the national and state-
839 level harvest prices for 2016 (USDA NASS), as detailed below.

840 We use four price inputs for soybean and corn to generate prices for the numerical analysis: a
841 national-level realized price, state-level realized farm gate prices, a national-level historical harvest
842 price, and a country-level historical futures price to generate a price distribution for the model, and
843 exogenously sets a biomass and carbon mitigation payment. State-level and national prices for corn and

844 soybean are obtained from the USDA National Agricultural Statistics Service and averaged for the 2016
845 harvest period of available states, Sept, Oct, and Nov, with the marketing year used for States where
846 monthly data is unavailable—national prices over this period at \$3.71 per bushel for corn and \$9.41 for
847 soybean. Annual national-level historical prices are taken from NASS for the past thirty years, from
848 1987 to 2016. Country-level historical futures prices for corn and soybeans are derived from the Chicago
849 Board of Trade futures prices for the same years, averaging from Sept to Nov, taken from
850 <https://www.macrotrends.net/>. Both historical prices are converted to 2016 dollars using the Gross
851 Domestic Product: Implicit Price Deflator obtained from the St Louis Federal Reserve, with third-
852 quarter values used to adjust historical prices. We consider prices to be stochastic along with yields, the
853 difference in state-level prices and use national-level prices, while the log difference in realized and
854 futures prices to calculate the distribution in risk, which is calculated using a Copula method to generate
855 a distribution of costs and yields for the model following RMA (2011) rules. We then scale national-
856 level prices to state-level prices using the national and state-level harvest prices to calculate a price basis
857 for each state (USDA NASS).

858 **Appendix B.5. Corn stover costs**

859 Corn stover costs are constructed at the state level for each corn rotation and tillage combination,
860 including mowing, raking, staging, loading, baling, and storage. As there is no significant difference in
861 harvesting and storage costs between tillage choices and rotations, the considerable difference in prices
862 is due to replacement nitrogen application rates, which differ over the four tillage and rotations.
863 Potassium and Phosphorus applications are applied at a variable cost, as given by Dwivedi et al.(2015).
864 Presented in Table A.5 is the total cost per bushel of corn and soybean divided by region rotation and
865 tillage.

866 **Appendix B.6. Biomass conversion costs**

867 In our analysis, we consider two cost components (biomass to cellulosic ethanol and cellulosic ethanol
868 to SAF) in converting biomass to SAF. We take the cost of biomass to cellulosic ethanol and the cost of
869 cellulosic ethanol to SAF from Fan et al. (2024). We take the volumetric conversions at each stage from
870 GREET. The costs and volumetric conversions are shown in Table A.6. We assume no transportation
871 cost between cellulosic ethanol and SAF production.

872 **Appendix B.7. Soil carbon mitigation from feedstock production**

873 To account for temporal soil carbon dynamics, we use annual soil carbon sequestration rates for the first
874 three years of establishment and an average soil carbon sequestration rate over the remaining period, as
875 detailed below.

876 We take the annual total carbon levels in the soil organic matter pool for all crops from the DayCent
877 model for each year of the planting period. This data includes the effect of corn stover harvest on annual
878 soil carbon levels for all rotations, tillage combinations, and all choices of bioenergy crops. We use the
879 difference between soil carbon levels over the planting period to calculate the annual rate of soil carbon
880 sequestration during the planting period. For bioenergy crops, we independently calculate the soil
881 carbon change each year of the establishment period and the rates during the mature period.

882 Bioenergy crop sequestration rates used in the model are divided into sequestration in the first and
883 second years and an average sequestration rate for later years per county. In contrast, conventional crop
884 sequestration rates are an average value over the crop's life. Table A.7 shows regional averages for the
885 baseline county-level sequestration rates.

886 **Appendix B.8. Carbon mitigation from feedstock production**

887 Carbon intensity calculations in $g CO_2 eq Mj^{-1}$ are computed for each feedstock for the establishment
888 and full yield years using the methodology highlighted in Dwivedi et al.(2015). We calculate the

889 lifecycle carbon intensity of biomass production as a sum of emissions through lifecycle analysis. Our
890 lifecycle analysis for calculating the carbon intensity of ethanol produced across various sectors,
891 including feedstock production, processing, transportation fuel use (as defined as farming and collection
892 energy use in GREET), conversion to ethanol, and conversion to SAF (ATJ-SPK). We aggregate
893 emission intensities across major components such as material input usage, electricity, diesel, bioenergy
894 use, electrification co-credits, ethanol production emissions, and soil carbon rates resulting over the
895 lifecycle of the various cellulosic ethanol feedstocks. Next, we consider nitrogen, potassium,
896 phosphorus, insecticide, lime, and herbicide application rates for material input usage. Sources of
897 application rates are detailed in earlier sections and are applied as either Kg Input ha⁻¹ or Kg Mg⁻¹
898 biomass and multiplied by the gCO_2 emitted per g of input used. We take emissions related to
899 electricity, diesel, and transportation fuel usage as parameters of the global warming intensity of the
900 service used. The electricity co-product credit is a constant parameter per MJ used and is negative. We
901 apply ethanol production emissions as a constant parameter followed by SAF conversion factors related
902 to the emissions produced while converting a feedstock to ethanol and then to SAF.

903 We take carbon emission factors of gCO_2 per MJ energy, electricity co-credit, and calorific values of
904 fuels from the GREET model. We also take nitrogen application rates for biomass production from the
905 DayCent model. We provide an overview of the data used to compute carbon emissions with factors
906 used to calculate emissions in the first table and application rates in the second in Table A.8 and Table
907 A.9. In Table A.10; we present the estimated lifecycle material input carbon intensities of the various
908 sources of cellulosic feedstocks. Due to the higher fertilizer requirements for feedstock, switchgrass is
909 more carbon-intensive than miscanthus. As corn stover fertilizer requirement is less compared to other
910 feedstocks, requiring only replacement nitrogen material intensity is lower than switchgrass for No-till
911 corn-soybean rotation where the replacement fertilizer requirement is minimal as crop rotation reduces

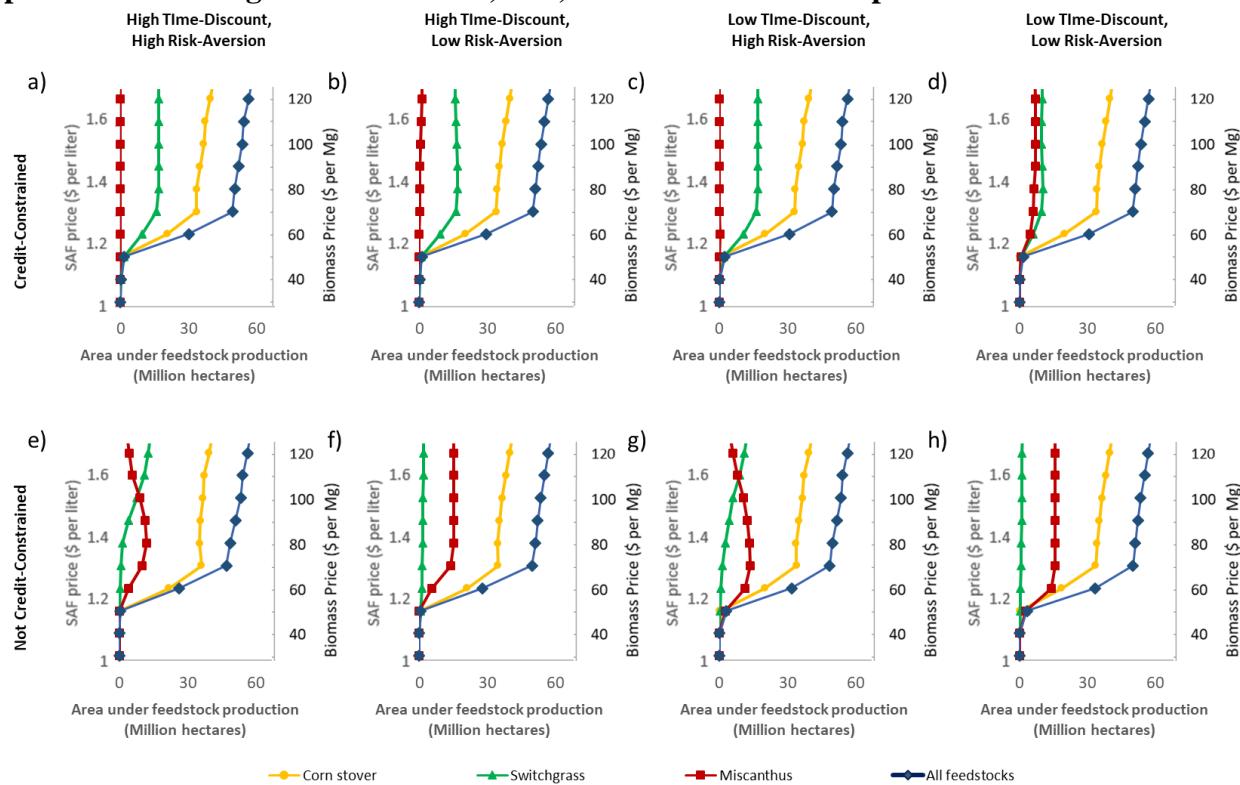
912 the material use demand on corn stover production, thereby leading to a lower carbon intensity for corn-
913 soybean rotations. We then convert the total carbon mitigated lifecycle to a carbon saved per hectare to
914 incentivize the complete life cycle.

915 **Appendix B.9. Generation of Joint Yield-Price Distribution**

916 A joint yield-price distribution is assumed where the farmer knows the distribution of prices and yields
917 estimated for their county to reflect the stochastic nature of crop yields and prices. To calculate
918 stochastic returns, we first construct the yield-price distribution for each county by a copula approach (a
919 modeling process that first describes and then replicates the dependence structure between multiple
920 stochastic variables).(Miao & Khanna, 2017b) We model the joint yield-price distributions using the
921 copula approach following Miao & Khanna (2017b), Yan(2007), and Du & Hennessy(2012). We model
922 stochastic yields and obtain one thousand random draws for each county from the joint distribution for
923 twelve crop yields linked to eight conventional crop rotation, tillage, and corn stover harvest choices and
924 two bioenergy crop choices (i.e., corn and corn stover (each under four rotation and tillage
925 combinations), soybeans (under two tillage combinations), and miscanthus, and switchgrass) and prices
926 for two conventional crops (corn and soybean). Like Du & Hennessy(2012), we assume yields to have
927 beta and price lognormal distributions. Once joint distributions are estimated, draws are taken to conduct
928 a Monte Carlo simulation. Next, a linear detrending approach is applied to remove each county's
929 systematic components of yield variation, adding to the county-level yield trend for 2016.

930

931


Appendix Figures and Tables

932

Figures

933

Figure A.1: Sustainable Aviation Fuel production with no carbon payment under various biomass prices for differing farmer discount, risk, and credit-constraint profiles

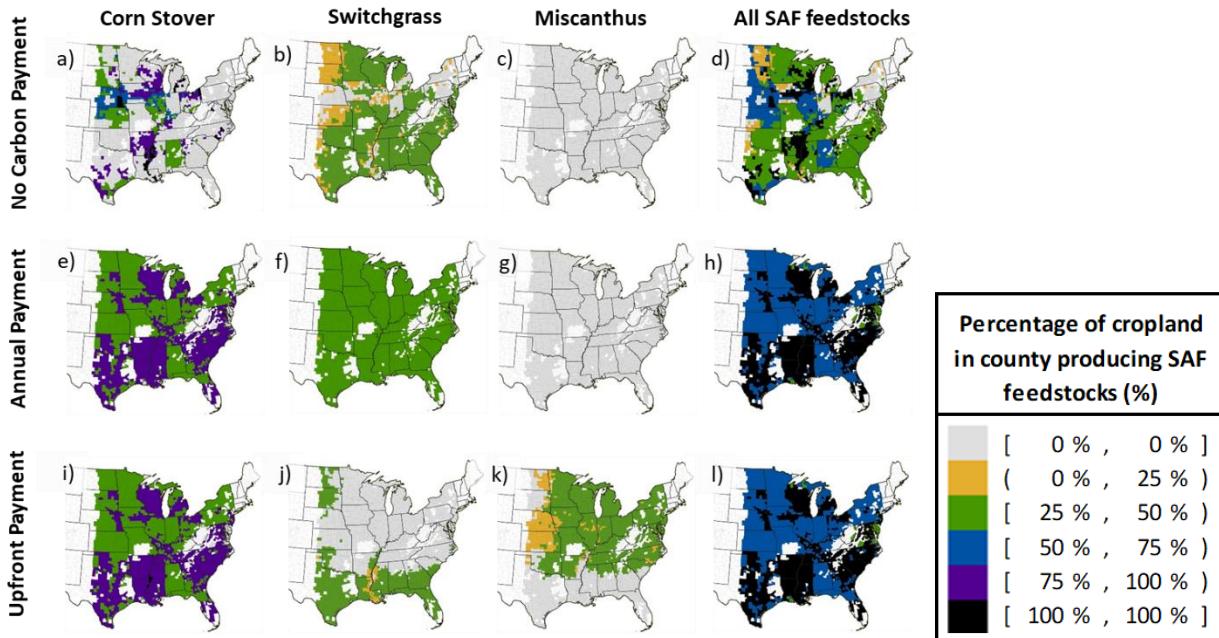
935

This figure shows the adoption of cellulosic feedstocks under no carbon mitigation payments (*No Carbon Payment*). The production of SAF from cellulosic feedstocks requires a biomass price of at least \$40 per Mg biomass in 2016 dollars (with an equivalent SAF price of \$1.10 per liter).

936

At a price of \$60 per Mg biomass (with an equivalent SAF price of \$1.25 per liter), under the *Low-Constraint* farmer profile (h), the cellulosic feedstocks are adopted on 33.5 million hectares, with most land being used to produce corn stover (18.5 million hectares) and fewer hectares to miscanthus (14.3 million hectares) and switchgrass (0.5 million hectares). Under the *High-Constraint* farmer profile (a), the overall hectares producing cellulosic feedstocks are 10 percent (%) lower (at 30 million hectares) than in the *Low-Constraint* farmer profile, with most land being used to produce corn stover (20.5 million hectares) and some land producing switchgrass (9.5 million hectares) and no land producing miscanthus.

937


Feedstock hectares increase at a biomass price of \$80 per Mg (with an equivalent SAF price of \$1.40 per liter), but the feedstock mix does not change significantly under each farmer profile relative to the \$60 per Mg biomass price. The crop hectares producing SAF feedstocks under the *High-Constraint* farmer profile are 2% lower than under the *Low-Constraint* farmer profile at the same price.

951 The feedstock supply from bioenergy crops becomes relatively inelastic at biomass prices higher than
952 \$80 per Mg. At higher biomass prices, most additional feedstock is produced by farmers changing their
953 conventional crop cropping choices in order to increase the land on which corn stover can be harvested.
954 Also, risk-averse farmers with access to credit (e and g) choose to substitute away from miscanthus for
955 switchgrass.

956

957

958
959
960
961 **Figure A.2: Share of cropland under Sustainable Aviation Fuel feedstock production at \$ 40 and
\$60 per Mg biomass price, without carbon payment and carbon payment of \$20 and \$60 per Mg
CO₂ for annual and upfront payment schemes for high risk-averse, high time-discount, and credit-
constrained farmer profiles**

962
963 This figure shows the share of cropland under SAF feedstock production at \$60 per Mg biomass price,
964 without carbon payment and carbon payment of \$60 per Mg CO₂ for annual and upfront payment
965 schemes for the *High Risk-Averse*, *High Time-Discount*, and *Credit-Constraint* farmer profile.
966 Farmers, when they receive no carbon payment, adopt low shares of feedstocks across the rainfed
967 region, with stover being more dominant in terms of land share in the Midwest. With carbon payments,
968 higher land shares of bioenergy crops are adopted in the midwest, which reduces the acreage of corn
969 stover grown in some counties. At higher carbon prices, corn stover is also adopted in regions outside
970 the high-yielding midwest region; the land share dedicated to stover harvest differs by region (higher in
971 regions where corn is grown continuously and lower in regions with corn-soybean rotations). Land share
972 for carbon payments also differs by feedstock, with annual payments incentivizing a higher share of land
973 dedicated to bioenergy crops than upfront payments. However, upfront payments also incentivize
974 miscanthus in the larger Midwest, resulting in much larger SAF production.

975 Table A.1 Generated Yield Distributions (average for regions)

Crop	Rot.	Tillage	Unit	Northern Great Plains	Southern Great Plains	Upper Midwest	Central Midwest	South Central	Delta Region	Northeast	Central East	Southeastern states	All Counties	All Counties SD
Corn	Cont.	Conv. Till	bu ac ⁻¹	121.3	84.9	138.3	166.4	131.9	143.0	114.0	141.8	122.8	131.4	31.73
		No-Till		91.2	69.9	101.5	125.0	104.9	115.5	84.5	105.4	97.4	101.1	22.69
	CS rot	Conv. Till		110.2	85.5	125.2	143.1	121.3	123.5	115.7	112.9	114.1	118.8	24.14
		No-Till		85.8	69.8	96.6	112.5	101.3	104.1	91.6	90.6	91.3	94.8	18.57
	Cont.	Conv. Till	Mg ha ⁻¹	2.2	1.6	2.2	2.7	2.4	2.4	1.9	2.3	1.9	2.2	0.51
		No-Till		3.6	2.9	3.6	4.6	4.2	4.2	3.1	3.8	3.4	3.8	0.82
	CS rot	Conv. Till		2.0	1.5	2.0	2.4	2.2	2.0	1.9	1.8	1.9	2.0	0.39
		No-Till		3.4	2.8	3.4	4.1	4.0	3.8	3.3	3.3	3.3	3.6	0.67
Soybean	CS rot	Conv. Till	bu ac ⁻¹	42.8	40.6	47.8	55.9	45.3	50.3	47.2	54.0	42.0	47.1	8.70
		No-Till		43.4	40.8	48.5	56.4	45.5	50.4	47.7	54.3	42.1	47.5	8.79
Miscanthus	-	-	Mg ha ⁻¹	20.1	15.2	24.2	26.9	24.6	16.5	23.9	24.5	17.5	21.6	5.40
Switchgrass	-	-	Mg ha ⁻¹	13.3	14.3	15.7	17.6	18.0	18.6	16.5	16.9	18.3	16.5	2.59

976

Table A.2 Bioenergy Crop Fixed Costs per Hectare (average for regions)

\$ ha ⁻¹	Northern Great Plains	Southern Great Plains	Upper Midwest	Central Midwest	South Central	Delta Region	Northeast	Central East	Southeastern states	All Counties	All Counties SD
Miscanthus											
Est Cost yr1	2209.85	2223.48	2215.01	2228.16	2244.01	2242.34	2226.70	2238.65	2238.67	2227.49	12.55
Est Cost yr2	540.26	545.07	547.36	560.50	573.35	563.93	560.29	570.17	566.43	557.73	12.51
Fixed cost yr3-end	153.85	158.66	160.95	174.09	186.94	177.52	173.88	183.76	180.03	171.32	12.51
Switchgrass											
Est Cost yr1	659.05	662.04	659.20	670.73	684.23	677.93	675.15	697.04	695.42	673.12	14.62
Est Cost yr2	301.20	301.13	309.30	336.26	346.35	331.26	342.09	361.63	347.54	329.96	22.43
Fixed cost yr3-end	228.99	228.93	237.10	264.06	274.14	259.06	269.88	289.42	275.33	257.75	22.43

977

Cost \$ per hectare of a bioenergy crop - Computed using Iowa State Extension

978

979

Table A.3 Total operating costs for bioenergy crops (average for regions)

\$ Mg ⁻¹ biomass	Northern Great Plains	Southern Great Plains	Upper Midwest	Central Midwest	South Central	Delta Region	Northeast	Central East	Southeastern states	All Counties	All Counties SD
Miscanthus	42.09	51.14	40.02	37.53	37.51	42.60	39.37	37.38	46.50	41.33	4.20
Switchgrass	47.61	37.92	45.55	42.97	41.19	35.08	45.52	42.34	37.60	41.92	5.76

980

Price per ton of bioenergy crop - Computed using crop budgets from state extension services and expected model yields

981

Costs per ton based on expected yields by county

982

983

Table A.3 Conventional Crop Costs (average for regions)

\$ bushel	Northern Great Plains	Southern Great Plains	Upper Midwest	Central Midwest	South Central	Delta Region	Northeast	Central East	Southeastern states	All Counties	All Counties SD
Corn											
CC_CT	2.91	3.39	3.13	3.47	3.60	2.72	3.50	3.20	3.71	3.35	0.50
CC_NT	2.91	3.36	2.95	3.40	3.54	2.63	3.21	3.17	3.67	3.26	0.50
CS_CT	2.91	3.41	3.13	3.40	3.60	2.72	3.05	3.20	3.73	3.30	0.49
CS_NT	2.91	3.37	2.95	3.33	3.55	2.63	2.80	3.17	3.69	3.23	0.50
Soybean											
CT	6.63	9.21	6.16	6.68	10.52	9.66	8.34	7.40	8.86	7.97	1.81
NT	6.64	9.22	6.16	6.69	10.52	9.66	8.34	7.39	8.86	7.97	1.81

984

Price per bushel of corn and soybean - Computed using crop budgets from state extension services and expected model yields

985

Costs per bushel based on expected yields by county

986

987

Table A.4 Conventional Crop Prices

Conventional Crop Prices	Unit	Mean	Std Dev	Min	Max
Corn - expected price over period ^{ac}	\$ bushel ⁻¹	3.98	1.27	2.49	8.09
Corn - realized price over period ^{bc}	\$ bushel ⁻¹	3.71	1.16	2.21	7.29
Corn - farm gate price over state ^b	\$ bushel ⁻¹	4.17	0.46	3.45	5.19
Soybeans - expected price over period ^{ac}	\$ bushel ⁻¹	9.73	2.61	5.99	16.94
Soybeans - realized price over period ^{bc}	\$ bushel ⁻¹	9.41	2.35	5.65	15.09
Soybeans - farm gate over states ^b	\$ bushel ⁻¹	9.50	0.30	8.77	10.12

988

^a NASS (2019) – marketing year realized prices

989

^b Chicago Board of Trade (2019) – Corn and Soybean Futures prices

990

^c St Louis Federal Reserve – Implicit GDP deflator

991

992

Table A.5 Stover Production Costs (average for regions)

\$ Mg ⁻¹ biomass	Northern Great Plains	Southern Great Plains	Upper Midwest	Central Midwest	South Central	Delta Region	Northeast	Central East	Southeastern states	All Counties	All Counties SD
CC_CT	50.39	51.73	53.37	48.93	50.88	50.65	56.90	53.21	52.11	51.53	3.80
CC_NT	44.28	45.44	46.22	43.31	44.96	44.48	48.92	46.63	45.91	45.23	2.58
CS_CT	57.31	58.69	60.50	55.54	57.66	56.57	65.01	60.05	60.46	58.60	5.33
CS_NT	61.61	62.63	64.56	60.32	63.12	62.19	68.79	66.25	67.50	63.66	5.88

993 Price per ton of corn stover - Computed using crop budgets from state extension services and expected model yields

994 Costs per ton based on expected yields by county

995

Table A.6 Biomass to SAF conversion costs

Costs		
Conversion cost of biomass to cellulosic ethanol (per gallon of ethanol)	\$1.27	per gallon
Conversion cost of cellulosic ethanol to SAF (per gallon of ATJ-SPK)	\$0.86	per gallon
Volumetric conversions		
1 Mg biomass to cellulosic ethanol	63.2	gallons
1 gallon cellulosic ethanol to SAF (ATJ-SPK)	0.58	gallons

997 Based on Fan et al. (2024)

998

Table A.7: Soil Carbon Sequestration Rates (average for regions)

Baseline Sequestration Mg C ha ⁻¹	Northern Great Plains	Southern Great Plains	Upper Midwest	Central Midwest	South Central	Delta Region	Northeast	Central East	Southeastern states	All Counties
Miscanthus										
y1	-1.16	-0.84	-0.93	-0.93	-1.16	-0.94	-0.84	-0.92	-0.86	-0.96
y2	1.08	1.12	0.91	1.09	1.11	1.21	0.89	0.95	1.08	1.07
y3-end	1.71	1.08	1.67	2.00	1.70	0.98	1.65	1.82	0.90	1.53
Switchgrass										
y1	-0.79	-0.50	-0.64	-0.59	-0.79	-0.55	-0.54	-0.60	-0.50	-0.62
y2	1.84	1.85	1.75	2.04	2.09	2.24	1.80	1.94	1.95	1.95
y3-end	1.25	1.06	1.25	1.56	1.44	1.28	1.30	1.48	0.95	1.29
Corn stover										
CC_CT	-0.08	-0.07	-0.03	-0.01	-0.11	-0.09	-0.07	-0.03	-0.06	-0.05
CS_CT	-0.14	-0.08	-0.09	-0.07	-0.09	-0.06	-0.08	-0.09	-0.04	-0.08
CC_NT	0.01	-0.03	0.02	0.08	0.02	-0.02	0.01	0.03	0.00	0.02
CS_NT	-0.07	-0.04	-0.04	-0.03	-0.05	-0.05	-0.03	-0.05	-0.02	-0.04

Computed from DayCent

1001

Table A.8 Factors Used for Carbon Emission Calculations

Calorific Values	Unit	Value
Ethanol	MJ US Gal ⁻¹	80.63
Gasoline	MJ US Gal ⁻¹	120.00
Carbon Emission Factors		
Nitrogen manufacturing	g CO2e g of N ⁻¹	3.52
Denitrification	g CO2e g of N ⁻¹	7.14
Phosphorus	g CO2e g of P ⁻¹	0.67
Potassium	g CO2e g of K ⁻¹	0.65
Herbicides	g CO2e g of H ⁻¹	21.19
Relative carbon intensities		
Gasoline	g CO2e MJ ⁻¹	94.00
Carbon intensity of converting ethanol to SAF (ATJ-SPK)	g CO2e MJ ⁻¹	21.00
Other		
Gallons of ethanol Mg ⁻¹ biomass	US Gal Mg biomass ⁻¹	63.20 ^a
Electricity co-product credit	g CO2e MJ ⁻¹	⁻¹ 6.00 ^b

All values from GREET, unless specified

^a Jain et al. (2010), ^b Dwivedi et al. (2015)

Table A.9 Input Application Rates

Input	Unit	Miscanthus	Switchgrass	Corn Stover
Nitrogen	Kg N ha ⁻¹	DayCent	DayCent	Replacement Rate ^a
Phosphorus	g P Kg b ⁻¹	2.20	0.60	1.90
Potassium	g K Kg b ⁻¹	6.30	0.60	11.30
Herbicide	Kg H ha ⁻¹	8.42 ^b	8.20 ^b	0.00

All values from Dwivedi et al. (2015), unless specified

^a DayCent nitrogen application rates (2019) for the second and continuing years only

^b Dwivedi et al. (2015), herbicide applied for the first two years only

1002

1003

Table A.10 Feedstock production carbon intensity rates not including carbon sequestration (estimated mean)

Material Use gCO ₂ e MJ ⁻¹	Northern Great Plains	Southern Great Plains	Upper Midwest	Central Midwest	South Central	Delta Region	Northeast	Central East	Southeastern states	All Counties
Miscanthus	21.45	23.23	20.90	20.69	21.01	22.26	20.13	20.38	22.10	21.42
Switchgrass	29.05	28.87	28.39	27.87	28.56	27.63	29.45	29.77	28.44	28.47
Stover										
CC_CT	29.82	30.52	31.99	30.12	30.76	30.97	33.45	30.18	31.85	30.89
CS_CT	30.90	30.63	33.31	31.97	31.78	32.53	33.29	33.09	32.35	32.01
CC_NT	29.82	29.14	32.30	30.09	29.91	29.95	33.56	30.32	31.10	30.49
CS_NT	30.43	29.53	32.89	31.34	30.43	31.01	32.46	32.12	31.46	31.16

1004

Note, we do not include soil carbon sequestration in this table, which differs temporally and spatially.

1005
1006

Table A.11 Average Correlation Coefficients Matrix for Yield and Price Draws

		Corn				Stover				Soybean		Misc.	Swit.	Row Prices	
		CC_CT	CC_NT	CS_CT	CS_NT	CC_CT	CC_NT	CS_CT	CS_NT	CS_CT	CS_NT	C.land	C.land	Corn	Sb
Corn	CC_CT	1.00													
	CC_NT		1.00												
	CS_CT	0.99	0.99	1.00											
	CS_NT	0.99	0.99	1.00	1.00										
Stover	CC_CT	0.93	0.93	0.93	0.93	1.00									
	CC_NT	0.93	0.93	0.93	0.93		1.00	1.00							
	CS_CT	0.82	0.81	0.82	0.82	0.84	0.84	1.00							
	CS_NT	0.84	0.84	0.84	0.84	0.86	0.86	0.89	1.00						
Soybean	CS_CT	0.93	0.93	0.93	0.93	0.92	0.91	0.92	0.92	1.00					
	CS_NT	0.93	0.93	0.93	0.93	0.92	0.91	0.92	0.92	1.00	1.00				
Misc.		0.38	0.38	0.38	0.37	0.39	0.39	0.39	0.39	0.40	0.40	1.00			
Swit.		0.44	0.44	0.43	0.43	0.45	0.45	0.45	0.45	0.43	0.43	0.52	1.00		
Row Prices	Corn	-0.10	-0.10	-0.10	-0.10	-0.09	-0.08	-0.11	-0.07	-0.08	-0.08	-0.18	-0.04	1.00	
	Soybean	-0.07	-0.07	-0.07	-0.07	-0.05	-0.05	-0.08	-0.06	-0.06	-0.06	-0.22	-0.09	0.65	1.00

1007 Computed Value