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Introduction 

Soil represents the largest pool of carbon in the terrestrial biosphere. The amount of 

carbon stored in soils around the globe is more than twice the amount of total carbon 

in the atmosphere and vegetation combined (Ciais et al., 2013; Lehmann & Kleber, 

2015). As such, variations in soil carbon stores may lead to significant changes in the 

concentration of atmospheric carbon (Ciais et al., 2013). Soil organic carbon (SOC) 

has been used by researchers as a measure for indications of soil health. SOC and soil 

organic matter are two of the most widely used indicators of soil health, and the 

quality, quantity, and related dynamics or turnover of SOC are essential to overall soil 

health (Bünemann et al., 2018; Lal, 2014). Maintaining adequate levels of SOC is 

critical for soil structure which contributes to aeration and tilth, water use efficiency 

and retention which govern tolerance to deviations in normal climate conditions (e.g., 

drought and heat waves), nutrient retention and effective use of retained nutrients, and 

gas emissions that manage atmospheric concentrations of individual gases and 

regulate changes in climate (Lal, 2014).  

Through land use changes over time, agricultural soils that historically 

possessed sizable stocks of carbon now have the potential to directly sequester 

atmospheric carbon due to depletions in original carbon levels. Rising concerns over 

changes in global climate have increased the need for mitigation strategies to limit 

related impacts of greenhouse gas emissions. Moreover, the potential of agricultural 

soils to sequester carbon depends largely upon environmental conditions such as 

precipitation and temperature, soil texture, the types of practices implemented, and 

additional site-specific conditions (Bell et al., 2023; Potter et al., 1998; Zhu et al., 

2011). Lands currently in production agriculture that were once native grasslands 

likely have great potential for carbon sequestration (Hutchinson, et al., 2007). As such, 

the Great Plains in the central U.S. may have great potential as a carbon sink given the 

area was primarily native grasslands prior to westward expansion.  

The Texas High Plains (THP) consists of 39 counties in the Texas panhandle 

ranging from the northern border with Oklahoma down to the southwest end of the 



panhandle on the New Mexico border (USDA-NASS, 2020). The region comprises the 

Northern High Plains (NHP) and the Southern High Plains (SHP) agricultural districts 

located in the northern part of the panhandle and the southwestern portion of the 

panhandle, respectively. The THP along with the Texas Rolling Plains (TRP) form the 

southern end of the Great Plains that span the central U.S. and is separated from the 

TRP by the Caprock Escarpment. Major crops produced in the region include cotton, 

wheat, corn, and sorghum with the region producing approximately 25% of the total 

U.S. cotton crop (Bell et al., 2023; SARE, 2025). Soil surface textures range from 

clays in the north to sands in the southern section of the region, and the region consists 

mostly of irrigated agriculture with native vegetation including juniper and mesquite 

(TPWD, 2024).  Average rainfall in the region ranges from 15 to 22 inches annually, 

and evapotranspiration exceeds precipitation by as much as 3 times in the southern 

portion of the THP (Gustavson & Holliday, 1999; TPWD, 2024). As such, 

groundwater resources from the Ogallala aquifer are routinely utilized to sustain crop 

production in the region. Agriculture supports numerous rural communities and 

accounts for over 40% of the total economy in the semi-arid region but relies heavily 

on non-sustainable rates of withdrawal from the Ogallala aquifer (SARE, 2025). 

Moreover, the total stock of SOC and sequestration potential of agricultural 

production systems in the region may be significantly influenced by the semi-arid 

climate of the region. 

Previous research from Potter et al. (1998) found a negative relationship 

between mean annual temperature and SOC in three study sites across Texas, 

including the THP. Despite this, other research has shown the adoption of specific 

practices to have a positive influence on SOC levels in the region. For example, the 

use of cover crops paired with no-till cotton systems increased SOC in the top 15 cm 

of soil compared to conventional till winter fallow treatments in Lamesa, TX 

following 17 years of management (Lewis et al., 2018). Similarly, DeLaune et al. 

(2019) found cover cropping and no-till to increase SOC in soil surface layers after 15 

years. However, there was no significant difference in SOC levels in subsurface layers 



between conventional tillage and no-till. In a long-term study of tillage and cropping 

practice effects of SOC in dryland systems in Bushland, TX, Schwartz et al. (2015) 

found decreased tillage intensity to be associated with higher SOC levels in the surface 

30 cm of soil for a wheat-fallow rotation in stubble-mulch plots. The absence of fallow 

periods has also shown to have a positive influence on SOC in the THP where 

continuous cropping systems had higher levels of SOC compared to systems that 

incorporate fallow periods (Potter et al., 1998; Schomberg & Jones, 1999).  

The management of SOC in the THP is similarly impacted by the economic 

returns producers experience when adopting sequestering practices. Returns for 

producers adopting sequestering practices may be affected by resulting yield changes 

in major cash crops and associated costs of implementing said practices. Net returns 

for the adoption of cover crops are affected by a variety of factors such as timing of 

planting and termination, type of cover crop, local soil conditions and climate, and 

coupled management practices. Research has shown variable yield impacts on 

subsequent cash crops following cover cropping and the additional opportunity costs 

producers face when managing an additional crop instead of employing fallow periods 

may hinder adoption of the practice (Boyer et al., 2018; Deines et al., 2023; Plastina et 

al., 2020). In the THP, Lewis et al. (2018) found SOC to be twice as high under a no-

till rye cover crop compared to conventional tillage for continuous cotton systems in 

Amarillo Fine Sandy Loam soil. However, the conventional tillage treatment was 

shown to be more profitable than no-till rye and no-till mixed species cover crop 

treatments because of higher average revenue from greater cotton lint yield.  

In contrast, similar studies in the THP have found either no difference or 

significantly greater cotton lint yields when utilizing no-till in the region’s cotton 

systems (Baumhardt et al., 2009; Bordovsky et al., 1994).1 Segarra et al. (1991) 

similarly found higher net revenues for dryland cotton systems in the THP utilizing 

 
1 The systems analyzed by Baumhardt et al. (2009) consisted of wheat-cotton-fallow rotations where 
cotton crops received two levels of deficit irrigation. There were no significant differences observed 
between the two levels of deficit irrigation. Bordovsky et al. (1994) found cotton lint yield increases 
from no-till for both dryland and irrigated cotton systems. 



no-till and reduced tillage compared to conventional tillage, but an irrigated 

continuous cotton system under conventional tillage had higher net revenue compared 

to no-till and an irrigated conservation till system with a wheat-cotton rotation had the 

highest overall net revenue above total costs. These studies highlight the potential 

viability of sequestering practices in the THP, and how economic feasibility may be 

significantly influenced by producers applying irrigation from the diminishing 

Ogallala aquifer that sustains irrigated crop production in the region. 

Incentive-based approaches have been used for environmental regulation and 

for facilitating ecosystem and environmental services from agriculture. This approach 

is generally considered more efficient compared to command-and-control regulations 

where policies that mandate specific management practices and land uses would be 

largely inefficient given the significant heterogeneity in site-specific biophysical and 

economic conditions (Antle et al., 2003; Fleming & Adams, 1997). Among incentive-

based strategies, voluntary market-based policies such as carbon contracting have 

begun to emerge as potential tools to encourage agricultural producers to effectively 

manage and increase levels of soil carbon. However, the development of voluntary 

soil carbon markets and trading systems remains limited due to challenges such as 

accurate measurement, verification, additionality, leakage, and concerns about 

permanence and potential reversals of soil carbon, all of which create uncertainty in 

carbon accounting (Keenor et al., 2021; Kreibich & Hermwille, 2021; Vermeulen et 

al., 2019). Currently, there is no market price for sequestered soil carbon in the THP 

and, therefore, it may be seen as a “free” output of agricultural production processes 

(Sperow et al., 2016).  As economic theory suggests, free outputs will not necessarily 

influence production decisions, and establishing a price for sequestered soil carbon in 

the THP would have influences on management and crop production decisions in the 

region (Kimble et al., 2016). In the absence of interactive market prices for soil 

carbon, producers in the THP generally rely on federal incentive programs (e.g., the 

EQIP and CSP) to supply economic benefits for adopting sequestering practices. The 

EQIP and CSP do not function as true market-based mechanisms and enrolled 



producers are not necessarily rewarded for their carbon storage efficiency. Instead, 

they provide incentives to producers based on individual practices and do not account 

for additional levels of accumulated soil carbon. Inadequate consideration for 

additionality compared to business-as-usual conditions and the associated 

measurement difficulty are issues commonly referenced for programs that focus on 

carbon sequestration (Thamo & Pannell, 2016; Trexler, 2011).  

A full accounting of additionality requires comparison against baseline carbon 

changes expected from business-as-usual conditions. For voluntary programs that 

issue carbon credits to producers to operate efficiently, credits or incentives should 

only be provided for sequestered carbon that is ‘additional’ (Thamo & Pannell, 2016). 

Effectively accounting for the additionality of sequestered carbon in market-based 

policies increases transaction costs that may be reduced through policy simplification 

but would increase the uncertainty and overall efficiency of the program (Cacho et al., 

2013; Capon et al., 2013). For example, comprehensive soil sampling in a given 

project/market region at the farm level such that individual producers are compensated 

for the amount of carbon they sequestered would entail significant costs. However, 

leveraging econometric modeling that accounts for the uncertainty inherent in 

heterogeneous production systems, environmental conditions, and soil types could 

offer a more cost-effective alternative by estimating soil carbon levels with limited 

direct sampling, thereby balancing accuracy with feasibility in measurement.  

Hierarchical Bayesian (HB) models have been used for a number of 

environmental applications and the approach allows estimated model inferences to be 

shared across subunits (e.g., unique sampling locations) resulting in both subunit-

specific and global parameter estimates (Agarwal et al., 2005; Borsuk et al., 2001; 

Yang et al., 2011). Researchers have used plot-scale data to inform policy decisions 

for both global and regional changes in environment but scaling from the plot level to 

larger areas remains difficult because of high spatial variability at many scales (Burke, 

2000). HB approaches allow the use of diverse data types to evaluate soil properties 

and researchers can draw predictions for independent variables at points where data is 



scarce. For example, Kaye et al. (2008) use a HB model of plot-scale pools for soil 

nutrients to predict storage of various soil nutrients, including SOC, across various 

ecosystems and find that Bayesian scaling can accommodate varied factors driving 

soil nutrients across ecosystems. Therefore, the authors claim that Bayesian scaling 

could represent an important tool for ecological scaling that spans various land use 

types (Kaye et al., 2008). Similarly, soil texture impacts both water permeability and 

soil aeration which indirectly contributes to the carbon consumption or production 

capacity of the soil. As such, Li et al. (2015) used a HB approach to model soil carbon 

flux across four soil texture classes and found that a hierarchical approach better 

represented texture-specific observations compared to a nonhierarchical Bayesian 

model (Bayesian pooled model). The authors also claimed that future research could 

utilize soil texture as an upscaling factor when extrapolating results to the regional 

scale.  

Fitting hierarchically structured soil sampling data to Bayesian models allows 

researchers to derive inferences in instances when data is scarce or covers relatively 

limited geographic regions. The intention of this research is to utilize HB models to 

estimate the agricultural carbon storage potential of the THP. Specifically, by utilizing 

soil sampling data from eight counties in the THP the objective of this paper is to 

evaluate the agricultural production practices, soil textures, and environmental 

conditions associated with higher levels of SOC in the semi-arid THP, and assess the 

response of SOC to the stated factors at 30 cm depth increments from the soil surface 

to 90 cm in the soil profile.  

Methods 

Data 

The data for this study comes from soil analyses conducted across eight counties in the 

THP in 2022. Soil core samples were taken from each location from the soil surface 

down to a depth of 90cm and analyzed in 15 cm intervals for SOC, bulk density, pH, 

electrical conductivity, potassium permanganate oxidizable carbon, and soil texture. 

For the purposes of this study, the six 15 cm depth increments were aggregated into 30 



cm measurements for the sake of brevity. The fields sampled span 11 soil series and 

10 soil textures in the THP and include both conventional (e.g., conventional tillage) 

and regenerative/carbon sequestering practices (e.g., cover cropping and no-tillage). 

Soil textures were determined at each depth increment directly from the percentages of 

sand, silt, and clay at each soil layer using the soil texture calculator from the USDA 

(USDA-NRCS, 2024). The sampled fields also comprised a variety of crops typically 

planted in the THP (e.g., cotton, corn, sorghum) and crop rotations/treatments 

commonly used by producers in the region (e.g., continuous cotton, sorghum-cotton, 

sorghum-corn, etc.). Only a single treatment was utilized in each field, and the 

majority of fields contained three replications of each treatment. Replications were 

treated as individual observations for a total of 67 observations across the THP. In 

addition to the soil sampling data described above, county-level environmental data 

from the PRISM Climate Group and 2022 Census of Agriculture were utilized for 

estimating county and regional SOC stocks (PCG, 2024).2 

Model 

The purpose of this study is to evaluate the agricultural production practices, soil 

textures, and environmental conditions that are associated with greater levels of SOC 

in the semi-arid THP, assess the response of SOC to various factors throughout the 

soil profile, and calculate the total SOC stock of the region. Previous studies have used 

variations of a hierarchical Bayesian (HB) model in a number of environmental 

applications, including evaluations of SOC fluxes and estimates of stocks of diverse 

soil nutrients. The HB model has been reported to be effective in sharing model 

inferences across sites, deriving sub-unit specific inferences, estimating global 

parameter estimates, and accurately representing natural variability and related 

uncertainty. As such, a HB model was employed to analyze soil characteristics of 

samples collected from across the THP, estimate the association between specific 

agricultural practices and SOC levels, calculate total SOC stocks in the agricultural 

 
2 The PRISM Climate Group is part of the Northwest Alliance for Computational Science and 
Engineering and is based at Oregon State University (PCG, 2024). 



soils of the region, and account for inherent variability and uncertainty regarding SOC 

levels.  

Malve and Qian (2006) maintain that hierarchical modeling can reduce model 

uncertainty and improve parameter estimates by pooling data from different sources, 

and hierarchical models may be used to form realistic models without overfitting the 

data. The main focus of this study is to estimate the association of SOC and various 

agricultural practices across different soil textures in the THP. Soil texture classes 

were determined by the observed percentages of clay, sand, and silt at individual 

depths. By characterizing soil texture at each depth interval, the model is better able to 

capture the heterogeneity between soil texture and SOC in different soil horizons. 

Specifically, the 10 soil texture classes in the analysis are clay (C), clay loam (CL), 

loam (L), loamy sand (LS), sandy clay (SC), sandy clay loam (SCL), sandy loam (SL), 

silt (S), silt loam (StL), and silty clay loam (StCL). Therefore, following adaptation 

from Li et al. (2015) the HB model can be defined as follows: 

    𝑙𝑙𝑙𝑙(𝑆𝑆𝑆𝑆𝐶𝐶𝑖𝑖𝑖𝑖) = 𝑁𝑁(𝜇𝜇ln (𝑆𝑆𝑆𝑆𝐶𝐶𝑖𝑖𝑖𝑖),𝜎𝜎𝑆𝑆𝑆𝑆𝑆𝑆2 )   (1) 

 𝜇𝜇ln(𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆) = 𝛽𝛽1 + 𝑈𝑈𝑗𝑗 + 𝛽𝛽2𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑙𝑙𝑖𝑖 + 𝛽𝛽3𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑝𝑝𝑖𝑖 + 𝛽𝛽4𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑑𝑑𝑖𝑖 (2) 

+𝛽𝛽5 log(𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑛𝑛𝑖𝑖) + 𝛽𝛽6 log(𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀) + 𝛽𝛽7𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑝𝑝𝑖𝑖 

     𝑈𝑈𝑗𝑗  ~ 𝑁𝑁(0,𝜎𝜎𝑈𝑈2).     (3) 

where 𝑆𝑆𝑆𝑆𝑆𝑆 represents the 𝑖𝑖-th observation of SOC for the 𝑗𝑗-th soil texture, 𝑖𝑖 is the data 

point (i.e., plot) ranging from 1 to N, and 𝑗𝑗 is the soil texture class (𝑗𝑗=1, C; 𝑗𝑗=2, CL; 

𝑗𝑗=3, L; 𝑗𝑗=4, LS; 𝑗𝑗=5, SC; 𝑗𝑗=6, SCL; 𝑗𝑗=7, SL; 𝑗𝑗=8, S; 𝑗𝑗=9 StL; 𝑗𝑗=10, StCL). It is 

important to note that the above specification represents a single permutation of the 

model, and separate iterations of the model were estimated for the three soil depths 

analyzed. The texture specific model parameter is denoted by 𝑈𝑈𝑗𝑗 and represents the 

random intercept for each of the 𝑗𝑗 soil texture classes. That is, the random intercept 

assumes common partial effects from the included explanatory variables across soil 



texture but assumes different initial stocks of SOC across soil texture classes. The 

prior distribution of the random intercepts is defined as normal with mean 0 and 

variance 𝜎𝜎𝑈𝑈2, where 𝜎𝜎𝑈𝑈2 captures the variability in baseline SOC levels across soil 

textures.  

The explanatory variables NoTill, CoverCrop, and Irrigated are dummy 

variables indicating whether the plot was under no-till, a cover crop was grown on the 

plot, and if the plot was irrigated, respectively. Precipitation is the average county-level 

annual precipitation level (inches) in which the plot is located and MeanTemp is the 

average county-level annual mean temperature (Fahrenheit) in which the plot is located. 

PriorCrop is a categorical variable indicating the crop grown on the plot prior to the 

soil samples being taken. The variance of the model error is denoted by 𝜎𝜎𝑆𝑆𝑆𝑆𝑆𝑆2 . Equations 

1-3 above denoting the hierarchical structure of the model include distributions where 

ln (𝑆𝑆𝑆𝑆𝐶𝐶𝑖𝑖𝑖𝑖) is normally distributed with mean 𝜇𝜇ln (𝑆𝑆𝑆𝑆𝐶𝐶𝑖𝑖𝑖𝑖) and variance 𝜎𝜎𝑆𝑆𝑆𝑆𝑆𝑆2 . The hyper 

parameters and other parameters also need to have a prior distribution. Relatively 

uninformative or diffuse priors have shown favorable outcomes and are widely used in 

HB modeling (Haque et al., 2010; Huang & Abdel-Aty, 2010; Lacombe & Flores, 

2017). Therefore, relatively uninformative or vague priors were used in this 

specification and are as follows: 

     𝛽𝛽𝑘𝑘 ~ 𝑁𝑁(0, 10000)    (4) 

    𝜎𝜎𝑆𝑆𝑆𝑆𝑆𝑆 ,𝜎𝜎𝑈𝑈 ~ 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖(0.01, 0.01).   (5) 

The number of the parameter is denoted by 𝑘𝑘 where 𝑘𝑘 = 1, … 7, and is denoted as 

𝛽𝛽1, … ,𝛽𝛽7, respectively. The distributions of the 𝛽𝛽𝑘𝑘’s are normal with mean 0 and 

variance 10000, and an inverse gamma distribution is specified for 𝜎𝜎𝑆𝑆𝑆𝑆𝑆𝑆  and 𝜎𝜎𝑈𝑈 with 

the shape and scale parameters specified as 0.01.  

When utilizing Bayesian econometrics, all inference is deduced from the 

posterior distribution of the relevant parameters. The following equation characterizes 

the posterior distribution:  

    𝑝𝑝(𝜃𝜃|𝑦𝑦) ∝ 𝑝𝑝(𝑦𝑦|𝜃𝜃) 𝑝𝑝(𝜃𝜃).    (6) 



From the equation, the posterior distribution of the parameters is proportional 

to the product of the likelihood function and the individual priors for all parameters 

(Hall et al., 2022). Independent priors are used in this study for all of the parameters, 

meaning that the elements of 𝑝𝑝(𝜃𝜃) are multiplicatively separable. 𝑝𝑝(𝜃𝜃|𝑦𝑦) denotes the 

posterior distribution and, given the observed data (𝑦𝑦), represents the probability of the 

model parameter (𝜃𝜃) values (Li et al., 2015). 𝜃𝜃 contains 𝛽𝛽1 ~ 𝛽𝛽7,𝑈𝑈1 ~ 𝑈𝑈10 ,𝜎𝜎𝑈𝑈 , and 

𝜎𝜎𝑆𝑆𝑆𝑆𝑆𝑆  for the HB model used in this study. The prior distribution is represented by 𝑝𝑝(𝜃𝜃) 

and the likelihood function is denoted by 𝑝𝑝(𝑦𝑦|𝜃𝜃). The following expression defines 

the likelihood function:  

  𝑝𝑝(𝑦𝑦|𝜃𝜃) = ∏ 1

�2𝜋𝜋𝜎𝜎𝑆𝑆𝑆𝑆𝑆𝑆
2

exp�−
�ln (𝑆𝑆𝑆𝑆𝐶𝐶𝑖𝑖)−�𝜇𝜇ln (𝑆𝑆𝑆𝑆𝑆𝑆)�𝑖𝑖�

2

2𝜎𝜎𝑆𝑆𝑆𝑆𝑆𝑆
2 �𝑁𝑁

𝑖𝑖=1 .  (7) 

ln (𝑆𝑆𝑆𝑆𝐶𝐶𝑖𝑖) is the measured value of SOC log-transformed and �𝜇𝜇ln (𝑆𝑆𝑆𝑆𝑆𝑆)�𝑖𝑖 denotes the 

predicted value of the HB model in equation 2. 𝑁𝑁 is equal to 67 and represents the 

total number of observations, and 𝜎𝜎𝑆𝑆𝑆𝑆𝑆𝑆  is the standard deviation corresponding to 

equation 5. The Markov Chain Monte Carlo (MCMC) method was used to estimate a 

representative sample of parameters from the posterior distribution. 35,000 iterations 

of sampling from the prior distribution were conducted to obtain posterior probability 

distributions. To avoid the influence of the initial values, the initial 5,000 iterations 

were discarded as a “burn-in” period and the remaining 30,000 iterations were used to 

evaluate the posterior parameter distributions. 

Evaluating SOC Stocks in the THP 

The HB models are used to predict SOC at the county level by applying the posterior 

draws from the fitted models. The procedure iteratively computes predictions for each 

of the 30,000 posterior draws, accounting for both fixed effects and random effects 

(e.g., soil texture) and then back-transforms predictions from the log scale to the 

natural scale (tons/acre). The process involved five main steps: (1) defining the linear 

predictor for the natural logarithm of SOC; (2) back transforming the prediction 

natural logarithm of SOC to the natural scale; (3) estimating individual county SOC 



stocks; (4) aggregating for regional SOC stocks; and (5) summarizing the predictions. 

The steps were repeated for each of the three soil depths considered. Therefore, 

predictions of SOC stocks were made for each soil layer and aggregating results from 

each soil layer gave SOC stock for the entire 0-90 cm soil profile. Below is a detailed 

breakdown of the procedure and associated formulas for each step: 

(1) Prediction Structure:  

log�𝑆𝑆𝑆𝑆𝐶𝐶𝑖𝑖𝑘𝑘� = 𝛽𝛽1� + 𝑈𝑈𝚥𝚥�𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 + 𝛽𝛽2�𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑖𝑖 + 

𝛽𝛽3�𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖 + 𝛽𝛽4�𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑖𝑖 + 𝛽𝛽5� log(𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑛𝑛𝑖𝑖) 

                    +𝛽𝛽6� log(𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀) + 𝛽𝛽7�𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖 .   (8) 

Where 𝑆𝑆𝑆𝑆𝑆𝑆 represents the predicted natural log of SOC per acre in county i for posterior 

draw k, 𝛽𝛽1�~𝛽𝛽7� are the mean values for management practices and environmental 

covariates from the posterior draw, and  𝑈𝑈𝚥𝚥�  is the random intercept for soil texture j from 

the posterior draw. DominantTexture is the dominant soil texture at each depth 

increment as determined by county-level data from the Web Soil Survey.3 

NoTillProportion, CoverCropProportion, IrrigatedPropotion, and 

PriorCropProportions represent the proportion of total cropland in each county 

utilizing no-till, cover cropping, irrigation, and planted to cotton and sorghum. The 

proportions of total cropland dedicated to each practice were determined from the 2022 

Census of Agriculture county-level data (USDA-NASS, 2024). Precipitation and 

MeanTemp are the average county-level precipitation and mean temperatures in each 

county obtained from the PRISM database.  

(2) Back Transformation:  

Following the first step defined above, the linear predictor on the log scale is then 

back-transformed with a bias correction to the natural scale using the following 

equation:  

 
3 Percentages of sand, silt, and clay were used to determine soil texture, and the dominant texture was 
defined as the soil texture covering the largest percentage of total acreage in county i at depth j.  



   𝑆𝑆𝑆𝑆𝐶𝐶𝑖𝑖𝑘𝑘 = exp �𝑙𝑙𝑙𝑙𝑙𝑙�𝑆𝑆𝑆𝑆𝐶𝐶𝑖𝑖𝑘𝑘� + 1
2
𝜎𝜎𝑆𝑆𝑆𝑆𝑆𝑆2 �.    (9) 

𝑆𝑆𝑆𝑆𝑆𝑆 represents the predicted tons per acre value of SOC, 𝑙𝑙𝑙𝑙𝑙𝑙(𝑆𝑆𝑆𝑆𝑆𝑆) is the predicted 

log SOC value from county i for posterior draw k, and 𝜎𝜎𝑆𝑆𝑆𝑆𝑆𝑆2  is the residual variance 

from the posterior draw. The transformation helps ensure that predictions are unbiased 

when converting from the log scale to the natural scale (Baskerville, 1972). 

(3) Individual County SOC Stocks  

The prior step provides predictions of SOC levels in tons per acre. Because the linear 

predictor defined in step (1) above uses total cropland in each county to determine 

proportions of individual practices, the following equation is used to determine the 

total stock of SOC in the cropland of each county in the THP:  

   𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑘𝑘𝑖𝑖𝑘𝑘 = 𝑆𝑆𝑆𝑆𝐶𝐶𝑖𝑖𝑘𝑘 × 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑑𝑑𝑖𝑖 .   (10) 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 is the total stock of SOC in county i’s cropland and Total Cropland simply 

represents the total acres of cropland in county i.  

(4) Regional SOC Stock 

After obtaining predictions for the total stock of SOC in each county, estimating the 

total stock of SOC in the entire THP involves summing the county-level SOC stocks 

for each posterior draw: 

    𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑘𝑘𝑘𝑘 = ∑ 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑘𝑘𝑖𝑖𝑘𝑘 .𝐼𝐼
𝑖𝑖=1     (11) 

Where 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑘𝑘𝑘𝑘 represents the total stock of SOC in the entire THP for each 

posterior draw k, I is equal to 29 and represents the total number of counties in the 

region for which data were available for predictions.  

(5) Post-processing and Summarizing Predictions:  

The predicted values of SOC across all posterior draws were averaged to provide point 

estimates for each county using the following equation:  

    𝑆𝑆𝑆𝑆𝐶𝐶𝚤𝚤������ = 1
𝐾𝐾
∑ 𝑆𝑆𝑆𝑆𝐶𝐶𝚤𝚤𝑘𝑘�𝐾𝐾
𝑘𝑘=1 .     (12) 



𝑆𝑆𝑆𝑆𝐶𝐶𝚤𝚤������ is the mean value of SOC in county i across all posterior draws K. This process 

was used to obtain point estimates of both SOC in tons per acre and total SOC stock 

for each county, and to obtain summary statistics of the regional (i.e., THP) and sub 

regional (i.e., NHP and SHP) measurements of SOC.  

 Following the estimates of county-level SOC stocks, sensitivity analyses were 

conducted to evaluate how changes in cropland allocation to individual practices in the 

region would affect the stocks of SOC across each soil depth. Using county-level 

acreage data from the 2022 Census of Agriculture, total acreage dedicated to 

individual practices were increased by 5%, 10%, 25%, and 50%. These adjustments 

allowed for an evaluation of both the net changes in SOC stock at each soil depth and 

the average increase in SOC per acre of cropland in each county. Calculating the 

average increase in SOC per acre across soil layers provided a foundation for further 

economic analysis. To estimate potential revenues for producers under various SOC 

crediting schemes, SOC prices ranging from $5 to $50 per ton were applied. A report 

from the World Bank on carbon pricing found the average monthly world price of 

nature-based carbon credits to range from a high of just under $18/ton in 2022 to 

below $5/ton in 2024 (World Bank, 2024). Therefore, the prices used for the 

sensitivity analyses cover both the low and high end of potential prices for SOC. 

Similarly, because existing protocols for crediting soil carbon use a wide range of 

recommended soil depths, three crediting depths (0-3 0cm, 0-60 cm, and 0-90 cm) 

were considered, enabling an assessment of the financial incentives associated with 

carbon sequestration at different soil depths (Dupla et al., 2024).  

Results 

Summary statistics for the management practices, county-level environmental 

characteristics, and aggregated SOC data are presented in Table 1. Of the 67 total 

observations, approximately 86% and 40% utilize no-till and cover cropping, 

respectively. Over half of the observations (68.6%) are irrigated and cotton is the most 

common crop on the field prior to the soil samples being collected. Average annual 

precipitation and mean temperature were obtained from the PRISM Climate Group for 



the eight counties in the THP in which soil samples were collected. The observed 

counties include Dawson, Swisher, Dallam, Sherman, Moore, Lamb, Crosby, and 

Howard. The average precipitation for the observed counties is 12.78 inches annually, 

and the average annual mean temperature is just under 60 degrees Fahrenheit.  

As noted previously, the six depth measurements for each observation were 

aggregated into three 30 cm measurements for concision. Average levels of SOC are 

approximately 10.97 ton/acre in the surface 30 cm, 10.71 ton/acre in the 30-60 cm 

layer, and 12.34 ton/acre in the bottom 60-90cm layer. While these measurements are 

consistent with previous studies finding higher levels of SOC in subsurface soil layers 

beneath the plow depth, the standard deviation of the SOC measurements increases 

with depth and nearly doubles from the surface 30 cm of the soil to the lower 60-90 

cm layer indicating larger variations in observed SOC values at deeper soil horizons. 

Table 1: Summary Statistics of Observed Locations  

Variable Percentage of 
Occurrence Mean Std. Dev. 

Tillage   0.866 0.344 

1 = No-till 86.6%   

0 = Conventional  13.4%   

Cover Crop  0.403 0.494 

1 = Cover 40.3%   

0 = No Cover 59.7%   

Irrigation   0.686 0.465 

1 = Irrigated 68.6%   

0 = Dryland  31.4%   

Prior Crop  1.913 0.728 

1 = Corn 31.3%   

2 = Cotton  46.3%   

3 = Sorghum  22.4%   

Precipitation (in.)  12.778 1.301 

Mean Temperature (℉)  58.890 1.917 

SOC (ton/acre)    



0 – 30 cm  10.972 4.580 

30 – 60 cm  10.709 6.208 

60 – 90 cm  12.335 8.667 

The distributions of soil texture by each soil depth are presented in Table 2. At 

the 0-30 cm layer, the majority of observed samples are classified as Silt Loam 

(52.24%), followed by Loam (13.43%) and Sandy Loam (13.43%). At 30-60 cm, Silt 

Loam remained prevalent in 38.81% of observed samples, with Clay Loam (16.42%) 

and Clay (13.43%) becoming more common. At 60-90 cm, Silt Loam was again 

dominant, observed in 40.91% of samples, followed by Clay Loam in 28.79%, 18.18% 

of samples were Silt, and 7.58% of the samples were Loam. The observed distribution 

suggests a trend of increasing clay content with depth, as indicated by the rising 

presence of Clay Loam and Clay in deeper layers. Conversely, the dominance of Silt 

Loam across all depths suggests a relatively consistent silt component throughout the 

profile. 

Table 2: Soil Texture Distribution by Depth 

 Texture 

Depth  

(cm) 
Clay Clay 

Loam Loam Loamy 
Sand 

Sandy 
Clay 

Sandy 
Clay 

Loam 

Sandy 
Loam Silt Silt 

Loam 

Silty 
Clay 
Loam 

0-30 0% 10.45% 13.43% 2.99% 0% 2.99% 13.43% 4.48% 52.24% 0% 

30-60 13.43% 16.42% 7.46% 0% 0% 4.48% 4.48% 13.43% 38.81% 1.49% 

60-90 1.52% 28.79% 7.58% 0% 1.52% 1.52% 0% 18.18% 40.91% 0% 

 

HB Models 

The mean, standard deviation, and Monte Carlo standard error (MCSE) values in 

addition to the 95% credible intervals of the posterior distributions of the parameters 

for the HB model are presented in Table 3. All of the values for SOC are in short tons 

(i.e., U.S. tons) per acre and because the raw SOC data were not normally distributed, 

all the following HB analyses were performed on the natural logarithm of SOC. The 



values presented in Table 3 are for the 0-30 cm soil layer, and the observations were 

sorted into seven soil textures (i.e., groups) for the purpose of the HB model. Given 

the dependent variable is log transformed levels of SOC, the mean posterior 

distribution estimates for No-till, Cover Crop, Irrigated, and Prior Crop can be 

interpreted as percentage changes (e.g., 100 × (exp (𝛽𝛽𝑘𝑘)� − 1)), and parameter 

estimates for Precipitation and Mean Temperature are interpreted as elasticities. It is 

important to note that SOC measurements are in tons per acre; therefore, the following 

interpretations can be characterized as higher or lower percentages in tons of SOC per 

acre in the 0-30 cm soil layer. Because much of the disturbances from agricultural 

practices occur in the surface layers of the soil (e.g., tillage and root growth) much of 

the positive impacts of sequestering practices are likely to take place in the 0-30 cm 

layer of the soil. The is the case for both No-till and Cover Crop which are associated 

with approximately 92.7% and 12.6% higher levels of SOC in the top 30 cm of the 

soil, respectively. In contrast, irrigated fields are associated with approximately 5.91% 

less SOC. A Prior Crop of corn was used as the base for comparison, and both Cotton 

and Sorghum are associated with higher levels of SOC compared to corn. Specifically, 

crops of Cotton and Sorghum directly preceding the collection of soil samples are 

associated with approximately 16% and 3.4% higher levels of SOC compared to corn, 

respectively.  

Table 3: HB Model Posterior Distributions – 0-30 cm Soil Layer 

Parameter Mean Std. Dev. MCSE Median 2.50% 97.50% 

No-till 0.656 0.148 0.001 0.657 [0.366, 0.946] 

Cover Crop 0.119 0.173 0.001 0.120 [-0.222, 0.461] 

Irrigated -0.061 0.113 0.001 -0.061 [-0.281, 0.164] 

Prior Crop (base=corn) 
      

Cotton 0.148 0.126 0.001 0.149 [-0.102, 0.396] 

Sorghum 0.038 0.168 0.001 0.039 [-0.293, 0.368]        
ln(Precipitation) 0.093 0.585 0.005 0.088 [-1.048, 1.237] 

ln(Mean Temperature) -8.018 2.576 0.019 -8.020 [-13.097, -2.951] 

Constant 34.093 10.720 0.083 34.063 [13.119, 55.234] 



𝑼𝑼𝟐𝟐 (𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪 𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳)  -0.024 0.112 0.002 -0.022 [-0.268 0.195] 

𝑼𝑼𝟑𝟑 (𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳)  0.007 0.112 0.002 0.007 [-0.221 0.236] 

𝑼𝑼𝟒𝟒 (𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳 𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺)  -0.025 0.133 0.002 -0.020 [-0.311 0.234] 

𝑼𝑼𝟔𝟔 (𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺 𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪 𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳)   -0.034 0.131 0.002 -0.029 [-0.313 0.218] 

𝑼𝑼𝟕𝟕 (𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺 𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳)  -0.014 0.109 0.002 -0.015 [-0.234 0.207] 

𝑼𝑼𝟖𝟖 (𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺)  0.089 0.138 0.003 0.074 [-0.139 0.416] 

𝑼𝑼𝟗𝟗 (𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺 𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳)  0.022 0.113 0.003 0.017 [-0.197 0.263]        
𝝈𝝈𝑼𝑼𝟐𝟐  0.027 0.039 0.001 0.016 [0.003, 0.119] 

𝝈𝝈𝑺𝑺𝑺𝑺𝑺𝑺𝟐𝟐  0.118 0.029 0.000 0.114 [0.079, 0.183] 

Regarding county-level environmental characteristics, higher levels of 

precipitation have a negligible, positive association with SOC, and higher mean 

temperatures have a negative association. An additional inch increase in annual 

precipitation and degree Fahrenheit increase in annual mean temperatures are 

associated with .093% higher and 8.02% lower levels of SOC, respectively. It is 

important to note the data for these variables are recorded at the county level and are 

not field-specific. That is, the effect of these variables can be interpreted as general 

trends for environmental characteristics at the county level and their relationships to 

SOC storage.  

 When considering the 95% credible intervals of the explanatory variables, No-

till and Mean Temperature are the only parameters for which the 95% credible 

interval does not contain 0. Therefore, there is strong statistical evidence for the 

absence of conventional tillage in the surface 30 cm of the soil contributing to higher 

levels of SOC while higher county-level annual mean temperatures are associated with 

lower levels of SOC. The credible intervals of the remaining explanatory variables 

contain 0 and, thus, indicate a potential lack of strong evidence for explanatory power 

and the associated effects may be small. However, the Bayesian approach allows for 

probabilistic interpretations and both the directions and magnitude of the estimated 

means for the posterior distributions of parameters can provide valuable insights into 

the dynamics of SOC in the surface layers of the soil. Similarly, the variance 



component 𝜎𝜎𝑈𝑈2 represents the heterogeneity between soil textures and the credible 

interval suggests significant variation between groups.  

 In contrast to the frequentist approach, the Bayesian approach used here does 

not integrate out the random effects when estimating the model. Instead, the Bayesian 

approach predicts the random effects as model parameters in conjunction with the 

individual explanatory variables. The random effects in Table 3 are denoted as 

𝑈𝑈𝑗𝑗(𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇) and represent random intercepts for each texture class and can be 

characterized as deviations in baseline SOC stocks between each texture class. For 

example, the random effects in Table 3 show Loam, Silt, and Silt Loam texture classes 

to be associated with higher baseline values of SOC in the surface 30 cm of soil. This 

finding indicates that soil textures with relatively high percentages of silt, are 

associated with higher levels of SOC in soil surface layers.  

Table 4: HB Model Posterior Distributions – 30-60 cm Soil Layer 

Parameter Mean Std. Dev. MCSE Median 2.50% 97.50% 

No-till 0.225 0.157 0.001 0.225 [-0.086, 0.536] 

Cover Crop -0.371 0.191 0.002 -0.373 [-0.746, 0.009] 

Irrigated -0.173 0.126 0.001 -0.173 [-0.421, 0.074] 

Prior Crop (base=corn)       

Cotton 0.215 0.129 0.001 0.215 [-0.039, 0.468] 

Sorghum 0.280 0.179 0.002 0.280 [-0.070, 0.631]        
ln(Precipitation) 0.959 0.659 0.009 0.958 [-0.331, 2.256] 

ln(Mean Temperature) -0.461 3.198 0.052 -0.430 [-6.800, 5.722] 

Constant 1.538 13.581 0.233 1.476 [-24.681, 28.373] 

𝑼𝑼𝟏𝟏 (𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪)  -0.068 0.151 0.005 -0.063 [-0.380 0.216] 

𝑼𝑼𝟐𝟐 (𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪 𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳)  -0.039 0.148 0.005 -0.038 [-0.340 0.259] 

𝑼𝑼𝟑𝟑 (𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳)  0.044 0.161 0.005 0.033 [-0.242 0.392] 

𝑼𝑼𝟔𝟔 (𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺 𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪 𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳)  -0.064 0.183 0.005 -0.057 [-0.445 0.303] 

𝑼𝑼𝟕𝟕 (𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺 𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳)  -0.164 0.194 0.005 -0.140 [-0.589 0.167] 

𝑼𝑼𝟖𝟖 (𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺)  0.055 0.156 0.006 0.044 [-0.227 0.381] 

𝑼𝑼𝟗𝟗 (𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺 𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳)  0.262 0.164 0.007 0.250 [-0.011 0.602] 

𝑼𝑼𝟏𝟏𝟏𝟏 (𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺 𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪 𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳)  -0.010 0.193 0.004 -0.008 [-0.406 0.378]        



𝝈𝝈𝑼𝑼𝟐𝟐  0.060 0.094 0.003 0.038 [0.007, 0.240] 
𝝈𝝈𝑺𝑺𝑺𝑺𝑺𝑺𝟐𝟐  0.119 0.033 0.000 0.113 [0.078, 0.192] 

The posterior distributions of the HB models for SOC in the 30-60 cm and 60-

90 cm soil layers are shown in Tables 4 and 5, respectively. The HB model for the two 

successive soil layers were estimated in a similar manner to the model for the surface 

30 cm layer. However, given soil texture was assigned based on percentages of sand, 

silt, and clay at each soil layer, the number of groups and specific groupings are not 

the same as presented in Table 2. For the 30-60 cm soil layer, there are eight groups of 

soil texture and seven groupings of soil texture in the lower 60-90 cm soil layer. 

Table 5: HB Model Posterior Distributions – 60-90 cm Soil Layer 

Parameter Mean Std. Dev. MCSE Median 2.50% 97.50% 

No-till 0.282 0.254 0.002 0.282 [-0.218, 0.783] 

Cover Crop -0.193 0.311 0.002 -0.192 [-0.803, 0.424] 

Irrigated -0.304 0.205 0.001 -0.304 [-0.706, 0.101] 

Prior Crop (base=corn) 
      

Cotton 0.070 0.235 0.001 0.070 [-0.395, 0.529] 

Sorghum 0.040 0.307 0.002 0.043 [-0.565, 0.641]        
ln(Precipitation) 0.785 0.970 0.007 0.775 [-1.104, 2.673] 

ln(Mean Temperature) -1.359 5.059 0.057 -1.303 [-11.399, 8.463] 

Constant 5.808 21.119 0.243 5.588 [-35.123, 47.753] 
𝑼𝑼𝟏𝟏 (𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪)  -0.048 0.237 0.004 -0.028 -0.578 0.406 

𝑼𝑼𝟐𝟐 (𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪 𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳)  -0.096 0.177 0.004 -0.084 -0.473 0.245 

𝑼𝑼𝟑𝟑 (𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳)  -0.055 0.200 0.004 -0.045 -0.480 0.327 

𝑼𝑼𝟓𝟓 (𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺 𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪)  0.002 0.238 0.004 -0.002 -0.488 0.499 

𝑼𝑼𝟔𝟔 (𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺 𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪 𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳) -0.016 0.239 0.003 -0.015 -0.523 0.478 

𝑼𝑼𝟖𝟖 (𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺)  0.061 0.196 0.005 0.046 -0.299 0.503 

𝑼𝑼𝟗𝟗 (𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺 𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳)  0.187 0.191 0.006 0.167 -0.137 0.627 

𝝈𝝈𝑼𝑼𝟐𝟐  0.078 0.132 0.003 0.042 [0.006, 0.378] 

𝝈𝝈𝑺𝑺𝑺𝑺𝑺𝑺𝟐𝟐  0.378 0.088 0.001 0.364 [0.254, 0.578] 



The sign of the mean values for the posterior distribution of every explanatory 

remained the same in both the 30-60 cm and 60-90 cm layers as they were in the 

surface 30 cm of the soil; the only exception is the negative mean values for Cover 

Crop in Tables 4 and 5. A possible explanation for this difference could be the limited 

root penetration of cover crops beyond the surface 30 cm of the soil. The random 

intercepts for soil texture remain relatively consistent for each of the soil depths, 

except for Loam which has an opposite sign in the 60-90 cm depth compared to the 

two shallower soil depths. Loam soils are associated with higher levels of SOC in the 

0-30 cm and 30-60 cm layers and lower levels of SOC in the 60-90 cm layer. 

However, it is important to note that the prediction accuracy of the HB models 

decreases for each successive soil layer. For example, the 95% credible intervals for 

every variable included in the models increase from the surface 30 cm soil layer to the 

30-60 cm layer. The credible intervals also expand between the model for the 30-60 

cm layer and the subsequent model for the 60-90 cm layer. 

Model Evaluation 

The deviance information criteria (DIC) are used to compare the HB models for each 

depth to non-hierarchical Bayesian (i.e., Bayesian pooled) models. The DIC is an 

evaluation method designed specifically to evaluate both pooled and HB models. 

Goodness of fit and a penalty for model complexity are both considered in calculating 

DIC, and the model with a lower DIC is the model expected to best predict a 

replicated dataset sharing the same structure as the observed data (Li et al., 2015). The 

pooled models are estimated using the same explanatory variables as the HB models, 

but the pooled models assume no explicit grouping or hierarchical structure to the 

data. That is, the pooled model assumes that all data points belong to a single, 

homogeneous population, meaning that the relationships between variables remain 

constant across observations. The DIC for each of the HB models along with the 

Bayesian pooled models for each soil depth are presented in Table 6.  

The DIC values indicate that the pooled model performs better in the soil 

surface layer (0-30 cm), where the Bayesian pooled model has the lowest estimated 



DIC (50.899). A key reason for this is that management practices strongly influence 

SOC accumulation and decomposition in soil surface layers, which may contribute to 

relatively consistent patterns across sites. At shallow depths management effects are 

likely dominate over inherent soil properties and the inclusion of random intercepts 

(i.e., the hierarchical structure) may not add significant value, potentially leading to a 

higher DIC for the HB model. 

Table 6: DIC values for the HB and Bayesian Pooled Models 

 DIC 

Depth HB Bayesian Pooled 

0-30 cm 57.442 50.899 
30-60 cm 59.182 61.494 
60-90 cm 133.061 133.193 

In contrast, the HB models perform better than the Bayesian pooled models in 

the two subsequent soil layers as shown by the lower DIC values. This shift is likely 

because SOC dynamics at deeper depths are less influenced by direct management 

and, instead, more controlled by soil texture, water retention, and microbial activity. 

The random intercepts for soil texture in the HB model allow for texture-specific 

baseline differences in SOC levels, which become increasingly important with depth. 

This suggests increasing variability with depth, where a model that allows for different 

effects across groups provides a better fit. A hierarchical model is better suited to 

handle this variability because it allows different locations or soil types to have 

distinct relationships while still borrowing strength from the overall dataset. This 

flexibility makes the HB model better suited for capturing the complex and site-

dependent nature of subsoil SOC processes, where environmental and microbial 

factors play a greater role than direct human intervention. 

Figure 1 shows the posterior density intervals of the parameters at each soil 

layer. The solid dots indicate mean posterior estimates, and the error bars indicate 95% 

posterior credible intervals. The depiction makes it possible to visualize the 

differences between parameter estimates across each soil layer and the shape of the 



intervals shows the dispersion of the estimates. A key observation from the figure is 

that the credible intervals for each variable generally widen as soil depth increases.  

 
Figure 1: Posterior Density Intervals 

This indicates greater uncertainty in the estimated effects of various 

management practices and environmental factors on SOC at deeper depths. This figure 



underscores the importance of considering depth when assessing the impact of land 

management and environmental factors on soil carbon storage. The widening credible 

intervals at greater depths and increasing uncertainty emphasize the need for deeper 

soil measurements in future studies to improve model precision. The posterior 

distributions of the random intercepts across depth for each soil texture are shown 

Figure 2.  

 

Figure 2: Posterior Distributions of the Random Intercepts 

The y-axis represents the density, illustrating the relative probability of 

different values occurring within the posterior samples. The key pattern that emerges 

across all textures is that the surface layer (0–30 cm) consistently exhibits the 

narrowest and tallest distribution, while the distributions at deeper depths become 



progressively wider and more dispersed. The tighter distributions in the soil surface 

suggest that estimates of the random intercepts are more precise at the 0-30 cm depth. 

In contrast, the widening of distributions at deeper soil layers indicates greater 

variability in the posterior estimates, meaning the effect of soil texture on the random 

intercepts becomes less certain as depth increases. This could be due to more 

heterogeneous environmental influences at deeper depths, such as variability in root 

penetration, water movement, and organic matter accumulation. 

SOC Predictions 

Table 7 shows the predictions of average levels of SOC in tons per acre and total SOC 

stock in the entire 0-90 cm soil profile and additional summary statistics for individual 

counties in the THP.4 The predictions were made using equations 8-12 and the results 

from the HB models presented in Tables 3, 4, and 5. Additionally, county-level data 

on agricultural practices from the 2022 Census of Agriculture, precipitation and mean 

temperature from the PRISM Climate Group, and dominant soil texture for each soil 

layer from the USDA Web Soil Survey were obtained for SOC predictions. Acreage 

totals for each of the individual practices were not reported for 10 counties the THP.5 

Therefore, Table 7 presents results for 29 of the 39 counties in the THP, average 

values for the Northern High Plains (NHP) and Southern High Plains (SHP) sub 

regions, and average values for the entire THP. Instead of simply using the mean 

values presented in Tables 3, 4, and 5, the full set of 30,000 MCMC posterior 

iterations were used to generate predictive distributions of SOC levels across 

individual counties. This approach helps account for the uncertainty and variability in 

the parameter estimates and should provide a more comprehensive picture of potential 

levels of SOC rather than levels estimated from a single deterministic prediction. 

Table 7: SOC Predictions: 0-90 cm  

County  SOC (tons/acre) SOC Stock (million tons) 
Mean St.Dev. Min Max Mean St.Dev. Min Max 

NHP 29.97 10.95 9.22 693.03 8.780 5.793 .795 245.000 

 
4 The predictions were made for each of the three soil layers independently and aggregated to find the 
values presented in Table 7.  
5 The data are often withheld to avoid disclosing information on individual farms (USDA, 2024). 



Briscoe  30.87 7.76 13.32 174.00 2.928 .736 1.263 16.500 
Carson  41.09 14.82 11.52 450.49 14.100 5.076 3.946 154.000 
Castro  26.04 4.89 13.04 84.39 10.200 1.909 5.090 32.900 
Dallam  31.79 7.67 12.96 151.09 13.100 3.155 5.328 62.100 
Deaf Smith  24.95 5.08 12.16 99.28 13.500 2.747 6.571 53.600 
Floyd  22.76 5.04 9.22 86.00 7.433 1.647 3.011 28.100 
Gray  40.73 19.36 10.30 693.03 5.903 2.805 1.492 100.000 
Hale  43.28 19.22 9.42 515.55 20.600 9.150 4.484 245.000 
Hansford 24.03 6.23 9.51 126.94 7.799 2.021 3.086 41.200 
Hartley 26.24 6.66 11.01 134.15 9.406 2.388 3.947 48.100 
Hutchinson  30.39 7.25 13.33 164.38 2.877 .686 1.261 15.600 
Lipscomb  30.77 6.88 14.74 129.54 3.462 .773 1.658 14.600 
Oldham 28.76 5.89 14.78 118.45 3.390 .694 1.742 14.000 
Parmer 26.09 5.17 13.13 88.26 11.600 2.301 5.849 39.300 
Potter  25.07 5.48 11.78 89.27 1.692 .369 .795 6.025 
Randall 29.16 6.52 13.20 151.94 6.450 1.443 2.920 33.600 
Sherman 28.34 6.41 12.61 128.42 11.400 2.589 5.092 51.900 
Swisher 29.14 5.84 14.17 109.01 12.200 2.451 5.948 45.800 
SHP 27.76 12.49 6.14 834.71 10.700 6.069 2.205 414.000 
Bailey 31.14 6.80 14.89 135.13 6.893 1.504 3.296 29.900 
Cochran 25.92 5.74 11.62 98.99 7.477 1.656 3.351 28.600 
Crosby 27.40 8.24 9.34 196.13 8.259 2.485 2.816 59.100 
Dawson 26.43 12.60 6.14 297.77 11.900 5.678 2.767 134.000 
Gaines 19.36 6.06 6.19 102.46 12.500 3.925 4.008 66.400 
Hockley 27.67 7.28 10.45 158.27 12.200 3.218 4.620 70.000 
Lamb 28.99 7.79 11.76 176.91 12.000 3.221 4.860 73.100 
Lubbock 35.75 19.54 7.15 695.05 12.900 7.059 2.584 251.000 
Lynn 22.37 7.02 7.78 107.97 9.784 3.070 3.404 47.200 
Terry 37.02 22.69 6.46 834.71 18.400 11.300 3.208 414.000 
Yoakum 23.38 5.07 10.60 73.73 4.865 1.054 2.205 15.300 
THP 29.13 11.61 6.14 834.71 9.492 5.969 .795 414.000 

 
The counties with the highest and lowest average level of SOC in the 0-90 cm 

soil profile are Hale County with 43.28 tons/acre and Gaines County with 19.36 

tons/acre, respectively. The higher average SOC level in Hale County can be mostly 

attributed to the number of acres under no-till and acres planted to cotton in the county 

given the use of no-till and fields planted to cotton were associated with higher levels 

of SOC in the HB models for each soil depth. Of the counties presented in Table 7, 

Hale County has the third highest total acres under no-till and the highest total acres 

planted to cotton in the THP. Conversely, the low predicted average value of SOC in 

Gaines County can be attributed mostly to the higher number of irrigated acres and 

total acres planted to a cover crop in the county. Gaines county has the fifth highest 

total number of irrigated acres, and the highest total acres planted to a cover crop in 



the THP. While the results of the HB models showed irrigated fields to be associated 

with lower levels of SOC in each of the three soil depths, cover cropping was 

associated with higher levels in the surface 30 cm of the soil. However, cover 

cropping was associated with lowers levels of SOC in both the 30-60 cm and 60-90 

cm soil layers and the negative association in the lower two layers is enough to 

outweigh the positive association in the surface 30 cm when considering the entire 0-

90 cm soil profile.  

Regarding the total stock of SOC, Hale County also has the highest total stock 

of SOC at 20.6 million tons (MT) and Potter County has the lowest at 1.69 MT. It is 

important to note that the stock of SOC in each county represents the total stock of 

SOC in the cropland of the county and not the entirety of the county. That is, the stock 

values in Table 7 are calculated by directly multiplying the average level of SOC per 

acre by the total number of cropland acres in each county. Therefore, because Hale 

County has the overall highest average level of SOC per acre and the fourth highest 

total cropland acres it is reasonable that the highest total stock of SOC is in Hale 

County as well. However, while Gaines County has the lowest average level of SOC 

per acre it is also the county with the highest total acres of cropland in the THP. The 

high number of cropland acres in Gaines County results in the total stock of SOC in 

the county to be above the average for the entire THP. The low total stock of SOC in 

Potter County is a result of the county having the lowest total cropland acres in the 

THP 

Sensitivity Analyses 

Because the use of no-till and cover cropping have been routinely promoted to 

producers as practices to increase levels of SOC in their fields and cotton is an 

important commodity grown in the THP, sensitivity analyses were conducted to 

evaluate how increasing total acreage in the THP under each practice and planted to 

cotton affected the stock of SOC in the region’s cropland. Specifically, the total acres 

under no-till, cover cropping, and planted to cotton in each county were independently 

increased by 5%, 10%, 25%, and 50%, and the predicted stock of SOC was 



recalculated for each county and compared to the stock values in Table 7.6 This 

comparison allowed assessment of the total changes in SOC stock from increasing the 

total number of acres allocated to no-till, cover cropping, and planted to cotton in the 

THP. Table 8 shows the net increase or decrease in total stock of SOC resulting from a 

5%, 10%, 25%, and 50% increase in total acres under no-till, cover cropping, and 

planted to cotton for the NHP, SHP, and entire THP.

 
6 The mean stock values in Table 7 represent the total stock in the entire 0-90 cm soil profile. The 
values used in Table 8 are the total stock values in each soil layer. 



Table 8: Net Changes in SOC Stock due to Changes in Acre Allocations 

 
 No-Till Acreage Cover Cropping Acreage Cotton Acreage 

 
 0-30 cm 0-30 cm 0-30 cm 

 Base +5% +10% +25% +50% +5% +10% +25% +50% +5% +10% +25% +50% 

NHP 40847533 247992 497869 1259019 2567068 20563 41181 103366 208131 22790 45608 114281 229437 

SHP 21424183 111342 223393 563883 1146148 14525 29097 73092 147380 20419 40876 102495 206014 

THP 62271716 359334 721262 1822902 3713216 35088 70278 176458 355511 43209 86484 216776 435451 

 
 30-60 cm 30-60 cm 30-60 cm 

 Base +5% +10% +25% +50% +5% +10% +25% +50% +5% +10% +25% +50% 

NHP 50295370 102058 204486 514034 1037590 -93816 -187310 -465876 -923811 47617 95322 238991 480315 

SHP 36561106 62727 125648 315607 636229 -103109 -205830 -511660 -1013711 47700 95500 239517 481611 

THP 86856476 164785 330134 829641 1673819 -196925 -393140 -977536 -1937522 95317 190822 478508 961926 

 
 60-90 cm 60-90 cm 60-90 cm 

 Base +5% +10% +25% +50% +5% +10% +25% +50% +5% +10% +25% +50% 

NHP 66899479 152295 305449 770183 1562592 -69466 -138585 -343871 -679171 6005 12127 31237 65536 

SHP 59257272 91161 282751 560154 1231394 -92804 -185133 -559280 -1128886 4014 8186 21680 47436 

THP 1.26E+08 243456 588200 1330337 2793986 -162270 -323718 -903151 -1808057 10019 20313 52917 112972 



The results in Table 8 show that increasing the total acreage under no-till 

causes the stock of SOC to increase at each depth level in both the NHP and SHP with 

the largest increases in the surface 30 cm in the NHP. Increasing the total number of 

acres planted to cotton also results in net increases to SOC stocks in both the NHP and 

SHP in every soil layer. In contrast, the largest increases in SOC stocks from 

increasing cotton acreage are in the 30-60 cm soil layer compared to the surface layer 

with no-till. Similarly, increasing the total acreage of cropland utilizing cover crops 

results in net increases in the SOC stocks of both the NHP and SHP in the surface 30 

cm of the soil. However, increased cover cropping results in net decreases in the SOC 

stocks of both the NHP and SHP in both the 30-60 cm soil layer and 60-90 cm layer. 

The net decreases in SOC stocks in the subsurface soil layers are also large enough to 

offset all the net increases in SOC stocks in the surface 30 cm of the soil resulting 

from increases in the total acreage of cover cropping in the region. 

While the results in Table 8 show net increases or decreases in SOC stocks 

across the THP and offer critical insights into the environmental impacts of shifting 

land management practices, they do not fully capture the economic implications for 

producers of increasing SOC stocks. To contextualize the above changes in SOC 

stocks within a potential soil carbon market framework, average per acre potential 

revenues that producers may earn were calculated based on varying prices of SOC 

credits and various depths of SOC credit recognition. These revenues reflect how 

changes in acreage under no-till practices, cover cropping, and cotton cultivation could 

translate into tangible financial returns to producers in the THP, depending on the 

potential market structure and the specific crediting protocols employed. The potential 

revenue estimates from no-till adoption across the THP highlight both the 

opportunities and limitations for producers participating in voluntary carbon markets 

and are presented in Table 9.  



Table 9: Potential Revenue from Increased No-Till Adoption Across Depths and Payment Levels 

 No-Till Acreage 
 0-30 cm 
 +5% +10% +25% +50% 
 $5 $10 $20 $50 $5 $10 $20 $50 $5 $10 $20 $50 $5 $10 $20 $50 

NHP 0.23 0.47 0.94 2.34 0.47 0.94 1.88 4.70 1.19 2.38 4.76 11.89 2.43 4.85 9.70 24.25 
SHP 0.13 0.26 0.52 1.30 0.26 0.52 1.05 2.62 0.66 1.32 2.64 6.60 1.34 2.69 5.37 13.43 
THP 0.19 0.38 0.75 1.88 0.38 0.75 1.51 3.77 0.95 1.91 3.81 9.53 1.94 3.88 7.77 19.42 

 0-60 cm 
 +5% +10% +25% +50% 
 $5 $10 $20 $50 $5 $10 $20 $50 $5 $10 $20 $50 $5 $10 $20 $50 

NHP 0.33 0.66 1.32 3.31 0.66 1.33 2.65 6.63 1.67 3.35 6.70 16.75 3.41 6.81 13.62 34.05 
SHP 0.20 0.41 0.82 2.04 0.41 0.82 1.64 4.09 1.03 2.06 4.12 10.30 2.09 4.18 8.35 20.88 
THP 0.27 0.55 1.10 2.74 0.55 1.10 2.20 5.50 1.39 2.77 5.55 13.87 2.82 5.63 11.27 28.17 

 0-90 cm 
 +5% +10% +25% +50% 
 $5 $10 $20 $50 $5 $10 $20 $50 $5 $10 $20 $50 $5 $10 $20 $50 

NHP 0.47 0.95 1.90 4.75 0.95 1.90 3.81 9.52 2.40 4.81 9.61 24.03 4.88 9.76 19.53 48.81 
SHP 0.31 0.62 1.24 3.11 0.74 1.48 2.96 7.40 1.69 3.37 6.75 16.86 3.53 7.06 14.12 35.30 
THP 0.40 0.80 1.61 4.01 0.86 1.71 3.43 8.57 2.08 4.17 8.33 20.83 4.28 8.56 17.11 42.78 

 



The results in Table 9 indicate that while adopting no-till practices can 

generate additional income through carbon credits, the financial incentives under 

lower credit prices and modest acreage increases are relatively limited. For instance, at 

a carbon credit price of $5 per ton and a 5% increase in no-till acreage, average per-

acre revenues remain minimal, ranging from $0.13 in the SHP to $0.23 in the NHP for 

the 0-30 cm crediting depth. Even when increasing the crediting depth to 90 cm, 

revenues under these conditions only rise to $0.31 and $0.47 per acre for SHP and 

NHP, respectively. These small returns may be insufficient to motivate producers to 

adopt no-till solely for carbon market participation, especially when considering the 

potential costs of implementation, measurement, and verification. 

However, the revenue potential improves significantly with larger acreage 

expansions and higher carbon credit prices. At $50/ton and a 50% increase in no-till 

acreage, revenues reach $24.25 per acre in the NHP and $13.43 in the SHP for the 0-

30 cm depth, with even higher returns at deeper crediting depths—up to $48.81 per 

acre in the NHP and $35.30 in the SHP at 90 cm. These higher revenues could provide 

a more compelling economic incentive, particularly for larger-scale operations capable 

of implementing no-till practices across substantial portions of their land. Regional 

differences are also evident in the results, with the NHP consistently generating higher 

revenues compared to the SHP across all scenarios. This variation likely reflects 

differences in soil characteristics, baseline SOC levels, and local environmental 

conditions that influence sequestration rates. Moreover, the HB model results 

indicated that cover cropping is associated with higher levels of SOC in the surface 30 

cm of the soil. This is reflected in the positive potential revenues observed across the 

THP at the 0–30 cm depth presented in Table 10.  

 



Table 10: Potential Revenue from Increased Cover Crop Adoption Across Depths and Payment Levels 

  Cover Cropping Acreage 

  0-30 cm 

  +5% +10% +25% +50% 

  $5 $10 $20 $50 $5 $10 $20 $50 $5 $10 $20 $50 $5 $10 $20 $50 
NHP 0.02 0.04 0.08 0.19 0.04 0.08 0.16 0.39 0.10 0.20 0.39 0.98 0.20 0.39 0.79 1.97 
SHP 0.02 0.03 0.07 0.17 0.03 0.07 0.14 0.34 0.09 0.17 0.34 0.86 0.17 0.35 0.69 1.73 
THP 0.02 0.04 0.07 0.18 0.04 0.07 0.15 0.37 0.09 0.18 0.37 0.92 0.19 0.37 0.74 1.86 

 0-60 cm 
 +5% +10% +25% +50% 
 $5 $10 $20 $50 $5 $10 $20 $50 $5 $10 $20 $50 $5 $10 $20 $50 

NHP -0.07 -0.14 -0.28 -0.69 -0.14 -0.28 -0.55 -1.38 -0.34 -0.68 -1.37 -3.42 -0.68 -1.35 -2.70 -6.76 
SHP -0.10 -0.21 -0.42 -1.04 -0.21 -0.41 -0.83 -2.07 -0.51 -1.03 -2.05 -5.14 -1.01 -2.03 -4.06 -10.15 
THP -0.08 -0.17 -0.34 -0.85 -0.17 -0.34 -0.68 -1.69 -0.42 -0.84 -1.68 -4.19 -0.83 -1.65 -3.31 -8.27 

 0-90 cm 
 +5% +10% +25% +50% 
 $5 $10 $20 $50 $5 $10 $20 $50 $5 $10 $20 $50 $5 $10 $20 $50 

NHP -0.13 -0.27 -0.54 -1.35 -0.27 -0.54 -1.08 -2.69 -0.67 -1.33 -2.67 -6.67 -1.32 -2.64 -5.27 -13.18 
SHP -0.21 -0.42 -0.85 -2.12 -0.42 -0.85 -1.7 -4.24 -1.17 -2.34 -4.68 -11.69 -2.34 -4.67 -9.35 -23.37 
THP -0.17 -0.34 -0.68 -1.69 -0.34 -0.68 -1.35 -3.38 -0.89 -1.78 -3.56 -8.91 -1.77 -3.55 -7.09 -17.73 

 



For instance, in the entire THP, with a 50% increase in cover cropping acreage 

and a carbon price of $50/ton, potential revenue reaches only $1.97/acre. While these 

revenues are relatively modest compared to those from no-till adoption, they suggest 

that cover cropping can generate economic returns when surface SOC accumulations 

are credited. The positive association between cover cropping and SOC in the surface 

soil aligns with expectations, given that cover crops contribute to organic matter inputs 

primarily near the surface through root biomass and residue deposition. Payments tied 

to SOC sequestration would therefore be most substantial when focusing on the 0–30 

cm depth, where SOC gains are evident across all regions. However, the results for 

deeper soil layers revealed SOC under cover cropping to be lower, and this is similarly 

indicated by negative values in Table 10. These negative values reflect potential 

decreases in SOC, suggesting that cover cropping may not consistently enhance 

carbon storage at greater depths. From a carbon market perspective, these losses 

would not result in negative payments; rather, they would translate to zero payments, 

as credits are awarded only for positive SOC sequestration. This highlights the 

importance of depth-specific monitoring in carbon programs to ensure accurate 

assessments of carbon gains. 

The HB model results similarly showed positive associations between levels of 

SOC and fields planted to cotton across all measured depths. In the surface 0-30 cm 

layer, positive revenues for SOC payments were observed across all regions, with 

higher payments leading to greater potential revenues as shown in Table 11. For 

example, a 50% increase in cotton acreage in the NHP was associated with potential 

revenues ranging from $0.22 to $2.17 per acre, depending on the payment rate. Similar 

trends were seen in the SHP and entire THP where 50% acreage increases yielded 

revenues up to $2.41 and $2.28 per acre, respectively. These results highlight that 

expanding cotton acreage may be able to enhance SOC in the surface soils of the THP, 

particularly under higher payment scenarios. 

The HB models for deeper soil layers (30-60 cm and 60-90 cm) also showed 

positive SOC associations when cotton was planted prior to sampling, and increasing 



crediting depth for potential market transactions would thereby increase the potential 

revenue for producers. When the crediting depth includes the top 60 cm, potential 

revenues ranged from $0.67 to $6.70 per acre in the NHP under a 50% acreage 

increase, while SHP and THP exhibited similar patterns, with maximum revenues 

reaching $8.05 and $7.31 per acre, respectively. At the 0-90 cm crediting depth, the 

results remained consistent, with SOC increases translating to higher potential 

revenues across both the NHP and SHP. The NHP showed potential revenues up to 

$7.32 per acre under the highest payment and acreage increase scenarios. The SHP 

and entire THP followed similar trends, with revenues reaching $8.61 and $7.90 per 

acre, respectively. Overall, the results indicate that increasing cotton acreage is 

positively associated with SOC gains at multiple soil depths. Unlike the mixed results 

observed with other practices, such as cover cropping, cotton expansion consistently 

led to SOC increases across all measured depths and regions. Therefore, increasing 

cotton acreage could benefit producers from carbon payments in a potential SOC 

market, though average returns may be marginal at low prices for soil carbon. 



Table 11: Potential Revenue from Increased Cotton Acreage Across Depths and Payment Levels 

 Cotton Acreage 
 0-30 cm 
 +5% +10% +25% +50% 
 $5 $10 $20 $50 $5 $10 $20 $50 $5 $10 $20 $50 $5 $10 $20 $50 

NHP 0.02 0.04 0.09 0.22 0.04 0.09 0.17 0.43 0.11 0.22 0.43 1.08 0.22 0.43 0.87 2.17 
SHP 0.02 0.05 0.10 0.24 0.05 0.10 0.19 0.48 0.12 0.24 0.48 1.20 0.24 0.48 0.97 2.41 
THP 0.02 0.05 0.09 0.23 0.05 0.09 0.18 0.45 0.11 0.23 0.45 1.13 0.23 0.46 0.91 2.28 

 0-60 cm 
 +5% +10% +25% +50% 
 $5 $10 $20 $50 $5 $10 $20 $50 $5 $10 $20 $50 $5 $10 $20 $50 

NHP 0.06 0.13 0.27 0.67 0.13 0.27 0.53 1.33 0.33 0.67 1.33 3.34 0.67 1.34 2.68 6.70 
SHP 0.08 0.16 0.32 0.80 0.16 0.32 0.64 1.60 0.40 0.80 1.60 4.01 0.81 1.61 3.22 8.05 
THP 0.07 0.14 0.29 0.72 0.15 0.29 0.58 1.45 0.36 0.73 1.45 3.64 0.73 1.46 2.92 7.31 

 0-90 cm 
 +5% +10% +25% +50% 
 $5 $10 $20 $50 $5 $10 $20 $50 $5 $10 $20 $50 $5 $10 $20 $50 

NHP 0.07 0.14 0.29 0.72 0.14 0.29 0.58 1.45 0.36 0.73 1.45 3.63 0.73 1.46 2.93 7.32 
SHP 0.09 0.17 0.34 0.84 0.17 0.34 0.68 1.69 0.43 0.85 1.70 4.26 0.86 1.72 3.44 8.61 
THP 0.08 0.16 0.31 0.78 0.16 0.31 0.62 1.56 0.39 0.78 1.57 3.91 0.79 1.58 3.16 7.90 



 

 

Discussion & Conclusion 

The purpose of this paper was to evaluate the agricultural production practices, soil 

textures, and environmental conditions that are associated with higher levels of SOC 

in the semi-arid THP and estimate both the potential SOC storage and revenue for 

producers with increasing SOC levels in the region. The results of the HB models give 

insights into the drivers of SOC levels across the THP at individual soil horizons. The 

posterior distributions revealed nuanced effects of management practices, crop 

choices, environmental factors, and soil types on SOC accumulation. The estimates of 

SOC stock and resulting changes in stock from increasing total acreage allocated to 

individual production practices showed that producers in the region may be able to 

marginally increase SOC levels. However, substantial increases in land dedicated to 

sequestering practices, along with relatively high prices for soil carbon, may be 

necessary to create strong enough economic incentives for producers to actively 

manage soil carbon in a potential regional SOC market. 

Regarding specific management practices, no-till practices had a positive mean 

effect on SOC in each soil layer and cover cropping was associated with higher levels 

of SOC in only the surface 30 cm of the soil. Specifically, no-till and cover cropping 

were associated with 92.7% and 12.6% higher levels of SOC in the top 30 cm of the 

soil, respectively. The mean effect of no-till generally decreased with soil depth with 

less certain and weaker effects in the 30-60 cm and 60-90 cm soil layers, and the mean 

effect of cover cropping is negative in subsurface soil layers which may suggest a 

tradeoff between subsurface and surface soil carbon dynamics. These findings are 

similar with previous research in the THP that found higher SOC levels in soil surface 

layers with no-till and cover cropping (Lewis et al., 2018; Schwartz et al., 2015). 

However, the HB models showed no-till to have a positive association with SOC 

throughout the entire 0-90 cm profile which differs from Lewis et al. (2018) who 

found no significant difference in SOC between no-till and conventional tillage below 

the surface 15 cm of the soil.  



 

 

Irrigation showed a consistent negative mean effect on SOC that increased at 

each subsequent depth, implying that irrigation may limit SOC accumulation due 

possibly to leaching effects or enhanced decomposition. Alternatively, it may suggest 

that water availability alone doesn't drive deeper SOC accumulation without 

complementary management practices. A notable point for consideration when 

interpreting the results of the HB models is the residual variance (𝜎𝜎𝑆𝑆𝑆𝑆𝑆𝑆2 ) which 

increases notably with depth. This highlights the greater unexplained variability in 

SOC at deeper soil layer and indicates that surface SOC may be more strongly 

influenced by management and environmental conditions while deeper SOC may be 

affected by unmeasured or more complex processes. The crop grown prior to soil 

sampling also impacted SOC levels. Compared to corn, a prior crop of both cotton and 

sorghum were associated with higher levels of SOC in each soil layer, particularly in 

the 30-60 cm layer. Environmental variables similarly played critical roles, with 

precipitation positively influencing SOC, especially in the subsoil layers, though with 

wide uncertainty. In contrast, higher mean temperatures were consistently associated 

with lower SOC, particularly in the topsoil where the negative effect is strongest, 

possibly reflecting the role of temperature in accelerating organic matter 

decomposition.  

Soil texture exhibited varying influences across each of the soil depths. 

Throughout the entire soil profile considered, soils with a higher percentage of silt 

(e.g., Loam, Silt, and Silt Loam) were associated with higher levels of SOC, apart 

from Loam in the 60-90 cm layer of the soil. In contrast, soils with a higher percentage 

of clay (e.g., Sandy Clay Loam, Clay Loam, Silty Clay Loam, and Clay) were 

generally associated with lower levels of SOC throughout the entire soil profile 

considered. Additionally, the variance of soil type effects (i.e., 𝜎𝜎𝑈𝑈2) increases with 

depth, from 0.027 in the surface layer to 0.078 in the deepest layer, indicating greater 

heterogeneity in SOC levels among soil types at deeper depths. The higher SOC in 

soils such as silt loam aligns with literature finding a positive association between 

percentage silt and SOC in regions where soil water may be a limiting production 



 

 

factor (Augustin & Cihacek, 2016). Similarly, as agricultural production is limited by 

water availability in semi-arid regions, soil textural components with high water 

holding capacities such as silt may improve plant productivity and carbon inputs into 

the soil (Burke et al., 1989; Hanks et al., 1969). 

Because soil texture impacts both plant available water and water holding 

capacity, well drained more coarse soils may result in elevated oxidation of soil 

organic matter (Augustin & Cihacek, 2016). However, the generally wide credible 

intervals from the HB models suggest significant variability within soil types, 

reinforcing the importance of localized studies when scaling carbon estimates. 

Moreover, the DIC values indicated that a Bayesian pooled model performed better 

than the hierarchical model at the soil surface, where management effects are likely 

stronger and more uniform. The hierarchical models performed better in the deeper 

soil layers, where increased uncertainty and weaker management effects may 

necessitate a more flexible modeling approach. 

SOC stock predictions across counties show notable heterogeneity. Counties 

like Hale (43.28 tons/acre) and Lubbock (35.75 tons/acre) exhibited higher mean SOC 

stocks, while Gaines (19.36 tons/acre) and Lynn (22.37 tons/acre) had lower values. 

High standard deviations in counties like Terry (22.69) and Lubbock (19.54) highlight 

the spatial variability and uncertainties in SOC stocks, likely driven by diverse 

management practices, soil types, and climatic variations. The large predicted range in 

total SOC stock (e.g., Hale’s 20.6 MT vs. Potter’s 1.7 MT) underscores the potential 

for targeted carbon sequestration strategies focusing on high-potential areas. 

Average revenues producers may reasonably expect from payments in a 

potential market for SOC were also estimated. Overall, the findings suggested that 

while voluntary carbon markets can offer economic benefits for no-till and cover crop 

adoption, the magnitude of those benefits is highly sensitive to credit prices, acreage 

changes, and crediting depths. Under market conditions with relatively low credit 

prices, the financial incentives may be insufficient for widespread adoption. However, 

if carbon markets mature and prices rise, or if policies begin to credit SOC below 



 

 

surface layers, the economic feasibility of no-till adoption could improve, potentially 

encouraging broader participation among producers in the THP. The varying SOC 

responses across depths underscore the complexity of soil carbon dynamics under 

cover cropping. While surface SOC improvements are promising for carbon 

sequestration incentives, the potential for SOC losses at deeper depths with cover 

cropping calls for further investigation into management practices that promote carbon 

stability throughout the soil profile. This understanding is crucial for designing 

effective carbon programs that maximize sequestration benefits while minimizing 

unintended outcomes. The results also showed the potential for cotton acreage 

expansion to contribute to carbon sequestration efforts in the THP, offering 

meaningful revenue opportunities under carbon payment programs. Additionally, 

these findings suggest that by crediting producers for SOC gains beyond surface soils, 

they would have more of an economic incentive to maintain and/or increase their SOC 

stocks which could potentially enhance long-term carbon storage in the region. 

This study provides a comprehensive assessment of the factors influencing 

SOC sequestration across the THP using a HB framework. The findings suggest that 

management practices, environmental factors, and soil types jointly shape SOC 

dynamics, though substantial variability and uncertainty persist. Additionally, the 

results give insight into the spatial distribution of the SOC stocks of cropland in the 

region, and how producers in the region may induce increases in SOC stocks while 

obtaining additional revenue through selling SOC credits in a potential voluntary 

market. Future research should focus on refining estimates by incorporating longer-

term datasets, especially for management practices like cover cropping, and 

integrating more precise spatial data to improve model accuracy. Additionally, 

exploring the economic feasibility of deep SOC sequestration, given the observed 

spatial variability, could guide policy development and incentive structures in the 

THP. Understanding these dynamics will be critical for designing effective carbon 

sequestration strategies that maximize both environmental and economic benefits. 



 

 

This study contributes to the growing body of literature on SOC in semi-arid 

agricultural systems by providing the first Bayesian analysis of SOC levels across 

multiple soil depths in the THP. By explicitly modeling the relationships between 

management practices, environmental conditions, and soil texture with SOC at 

different depths, this study enhances understanding of the factors driving SOC 

variability at both spatial and soil profile scales. A key contribution of this study is its 

depth-specific evaluation of SOC levels under different agricultural management 

practices. While previous research has extensively examined surface SOC responses to 

conservation practices like no-till and cover cropping, this study extends the analysis 

to subsurface layers, revealing key differences in SOC distribution across depths. The 

finding that no-till practices are associated with consistently higher SOC levels at all 

depths, while cover cropping primarily increases SOC in surface soils but may reduce 

it in deeper layers, refines existing knowledge on the long-term effects of these 

practices. This depth-dependent response highlights the need for more nuanced 

evaluations of SOC dynamics when assessing management impacts. 

Another important contribution is the use of a HB modeling framework, which 

provides a probabilistic approach to understanding SOC variation across the region. 

Unlike traditional regression-based methods, the HB approach better accounts for the 

uncertainty in SOC estimates. The results demonstrate that deeper soil layers exhibit 

greater unexplained variability, suggesting that while surface SOC is more strongly 

influenced by management and environmental conditions, deeper SOC levels may be 

governed by more complex or unmeasured processes. This insight is valuable for 

refining future studies on SOC distribution and variability, particularly in semi-arid 

regions. Moreover, the results of the HB models presented in this study may serve to 

prime the prior distributions of future Bayesian analyses looking at the impact of 

agricultural practices and environmental characteristics on SOC concentrations.  

This study also advances the literature on the economic implications of SOC 

management by linking SOC estimates with potential revenue from voluntary carbon 

markets. While previous studies have explored the financial feasibility of conservation 



 

 

practices, this study integrates regional SOC estimates with economic considerations, 

demonstrating that revenue potential is highly dependent on carbon prices, crediting 

depth, and the scale of adoption. These findings contribute to discussions on market-

based incentives for soil carbon management and the role of policy in shaping 

economic opportunities for producers in the THP. 

Finally, this research provides new insights into spatial patterns of SOC across 

the THP, identifying counties with higher SOC stocks and those with greater 

variability. The substantial differences in SOC levels between counties underscore the 

importance of localized studies when evaluating soil carbon dynamics. Future research 

should incorporate spatial effects to help inform targeted soil management strategies, 

helping policymakers and producers identify areas where SOC-enhancing practices 

may be most effective. Together, these contributions provide a more detailed and 

regionally specific understanding of SOC dynamics in the THP, offering a potential 

modeling strategy for larger-scale estimates of SOC for future market developments 

and practical implications for soil management, economic incentives, and regional 

agricultural policy. Future research should build upon these findings by incorporating 

long-term datasets and higher-resolution spatial data to refine SOC estimates and 

better understand the drivers of SOC variability across different agricultural 

landscapes. 

Limitations  

This study provides insights into the relationships between SOC levels and key 

management and environmental factors in the THP. However, several limitations must 

be acknowledged. First, the analysis relies on cross-sectional data with only 67 

observations for a single year which prevents the identification of SOC sequestration 

rates over time. A longitudinal dataset with repeated soil sampling would be necessary 

to assess the actual sequestration potential of different practices. Second, the HB 

models reveal substantial uncertainty. Many of the posterior mean values have 

credible intervals that contain zero, indicating a lack of statistical certainty about the 

direction or magnitude of some effects. Additionally, this uncertainty increases with 



 

 

soil depth, where SOC measurements exhibit greater variability and fewer strong 

predictors. Future studies could incorporate higher-resolution soil carbon 

measurements, longer-term data, or alternative modeling approaches that account for 

measurement error and spatial dependence. 

Third, data constraints related to soil surveys and county-level Census of 

Agriculture data present additional challenges. Soil survey data often rely on broad-

scale classifications that may not fully capture site-specific variations in soil properties 

and management history. Similarly, the use of county-level agricultural data limits the 

precision of economic and agronomic inferences at the farm level. Incorporating farm-

level management records or remotely sensed data could improve the granularity and 

accuracy of future analyses. Fourth, the economic analysis focuses solely on potential 

revenues from carbon sequestration and does not account for the costs of 

implementation. The feasibility of adopting climate-smart agricultural practices 

depends not only on carbon payments but also on costs associated with changes in 

tillage, cover cropping, irrigation management, and potential yield impacts. Future 

research should develop a full cost-benefit analysis, incorporating both direct costs 

and opportunity costs, to better assess the net economic viability of SOC sequestration 

for producers in the region. 

Beyond these limitations, this study raises several directions for future 

research. First, a time-series or panel dataset would allow for an assessment of SOC 

sequestration dynamics over time, rather than just current SOC levels. Integrating 

spatial econometric techniques could help account for spatial dependencies in SOC 

levels that arise from environmental and management similarities across locations. 

Third, exploring alternative Bayesian priors or incorporating additional hierarchical 

levels (e.g., field-level or regional effects) could improve the robustness of the 

Bayesian inference and reduce uncertainty in model estimates. Lastly, future work 

should expand the economic assessment to include carbon market dynamics, 

transaction costs, and producer decision-making under risk and uncertainty. By 

addressing these limitations and pursuing these research avenues, future studies can 



 

 

provide a more comprehensive understanding of the biophysical and economic 

feasibility of SOC sequestration in the THP and similar agricultural regions. 
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