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Introduction

Soil represents the largest pool of carbon in the terrestrial biosphere. The amount of
carbon stored in soils around the globe is more than twice the amount of total carbon
in the atmosphere and vegetation combined (Ciais et al., 2013; Lehmann & Kleber,
2015). As such, variations in soil carbon stores may lead to significant changes in the
concentration of atmospheric carbon (Ciais et al., 2013). Soil organic carbon (SOC)
has been used by researchers as a measure for indications of soil health. SOC and soil
organic matter are two of the most widely used indicators of soil health, and the
quality, quantity, and related dynamics or turnover of SOC are essential to overall soil
health (Biinemann et al., 2018; Lal, 2014). Maintaining adequate levels of SOC is
critical for soil structure which contributes to aeration and tilth, water use efficiency
and retention which govern tolerance to deviations in normal climate conditions (e.g.,
drought and heat waves), nutrient retention and effective use of retained nutrients, and
gas emissions that manage atmospheric concentrations of individual gases and
regulate changes in climate (Lal, 2014).

Through land use changes over time, agricultural soils that historically
possessed sizable stocks of carbon now have the potential to directly sequester
atmospheric carbon due to depletions in original carbon levels. Rising concerns over
changes in global climate have increased the need for mitigation strategies to limit
related impacts of greenhouse gas emissions. Moreover, the potential of agricultural
soils to sequester carbon depends largely upon environmental conditions such as
precipitation and temperature, soil texture, the types of practices implemented, and
additional site-specific conditions (Bell et al., 2023; Potter et al., 1998; Zhu et al.,
2011). Lands currently in production agriculture that were once native grasslands
likely have great potential for carbon sequestration (Hutchinson, et al., 2007). As such,
the Great Plains in the central U.S. may have great potential as a carbon sink given the
area was primarily native grasslands prior to westward expansion.

The Texas High Plains (THP) consists of 39 counties in the Texas panhandle

ranging from the northern border with Oklahoma down to the southwest end of the



panhandle on the New Mexico border (USDA-NASS, 2020). The region comprises the
Northern High Plains (NHP) and the Southern High Plains (SHP) agricultural districts
located in the northern part of the panhandle and the southwestern portion of the
panhandle, respectively. The THP along with the Texas Rolling Plains (TRP) form the
southern end of the Great Plains that span the central U.S. and is separated from the
TRP by the Caprock Escarpment. Major crops produced in the region include cotton,
wheat, corn, and sorghum with the region producing approximately 25% of the total
U.S. cotton crop (Bell et al., 2023; SARE, 2025). Soil surface textures range from
clays in the north to sands in the southern section of the region, and the region consists
mostly of irrigated agriculture with native vegetation including juniper and mesquite
(TPWD, 2024). Average rainfall in the region ranges from 15 to 22 inches annually,
and evapotranspiration exceeds precipitation by as much as 3 times in the southern
portion of the THP (Gustavson & Holliday, 1999; TPWD, 2024). As such,
groundwater resources from the Ogallala aquifer are routinely utilized to sustain crop
production in the region. Agriculture supports numerous rural communities and
accounts for over 40% of the total economy in the semi-arid region but relies heavily
on non-sustainable rates of withdrawal from the Ogallala aquifer (SARE, 2025).
Moreover, the total stock of SOC and sequestration potential of agricultural
production systems in the region may be significantly influenced by the semi-arid
climate of the region.

Previous research from Potter et al. (1998) found a negative relationship
between mean annual temperature and SOC in three study sites across Texas,
including the THP. Despite this, other research has shown the adoption of specific
practices to have a positive influence on SOC levels in the region. For example, the
use of cover crops paired with no-till cotton systems increased SOC in the top 15 cm
of soil compared to conventional till winter fallow treatments in Lamesa, TX
following 17 years of management (Lewis et al., 2018). Similarly, DeLaune et al.
(2019) found cover cropping and no-till to increase SOC in soil surface layers after 15

years. However, there was no significant difference in SOC levels in subsurface layers



between conventional tillage and no-till. In a long-term study of tillage and cropping
practice effects of SOC in dryland systems in Bushland, TX, Schwartz et al. (2015)
found decreased tillage intensity to be associated with higher SOC levels in the surface
30 cm of soil for a wheat-fallow rotation in stubble-mulch plots. The absence of fallow
periods has also shown to have a positive influence on SOC in the THP where
continuous cropping systems had higher levels of SOC compared to systems that
incorporate fallow periods (Potter et al., 1998; Schomberg & Jones, 1999).

The management of SOC in the THP is similarly impacted by the economic
returns producers experience when adopting sequestering practices. Returns for
producers adopting sequestering practices may be affected by resulting yield changes
in major cash crops and associated costs of implementing said practices. Net returns
for the adoption of cover crops are affected by a variety of factors such as timing of
planting and termination, type of cover crop, local soil conditions and climate, and
coupled management practices. Research has shown variable yield impacts on
subsequent cash crops following cover cropping and the additional opportunity costs
producers face when managing an additional crop instead of employing fallow periods
may hinder adoption of the practice (Boyer et al., 2018; Deines et al., 2023; Plastina et
al., 2020). In the THP, Lewis et al. (2018) found SOC to be twice as high under a no-
till rye cover crop compared to conventional tillage for continuous cotton systems in
Amarillo Fine Sandy Loam soil. However, the conventional tillage treatment was
shown to be more profitable than no-till rye and no-till mixed species cover crop
treatments because of higher average revenue from greater cotton lint yield.

In contrast, similar studies in the THP have found either no difference or
significantly greater cotton lint yields when utilizing no-till in the region’s cotton
systems (Baumbhardt et al., 2009; Bordovsky et al., 1994).! Segarra et al. (1991)

similarly found higher net revenues for dryland cotton systems in the THP utilizing

! The systems analyzed by Baumhardt et al. (2009) consisted of wheat-cotton-fallow rotations where
cotton crops received two levels of deficit irrigation. There were no significant differences observed
between the two levels of deficit irrigation. Bordovsky et al. (1994) found cotton lint yield increases
from no-till for both dryland and irrigated cotton systems.



no-till and reduced tillage compared to conventional tillage, but an irrigated
continuous cotton system under conventional tillage had higher net revenue compared
to no-till and an irrigated conservation till system with a wheat-cotton rotation had the
highest overall net revenue above total costs. These studies highlight the potential
viability of sequestering practices in the THP, and how economic feasibility may be
significantly influenced by producers applying irrigation from the diminishing
Ogallala aquifer that sustains irrigated crop production in the region.

Incentive-based approaches have been used for environmental regulation and
for facilitating ecosystem and environmental services from agriculture. This approach
is generally considered more efficient compared to command-and-control regulations
where policies that mandate specific management practices and land uses would be
largely inefficient given the significant heterogeneity in site-specific biophysical and
economic conditions (Antle et al., 2003; Fleming & Adams, 1997). Among incentive-
based strategies, voluntary market-based policies such as carbon contracting have
begun to emerge as potential tools to encourage agricultural producers to effectively
manage and increase levels of soil carbon. However, the development of voluntary
soil carbon markets and trading systems remains limited due to challenges such as
accurate measurement, verification, additionality, leakage, and concerns about
permanence and potential reversals of soil carbon, all of which create uncertainty in
carbon accounting (Keenor et al., 2021; Kreibich & Hermwille, 2021; Vermeulen et
al., 2019). Currently, there is no market price for sequestered soil carbon in the THP
and, therefore, it may be seen as a “free” output of agricultural production processes
(Sperow et al., 2016). As economic theory suggests, free outputs will not necessarily
influence production decisions, and establishing a price for sequestered soil carbon in
the THP would have influences on management and crop production decisions in the
region (Kimble et al., 2016). In the absence of interactive market prices for soil
carbon, producers in the THP generally rely on federal incentive programs (e.g., the
EQIP and CSP) to supply economic benefits for adopting sequestering practices. The

EQIP and CSP do not function as true market-based mechanisms and enrolled



producers are not necessarily rewarded for their carbon storage efficiency. Instead,
they provide incentives to producers based on individual practices and do not account
for additional levels of accumulated soil carbon. Inadequate consideration for
additionality compared to business-as-usual conditions and the associated
measurement difficulty are issues commonly referenced for programs that focus on
carbon sequestration (Thamo & Pannell, 2016; Trexler, 2011).

A full accounting of additionality requires comparison against baseline carbon
changes expected from business-as-usual conditions. For voluntary programs that
issue carbon credits to producers to operate efficiently, credits or incentives should
only be provided for sequestered carbon that is ‘additional’ (Thamo & Pannell, 2016).
Effectively accounting for the additionality of sequestered carbon in market-based
policies increases transaction costs that may be reduced through policy simplification
but would increase the uncertainty and overall efficiency of the program (Cacho et al.,
2013; Capon et al., 2013). For example, comprehensive soil sampling in a given
project/market region at the farm level such that individual producers are compensated
for the amount of carbon they sequestered would entail significant costs. However,
leveraging econometric modeling that accounts for the uncertainty inherent in
heterogeneous production systems, environmental conditions, and soil types could
offer a more cost-effective alternative by estimating soil carbon levels with limited
direct sampling, thereby balancing accuracy with feasibility in measurement.

Hierarchical Bayesian (HB) models have been used for a number of
environmental applications and the approach allows estimated model inferences to be
shared across subunits (e.g., unique sampling locations) resulting in both subunit-
specific and global parameter estimates (Agarwal et al., 2005; Borsuk et al., 2001;
Yang et al., 2011). Researchers have used plot-scale data to inform policy decisions
for both global and regional changes in environment but scaling from the plot level to
larger areas remains difficult because of high spatial variability at many scales (Burke,
2000). HB approaches allow the use of diverse data types to evaluate soil properties

and researchers can draw predictions for independent variables at points where data is



scarce. For example, Kaye et al. (2008) use a HB model of plot-scale pools for soil
nutrients to predict storage of various soil nutrients, including SOC, across various
ecosystems and find that Bayesian scaling can accommodate varied factors driving
soil nutrients across ecosystems. Therefore, the authors claim that Bayesian scaling
could represent an important tool for ecological scaling that spans various land use
types (Kaye et al., 2008). Similarly, soil texture impacts both water permeability and
soil aeration which indirectly contributes to the carbon consumption or production
capacity of the soil. As such, Li et al. (2015) used a HB approach to model soil carbon
flux across four soil texture classes and found that a hierarchical approach better
represented texture-specific observations compared to a nonhierarchical Bayesian
model (Bayesian pooled model). The authors also claimed that future research could
utilize soil texture as an upscaling factor when extrapolating results to the regional
scale.

Fitting hierarchically structured soil sampling data to Bayesian models allows
researchers to derive inferences in instances when data is scarce or covers relatively
limited geographic regions. The intention of this research is to utilize HB models to
estimate the agricultural carbon storage potential of the THP. Specifically, by utilizing
soil sampling data from eight counties in the THP the objective of this paper is to
evaluate the agricultural production practices, soil textures, and environmental
conditions associated with higher levels of SOC in the semi-arid THP, and assess the
response of SOC to the stated factors at 30 cm depth increments from the soil surface
to 90 cm in the soil profile.

Methods

Data

The data for this study comes from soil analyses conducted across eight counties in the
THP in 2022. Soil core samples were taken from each location from the soil surface
down to a depth of 90cm and analyzed in 15 cm intervals for SOC, bulk density, pH,
electrical conductivity, potassium permanganate oxidizable carbon, and soil texture.

For the purposes of this study, the six 15 cm depth increments were aggregated into 30



cm measurements for the sake of brevity. The fields sampled span 11 soil series and
10 soil textures in the THP and include both conventional (e.g., conventional tillage)
and regenerative/carbon sequestering practices (e.g., cover cropping and no-tillage).
Soil textures were determined at each depth increment directly from the percentages of
sand, silt, and clay at each soil layer using the soil texture calculator from the USDA
(USDA-NRCS, 2024). The sampled fields also comprised a variety of crops typically
planted in the THP (e.g., cotton, corn, sorghum) and crop rotations/treatments
commonly used by producers in the region (e.g., continuous cotton, sorghum-cotton,
sorghum-corn, etc.). Only a single treatment was utilized in each field, and the
majority of fields contained three replications of each treatment. Replications were
treated as individual observations for a total of 67 observations across the THP. In
addition to the soil sampling data described above, county-level environmental data
from the PRISM Climate Group and 2022 Census of Agriculture were utilized for
estimating county and regional SOC stocks (PCG, 2024).2

Model

The purpose of this study is to evaluate the agricultural production practices, soil
textures, and environmental conditions that are associated with greater levels of SOC
in the semi-arid THP, assess the response of SOC to various factors throughout the
soil profile, and calculate the total SOC stock of the region. Previous studies have used
variations of a hierarchical Bayesian (HB) model in a number of environmental
applications, including evaluations of SOC fluxes and estimates of stocks of diverse
soil nutrients. The HB model has been reported to be effective in sharing model
inferences across sites, deriving sub-unit specific inferences, estimating global
parameter estimates, and accurately representing natural variability and related
uncertainty. As such, a HB model was employed to analyze soil characteristics of
samples collected from across the THP, estimate the association between specific

agricultural practices and SOC levels, calculate total SOC stocks in the agricultural

2 The PRISM Climate Group is part of the Northwest Alliance for Computational Science and
Engineering and is based at Oregon State University (PCG, 2024).



soils of the region, and account for inherent variability and uncertainty regarding SOC
levels.

Malve and Qian (2006) maintain that hierarchical modeling can reduce model
uncertainty and improve parameter estimates by pooling data from different sources,
and hierarchical models may be used to form realistic models without overfitting the
data. The main focus of this study is to estimate the association of SOC and various
agricultural practices across different soil textures in the THP. Soil texture classes
were determined by the observed percentages of clay, sand, and silt at individual
depths. By characterizing soil texture at each depth interval, the model is better able to
capture the heterogeneity between soil texture and SOC in different soil horizons.
Specifically, the 10 soil texture classes in the analysis are clay (C), clay loam (CL),
loam (L), loamy sand (LS), sandy clay (SC), sandy clay loam (SCL), sandy loam (SL),
silt (S), silt loam (StL), and silty clay loam (StCL). Therefore, following adaptation
from Li et al. (2015) the HB model can be defined as follows:

In(S0Cij) = N(fun socyjy 9éoc) (D

Hinsocij) = P1 + U; + By NoTill; + sCoverCrop; + B,Irrigated; (2)
+B5 log(Precipitation;) + B¢ log(MeanTemp) + [, PriorCrop;

U; ~N(0,05). 3)

where SOC represents the i-th observation of SOC for the j-th soil texture, i is the data
point (i.e., plot) ranging from 1 to N, and j is the soil texture class (j=1, C; j=2, CL;
j=3,L; j=4, LS; j=5, SC; j=6, SCL; j=7, SL; j=8, S; j=9 StL; j=10, StCL). It is
important to note that the above specification represents a single permutation of the
model, and separate iterations of the model were estimated for the three soil depths
analyzed. The texture specific model parameter is denoted by U; and represents the
random intercept for each of the j soil texture classes. That is, the random intercept

assumes common partial effects from the included explanatory variables across soil



texture but assumes different initial stocks of SOC across soil texture classes. The
prior distribution of the random intercepts is defined as normal with mean 0 and
variance g/, where o/ captures the variability in baseline SOC levels across soil
textures.

The explanatory variables NoTill, CoverCrop, and Irrigated are dummy
variables indicating whether the plot was under no-till, a cover crop was grown on the
plot, and if the plot was irrigated, respectively. Precipitation is the average county-level
annual precipitation level (inches) in which the plot is located and MeanTemp is the
average county-level annual mean temperature (Fahrenheit) in which the plot is located.
PriorCrop is a categorical variable indicating the crop grown on the plot prior to the
soil samples being taken. The variance of the model error is denoted by 0. Equations
1-3 above denoting the hierarchical structure of the model include distributions where

In (S0C;;) is normally distributed with mean pj, (S0Cy)) and variance 02,.. The hyper

parameters and other parameters also need to have a prior distribution. Relatively
uninformative or diffuse priors have shown favorable outcomes and are widely used in
HB modeling (Haque et al., 2010; Huang & Abdel-Aty, 2010; Lacombe & Flores,
2017). Therefore, relatively uninformative or vague priors were used in this

specification and are as follows:
Bi ~ N(0,10000) 4)
Osoc, 0y ~ igamma(0.01,0.01). ®)

The number of the parameter is denoted by k where k = 1, ... 7, and is denoted as
B1, ..., B7, respectively. The distributions of the B ’s are normal with mean 0 and
variance 10000, and an inverse gamma distribution is specified for ogy and a;; with
the shape and scale parameters specified as 0.01.

When utilizing Bayesian econometrics, all inference is deduced from the
posterior distribution of the relevant parameters. The following equation characterizes

the posterior distribution:

p(0ly) < p(y|6) p(6). (6)



From the equation, the posterior distribution of the parameters is proportional
to the product of the likelihood function and the individual priors for all parameters
(Hall et al., 2022). Independent priors are used in this study for all of the parameters,
meaning that the elements of p(6) are multiplicatively separable. p(6]y) denotes the
posterior distribution and, given the observed data (y), represents the probability of the
model parameter (8) values (Li et al., 2015). 8 contains $; ~ 8, U; ~ Uy, , 0y, and
Osoc for the HB model used in this study. The prior distribution is represented by p(8)
and the likelihood function is denoted by p(y|8). The following expression defines
the likelihood function:

(In soc)~(n s0cy),) ) (7)

9) =TIV, —L _
p(yl ) l—lmexp< 26§OC

In (SOC;) is the measured value of SOC log-transformed and (,uln (so@)i denotes the

predicted value of the HB model in equation 2. N is equal to 67 and represents the
total number of observations, and og is the standard deviation corresponding to
equation 5. The Markov Chain Monte Carlo (MCMC) method was used to estimate a
representative sample of parameters from the posterior distribution. 35,000 iterations
of sampling from the prior distribution were conducted to obtain posterior probability
distributions. To avoid the influence of the initial values, the initial 5,000 iterations
were discarded as a “burn-in” period and the remaining 30,000 iterations were used to

evaluate the posterior parameter distributions.

Evaluating SOC Stocks in the THP

The HB models are used to predict SOC at the county level by applying the posterior
draws from the fitted models. The procedure iteratively computes predictions for each
of the 30,000 posterior draws, accounting for both fixed effects and random effects
(e.g., soil texture) and then back-transforms predictions from the log scale to the
natural scale (tons/acre). The process involved five main steps: (1) defining the linear
predictor for the natural logarithm of SOC; (2) back transforming the prediction
natural logarithm of SOC to the natural scale; (3) estimating individual county SOC



stocks; (4) aggregating for regional SOC stocks; and (5) summarizing the predictions.
The steps were repeated for each of the three soil depths considered. Therefore,
predictions of SOC stocks were made for each soil layer and aggregating results from
each soil layer gave SOC stock for the entire 0-90 cm soil profile. Below is a detailed
breakdown of the procedure and associated formulas for each step:

(1) Prediction Structure:

1og(SOCik) =B, + UJDominantTexture + B,NoTillProportion; +
B;CoverCropProportion; + B,IrrigatedProportion; + Bs log(Precipitation;)
+PB¢ log(MeanTemp) + B,PriorCropProportions;. (8)

Where SOC represents the predicted natural log of SOC per acre in county i for posterior
draw k, B;~B, are the mean values for management practices and environmental
covariates from the posterior draw, and l7] is the random intercept for soil texture j from
the posterior draw. DominantTexture is the dominant soil texture at each depth
increment as determined by county-level data from the Web Soil Survey.’
NoTillProportion, CoverCropProportion, IrrigatedPropotion, and
PriorCropProportions represent the proportion of total cropland in each county
utilizing no-till, cover cropping, irrigation, and planted to cotton and sorghum. The
proportions of total cropland dedicated to each practice were determined from the 2022
Census of Agriculture county-level data (USDA-NASS, 2024). Precipitation and
MeanTemp are the average county-level precipitation and mean temperatures in each

county obtained from the PRISM database.

(2) Back Transformation:
Following the first step defined above, the linear predictor on the log scale is then
back-transformed with a bias correction to the natural scale using the following

equation:

3 Percentages of sand, silt, and clay were used to determine soil texture, and the dominant texture was
defined as the soil texture covering the largest percentage of total acreage in county i at depth ;.



sock = exp (log(S0CK) +3 o2 ). (9)

S0C represents the predicted tons per acre value of SOC, log(S0C) is the predicted
log SOC value from county i for posterior draw k, and 6, is the residual variance
from the posterior draw. The transformation helps ensure that predictions are unbiased
when converting from the log scale to the natural scale (Baskerville, 1972).

(3) Individual County SOC Stocks
The prior step provides predictions of SOC levels in tons per acre. Because the linear
predictor defined in step (1) above uses total cropland in each county to determine
proportions of individual practices, the following equation is used to determine the

total stock of SOC in the cropland of each county in the THP:

Stock¥ = SOCF x Total Cropland,. (10)

Stock is the total stock of SOC in county i’s cropland and Total Cropland simply
represents the total acres of cropland in county i.

(4) Regional SOC Stock
After obtaining predictions for the total stock of SOC in each county, estimating the
total stock of SOC in the entire THP involves summing the county-level SOC stocks

for each posterior draw:

THPStock® = ¥!_, Stockk. (11)

Where THPStock” represents the total stock of SOC in the entire THP for each
posterior draw £, [ is equal to 29 and represents the total number of counties in the
region for which data were available for predictions.

(5) Post-processing and Summarizing Predictions:
The predicted values of SOC across all posterior draws were averaged to provide point

estimates for each county using the following equation:

SOC, = - ¥k_, SOCk. (12)



SOC, is the mean value of SOC in county i across all posterior draws K. This process
was used to obtain point estimates of both SOC in tons per acre and total SOC stock
for each county, and to obtain summary statistics of the regional (i.e., THP) and sub

regional (i.e., NHP and SHP) measurements of SOC.

Following the estimates of county-level SOC stocks, sensitivity analyses were
conducted to evaluate how changes in cropland allocation to individual practices in the
region would affect the stocks of SOC across each soil depth. Using county-level
acreage data from the 2022 Census of Agriculture, total acreage dedicated to
individual practices were increased by 5%, 10%, 25%, and 50%. These adjustments
allowed for an evaluation of both the net changes in SOC stock at each soil depth and
the average increase in SOC per acre of cropland in each county. Calculating the
average increase in SOC per acre across soil layers provided a foundation for further
economic analysis. To estimate potential revenues for producers under various SOC
crediting schemes, SOC prices ranging from $5 to $50 per ton were applied. A report
from the World Bank on carbon pricing found the average monthly world price of
nature-based carbon credits to range from a high of just under $18/ton in 2022 to
below $5/ton in 2024 (World Bank, 2024). Therefore, the prices used for the
sensitivity analyses cover both the low and high end of potential prices for SOC.
Similarly, because existing protocols for crediting soil carbon use a wide range of
recommended soil depths, three crediting depths (0-3 Ocm, 0-60 cm, and 0-90 cm)
were considered, enabling an assessment of the financial incentives associated with

carbon sequestration at different soil depths (Dupla et al., 2024).

Results

Summary statistics for the management practices, county-level environmental
characteristics, and aggregated SOC data are presented in Table 1. Of the 67 total
observations, approximately 86% and 40% utilize no-till and cover cropping,
respectively. Over half of the observations (68.6%) are irrigated and cotton is the most
common crop on the field prior to the soil samples being collected. Average annual

precipitation and mean temperature were obtained from the PRISM Climate Group for



the eight counties in the THP in which soil samples were collected. The observed
counties include Dawson, Swisher, Dallam, Sherman, Moore, Lamb, Crosby, and
Howard. The average precipitation for the observed counties is 12.78 inches annually,

and the average annual mean temperature is just under 60 degrees Fahrenheit.

As noted previously, the six depth measurements for each observation were
aggregated into three 30 cm measurements for concision. Average levels of SOC are
approximately 10.97 ton/acre in the surface 30 cm, 10.71 ton/acre in the 30-60 cm
layer, and 12.34 ton/acre in the bottom 60-90cm layer. While these measurements are
consistent with previous studies finding higher levels of SOC in subsurface soil layers
beneath the plow depth, the standard deviation of the SOC measurements increases
with depth and nearly doubles from the surface 30 cm of the soil to the lower 60-90

cm layer indicating larger variations in observed SOC values at deeper soil horizons.

Table 1: Summary Statistics of Observed Locations

Percentage of

Variable Occurrence Mean Std. Dev.
Tillage 0.866 0.344
1 =No-till 86.6%
0 = Conventional 13.4%
Cover Crop 0.403 0.494
1 = Cover 40.3%
0 =No Cover 59.7%
Irrigation 0.686 0.465
1 = Irrigated 68.6%
0 = Dryland 31.4%
Prior Crop 1.913 0.728
1 =Corn 31.3%
2 = Cotton 46.3%
3 = Sorghum 22.4%
Precipitation (in.) 12.778 1.301
Mean Temperature (°F) 58.890 1.917
SOC (ton/acre)




0-30cm 10.972 4.580
30-60 cm 10.709 6.208
60 —90 cm 12.335 8.667

The distributions of soil texture by each soil depth are presented in Table 2. At
the 0-30 cm layer, the majority of observed samples are classified as Silt Loam
(52.24%), followed by Loam (13.43%) and Sandy Loam (13.43%). At 30-60 cm, Silt
Loam remained prevalent in 38.81% of observed samples, with Clay Loam (16.42%)
and Clay (13.43%) becoming more common. At 60-90 cm, Si/t Loam was again
dominant, observed in 40.91% of samples, followed by Clay Loam in 28.79%, 18.18%
of samples were Silt, and 7.58% of the samples were Loam. The observed distribution
suggests a trend of increasing clay content with depth, as indicated by the rising
presence of Clay Loam and Clay in deeper layers. Conversely, the dominance of Si/t
Loam across all depths suggests a relatively consistent silt component throughout the

profile.

Table 2: Soil Texture Distribution by Depth

Texture
Depth Sandy . Silty
Clay Clay Loam Loamy Sandy Clay Sandy Silt Silt Clay
Loam Sand Clay Loam Loam
(cm) Loam Loam

0-30 0% 10.45% 13.43%  2.99% 0% 299% 13.43% 4.48%  52.24% 0%

30-60 | 13.43% 16.42%  7.46% 0% 0% 448% 4.48% 13.43% 38.81% 1.49%

60-90 1.52%  28.79%  7.58% 0% 1.52%  1.52% 0% 18.18% 40.91% 0%

HB Models

The mean, standard deviation, and Monte Carlo standard error (MCSE) values in
addition to the 95% credible intervals of the posterior distributions of the parameters
for the HB model are presented in Table 3. All of the values for SOC are in short tons
(i.e., U.S. tons) per acre and because the raw SOC data were not normally distributed,

all the following HB analyses were performed on the natural logarithm of SOC. The



values presented in Table 3 are for the 0-30 cm soil layer, and the observations were
sorted into seven soil textures (i.e., groups) for the purpose of the HB model. Given
the dependent variable is log transformed levels of SOC, the mean posterior
distribution estimates for No-till, Cover Crop, Irrigated, and Prior Crop can be
interpreted as percentage changes (e.g., 100 X (exp (B;) — 1)), and parameter
estimates for Precipitation and Mean Temperature are interpreted as elasticities. It is
important to note that SOC measurements are in tons per acre; therefore, the following
interpretations can be characterized as higher or lower percentages in tons of SOC per
acre in the 0-30 cm soil layer. Because much of the disturbances from agricultural
practices occur in the surface layers of the soil (e.g., tillage and root growth) much of
the positive impacts of sequestering practices are likely to take place in the 0-30 cm
layer of the soil. The is the case for both No-till and Cover Crop which are associated
with approximately 92.7% and 12.6% higher levels of SOC in the top 30 cm of the
soil, respectively. In contrast, irrigated fields are associated with approximately 5.91%
less SOC. A Prior Crop of corn was used as the base for comparison, and both Cotton
and Sorghum are associated with higher levels of SOC compared to corn. Specifically,
crops of Cotton and Sorghum directly preceding the collection of soil samples are
associated with approximately 16% and 3.4% higher levels of SOC compared to corn,
respectively.

Table 3: HB Model Posterior Distributions — 0-30 cm Soil Layer

Parameter Mean Std. Dev. MCSE Median 2.50% 97.50%
No-till 0.656 0.148 0.001 0.657 [0.366, 0.946]
Cover Crop 0.119 0.173 0.001 0.120 [-0.222, 0.461]
Irrigated -0.061 0.113 0.001 -0.061 [-0.281, 0.164]
Prior Crop (base=corn)
Cotton 0.148 0.126 0.001 0.149 [-0.102, 0.396]
Sorghum 0.038 0.168 0.001 0.039 [-0.293, 0.368]
In(Precipitation) 0.093 0.585 0.005 0.088 [-1.048, 1.237]
In(Mean Temperature) -8.018 2.576 0.019 -8.020 [-13.097, -2.951]

Constant 34093 10720 0083 34063  [13.119,  55.234]




U, (Clay Loam) -0.024 0.112 0.002 20.022  [-0268  0.195]

U; (Loam) 0.007 0.112 0.002 0.007 [-0.221 0.236]
U, (Loamy Sand) -0.025 0.133 0.002 -0.020 [-0.311 0.234]
Ug (Sandy Clay Loam)  -0.034 0.131 0.002 -0.029 [-0.313 0.218]
U, (Sandy Loam) -0.014 0.109 0.002 -0.015 [-0.234 0.207]
Ug (Silt) 0.089 0.138 0.003 0.074 [-0.139 0.416]
Ug (Silt Loam) 0.022 0.113 0.003 0.017 [-0.197 0.263]
o’ 0.027 0.039 0.001 0.016 [0.003, 0.119]

%oc 0.118 0.029 0.000 0.114 [0.079, 0.183]

Regarding county-level environmental characteristics, higher levels of
precipitation have a negligible, positive association with SOC, and higher mean
temperatures have a negative association. An additional inch increase in annual
precipitation and degree Fahrenheit increase in annual mean temperatures are
associated with .093% higher and 8.02% lower levels of SOC, respectively. It is
important to note the data for these variables are recorded at the county level and are
not field-specific. That is, the effect of these variables can be interpreted as general
trends for environmental characteristics at the county level and their relationships to
SOC storage.

When considering the 95% credible intervals of the explanatory variables, No-
till and Mean Temperature are the only parameters for which the 95% credible
interval does not contain 0. Therefore, there is strong statistical evidence for the
absence of conventional tillage in the surface 30 cm of the soil contributing to higher
levels of SOC while higher county-level annual mean temperatures are associated with
lower levels of SOC. The credible intervals of the remaining explanatory variables
contain 0 and, thus, indicate a potential lack of strong evidence for explanatory power
and the associated effects may be small. However, the Bayesian approach allows for
probabilistic interpretations and both the directions and magnitude of the estimated
means for the posterior distributions of parameters can provide valuable insights into

the dynamics of SOC in the surface layers of the soil. Similarly, the variance



component g represents the heterogeneity between soil textures and the credible
interval suggests significant variation between groups.

In contrast to the frequentist approach, the Bayesian approach used here does
not integrate out the random effects when estimating the model. Instead, the Bayesian
approach predicts the random effects as model parameters in conjunction with the
individual explanatory variables. The random effects in Table 3 are denoted as
U;(Texture) and represent random intercepts for each texture class and can be
characterized as deviations in baseline SOC stocks between each texture class. For
example, the random effects in Table 3 show Loam, Silt, and Silt Loam texture classes
to be associated with higher baseline values of SOC in the surface 30 cm of soil. This
finding indicates that soil textures with relatively high percentages of silt, are

associated with higher levels of SOC in soil surface layers.

Table 4: HB Model Posterior Distributions — 30-60 ¢cm Soil Layer

Parameter Mean Std. Dev. MCSE Median 2.50% 97.50%
No-till 0.225 0.157 0.001 0.225 [-0.086, 0.536]
Cover Crop -0.371 0.191 0.002 -0.373 [-0.746, 0.009]
Irrigated -0.173 0.126 0.001 -0.173 [-0.421, 0.074]

Prior Crop (base=corn)

Cotton 0.215 0.129 0.001 0215  [-0.039,  0.468]
Sorghum 0.280 0.179 0.002 0280  [-0.070,  0.631]
In(Precipitation) 0.959 0.659 0.009 0958  [-0331,  2.256]
In(Mean Temperature) ~ -0-461 3.198 0.052 0430  [-6.800,  5.722]
Constant 1.538 13.581 0.233 1476  [-24.681, 28.373]
U, (Clay) -0.068 0.151 0.005 20.063  [-0380  0.216]
U, (Clay Loam) -0.039 0.148 0.005 20.038  [-0340  0.259]
Us (Loam) 0.044 0.161 0.005 0.033 [-0242  0.392]
U (Sandy Clay Loam)  -0.064 0.183 0.005 20.057  [-0.445  0.303]
U, (Sandy Loam) -0.164 0.194 0.005 20.140  [-0.589  0.167]
Ug (Silt) 0.055 0.156 0.006 0.044 [-0.227  0.381]
U, (Silt Loam) 0.262 0.164 0.007 0.250 [-0.011  0.602]
Uy (Silty Clay Loam)  -0.010 0.193 0.004 -0.008  [-0.406  0.378]




a? 0.060 0.094 0.003 0.038 [0.007, 0.240]
%oc 0.119 0.033 0.000 0.113 [0.078, 0.192]

The posterior distributions of the HB models for SOC in the 30-60 cm and 60-
90 cm soil layers are shown in Tables 4 and 5, respectively. The HB model for the two
successive soil layers were estimated in a similar manner to the model for the surface
30 cm layer. However, given soil texture was assigned based on percentages of sand,
silt, and clay at each soil layer, the number of groups and specific groupings are not
the same as presented in Table 2. For the 30-60 cm soil layer, there are eight groups of
soil texture and seven groupings of soil texture in the lower 60-90 cm soil layer.

Table 5: HB Model Posterior Distributions — 60-90 cm Soil Layer

Parameter Mean Std. Dev. MCSE Median 2.50% 97.50%
No-till 0.282 0.254 0.002 0.282 [-0.218, 0.783]
Cover Crop -0.193 0.311 0.002 -0.192 [-0.803, 0.424]
Irrigated -0.304 0.205 0.001 -0.304 [-0.706, 0.101]

Prior Crop (base=corn)

Cotton 0.070 0.235 0.001 0.070 [-0.395, 0.529]
Sorghum 0.040 0.307 0.002 0.043 [-0.565, 0.641]
In(Precipitation) 0.785 0.970 0.007 0.775 [-1.104, 2.673]
In(Mean Temperature) -1.359 5.059 0.057 -1.303 [-11.399, 8.463]

Constant 5.808 21.119 0.243 5.588 [-35.123,  47.753]
U, (Clay) -0.048 0.237 0.004 -0.028 -0.578 0.406
U, (Clay Loam) -0.096 0.177 0.004 -0.084 -0.473 0.245
U; (Loam) -0.055 0.200 0.004 -0.045 -0.480 0.327
Us (Sandy Clay) 0.002 0.238 0.004 -0.002 -0.488 0.499
Ug (Sandy Clay Loam) -0.016 0.239 0.003 -0.015 -0.523 0.478
Ug (Silt) 0.061 0.196 0.005 0.046 -0.299 0.503
Ug (Silt Loam) 0.187 0.191 0.006 0.167 -0.137 0.627
a% 0.078 0.132 0.003 0.042 [0.006, 0.378]

0Zoc 0378 0.088 0.001 0364  [0254,  0.578]




The sign of the mean values for the posterior distribution of every explanatory
remained the same in both the 30-60 cm and 60-90 cm layers as they were in the
surface 30 cm of the soil; the only exception is the negative mean values for Cover
Crop in Tables 4 and 5. A possible explanation for this difference could be the limited
root penetration of cover crops beyond the surface 30 cm of the soil. The random
intercepts for soil texture remain relatively consistent for each of the soil depths,
except for Loam which has an opposite sign in the 60-90 cm depth compared to the
two shallower soil depths. Loam soils are associated with higher levels of SOC in the
0-30 cm and 30-60 cm layers and lower levels of SOC in the 60-90 cm layer.
However, it is important to note that the prediction accuracy of the HB models
decreases for each successive soil layer. For example, the 95% credible intervals for
every variable included in the models increase from the surface 30 cm soil layer to the
30-60 cm layer. The credible intervals also expand between the model for the 30-60
cm layer and the subsequent model for the 60-90 cm layer.
Model Evaluation
The deviance information criteria (DIC) are used to compare the HB models for each
depth to non-hierarchical Bayesian (i.e., Bayesian pooled) models. The DIC is an
evaluation method designed specifically to evaluate both pooled and HB models.
Goodness of fit and a penalty for model complexity are both considered in calculating
DIC, and the model with a lower DIC is the model expected to best predict a
replicated dataset sharing the same structure as the observed data (Li et al., 2015). The
pooled models are estimated using the same explanatory variables as the HB models,
but the pooled models assume no explicit grouping or hierarchical structure to the
data. That is, the pooled model assumes that all data points belong to a single,
homogeneous population, meaning that the relationships between variables remain
constant across observations. The DIC for each of the HB models along with the
Bayesian pooled models for each soil depth are presented in Table 6.

The DIC values indicate that the pooled model performs better in the soil

surface layer (0-30 cm), where the Bayesian pooled model has the lowest estimated



DIC (50.899). A key reason for this is that management practices strongly influence
SOC accumulation and decomposition in soil surface layers, which may contribute to
relatively consistent patterns across sites. At shallow depths management effects are
likely dominate over inherent soil properties and the inclusion of random intercepts
(i.e., the hierarchical structure) may not add significant value, potentially leading to a

higher DIC for the HB model.

Table 6: DIC values for the HB and Bayesian Pooled Models

DIC
Depth HB Bayesian Pooled
0-30 cm 57.442 50.899
30-60 cm 59.182 61.494
60-90 cm 133.061 133.193

In contrast, the HB models perform better than the Bayesian pooled models in
the two subsequent soil layers as shown by the lower DIC values. This shift is likely
because SOC dynamics at deeper depths are less influenced by direct management
and, instead, more controlled by soil texture, water retention, and microbial activity.
The random intercepts for soil texture in the HB model allow for texture-specific
baseline differences in SOC levels, which become increasingly important with depth.
This suggests increasing variability with depth, where a model that allows for different
effects across groups provides a better fit. A hierarchical model is better suited to
handle this variability because it allows different locations or soil types to have
distinct relationships while still borrowing strength from the overall dataset. This
flexibility makes the HB model better suited for capturing the complex and site-
dependent nature of subsoil SOC processes, where environmental and microbial

factors play a greater role than direct human intervention.

Figure 1 shows the posterior density intervals of the parameters at each soil
layer. The solid dots indicate mean posterior estimates, and the error bars indicate 95%
posterior credible intervals. The depiction makes it possible to visualize the

differences between parameter estimates across each soil layer and the shape of the



intervals shows the dispersion of the estimates. A key observation from the figure is

that the credible intervals for each variable generally widen as soil depth increases.
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Figure 1: Posterior Density Intervals

This indicates greater uncertainty in the estimated effects of various

management practices and environmental factors on SOC at deeper depths. This figure



underscores the importance of considering depth when assessing the impact of land

management and environmental factors on soil carbon storage. The widening credible

intervals at greater depths and increasing uncertainty emphasize the need for deeper

soil measurements in future studies to improve model precision. The posterior

distributions of the random intercepts across depth for each soil texture are shown

Figure 2.
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Figure 2: Posterior Distributions of the Random Intercepts

The y-axis represents the density, illustrating the relative probability of

different values occurring within the posterior samples. The key pattern that emerges

across all textures is that the surface layer (0—30 cm) consistently exhibits the

narrowest and tallest distribution, while the distributions at deeper depths become



progressively wider and more dispersed. The tighter distributions in the soil surface
suggest that estimates of the random intercepts are more precise at the 0-30 cm depth.
In contrast, the widening of distributions at deeper soil layers indicates greater
variability in the posterior estimates, meaning the effect of soil texture on the random
intercepts becomes less certain as depth increases. This could be due to more
heterogeneous environmental influences at deeper depths, such as variability in root
penetration, water movement, and organic matter accumulation.

SOC Predictions

Table 7 shows the predictions of average levels of SOC in tons per acre and total SOC
stock in the entire 0-90 cm soil profile and additional summary statistics for individual
counties in the THP.* The predictions were made using equations 8-12 and the results
from the HB models presented in Tables 3, 4, and 5. Additionally, county-level data
on agricultural practices from the 2022 Census of Agriculture, precipitation and mean
temperature from the PRISM Climate Group, and dominant soil texture for each soil
layer from the USDA Web Soil Survey were obtained for SOC predictions. Acreage
totals for each of the individual practices were not reported for 10 counties the THP.?
Therefore, Table 7 presents results for 29 of the 39 counties in the THP, average
values for the Northern High Plains (NHP) and Southern High Plains (SHP) sub
regions, and average values for the entire THP. Instead of simply using the mean
values presented in Tables 3, 4, and 5, the full set of 30,000 MCMC posterior
iterations were used to generate predictive distributions of SOC levels across
individual counties. This approach helps account for the uncertainty and variability in
the parameter estimates and should provide a more comprehensive picture of potential
levels of SOC rather than levels estimated from a single deterministic prediction.

Table 7: SOC Predictions: 0-90 cm

Coun SOC (tons/acre) SOC Stock (million tons)
R Mean  St.Dev. Min Max Mean St.Dev. Min Max
NHP 29.97 10.95 9.22  693.03 8.780 5.793 795 245.000

4 The predictions were made for each of the three soil layers independently and aggregated to find the
values presented in Table 7.
5 The data are often withheld to avoid disclosing information on individual farms (USDA, 2024).



Briscoe 30.87 7.76 13.32  174.00 2.928 736 1.263 16.500
Carson 41.09 14.82  11.52 45049  14.100 5.076 3.946 154.000
Castro 26.04 4.89 13.04 84.39 10.200 1.909 5.090 32.900
Dallam 31.79 7.67 12.96 151.09  13.100 3.155 5.328 62.100
Deaf Smith 24.95 5.08 12.16  99.28 13.500 2.747 6.571 53.600
Floyd 22.76 5.04 922  86.00 7.433 1.647 3.011 28.100
Gray 40.73 19.36 1030 693.03 5.903 2.805 1.492 100.000
Hale 43.28 19.22 9.42 51555  20.600 9.150 4.484 245.000
Hansford 24.03 6.23 951 12694 7.799 2.021 3.086 41.200
Hartley 26.24 6.66 11.01 134.15 9.406 2.388 3.947 48.100
Hutchinson 30.39 7.25 13.33  164.38 2.877 .686 1.261 15.600
Lipscomb 30.77 6.88 14.74 129.54 3.462 73 1.658 14.600
Oldham 28.76 5.89 14.78 118.45 3.390 .694 1.742 14.000
Parmer 26.09 5.17 13.13  88.26 11.600 2.301 5.849 39.300
Potter 25.07 5.48 11.78  89.27 1.692 369 795 6.025

Randall 29.16 6.52 13.20 151.94 6.450 1.443 2.920 33.600
Sherman 28.34 6.41 12.61 12842  11.400 2.589 5.092 51.900
Swisher 29.14 5.84 14.17 109.01 12.200 2451 5.948 45.800
SHP 27.76 12.49 6.14  834.71 10.700 6.069 2.205 414.000
Bailey 31.14 6.80 14.89 135.13 6.893 1.504 3.296 29.900
Cochran 25.92 5.74 11.62  98.99 7477 1.656 3.351 28.600
Crosby 27.40 8.24 934 196.13 8.259 2.485 2.816 59.100
Dawson 26.43 12.60 6.14 29777  11.900 5.678 2.767 134.000
Gaines 19.36 6.06 6.19 10246  12.500 3.925 4.008 66.400
Hockley 27.67 7.28 1045 158.27  12.200 3.218 4.620 70.000
Lamb 28.99 7.79 11.76  176.91 12.000 3.221 4.860 73.100
Lubbock 35.75 19.54 7.15  695.05  12.900 7.059 2.584 251.000
Lynn 22.37 7.02 7.78  107.97 9.784 3.070 3.404 47.200
Terry 37.02 22.69 6.46  834.71 18.400 11.300 3.208 414.000
Yoakum 23.38 5.07 10.60  73.73 4.865 1.054 2.205 15.300
THP 29.13 11.61 6.14  834.71 9.492 5.969 795 414.000

The counties with the highest and lowest average level of SOC in the 0-90 cm
soil profile are Hale County with 43.28 tons/acre and Gaines County with 19.36
tons/acre, respectively. The higher average SOC level in Hale County can be mostly
attributed to the number of acres under no-till and acres planted to cotton in the county
given the use of no-till and fields planted to cotton were associated with higher levels
of SOC in the HB models for each soil depth. Of the counties presented in Table 7,
Hale County has the third highest total acres under no-till and the highest total acres
planted to cotton in the THP. Conversely, the low predicted average value of SOC in
Gaines County can be attributed mostly to the higher number of irrigated acres and
total acres planted to a cover crop in the county. Gaines county has the fifth highest

total number of irrigated acres, and the highest total acres planted to a cover crop in



the THP. While the results of the HB models showed irrigated fields to be associated
with lower levels of SOC in each of the three soil depths, cover cropping was
associated with higher levels in the surface 30 cm of the soil. However, cover
cropping was associated with lowers levels of SOC in both the 30-60 cm and 60-90
cm soil layers and the negative association in the lower two layers is enough to
outweigh the positive association in the surface 30 cm when considering the entire 0-

90 cm soil profile.

Regarding the total stock of SOC, Hale County also has the highest total stock
of SOC at 20.6 million tons (MT) and Potter County has the lowest at 1.69 MT. It is
important to note that the stock of SOC in each county represents the total stock of
SOC in the cropland of the county and not the entirety of the county. That is, the stock
values in Table 7 are calculated by directly multiplying the average level of SOC per
acre by the total number of cropland acres in each county. Therefore, because Hale
County has the overall highest average level of SOC per acre and the fourth highest
total cropland acres it is reasonable that the highest total stock of SOC is in Hale
County as well. However, while Gaines County has the lowest average level of SOC
per acre it is also the county with the highest total acres of cropland in the THP. The
high number of cropland acres in Gaines County results in the total stock of SOC in
the county to be above the average for the entire THP. The low total stock of SOC in
Potter County is a result of the county having the lowest total cropland acres in the

THP

Sensitivity Analyses

Because the use of no-till and cover cropping have been routinely promoted to
producers as practices to increase levels of SOC in their fields and cotton is an
important commodity grown in the THP, sensitivity analyses were conducted to
evaluate how increasing total acreage in the THP under each practice and planted to
cotton affected the stock of SOC in the region’s cropland. Specifically, the total acres
under no-till, cover cropping, and planted to cotton in each county were independently

increased by 5%, 10%, 25%, and 50%, and the predicted stock of SOC was



recalculated for each county and compared to the stock values in Table 7.¢ This
comparison allowed assessment of the total changes in SOC stock from increasing the
total number of acres allocated to no-till, cover cropping, and planted to cotton in the
THP. Table 8 shows the net increase or decrease in total stock of SOC resulting from a
5%, 10%, 25%, and 50% increase in total acres under no-till, cover cropping, and

planted to cotton for the NHP, SHP, and entire THP.

¢ The mean stock values in Table 7 represent the total stock in the entire 0-90 ¢cm soil profile. The
values used in Table 8 are the total stock values in each soil layer.



Table 8: Net Changes in SOC Stock due to Changes in Acre Allocations

No-Till Acreage Cover Cropping Acreage Cotton Acreage
0-30 cm 0-30 cm 0-30 cm
Base +5% +10% +25% +50% +5% +10% +25% +50% +5% +10% +25% +50%
NHP 40847533 247992 497869 1259019 2567068 20563 41181 103366 208131 22790 45608 114281 229437
SHP 21424183 | 111342 223393 563883 1146148 14525 29097 73092 147380 20419 40876 102495 206014
THP 62271716 359334 721262 1822902 3713216 35088 70278 176458 355511 43209 86484 216776 435451
30-60 cm 30-60 cm 30-60 cm
Base +5% +10% +25% +50% +5% +10% +25% +50% +5% +10% +25% +50%
NHP 50295370 102058 204486 514034 1037590 -93816 -187310 -465876 -923811 47617 95322 238991 480315
SHP 36561106 62727 125648 315607 636229 -103109  -205830  -511660  -1013711 | 47700 95500 239517 481611
THP 86856476 | 164785 330134 829641 1673819 [ -196925  -393140  -977536  -1937522 | 95317 190822 478508 961926
60-90 cm 60-90 cm 60-90 cm
Base +5% +10% +25% +50% +5% +10% +25% +50% +5% +10% +25% +50%
NHP | 66899479 [ 152295 305449 770183 1562592 -69466 -138585  -343871 -679171 6005 12127 31237 65536
SHP 59257272 91161 282751 560154 1231394 -92804 -185133  -559280  -1128886 4014 8186 21680 47436
THP 1.26E+08 | 243456 588200 1330337 2793986 | -162270  -323718  -903151  -1808057 | 10019 20313 52917 112972




The results in Table 8 show that increasing the total acreage under no-till
causes the stock of SOC to increase at each depth level in both the NHP and SHP with
the largest increases in the surface 30 cm in the NHP. Increasing the total number of
acres planted to cotton also results in net increases to SOC stocks in both the NHP and
SHP in every soil layer. In contrast, the largest increases in SOC stocks from
increasing cotton acreage are in the 30-60 cm soil layer compared to the surface layer
with no-till. Similarly, increasing the total acreage of cropland utilizing cover crops
results in net increases in the SOC stocks of both the NHP and SHP in the surface 30
cm of the soil. However, increased cover cropping results in net decreases in the SOC
stocks of both the NHP and SHP in both the 30-60 cm soil layer and 60-90 cm layer.
The net decreases in SOC stocks in the subsurface soil layers are also large enough to
offset all the net increases in SOC stocks in the surface 30 cm of the soil resulting
from increases in the total acreage of cover cropping in the region.

While the results in Table 8 show net increases or decreases in SOC stocks
across the THP and offer critical insights into the environmental impacts of shifting
land management practices, they do not fully capture the economic implications for
producers of increasing SOC stocks. To contextualize the above changes in SOC
stocks within a potential soil carbon market framework, average per acre potential
revenues that producers may earn were calculated based on varying prices of SOC
credits and various depths of SOC credit recognition. These revenues reflect how
changes in acreage under no-till practices, cover cropping, and cotton cultivation could
translate into tangible financial returns to producers in the THP, depending on the
potential market structure and the specific crediting protocols employed. The potential
revenue estimates from no-till adoption across the THP highlight both the
opportunities and limitations for producers participating in voluntary carbon markets

and are presented in Table 9.



Table 9: Potential Revenue from Increased No-Till Adoption Across Depths and Payment Levels

No-Till Acreage

0-30 cm

+5% +10% +25% +50%

$5 $10 $20 $50 $5 $10 $20 $50 $5 $10 $20 $50 $5 $10 $20 $50

NHP | 023 | 047 | 094 | 234 | 047 | 094 | 1.88 | 470 | 1.19 | 238 | 4.76 11.89 | 243 | 485 9.70 24.25

SHP | 0.13 | 026 | 052 | 130 | 026 | 052 | 1.05 | 2.62 | 0.66 | 132 | 2.64 6.60 1.34 | 2.69 5.37 13.43

THP | 0.19 | 0.38 | 0.75 1.88 | 038 | 0.75 1.51 3.77 | 0.95 1.91 3.81 9.53 1.94 | 3.88 7.77 19.42

0-60 cm

+5% +10% +25% +50%

$5 $10 $20 $50 $5 $10 $20 $50 $5 $10 $20 $50 $5 $10 $20 $50

NHP | 0.33 | 0.66 1.32 | 331 | 0.66 133 | 2.65 | 6.63 1.67 | 335 | 6.70 16.75 341 6.81 13.62 34.05

SHP 0.20 | 041 0.82 | 2.04 | 041 0.82 1.64 | 4.09 1.03 | 2.06 | 4.12 10.30 | 2.09 | 4.18 8.35 20.88

THP | 0.27 | 0.55 1.10 | 2.74 | 0.55 1.10 | 2.20 | 5.50 1.39 | 277 | 5.55 13.87 | 2.82 | 5.63 11.27 28.17

0-90 cm

+5% +10% +25% 50%

+

$5 $10 $20 $50 $5 $10 $20 $50 $5 $10 $20 $50 $5 $10 $20 $50

NHP | 047 | 0.95 1.90 | 475 | 0.95 1.90 | 3.81 | 9.52 | 240 | 4.81 9.61 24.03 | 488 | 9.76 19.53 48.81

SHP | 031 | 0.62 | 124 | 3.11 074 | 148 | 296 | 7.40 1.69 | 337 | 6.75 16.86 | 3.53 | 7.06 14.12 35.30

THP | 0.40 | 0.80 1.61 | 4.01 0.86 1.71 343 | 857 | 2.08 | 4.17 | 833 20.83 4.28 | 8.56 17.11 42.78




The results in Table 9 indicate that while adopting no-till practices can
generate additional income through carbon credits, the financial incentives under
lower credit prices and modest acreage increases are relatively limited. For instance, at
a carbon credit price of $5 per ton and a 5% increase in no-till acreage, average per-
acre revenues remain minimal, ranging from $0.13 in the SHP to $0.23 in the NHP for
the 0-30 cm crediting depth. Even when increasing the crediting depth to 90 cm,
revenues under these conditions only rise to $0.31 and $0.47 per acre for SHP and
NHP, respectively. These small returns may be insufficient to motivate producers to
adopt no-till solely for carbon market participation, especially when considering the
potential costs of implementation, measurement, and verification.

However, the revenue potential improves significantly with larger acreage
expansions and higher carbon credit prices. At $50/ton and a 50% increase in no-till
acreage, revenues reach $24.25 per acre in the NHP and $13.43 in the SHP for the 0-
30 cm depth, with even higher returns at deeper crediting depths—up to $48.81 per
acre in the NHP and $35.30 in the SHP at 90 cm. These higher revenues could provide
a more compelling economic incentive, particularly for larger-scale operations capable
of implementing no-till practices across substantial portions of their land. Regional
differences are also evident in the results, with the NHP consistently generating higher
revenues compared to the SHP across all scenarios. This variation likely reflects
differences in soil characteristics, baseline SOC levels, and local environmental
conditions that influence sequestration rates. Moreover, the HB model results
indicated that cover cropping is associated with higher levels of SOC in the surface 30
cm of the soil. This is reflected in the positive potential revenues observed across the

THP at the 0-30 cm depth presented in Table 10.



Table 10: Potential Revenue from Increased Cover Crop Adoption Across Depths and Payment Levels

Cover Cropping Acreage
0-30 cm
+5% +10% +25% +50%
$5 $10 $20 $50 $5 $10 $20 $50 $5 $10 $20 $50 $5 $10 $20 $50
NHP | 0.02 | 0.04 | 008 | 0.19 | 0.04 | 0.08 | 0.16 | 039 | 0.10 | 0.20 | 0.39 0.98 020 | 0.39 | 0.79 1.97
SHP | 0.02 | 0.03 | 0.07 | 0.17 | 0.03 | 0.07 | 0.14 | 034 | 0.09 | 0.17 | 0.34 0.86 0.17 | 0.35 | 0.69 1.73
THP | 0.02 | 0.04 | 0.07 | 0.18 | 0.04 | 0.07 | 0.15 | 037 | 0.09 | 0.18 | 0.37 0.92 0.19 | 037 | 0.74 1.86
0-60 cm
+5% +10% +25% +50%
$5 $10 $20 $50 $5 $10 $20 $50 $5 $10 $20 $50 $5 $10 $20 $50
NHP | -0.07 | -0.14 | -0.28 | -0.69 | -0.14 | -0.28 | -0.55 | -1.38 | -0.34 | -0.68 | -1.37 -3.42 -0.68 | -1.35 | -2.70 -6.76
SHP | -0.10 | -0.21 | -0.42 | -1.04 | -0.21 | -0.41 | -0.83 | -2.07 | -0.51 | -1.03 | -2.05 -5.14 -1.01 | -2.03 | -4.06 | -10.15
THP | -0.08 | -0.17 | -0.34 | -0.85 | -0.17 | -0.34 | -0.68 | -1.69 | -0.42 | -0.84 | -1.68 -4.19 -0.83 | -1.65 | -3.31 -8.27
0-90 cm
+5% +10% +25% +50%
$5 $10 $20 $50 $5 $10 $20 $50 $5 $10 $20 $50 $5 $10 $20 $50
NHP | -0.13 | -0.27 | -0.54 | -1.35 | -0.27 | -0.54 | -1.08 | -2.69 | -0.67 | -1.33 | -2.67 -6.67 -1.32 | -2.64 | -5.27 | -13.18
SHP | -0.21 | -0.42 | -0.85 | -2.12 | -0.42 | -0.85 | -1.7 | -424 | -1.17 | 234 | -4.68 | -11.69 | -2.34 | -4.67 | -9.35 | -23.37
THP | -0.17 | -0.34 | -0.68 | -1.69 | -0.34 | -0.68 | -1.35 | -3.38 | -0.89 | -1.78 | -3.56 -8.91 -1.77 | -3.55 | -7.09 | -17.73




For instance, in the entire THP, with a 50% increase in cover cropping acreage
and a carbon price of $50/ton, potential revenue reaches only $1.97/acre. While these
revenues are relatively modest compared to those from no-till adoption, they suggest
that cover cropping can generate economic returns when surface SOC accumulations
are credited. The positive association between cover cropping and SOC in the surface
soil aligns with expectations, given that cover crops contribute to organic matter inputs
primarily near the surface through root biomass and residue deposition. Payments tied
to SOC sequestration would therefore be most substantial when focusing on the 0-30
cm depth, where SOC gains are evident across all regions. However, the results for
deeper soil layers revealed SOC under cover cropping to be lower, and this is similarly
indicated by negative values in Table 10. These negative values reflect potential
decreases in SOC, suggesting that cover cropping may not consistently enhance
carbon storage at greater depths. From a carbon market perspective, these losses
would not result in negative payments; rather, they would translate to zero payments,
as credits are awarded only for positive SOC sequestration. This highlights the
importance of depth-specific monitoring in carbon programs to ensure accurate
assessments of carbon gains.

The HB model results similarly showed positive associations between levels of
SOC and fields planted to cotton across all measured depths. In the surface 0-30 cm
layer, positive revenues for SOC payments were observed across all regions, with
higher payments leading to greater potential revenues as shown in Table 11. For
example, a 50% increase in cotton acreage in the NHP was associated with potential
revenues ranging from $0.22 to $2.17 per acre, depending on the payment rate. Similar
trends were seen in the SHP and entire THP where 50% acreage increases yielded
revenues up to $2.41 and $2.28 per acre, respectively. These results highlight that
expanding cotton acreage may be able to enhance SOC in the surface soils of the THP,
particularly under higher payment scenarios.

The HB models for deeper soil layers (30-60 cm and 60-90 cm) also showed

positive SOC associations when cotton was planted prior to sampling, and increasing



crediting depth for potential market transactions would thereby increase the potential
revenue for producers. When the crediting depth includes the top 60 cm, potential
revenues ranged from $0.67 to $6.70 per acre in the NHP under a 50% acreage
increase, while SHP and THP exhibited similar patterns, with maximum revenues
reaching $8.05 and $7.31 per acre, respectively. At the 0-90 cm crediting depth, the
results remained consistent, with SOC increases translating to higher potential
revenues across both the NHP and SHP. The NHP showed potential revenues up to
$7.32 per acre under the highest payment and acreage increase scenarios. The SHP
and entire THP followed similar trends, with revenues reaching $8.61 and $7.90 per
acre, respectively. Overall, the results indicate that increasing cotton acreage is
positively associated with SOC gains at multiple soil depths. Unlike the mixed results
observed with other practices, such as cover cropping, cotton expansion consistently
led to SOC increases across all measured depths and regions. Therefore, increasing
cotton acreage could benefit producers from carbon payments in a potential SOC

market, though average returns may be marginal at low prices for soil carbon.



Table 11: Potential Revenue from Increased Cotton Acreage Across Depths and Payment Levels

Cotton Acreage

0-30 cm

+5% +10% +25% +50%

$5 $10 $20 $50 $5 $10 $20 $50 $5 $10 $20 $50 $5 $10 $20 $50

NHP | 0.02 0.04 0.09 0.22 0.04 0.09 0.17 0.43 0.11 0.22 0.43 1.08 0.22 0.43 0.87 2.17

SHP | 0.02 0.05 0.10 0.24 0.05 0.10 0.19 0.48 0.12 0.24 0.48 1.20 0.24 0.48 0.97 241

THP | 0.02 0.05 0.09 0.23 0.05 0.09 0.18 0.45 0.11 0.23 0.45 1.13 0.23 0.46 0.91 2.28

0-60 cm

+5% +10% +25% +50%

$5 $10 $20 $50 $5 $10 $20 $50 $5 $10 $20 $50 $5 $10 $20 $50

NHP | 0.06 0.13 0.27 0.67 0.13 0.27 0.53 1.33 0.33 0.67 1.33 3.34 0.67 1.34 2.68 6.70

SHP 0.08 0.16 0.32 0.80 0.16 0.32 0.64 1.60 0.40 0.80 1.60 4.01 0.81 1.61 3.22 8.05

THP | 0.07 0.14 0.29 0.72 0.15 0.29 0.58 1.45 0.36 0.73 1.45 3.64 0.73 1.46 2.92 7.31

0-90 cm

+5% +10% +25% +50%

$5 $10 $20 $50 $5 $10 $20 $50 $5 $10 $20 $50 $5 $10 $20 $50

NHP | 0.07 0.14 0.29 0.72 0.14 0.29 0.58 1.45 0.36 0.73 1.45 3.63 0.73 1.46 2.93 7.32

SHP | 0.09 0.17 0.34 0.84 0.17 0.34 0.68 1.69 0.43 0.85 1.70 4.26 0.86 1.72 3.44 8.61

THP | 0.08 0.16 0.31 0.78 0.16 0.31 0.62 1.56 0.39 0.78 1.57 391 0.79 1.58 3.16 7.90




Discussion & Conclusion

The purpose of this paper was to evaluate the agricultural production practices, soil
textures, and environmental conditions that are associated with higher levels of SOC
in the semi-arid THP and estimate both the potential SOC storage and revenue for
producers with increasing SOC levels in the region. The results of the HB models give
insights into the drivers of SOC levels across the THP at individual soil horizons. The
posterior distributions revealed nuanced effects of management practices, crop
choices, environmental factors, and soil types on SOC accumulation. The estimates of
SOC stock and resulting changes in stock from increasing total acreage allocated to
individual production practices showed that producers in the region may be able to
marginally increase SOC levels. However, substantial increases in land dedicated to
sequestering practices, along with relatively high prices for soil carbon, may be
necessary to create strong enough economic incentives for producers to actively
manage soil carbon in a potential regional SOC market.

Regarding specific management practices, no-till practices had a positive mean
effect on SOC in each soil layer and cover cropping was associated with higher levels
of SOC in only the surface 30 cm of the soil. Specifically, no-till and cover cropping
were associated with 92.7% and 12.6% higher levels of SOC in the top 30 cm of the
soil, respectively. The mean effect of no-till generally decreased with soil depth with
less certain and weaker effects in the 30-60 cm and 60-90 cm soil layers, and the mean
effect of cover cropping is negative in subsurface soil layers which may suggest a
tradeoff between subsurface and surface soil carbon dynamics. These findings are
similar with previous research in the THP that found higher SOC levels in soil surface
layers with no-till and cover cropping (Lewis et al., 2018; Schwartz et al., 2015).
However, the HB models showed no-till to have a positive association with SOC
throughout the entire 0-90 cm profile which differs from Lewis et al. (2018) who
found no significant difference in SOC between no-till and conventional tillage below

the surface 15 cm of the soil.



Irrigation showed a consistent negative mean effect on SOC that increased at
each subsequent depth, implying that irrigation may limit SOC accumulation due
possibly to leaching effects or enhanced decomposition. Alternatively, it may suggest
that water availability alone doesn't drive deeper SOC accumulation without
complementary management practices. A notable point for consideration when
interpreting the results of the HB models is the residual variance (64,.) which
increases notably with depth. This highlights the greater unexplained variability in
SOC at deeper soil layer and indicates that surface SOC may be more strongly
influenced by management and environmental conditions while deeper SOC may be
affected by unmeasured or more complex processes. The crop grown prior to soil
sampling also impacted SOC levels. Compared to corn, a prior crop of both cotton and
sorghum were associated with higher levels of SOC in each soil layer, particularly in
the 30-60 cm layer. Environmental variables similarly played critical roles, with
precipitation positively influencing SOC, especially in the subsoil layers, though with
wide uncertainty. In contrast, higher mean temperatures were consistently associated
with lower SOC, particularly in the topsoil where the negative effect is strongest,
possibly reflecting the role of temperature in accelerating organic matter
decomposition.

Soil texture exhibited varying influences across each of the soil depths.
Throughout the entire soil profile considered, soils with a higher percentage of silt
(e.g., Loam, Silt, and Silt Loam) were associated with higher levels of SOC, apart
from Loam in the 60-90 cm layer of the soil. In contrast, soils with a higher percentage
of clay (e.g., Sandy Clay Loam, Clay Loam, Silty Clay Loam, and Clay) were
generally associated with lower levels of SOC throughout the entire soil profile
considered. Additionally, the variance of soil type effects (i.e., 67) increases with
depth, from 0.027 in the surface layer to 0.078 in the deepest layer, indicating greater
heterogeneity in SOC levels among soil types at deeper depths. The higher SOC in
soils such as silt loam aligns with literature finding a positive association between

percentage silt and SOC in regions where soil water may be a limiting production



factor (Augustin & Cihacek, 2016). Similarly, as agricultural production is limited by
water availability in semi-arid regions, soil textural components with high water
holding capacities such as silt may improve plant productivity and carbon inputs into
the soil (Burke et al., 1989; Hanks et al., 1969).

Because soil texture impacts both plant available water and water holding
capacity, well drained more coarse soils may result in elevated oxidation of soil
organic matter (Augustin & Cihacek, 2016). However, the generally wide credible
intervals from the HB models suggest significant variability within soil types,
reinforcing the importance of localized studies when scaling carbon estimates.
Moreover, the DIC values indicated that a Bayesian pooled model performed better
than the hierarchical model at the soil surface, where management effects are likely
stronger and more uniform. The hierarchical models performed better in the deeper
soil layers, where increased uncertainty and weaker management effects may
necessitate a more flexible modeling approach.

SOC stock predictions across counties show notable heterogeneity. Counties
like Hale (43.28 tons/acre) and Lubbock (35.75 tons/acre) exhibited higher mean SOC
stocks, while Gaines (19.36 tons/acre) and Lynn (22.37 tons/acre) had lower values.
High standard deviations in counties like Terry (22.69) and Lubbock (19.54) highlight
the spatial variability and uncertainties in SOC stocks, likely driven by diverse
management practices, soil types, and climatic variations. The large predicted range in
total SOC stock (e.g., Hale’s 20.6 MT vs. Potter’s 1.7 MT) underscores the potential
for targeted carbon sequestration strategies focusing on high-potential areas.

Average revenues producers may reasonably expect from payments in a
potential market for SOC were also estimated. Overall, the findings suggested that
while voluntary carbon markets can offer economic benefits for no-till and cover crop
adoption, the magnitude of those benefits is highly sensitive to credit prices, acreage
changes, and crediting depths. Under market conditions with relatively low credit
prices, the financial incentives may be insufficient for widespread adoption. However,

if carbon markets mature and prices rise, or if policies begin to credit SOC below



surface layers, the economic feasibility of no-till adoption could improve, potentially
encouraging broader participation among producers in the THP. The varying SOC
responses across depths underscore the complexity of soil carbon dynamics under
cover cropping. While surface SOC improvements are promising for carbon
sequestration incentives, the potential for SOC losses at deeper depths with cover
cropping calls for further investigation into management practices that promote carbon
stability throughout the soil profile. This understanding is crucial for designing
effective carbon programs that maximize sequestration benefits while minimizing
unintended outcomes. The results also showed the potential for cotton acreage
expansion to contribute to carbon sequestration efforts in the THP, offering
meaningful revenue opportunities under carbon payment programs. Additionally,
these findings suggest that by crediting producers for SOC gains beyond surface soils,
they would have more of an economic incentive to maintain and/or increase their SOC
stocks which could potentially enhance long-term carbon storage in the region.

This study provides a comprehensive assessment of the factors influencing
SOC sequestration across the THP using a HB framework. The findings suggest that
management practices, environmental factors, and soil types jointly shape SOC
dynamics, though substantial variability and uncertainty persist. Additionally, the
results give insight into the spatial distribution of the SOC stocks of cropland in the
region, and how producers in the region may induce increases in SOC stocks while
obtaining additional revenue through selling SOC credits in a potential voluntary
market. Future research should focus on refining estimates by incorporating longer-
term datasets, especially for management practices like cover cropping, and
integrating more precise spatial data to improve model accuracy. Additionally,
exploring the economic feasibility of deep SOC sequestration, given the observed
spatial variability, could guide policy development and incentive structures in the
THP. Understanding these dynamics will be critical for designing effective carbon

sequestration strategies that maximize both environmental and economic benefits.



This study contributes to the growing body of literature on SOC in semi-arid
agricultural systems by providing the first Bayesian analysis of SOC levels across
multiple soil depths in the THP. By explicitly modeling the relationships between
management practices, environmental conditions, and soil texture with SOC at
different depths, this study enhances understanding of the factors driving SOC
variability at both spatial and soil profile scales. A key contribution of this study is its
depth-specific evaluation of SOC levels under different agricultural management
practices. While previous research has extensively examined surface SOC responses to
conservation practices like no-till and cover cropping, this study extends the analysis
to subsurface layers, revealing key differences in SOC distribution across depths. The
finding that no-till practices are associated with consistently higher SOC levels at all
depths, while cover cropping primarily increases SOC in surface soils but may reduce
it in deeper layers, refines existing knowledge on the long-term effects of these
practices. This depth-dependent response highlights the need for more nuanced
evaluations of SOC dynamics when assessing management impacts.

Another important contribution is the use of a HB modeling framework, which
provides a probabilistic approach to understanding SOC variation across the region.
Unlike traditional regression-based methods, the HB approach better accounts for the
uncertainty in SOC estimates. The results demonstrate that deeper soil layers exhibit
greater unexplained variability, suggesting that while surface SOC is more strongly
influenced by management and environmental conditions, deeper SOC levels may be
governed by more complex or unmeasured processes. This insight is valuable for
refining future studies on SOC distribution and variability, particularly in semi-arid
regions. Moreover, the results of the HB models presented in this study may serve to
prime the prior distributions of future Bayesian analyses looking at the impact of
agricultural practices and environmental characteristics on SOC concentrations.

This study also advances the literature on the economic implications of SOC
management by linking SOC estimates with potential revenue from voluntary carbon

markets. While previous studies have explored the financial feasibility of conservation



practices, this study integrates regional SOC estimates with economic considerations,
demonstrating that revenue potential is highly dependent on carbon prices, crediting
depth, and the scale of adoption. These findings contribute to discussions on market-
based incentives for soil carbon management and the role of policy in shaping
economic opportunities for producers in the THP.

Finally, this research provides new insights into spatial patterns of SOC across
the THP, identifying counties with higher SOC stocks and those with greater
variability. The substantial differences in SOC levels between counties underscore the
importance of localized studies when evaluating soil carbon dynamics. Future research
should incorporate spatial effects to help inform targeted soil management strategies,
helping policymakers and producers identify areas where SOC-enhancing practices
may be most effective. Together, these contributions provide a more detailed and
regionally specific understanding of SOC dynamics in the THP, offering a potential
modeling strategy for larger-scale estimates of SOC for future market developments
and practical implications for soil management, economic incentives, and regional
agricultural policy. Future research should build upon these findings by incorporating
long-term datasets and higher-resolution spatial data to refine SOC estimates and
better understand the drivers of SOC variability across different agricultural
landscapes.

Limitations

This study provides insights into the relationships between SOC levels and key
management and environmental factors in the THP. However, several limitations must
be acknowledged. First, the analysis relies on cross-sectional data with only 67
observations for a single year which prevents the identification of SOC sequestration
rates over time. A longitudinal dataset with repeated soil sampling would be necessary
to assess the actual sequestration potential of different practices. Second, the HB
models reveal substantial uncertainty. Many of the posterior mean values have
credible intervals that contain zero, indicating a lack of statistical certainty about the

direction or magnitude of some effects. Additionally, this uncertainty increases with



soil depth, where SOC measurements exhibit greater variability and fewer strong
predictors. Future studies could incorporate higher-resolution soil carbon
measurements, longer-term data, or alternative modeling approaches that account for
measurement error and spatial dependence.

Third, data constraints related to soil surveys and county-level Census of
Agriculture data present additional challenges. Soil survey data often rely on broad-
scale classifications that may not fully capture site-specific variations in soil properties
and management history. Similarly, the use of county-level agricultural data limits the
precision of economic and agronomic inferences at the farm level. Incorporating farm-
level management records or remotely sensed data could improve the granularity and
accuracy of future analyses. Fourth, the economic analysis focuses solely on potential
revenues from carbon sequestration and does not account for the costs of
implementation. The feasibility of adopting climate-smart agricultural practices
depends not only on carbon payments but also on costs associated with changes in
tillage, cover cropping, irrigation management, and potential yield impacts. Future
research should develop a full cost-benefit analysis, incorporating both direct costs
and opportunity costs, to better assess the net economic viability of SOC sequestration
for producers in the region.

Beyond these limitations, this study raises several directions for future
research. First, a time-series or panel dataset would allow for an assessment of SOC
sequestration dynamics over time, rather than just current SOC levels. Integrating
spatial econometric techniques could help account for spatial dependencies in SOC
levels that arise from environmental and management similarities across locations.
Third, exploring alternative Bayesian priors or incorporating additional hierarchical
levels (e.g., field-level or regional effects) could improve the robustness of the
Bayesian inference and reduce uncertainty in model estimates. Lastly, future work
should expand the economic assessment to include carbon market dynamics,
transaction costs, and producer decision-making under risk and uncertainty. By

addressing these limitations and pursuing these research avenues, future studies can



provide a more comprehensive understanding of the biophysical and economic

feasibility of SOC sequestration in the THP and similar agricultural regions.
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