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Abstract

Phosphorus (P) runoff from agriculture is a major driver of eutrophication in trans-

boundary water systems like Lake Erie. This paper develops a dynamic game model

to examine how strategic interactions between the U.S. and Canada shape long-term

crop production and environmental outcomes under stochastic soil P dynamics. The

results show that while unilateral decisions often lead to higher crop production, they

also result in greater environmental damage due to excessive P runoff. In contrast,

incorporating transboundary nutrient spillovers naturally reduces P application and

mitigates environmental harm, though at the cost of lower production. These findings

suggest the importance of integrating biophysical feedback and economic incentives

in nutrient management, emphasizing that long-term sustainability requires balancing

productivity with environmental constraints.
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1 Introduction

Lake Erie has long been at the center of discussions on agricultural nutrient management,

particularly due to its persistent phosphorus (P) pollution and the resulting harmful algal

blooms (HABs) (Smith and Wilen 2003). Excessive P runoff from croplands in the U.S. and

Canada has been identified as a primary driver of eutrophication, leading to deteriorating water

quality, economic losses in fisheries and tourism, and increased treatment costs for drinking

water (Lake Erie LaMP 2011; Environment and Climate Change Canada 2023). Despite

decades of policy efforts—including voluntary conservation programs, best management

practices (BMPs), and regulatory nutrient reduction targets—P runoff remains a significant

challenge, exacerbated by the accumulation of P in soils (Carpenter 2008). The complexity of

the Lake Erie case explains the need for dynamic and strategic approaches to P management

that account for both long-term nutrient accumulation and transboundary externalities

(Brock and Xepapadeas 2010).

While previous studies have examined the economic and environmental trade-offs of P

reduction strategies, most rely on static models or single-agent decision frameworks, which fail

to capture the strategic interactions between agricultural producers in different jurisdictions

(Karp and Zhang 2006). Because P pollution is a transboundary issue, optimal management

requires coordinated decision-making between the U.S. and Canada to internalize the spillover

effects of nutrient runoff. In the absence of such coordination, unilateral policies may lead

to inefficient outcomes, where one country’s efforts are offset by the continued externalities

imposed by the other (Hoel 1991).

This study develops a dynamic game-theoretic model to analyze optimal P fertilizer

application strategies in a transboundary agricultural system, with Lake Erie serving as

a motivating case (Xabadia et al. 2008). The model considers the strategic behavior of

farmers in the U.S. and Canada, incorporating stochastic soil P dynamics, economic trade-offs

between crop production and environmental damage, and cross-border nutrient spillovers

(Horan et al. 2019). By solving a Markov decision process (MDP) in a dynamic game

setting, we examine how different policy instruments—including fertilizer taxes, subsidies,

and application caps—influence long-term environmental and economic outcomes.
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A key question addressed in this study is whether unilateral policies—where each country

regulates P application independently—can approximate the outcomes of a binationally

optimized approach, in which both countries internalize transboundary externalities (Folmer

and v Mouche 1994). The findings reveal that while aggressive unilateral interventions

(e.g., high fertilizer taxes) can reduce environmental damage, they often come at the cost of

reduced crop yields. Conversely, binational coordination accounts for transboundary nutrient

spillovers, leading to a more efficient allocation of P fertilizer that reduces environmental

damage. However, this also results in lower P application levels compared to unilateral

decisions, which may come at the cost of reduced crop production.

To better understand the long-term and cross-border impacts of fertilizer use, we incorpo-

rate the concept of marginal user cost (MUC) into our analysis. Unlike typical resource models,

fertilizer use increases the soil stock, making the MUC a shadow cost of future environmental

degradation. As U.S. legacy P rises, Canada’s MUC increases disproportionately, prompting

greater self-restraint despite ongoing cross-border impacts. This asymmetry highlights the

need for coordinated policies to internalize transboundary nutrient externalities.

By integrating economic incentives, strategic interactions, and transboundary externalities,

this study provides a theoretical and quantitative foundation for designing more effective P

management policies in shared water systems such as Lake Erie (Gren 2001). The findings

explain the importance of cooperative nutrient regulation, focusing on the fact that a combi-

nation of policy interventions and technological advancements may be necessary to achieve

long-term environmental sustainability without compromising agricultural productivity.

The remainder of the paper is organized as follows. Section 2 provides the background

on P pollution in Lake Erie, discussing the role of agricultural runoff and transboundary

externalities. Section 3 introduces the dynamic game-theoretic framework, outlining the

Bellman equation and the stochastic evolution of soil P levels. Section 4 presents the yield

response function estimation, using empirical data from Ohio to quantify the relationship

between P fertilizer application and crop yields. Section 5 presents the simulation results,

analyzing the economic and environmental trade-offs of different P management policies

under unilateral and binational settings. Finally, Section 6 concludes with a discussion on

our findings.
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Figure 1: Total phosphorus loading to Lake Erie. The data, sourced from Environment and Climate
Change Canada (2023): Canadian Environmental Sustainability Indicators, illustrates the annual P loading
into Lake Erie from 2008 to 2022, distinguishing contributions from the U.S. and Canada. The United States
consistently accounts for the majority of P loading, contributing over 75% of the total load annually.

2 Background

The Lake Erie basin, straddling the border between the U.S. and Canada, presents a significant

environmental management challenge due to P loading, which has profound impacts on water

quality, aquatic ecosystems, and economic activities (Lake Erie LaMP 2011; Downing et al.

2021). Phosphorus is an essential nutrient for plant growth, but when introduced in excessive

amounts into freshwater systems, it accelerates eutrophication, leading to the proliferation

of HABs (Arrow et al. 2004; Conley et al. 2009; Paudel and Crago 2021; Vasseghian et al.

2024). These blooms can produce toxins harmful to aquatic life, degrade drinking water

supplies, and contribute to hypoxic zones (low-oxygen areas) that threaten fish populations

and biodiversity.

The sources and magnitudes of P loading to Lake Erie vary across time, space, and

jurisdiction, making effective management particularly complex (Scavia et al. 2014; Maccoux

et al. 2016). As shown in Figure 1, total P loading to Lake Erie exhibits substantial interannual

variability. The U.S. consistently contributes a larger share of total P inputs compared to

Canada, with peak loading years. This binational disparity in P contributions has important

policy and economic implications. Since Canada contributes a smaller share of total P

loading, unilateral mitigation efforts by Canada alone would be costly and inefficient, yielding
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Figure 2: Annual average (2013–2022) phosphorus loading patterns and source contributions.
The data, sourced from Environment and Climate Change Canada (2023): Canadian Environmental Sus-
tainability Indicators. Figure 2 shows the total P loading into Lake Erie (2008–2022) from multiple sources.
Point sources refer to P discharges from municipal sewage treatment plants and industrial effluent, whereas
non-point sources primarily stem from agricultural activities and urban stormwater runoff. Atmospheric
deposition involves phosphorus settling directly into the lake from the air (Environment and Climate Change
Canada 2023).

limited environmental improvements unless matched by reductions in the U.S. watershed.

The transboundary nature of P pollution means that any successful and economically efficient

reduction strategy should involve coordinated efforts between the two nations to avoid cost

asymmetries and ensure that the benefits of P reductions are shared equitably. The Great

Lakes Water Quality Agreement (GLWQA) provides a framework for such collaboration,

setting joint P reduction targets to prevent the burden from falling disproportionately on one

country (Loadings and Blooms 2014).

A key challenge in reducing P loading to Lake Erie is the dominance of non-point sources,

which account for 77% to 90% of total P inputs across all basins, as shown in Figure 2.

While the western basin experiences the highest P loading, non-point sources—mainly from

agriculture—are the largest contributors across the western, central, and eastern basins

(Environment and Climate Change Canada 2023). Point and atmospheric sources play a

relatively minor role, making non-point source management the primary focus for reduction

efforts.

Given that non-point source (agriculture) are the primary contributor to P pollution and

that P management is inherently a binational challenge, any effective reduction strategy

must address both farmers’ decision-making and cross-border policy coordination. Since

P pollution does not adhere to political boundaries, unilateral efforts are often inefficient
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and costly, requiring strategic interactions between the U.S. and Canada to achieve shared

reduction goals. At the same time, the effectiveness of P mitigation hinges on how farmers

adjust their fertilizer use and conservation adoption over time in response to environmental

conditions, economic incentives, and policy interventions. Unlike static regulatory approaches,

which assume fixed behavioral responses, P management requires a dynamic framework that

captures the interactions between policymakers, farmers, and environmental processes across

both temporal and spatial scales.

This complexity makes a dynamic game model particularly relevant, as it allows us to

analyze how strategic behavior among stakeholders evolves over time. By incorporating

economic incentives, uncertainty, and transboundary externalities, the model provides insights

into optimal policy coordination between the U.S. and Canada while considering the adaptive

nature of agricultural decision-making. In the next section, we develop a dynamic game-

theoretic framework to assess how fertilizer application choices, conservation adoption, and

regulatory interventions interact, ultimately shaping long-term P loading in Lake Erie.

3 Model

This section introduces the dynamic game model governing soil P accumulation on agricultural

land and the resulting economic damages due to soil P runoff. The model captures key

processes of the dynamic game modeling approach for the optimal management of soil P,

including the carry-over dynamics of soil P, the economic implications of P runoff on farm-level

profits, and the stochastic nature of P accumulation and depletion. We first present the

transition function of soil P and then extend it to address the resulting runoff and associated

economic damages.

3.1 Stochastic soil phosphorus dynamics

We consider a set of farmers denoted by Ψ, each managing their P fertilization strategies.

Specifically, for any farmer i ∈ Ψ, the model follows their decisions on the application of P

fertilizer over time. The evolution of the stock of soil P, lit, on farmer i’s land per hectare at

time t, is governed by a dynamic equation that captures both deterministic and stochastic
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elements. The formulation in this paper builds on the model of Cho et al. 2025.

The evolution of soil P for farmer i is described as:

lit+1 = ηt (1− ri) lit + (δ1 + δ2lit)

fit − Concentration on Yield︷ ︸︸ ︷
(δ3 log(lit) + δ4) y (lit, fit)


︸ ︷︷ ︸

Soil P Surplus

(1)

where lit is the stock of soil P at time t, ri is the P runoff rate to surface water from farm

i, and ηt is the stochastic carry-over rate, governing the proportion of soil P that persists

from period t to t+ 1. fit represents the amount of P fertilizer applied by farmer i at time t.

y(Lit, Fit) is the crop yield function, which depends on both soil P lit and applied P fertilizer

fit. (δ1 + δ2lit) captures the response of soil P surplus to the initial stock level and the rate

of P application (Ekholm et al. 2005).

The expression inside the brackets represents the soil P surplus, which is the difference

between the P applied through fertilizer fit and the P uptake by crops. Crop uptake is modeled

by a yield response function y(li,t, fi,t) scaled by a diminishing return term (δ3 log(li,t) + δ4).

This diminishing return effect reflects well-documented agronomic principles, whereby the

marginal productivity of P in crop yield decreases as Soil P accumulates (Myyrä et al. 2007;

Fulford and Culman 2018; Culman et al. 2023).

The soil P carry-over rate ηt contributes to stochastic motions in this dynamic model. It

is formulated to capture the uncertainty in P retention or depletion between periods, and it

incorporates both deterministic and stochastic components. Specifically, we model ηt as:

ηt = exp

[
µη −

s2η (lit)

2
+ sη (lit)ωt

]
(2)

where µη represents the log mean rate of change in soil P, which reflects the natural rate

of P retention or decay in the soil. sη(lit) is the standard deviation of the log percentage

growth rate of soil P, which is modeled as a function of the current stock lit. ωt is a normally

distributed shock term (ωt ∼ N (0, 1)), which introduces randomness into the carry-over rate,

representing external factors such as weather conditions, soil characteristics, or management
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practices that affect P retention.

The parameter µη is assumed to be negative, reflecting the fact that, in the absence of

further P application or crop uptake, soil P is expected to decay over time (Ekholm et al. 2005;

Iho and Laukkanen 2012). However, this decay process is stochastic, as represented by the

inclusion of the standard deviation term sη(lit)ωt. This stochastic component acknowledges

that soil P dynamics are influenced by factors beyond the farmer’s control, such as soil type,

precipitation patterns, and other environmental variables.

The variance of the carry-over rate is specified as:

s2η (lit) = ln

(
1 +

σ2

l2it · E [ηt | lit]2

)
(3)

where σ2 is an uncertainty variance, and E[ηt | lit] represents the expected carry-over rate

conditional on the current stock of soil P. This formulation ensures that the variance of the

next-period soil P stock remains bounded as lit accumulates, 1 preventing unrealistic behavior

where the uncertainty would grow without bound for large lit. Such a specification follows

well-established approaches in modeling environmental stocks under uncertainty (Loury 1978,

Gilbert 1979; Melbourne and Hastings 2008, Sims et al. 2017; Sloggy et al. 2020).

The introduction of stochasticity in the carry-over process captures real-world complexities

where P retention and depletion are not deterministic processes. Factors such as variations in

soil composition, temperature, moisture, and microbial activity contribute to the stochastic

nature of P dynamics, which this model seeks to represent. By introducing a stochastic

component into the P carry-over, the model can better account for observed variabilities in

soil P stocks across farms and over time.

1The expression E[ηt | lit] = exp(µη) represents the expected carry-over rate of soil P conditional on
the current stock lit. Given the log-normal specification of ηt and assuming the shock term ωt ∼ N (0, 1),
we can derive the expected value of ηt by taking the conditional expectation with respect to ωt. Since the
expectation of the exponential of a normal random variable ωt is given by exp(s2η(lit)/2), the stochastic term
cancels out with the variance adjustment term s2η(lit)/2, leaving E[ηt | lit] = exp(µη). This result implies
that the expected value of the carry-over rate is determined solely by the log mean growth rate µη, while the
variance s2η(lit) introduces uncertainty around this mean, capturing the effects of stochastic shocks.
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3.2 Dynamic game formulation and equilibrium

The strategic interactions between countries Ψ are captured through a Markov perfect

equilibrium, which accounts for the fact that each farmer’s decision impacts not only their

own payoff but also the runoff and associated damages that affect both players. This approach

allows us to study the externalities arising from P runoff and how these externalities influence

the optimal management of P fertilization.

The annual payoff of country i ∈ Ψ is evaluated as the profit generated by crop yields

minus the cost of P fertilizer and the damages incurred due to soil P runoff. Formally, the

expected per-hectare profit for country i is expressed as:

πi

(
lit, {ljt}j∈Ψi

, fit

)
= pyityit (lit, fit)− pfitfit − di

(
lit, {ljt}j∈Ψi

)
(4)

where Ψi = Ψ \ {i} indicates the population Ψ excluding country i. pyit+1 is the price of the

crop, pfit is the price of the P fertilizer, and yit(lit, fit) represents the crop yield as a function

of the soil P stock lit and the current P fertilizer application fit.

The last term, di

(
lit, {ljt}j∈Ψi

)
, represents the damage function, which models the

economic damages due to P runoff from both country i’s farm and other neighboring country’s

farms j. Many studies in the literature define the damage function as a linear relationship

where environmental (eutrophication) damage is proportional to P runoff, typically expressed

as a constant marginal damage parameter multiplied by the amount of soil P runoff (Smith

et al. 1995; Sharpley et al. 1996; Iho and Laukkanen 2012, Tang 2018). This approach

assumes that each additional unit of P runoff causes the same incremental increase in damage,

without accounting for potential threshold effects. However, empirical evidence suggests that

eutrophication damage often exhibits nonlinear patterns, where small increases in P runoff

may have minimal effects at low concentrations but lead to severe ecological damage once

critical thresholds are exceeded (Carpenter et al. 1999; Jarvie et al. 2013, and Schindler et al.

2016). To better capture these dynamics, we define the damage function to a power function

with elasticity, given by:
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di(lit, {ljt}j∈Ψi
) = c ·

(
rilit +

∑
j ̸=i

τjrjljt

)ρ

(5)

where ri and rj represent the runoff rates of soil P from countries i and j, respectively, and c is

the constant marginal damage of P loading. τ is the weight reflecting differences in P transport

efficiency between regions. To capture the uncertainty in P transport efficiency between

regions, we model τj ∼ Beta(αj, βj), as the Beta distribution is well-suited for variables

bounded between 0 and 1 and allows for flexible shapes depending on the parameterization.

This damage function allows for flexible responses through ρ, where ρ > 1 captures threshold

effects and 0 < ρ < 1 reflects diminishing marginal damage.

In the dynamic game setting with multiple countries, the strategic decisions are made over

time, considering not only the current payoff but also future consequences of P runoff and its

cumulative effects on the environment. Each country optimizes their fertilizer application

strategy by weighing the immediate benefits of increased crop yields against the future costs

of environmental degradation caused by P runoff. These intertemporal trade-offs are captured

by a Markov perfect equilibrium (MPE), where each country’s strategy depends only on the

current state of the system—specifically, the soil P stocks on both countries, lit and ljt.

The equilibrium concept of the MPE assumes that both countries are noncooperative and

forward-looking and that their actions take into account not only the current conditions but

also the expected future actions of the other country (Gollier and Treich 2003; Miranda and

Fackler 2004; Hovi et al. 2015). The problem is inherently dynamic because the decisions

made by each country at time t affect the soil P stock in future periods, which in turn impacts

future crop yields and environmental damages. This leads to a situation where both countries

must strategically anticipate the other’s actions, given the shared nature of the runoff-induced

damage.

The optimization problem for each country is framed through the Bellman equation,

which represents the recursive nature of the decision-making process. For country i, the value

function Vi

(
lit, {ljt}j∈Ψi

)
reflects the maximum expected net present value (ENPV) of their

profits over time, given the current state of soil P stocks on both countries. The Bellman
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equation for country i is formulated as follows:

Vi

(
lit, {ljt}j∈Ψi

)
= max

fit∈[0,f̄]


Eτj

[
πi

(
lit, {ljt}j∈Ψi

, fit

)]
+βE

[
Vi

(
lit+1, {ljt+1}j∈Ψi

)
| lit, {ljt}j∈Ψi

, fit, {fjt}∗j∈Ψi

]

(6)

where the β is the discount factor and the expectation E[·] represents the uncertainty in

future outcomes, conditional on both countries’ current decisions.

The dynamic nature of the problem stems from the fact that each country’s decision at

time t affects the future states of soil P stocks on both countries, lit+1 and ljt+1. Moreover,

since P runoff creates externalities that affect both farmers, the value function depends on the

current and future decisions of the other country. The term {fjt}∗j∈Ψi
represents the optimal

fertilizer application policy of country j, assuming they are also acting optimally given the

current state. This interdependence between each country’s decisions is central to the MPE,

where each country’s strategy is the best response to the other’s actions in each period.

To solve for the equilibrium strategies, the system of Bellman equations for the countries

must be solved simultaneously. The solution yields the optimal P application policies for both

countries, f ∗
it and f ∗

jt, which specify the optimal amount of fertilizer to apply in each period,

given the current soil P stocks on both countries. These strategies balance the trade-offs

between the short-term benefits of increased crop yields and the long-term costs of P runoff.

The MPE ensures that the strategies of both countries are mutually consistent, meaning

that neither country has an incentive to deviate from their equilibrium strategy, given the

strategy of the other. This equilibrium captures the strategic interdependence between the

countries, as each country internalizes the externality caused by P runoff. By following

their equilibrium strategies, the countries contribute to managing P runoff in a way that

considers not only their own profits but also the broader environmental impacts on the shared

ecosystem.
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4 Empirical model specification for yield response

4.1 Data description

In this section, we outline the empirical model used to estimate the yield response function

yit that analyzes the impact of P fertilizer application and soil P on corn yield. The data

used in this estimation originate from long-term field trials in Ohio (Clark, Wayne, and Wood

counties) assessing P fertilizer application and their effect on crop yield given soil P levels.

Specifically, we focus on the field trials reported in Culman et al. (2023) Dataset 2, covering

16 years of experiments (2006-2021) at three research farms in Ohio. The trials employed

a randomized complete block design with three P application rates: an unfertilized control

(0×), an estimated crop removal rate (1×), and an excessive application rate (2− 3× the

removal rate) 2 Soil samples were analyzed before planting to determine baseline Mehlich-3

extractable P levels, and crop yield data were recorded after harvest.

For our estimation, we focus exclusively on trials where P fertilizer application resulted in

a statistically significant yield increase, excluding non-responsive cases. The dataset thus

reflects only instances where P fertilizer had a positive impact on crop yield, ensuring that

our estimates capture the actual effect of P application rather than noise from non-significant

responses.

Table 1 presents the summary statistics for the Ohio field trial dataset, which includes

observations from three experimental locations. The variables reported are corn yield (Mg/ha),

P fertilizer application (kg/ha), and soil P concentration (mg/kg). The average corn yield

across all sites is 10.23 Mg/ha, with values ranging from 6 to 15 Mg/ha. The mean P

application rate is 121.25 kg/ha, with a standard deviation of 126.49 kg/ha, which appears

relatively large due to the experimental design. Since this dataset originates from a controlled

field experiment with discrete P application treatments (0×, 1×, and 2–3× the estimated

crop removal rate) rather than a continuous distribution of fertilizer use, most observations

2During the initial phase of the experiment (2006-2014), the estimated crop removal rate for P fertilizer
was P2O5 60.1kg/ha, based on the estimated removal rate of 2005 Ohio (Vitosh et al. 1995, Fulford and
Culman 2018). The field trials consider 2× the removal rate for excessive application cases during this period
(Fulford and Culman 2018). However, Fulford and Culman (2018) found that actual removal rates exceeded
these estimates. Consequently, from 2015-2021, the fertilizer application rates were adjusted to 112.1kg/ha
(1×), and the experiment considered 336.3kg/ha for excessive application cases (3×).
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Experimental location Variable Obs mean Std dev min/max

Clark Corn yield (Mg/ha) 30 10.21 2.14 6.2/12.9

P application (kg/ha) 30 122.66 128.99 0/336.3

Soil P (mg/kg) 30 20.25 7.88 9.8/40

Wayne Corn yield (Mg/ha) 36 11.17 2.71 6/15

P application (kg/ha) 36 127.13 131.29 0/336.3

Soil P (mg/kg) 36 16.37 9.09 4.3/37.3

Wood Corn yield (Mg/ha) 48 9.54 2.22 6/14.3

P application (kg/ha) 48 115.95 123.74 0/336.3

Soil P (mg/kg) 48 21.28 7.67 11.9/39

Total Corn yield (Mg/ha) 114 10.23 2.45 6/15

P application (kg/ha) 114 121.25 126.49 0/336.3

Soil P (mg/kg) 114 19.46 8.40 4.3/40

Table 1: Summary statistics for Ohio field trials data. The experimental location level is county in
Ohio.

cluster around these predetermined levels rather than being evenly spread across the range.

This results in a high standard deviation, as the experimental setup includes both unfertilized

plots and excessively fertilized treatments to capture the full range of P fertilizer effects on

yield.

4.2 Estimation framework

To quantify the yield response, we specify the following log-linear model:

ln(yit) = β0 + β1fit + β2 ln(lit) + β3f
2
it + β4fit ln(lit) + ui + νt + ϵyit (7)

where ui is the experimental location fixed effect and νt is the time fixed effet. The estimation

results are in Table 2. The estimated coefficient on the interaction term (fit× ln(lit)) is -0.0003

with standard error 0.0002; p-value = 0.16). While this coefficient slightly above than the
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Log Corn Yield (Mg/ha)

fit 0.0025∗∗∗

(0.0008)

ln(lit) 0.1492∗∗

(0.0602)

f2
it −0.000003∗∗

(0.000001)

fit × ln(lit) −0.0003
(0.0002)

Const. 1.1959∗∗∗

(0.2269)

Location Fixed Effects Yes

Time Fixed Effects Yes

Observations 114

Adjusted R2 0.7810

Table 2: Corn yield response estimation. Robust
standard errors are in parentheses. *, **, and *** indicate
significance at the 10%, 5%, and 1% levels, respectively.

conventional significance thresholds (i.e., p-value = 0.1), it is included in the dynamic game

model due to its agronomic and theoretical importance; first, prior agronomic research has

emphasized the importance of soil P availability in shaping the response to fertilizer inputs

(Fulford and Culman 2018), and second, excluding this term could omit a key mechanism

driving farmer decision-making, potentially biasing policy-relevant estimates. Thus, this

term remains essential for capturing the full economic and environmental implications of P

application.

5 Results

5.1 Optimal phosphorus application

In our analysis of the Lake Erie case, we simplify the farmer population Ψ to two groups:

Ψ = {U.S., Canada}. The other parameter values are summarized in Table 3. Given the

interconnected nature of agricultural markets and trade between the U.S. and Canada, we
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assume that both countries share the same prices for P fertilizer and corn. This assumption

helps isolate the effects of P runoff dynamics rather than confounding them with price

differences, allowing the model to focus on the strategic interactions between farmers in

managing P application and the resulting transboundary environmental impacts.

Parameter Value Desccription

Biophysical parameters

µη -0.02 Average depreciation rate (Myyrä et al. 2007)

σ2 9 Uncertainty variance

δ1 0.0032
Response parameter of soil P surplus (Ekholm et al. 2005)

δ2 0.00084

δ3 0.000186
Concentration parameter on crop yield (Iho and Laukkanen 2012)

δ4 0.003

ρ 1.2 Elasticity of environmental damage to P runoff

rUS 0.02 P runoff rate of US farm (Myyrä et al. 2007)

rCanada 0.02 P runoff rate of Canada farm (Myyrä et al. 2007)

E[τUS] 0.795 Proportion of US’s P loading affecting Canada (αUS = 10 and βUS = 2.572)

E[τCanada] 0.205 Proportion of Canada’s P loading affecting US (αUS = 10 and βUS = 38.78)

Economic parameters

β 0.9259 Discount factor with 8% discount rate (Duquette et al. 2012)

pYt 1.737 Corn Price ($ per bushel)

pFt 262.357 P fertilizer Price ($ per short ton.)

c 136.5 Marginal cost of P loading (125 e/kg) (Pitkanen et al. 2007)

Table 3: Parameters and descriptions. Corn and P fertilizer prices are from the 2014 prices (USDA
2024a, USDA 2024b) and inflation-adjusted using the using the Consumer Price Index (CPI) for all urban
consumers (index 1983=100), with data sourced from the Federal Reserve Bank of Minneapolis 2024.04.
The values for τCanada→US and τUS→Canada are calculated as the proportion of P loading from each country
relative to the total P loading in a given year (Environment and Climate Change Canada 2023). These yearly
proportions are then averaged over the period from 2008 to 2022 to obtain the final values.

Figure 3 presents the optimal P application policies for the U.S. and Canada under

different soil P conditions and transboundary interactions. The results compare unilateral
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policies, derived using stochastic dynamic programming (SDP), where each country assumes

no transboundary P effect, with binational policies, which account for P spillover across

borders. The analysis highlights the inefficiencies in unilateral decision-making and the extent

of P misallocation, which exacerbates environmental externalities and results in significant

welfare losses for both agricultural producers and environmental stakeholders.

The unilateral P application policy represents the optimal strategy when each country

assumes that the other does not contribute to transboundary P levels. In other words, the

model optimize P application under the assumption that transboundary P contribution

remains constant at zero. This assumption leads to policies that focus solely on domestic soil

P levels, disregarding the impact of cross border nutrient flow. However, unilateral policies

in shared environmental systems often lead to policy myopia, where short-term gains in

productivity come at the cost of long-term environmental degradation.

Conversely, the binational P application policy accounts for the interaction between

U.S. and Canada agricultural runoff. When both countries recognize the contribution

of transboundary P, the optimal P application rates adjust accordingly, leading to lower

application levels as transboundary P increases. The consideration of shared P loads ensures

that each country internalizes the externalities of its P use, leading to more environmentally

sustainable outcomes. Additionally, this lower application pattern increases when the country

has higher domestic P levels.

An important finding of our analysis is the presence of P misallocation (shaded region

in Figure 3), where P application under unilateral policies deviate from the binationally

optimal levels. This misallocation arises because unilateral policies ignore transboundary P

contributions, leading to over application of P fertilizer relative to the socially optimal level.

Over-application not only reduces the economic efficiency of fertilizer use but also increases

the likelihood of policy intervention in the form of stricter environmental regulations.

For instance, as transboundary P contribution increases, a country adhering to a unilateral

policy continues to apply P at the same rate, whereas the binational approach would dictate

a reduction in application. This failure to adjust results in excessive P inputs, further

contributing to P loading in shared water bodies (e.g., Lake Erie), increasing the risk

of eutrophication and HABs. The literature on environmental spillovers suggests that
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Figure 3: Optimal phosphorus application under domestic and transboundary soil P levels.
Domestic soil P level refers to the P concentration within a country’s own farmland, affecting its fertilizer
needs. Transboundary soil P level represents P levels in a neighboring country, which can influence optimal
fertilizer application. For the US, the domestic soil P level (rows) refers to P within the US, while the
transboundary soil P level (x-axis) represents P levels in Canada.
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misallocated resources in transboundary pollution settings often generate deadweight losses,

where both nations suffer greater costs than necessary due to inefficient policy design (Phaneuf

and Requate 2016). Our findings shows the need for cooperative P management policies

between the US and Canada to mitigate the environmental consequences of misaligned

agricultural practices.

5.2 Crop production and environmental damage dynamics

Figure 4 presents the long-term evolution of corn production and environmental damage

under different P management for the U.S. and Canada. The figure shows differences between

U.S. and Canada, as well as the implications of unilateral versus binational P management

approaches.

The first row of Figure 4 compares corn production and environmental damage in the U.S.

and Canada under binational optimal P application and soil P dynamics. One distinction is

that the U.S. receives relatively less external P inflow from Canada than vice versa, due to

the directional nature of P runoff as depicted in Figure 1. Because of this asymmetric flow,

the U.S. experiences lower external environmental damage from cross-border P spillovers,

making the marginal cost of additional P application appear lower. This incentivizes U.S.

farmers to apply more P fertilizer, leading to higher soil P levels and greater crop yields

compared to Canada. However, due to the directional flow of P runoff, Canada experiences

higher long-term environmental damage, as much of the excess P applied in the U.S. This

results in greater eutrophication risks and water quality degradation in Canada.

An important implication of this difference is that unilateral strategies, where each country

ignores transboundary effects, disproportionately increase the environmental costs borne

by Canada. Since U.S. runoff significantly affects Canada but not vice versa, unilateral

U.S. policies that fail to account for transboundary nutrient spillovers result in excessive

environmental degradation in Canada. This reinforces the need for coordinated binational P

management to ensure more sustainable agricultural production in both countries.

The second row of Figure 4 compares total corn production and total environmental

damage across both countries under unilateral and binational P application policies. In a

unilateral scenario, each country maximizes its own short-term agricultural output without
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Figure 4: Example of corn production and environmental damage dynamics. Figure 4 presents
the simulated trajectories of corn production and environmental damage. Total values represent the sum of
the U.S. and Canada cases. The results are based on 10,000 Monte Carlo simulations, with shaded regions
indicating the 25% to 75% percentile range of stochastic outcomes. The initial level of soil P for the U.S. and
Canada is the minimum level (i.e., 1 mg/kg). Other initial conditions are in the Appendix.
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considering cross-border externalities. This results in higher P application levels, leading

to greater crop production, as seen in Figure 4 for the unilateral scenario. However, this

strategy also leads to substantial long-term environmental damage. Importantly, total

environmental damage under the binational scenario is lower than under the unilateral

approach, demonstrating that the binational policy suggests the need to consider cross-border

P spillovers in optimizing P application and mitigating environmental damage.

These results emphasize the trade-offs between productivity gains and environmental

damage in transboundary agricultural systems. Unilateral P application generates more

crop yields but leads to excessive environmental damage, necessitating costly regulatory

interventions. These results motivate further analysis of potential policy interventions, which

are explored in the following section.

5.3 Policy analysis

To evaluate the economic and environmental implications of P management, Figure 5 presents

the accumulated total crop production and environmental damage under binational decision-

making. This figure illustrates how different policy interventions—fertilizer taxes, subsidies,

and application thresholds—affect long-term agricultural productivity and environmental

outcomes when applied in a binational optimization framework 3. Unlike unilateral policies

that maximize national objectives without accounting for transboundary effects, the binational

approach explicitly incorporates cross-border nutrient spillovers into the optimization process.

The results highlight that policies imposing stricter regulations, such as higher taxes or lower

application thresholds, generally lead to lower environmental damage but also reduce total

crop production.

Next, we extend this analysis by examining the effects of policies under unilateral decision

making. Figure 6 presents the accumulated total crop production and environmental damage.

Figure 6 explores how unilateral policies—such as fertilizer taxes, subsidies, and application

3For clarity, we refer to these price increases as ad valorem taxes and subsidies and adjust the fertilizer
price accordingly. Specifically, the taxed fertilizer price is defined as pf,taxit = pf,taxit · (1 + Tax Rate) where pfit
represents the producer price, and pfit denotes the effective price farmers pay after taxation. Similarly, the

subsidized fertilizer price is computed as pf,subit = pfit · (1− Subsidy Rate) where pf,subit represents the reduced
price farmers pay after applying the subsidy.
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Figure 5: Accumulated production and environmental damage under P policies Figure 5 presents
the accumulated total production and environmental damage over a 50-year period based on 10,000 Monte
Carlo simulations(The initial level of soil P is the minimum level (i.e., 1 mg/kg)). The results are derived by
computing annual averages and summing them over time. For threshold-based policies, the 300 kg/ha limit
represents the 90th percentile of the maximum P application observed in our dataset (330 kg/ha), while the
245 kg/ha and 165 kg/ha thresholds correspond to the 75th and 50th percentiles, respectively.

thresholds—affect long-term agricultural productivity and environmental outcomes when

applied separately in the U.S., Canada, and jointly. A key question is whether certain

unilateral policies can approximate the outcomes of a binationally optimized P management

strategy, in which each country internalizes transboundary effects in its decision-making

process.

The results indicate that aggressive unilateral policies, such as high fertilizer taxes or

strict application caps, lead to both lower crop yields and reduced environmental damage, in

some cases achieving even greater reductions in P runoff than the binational benchmark. This

suggests that stringent regulation at the national level can effectively curb environmental

externalities, though often at the expense of economic output. However, the defining

characteristic of a binational approach is not necessarily the direct imposition of strict

regulations, but rather the incorporation of cross-border nutrient spillovers into optimal

decision-making. Unlike unilateral policies, which maximize national objectives without

considering transboundary effects, a binational strategy explicitly accounts for how one
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Figure 6: Accumulated Production and Environmental Damage under Unilateral P Policies
Figure 5 presents the accumulated total production and environmental damage over a 50-year period based
on 10,000 Monte Carlo simulations(The initial level of soil P is the minimum level (i.e., 1 mg/kg)). The
results are derived by computing annual averages and summing them over time. For threshold-based policies,
the 300 kg/ha limit represents the 90th percentile of the maximum P application observed in our dataset
(330 kg/ha), while the 245 kg/ha and 165 kg/ha thresholds correspond to the 75th and 50th percentiles,
respectively.

country’s actions influence the other.

A notable insight from these findings is that simply incorporating the externalities

associated with P runoff into each country’s optimization problem—without imposing any

additional policy interventions—naturally leads to lower environmental damage. In other

words, if each country were to adjust its fertilizer application while accounting for cross-border

spillovers, the resulting P use decisions would already lead to a more sustainable outcome.

This suggests that the environmental inefficiency in unilateral P management arises from the

lack of coordination rather than the absence of strict policies. While unilateral policies can

force reductions in environmental damage through taxation or application limits, a binational

approach achieves similar or better outcomes by aligning incentives without necessarily

resorting to heavy-handed interventions.

These findings underscore the importance of designing P management strategies that

facilitate cross-border coordination, rather than relying solely on unilateral regulatory mecha-
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nisms. Policies that encourage farmers to internalize transboundary effects—whether through

cooperative agreements, information-sharing, or incentive-based mechanisms—could achieve

significant environmental benefits without imposing excessive costs on agricultural production.

5.4 Marginal User Cost and Transboundary Sensitivity

To examine the intertemporal tradeoffs embedded in fertilizer use decisions, we compute

the marginal user cost (MUC) from the Bellman equation (6) (Cho et al. 2024). This term

captures the shadow value associated with increasing soil P today—namely, the effect of a

marginal rise in current P application on the present value of future payoffs, via its influence

on soil P accumulation.

Differentiating the equation (6) with respect to the fertilizer decision fit yields:

dVi(lit, {ljt}j∈Ψi
)

dfit
= 0 =

∂Eτj [πi(lit, {ljt}j∈Ψi
, fit)]

∂fit︸ ︷︷ ︸
current-period marginal profit

+ βE
[
∂Vi(lit+1, {ljt+1}j∈Ψi

)

∂li,t+1

· ∂lit+1

∂fit

]
︸ ︷︷ ︸

marginal user cost (MUCit)


fit=f∗

it

(8)

The first term reflects the immediate marginal profit of fertilizer use—the yield gain net

of input cost. The second term represents the MUC, which captures the discounted change

in future value resulting from additional accumulation of soil P. Rearranging the first-order

condition for an interior optimum gives:

py ·
∂y(lit, fit)

∂fit
= pf −MUCit (9)

where py · ∂y/∂fit is the marginal revenue product of fertilizer. Thus, the MUC enters as

an implicit shadow tax: the farmer equates the private marginal benefit to the sum of the

market price and the opportunity cost of degrading future soil quality and environmental

conditions.

The two inner components of the MUC expression also have clear interpretations. The

first term, ∂Vi(li,t+1, {lj,t+1}j∈Ψi
)/∂li,t+1, represents the shadow value of soil P in the next

period—that is, how much the farmer values an incremental unit of future soil P, accounting
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Figure 7: Marginal user cost by transboundary and domestic soil phosphorus levels. Marginal
user cost is computed for fixed domestic soil P levels (5, 15, 25 mg/kg).

for both its productivity benefits and its environmental consequences. The second term,

∂li,t+1/∂fit, captures the extent to which current fertilizer use contributes to future soil

P accumulation. Unlike standard resource economics models where resource use depletes

the stock, our model features an accumulative state: fertilizer use increases the soil P stock.

As a result, the sign and magnitude of the MUC depend not on resource depletion, but

on the trade-off between the yield benefits and environmental damage associated with P

accumulation.

Figure 7 plots the computed MUC for the U.S and Canada across varying levels of

transboundary soil P, holding domestic soil P fixed at Low (5 mg/kg), Medium (15 mg/kg),

and High (25 mg/kg) levels. At low domestic P, the MUC is positive in both countries,

indicating that additional fertilizer use increases future value–reflecting the low baseline stock

of soil P and the productivity benefit of further accumulation. As domestic P increases, the

MUC becomes negative, suggesting that further fertilizer use imposes net future costs due to

higher environmental damage outweighing marginal yield gains.

A key result is that MUC declines with transboundary soil P, and this decline is more

pronounced for Canada. When legacy P builds up in the U.S., Canada’s total damage

increases sharply, and so does the shadow value of preserving its own soil P. As a result, the

marginal cost of adding to Canada’s own legacy stock becomes more severe as U.S. legacy P

23



rises.

This asymmetry implies that Canada bears a disproportionate shadow cost of future

degradation, especially when U.S. legacy P is high. In a non-cooperative setting, Canada is

therefore induced to reduce fertilizer use more aggressively, while the U.S. remains relatively

insulated. The result is a strategic imbalance: U.S. soil P growth raises Canada’s marginal

user cost more than it raises its own, leading to a situation where Canada self-restricts while

still suffering external damage from across the border.

The economic implication is clear: an incremental rise in U.S. soil P makes Canada far more

reluctant to build up their own legacy stock, whereas U.S. faces weaker incentives to adjust.

In the absence of coordination, this dynamic generates a misalignment between abatement

effort and environmental responsibility. An efficient policy would require internalizing these

cross-border externalities—either through nutrient trading indexed to transboundary loading,

or a cooperative mechanism that equates marginal user costs across jurisdictions. Without

such instruments, Canada faces a choice between absorbing growing damage or tightening

fertilizer restrictions beyond what is socially optimal in isolation.

6 Discussion

This study explores the economic and environmental damage associated with phosphorus

P management in a transboundary setting, such as Lake Erie, demonstrating how strategic

interactions between countries influence long-term agricultural productivity and environmental

outcomes. The results show the inefficiencies of unilateral decision-making in managing

P runoff, where countries optimizing solely for domestic objectives fail to account for the

external costs imposed on their neighbors. This misalignment leads to excessive P application,

exacerbating environmental damage beyond socially optimal levels.

A key insight from the dynamic game model is that binational cooperation does not

necessarily require imposing stringent regulatory interventions, such as high fertilizer taxes

or strict application caps, to achieve lower environmental damage. Instead, the mere act of

incorporating transboundary nutrient spillovers into the optimization process naturally leads

to more sustainable P application decisions. In contrast, aggressive unilateral policies, while
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capable of reducing runoff, often do so at the cost of lower agricultural productivity, indicating

a fundamental trade-off between environmental preservation and economic efficiency.

The policy simulations further reveal that both unilateral and binational approaches

involve trade-offs. While fertilizer taxes and application caps effectively reduce environmental

damage, they also constrain crop production, raising concerns about long-term food security

and economic viability. This suggests that policy interventions should not only focus on

reducing P runoff but also consider complementary strategies to sustain or enhance agricultural

productivity. Technological innovations, such as precision agriculture, improved fertilizer

efficiency, and soil health management, could mitigate the negative effects of regulatory

policies by maintaining yields while minimizing nutrient losses. Future research should

explore how integrating these advancements into P management frameworks could achieve

both environmental and economic objectives simultaneously, reducing the need for strict

regulatory interventions that inherently limit productivity.

Another important aspect that warrants further investigation is the unobservability of

soil P levels, particularly in a transboundary context. Farmers face two layers of uncertainty:

(i) uncertainty regarding their own soil P levels due to imperfect soil testing and nutrient

cycling processes, and (ii) uncertainty regarding their neighbor’s soil P status, which affects

cross-border runoff and environmental damage. The current model assumes that decision-

makers have full knowledge of soil P conditions, but in reality, such information is often

incomplete or noisy. Future work should explore how information asymmetry and learning

mechanisms affect optimal P application decisions, particularly under binational coordination.

Developing policies that enhance soil P monitoring—such as improved sampling techniques or

incentive-based information-sharing mechanisms—could significantly improve the effectiveness

of P management strategies in transboundary agricultural systems.

Overall, these findings emphasize the importance of designing policies that align economic

incentives with environmental sustainability. Market-based instruments, such as nutrient

trading programs or regionally coordinated subsidy schemes, could provide a more efficient

pathway for managing P runoff while preserving agricultural productivity. However, policies

that solely rely on economic disincentives, such as taxes, may not be sufficient in the long run

without parallel investments in technology-driven solutions that enhance production efficiency.
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Addressing soil P unobservability, particularly the dual challenges of self-monitoring and cross-

border information asymmetry, is critical for ensuring that P management strategies remain

both effective and adaptable under real-world conditions. Future research should examine

how these policy instruments can be optimally combined with technological advancements

and improved information systems to achieve sustainable phosphorus management in shared

agricultural systems.
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A Appendix

A.1 Dynamic Game Algorithm

We use the algorithm from Miranda and Fackler (2004) to solve a dynamic game of phosphorus

(P) fertilizer management between two interacting countries, the U.S. and Canada. Algorithm

1 iteratively solves the Bellman equation using a projection method to approximate the value

function and determines the optimal P fertilizer application policy for each country. Starting

with initial guesses for the value function and control policy, the algorithm updates both by

evaluating the reward and transition functions at collocation points in the state space 4 .

Newton’s method is employed to refine the control policy by minimizing the Bellman equation

residuals using the gradient and Hessian of the value function. This process is repeated until

convergence, ensuring that each country’s optimal policy internalizes the externalities of P

runoff from the other farm, leading to strategic interdependence in decision-making.

4The initial guess for the value function and control policy is obtained from solving a single-agent stochastic
dynamic programming (SDP) with a 100-year time horizon. This provides a reasonable benchmark for the
starting values in the dynamic game framework.
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Algorithm 1 Dynamic Game Solver

1: Input: Model structure (Ri(si, sj, ai, aj), Rj(sj, si, aj, ai), g(si, sj, ai, aj), β), initial
guesses for Vi(si, sj), Vj(sj, si), policies ai, aj, collocation nodes si, sj, tolerance tol,
maximum iterations maxit.

2: Output: Optimal policies a∗i , a
∗
j , value functions V ∗

i (si, sj), V
∗
j (sj, si).

3: procedure Initialization
4: Compute collocation nodes for state space si and sj, and the basis function matrix

Φ(s).
5: Initialize value functions Vi(si, sj), Vj(sj, si) and control policies ai, aj.
6: end procedure
7: procedure Iterative Value Function and Policy Update
8: for each iteration until convergence or maximum iterations do
9: Step 1: Value Function Update for Player i
10: Compute reward Ri(si, sj, ai, aj).
11: Compute future state g(si, sj, ai, aj) and future value function Vi(s

′
i, s

′
j).

12: Update value function for Player i:

Vi(si, sj)← Ri(si, sj, ai, aj) + βE[Vi(s
′
i, s

′
j) | si, sj, ai, aj]

13: Step 2: Optimal Control Update for Player i with First-Order Condition
14: Solve for the optimal control a∗i using the Newton method:
15: Compute the first derivative (gradient) of the value function with respect to ai.
16: Compute the second derivative (Hessian) of the value function with respect to ai.
17: Update the control ai using Newton’s method:

ai ← ai −H(ai)
−1∇V (ai)

18: Check the first-order optimality condition:

Error = max(|∇V (ai)|)

19: if Error < tol then
20: Converged for Player i; store a∗i .
21: else
22: Continue iterations.
23: end if
24: (Repeat the same steps for Player j): Update value function Vj(sj, si), compute

rewards
25: Rj(sj, si, aj, ai), and solve for optimal control a∗j using the Newton method.
26: end for
27: end procedure
28: procedure Output
29: Return vi, vj: Final value functions at evaluation points.
30: Return a∗i , a

∗
j : Optimal actions (controls) for both players at evaluation points.

31: end procedure
32: Source from Miranda and Fackler 2004
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A.2 Additional Figures
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Figure A1: Example of corn production and environmental damage dynamics (Low initial
value). The initial level of soil P for the U.S. and Canada is the low level (i.e., 5 mg/kg)

4



Figure A2: Example of corn production and environmental damage dynamics (Medium initial
value). The initial level of soil P for the U.S. and Canada is the medium level (i.e., 15 mg/kg)

5



Figure A3: Example of corn production and environmental damage dynamics (High initial
value). The initial level of soil P for the U.S. and Canada is the high level (i.e., 25 mg/kg).
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