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Abstract
Phosphorus (P) runoff from agriculture is a major driver of eutrophication in trans-
boundary water systems like Lake Erie. This paper develops a dynamic game model
to examine how strategic interactions between the U.S. and Canada shape long-term
crop production and environmental outcomes under stochastic soil P dynamics. The
results show that while unilateral decisions often lead to higher crop production, they
also result in greater environmental damage due to excessive P runoff. In contrast,
incorporating transboundary nutrient spillovers naturally reduces P application and
mitigates environmental harm, though at the cost of lower production. These findings
suggest the importance of integrating biophysical feedback and economic incentives
in nutrient management, emphasizing that long-term sustainability requires balancing

productivity with environmental constraints.
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1 Introduction

Lake Erie has long been at the center of discussions on agricultural nutrient management,
particularly due to its persistent phosphorus (P) pollution and the resulting harmful algal
blooms (HABs) (Smith and Wilen 2003). Excessive P runoff from croplands in the U.S. and
Canada has been identified as a primary driver of eutrophication, leading to deteriorating water
quality, economic losses in fisheries and tourism, and increased treatment costs for drinking
water (Lake Erie LaMP 2011; Environment and Climate Change Canada 2023). Despite
decades of policy efforts—including voluntary conservation programs, best management
practices (BMPs), and regulatory nutrient reduction targets—P runoff remains a significant
challenge, exacerbated by the accumulation of P in soils (Carpenter 2008). The complexity of
the Lake Erie case explains the need for dynamic and strategic approaches to P management
that account for both long-term nutrient accumulation and transboundary externalities
(Brock and Xepapadeas 2010).

While previous studies have examined the economic and environmental trade-offs of P
reduction strategies, most rely on static models or single-agent decision frameworks, which fail
to capture the strategic interactions between agricultural producers in different jurisdictions
(Karp and Zhang 2006). Because P pollution is a transboundary issue, optimal management
requires coordinated decision-making between the U.S. and Canada to internalize the spillover
effects of nutrient runoff. In the absence of such coordination, unilateral policies may lead
to inefficient outcomes, where one country’s efforts are offset by the continued externalities
imposed by the other (Hoel 1991).

This study develops a dynamic game-theoretic model to analyze optimal P fertilizer
application strategies in a transboundary agricultural system, with Lake Erie serving as
a motivating case (Xabadia et al. 2008). The model considers the strategic behavior of
farmers in the U.S. and Canada, incorporating stochastic soil P dynamics, economic trade-offs
between crop production and environmental damage, and cross-border nutrient spillovers
(Horan et al. 2019). By solving a Markov decision process (MDP) in a dynamic game
setting, we examine how different policy instruments—including fertilizer taxes, subsidies,

and application caps—influence long-term environmental and economic outcomes.



A key question addressed in this study is whether unilateral policies—where each country
regulates P application independently—can approximate the outcomes of a binationally
optimized approach, in which both countries internalize transboundary externalities (Folmer
and v Mouche 1994). The findings reveal that while aggressive unilateral interventions
(e.g., high fertilizer taxes) can reduce environmental damage, they often come at the cost of
reduced crop yields. Conversely, binational coordination accounts for transboundary nutrient
spillovers, leading to a more efficient allocation of P fertilizer that reduces environmental
damage. However, this also results in lower P application levels compared to unilateral
decisions, which may come at the cost of reduced crop production.

To better understand the long-term and cross-border impacts of fertilizer use, we incorpo-
rate the concept of marginal user cost (MUC) into our analysis. Unlike typical resource models,
fertilizer use increases the soil stock, making the MUC a shadow cost of future environmental
degradation. As U.S. legacy P rises, Canada’s MUC increases disproportionately, prompting
greater self-restraint despite ongoing cross-border impacts. This asymmetry highlights the
need for coordinated policies to internalize transboundary nutrient externalities.

By integrating economic incentives, strategic interactions, and transboundary externalities,
this study provides a theoretical and quantitative foundation for designing more effective P
management policies in shared water systems such as Lake Erie (Gren 2001). The findings
explain the importance of cooperative nutrient regulation, focusing on the fact that a combi-
nation of policy interventions and technological advancements may be necessary to achieve
long-term environmental sustainability without compromising agricultural productivity.

The remainder of the paper is organized as follows. Section 2 provides the background
on P pollution in Lake Erie, discussing the role of agricultural runoff and transboundary
externalities. Section 3 introduces the dynamic game-theoretic framework, outlining the
Bellman equation and the stochastic evolution of soil P levels. Section 4 presents the yield
response function estimation, using empirical data from Ohio to quantify the relationship
between P fertilizer application and crop yields. Section 5 presents the simulation results,
analyzing the economic and environmental trade-offs of different P management policies
under unilateral and binational settings. Finally, Section 6 concludes with a discussion on

our findings.
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Figure 1: Total phosphorus loading to Lake Erie. The data, sourced from Environment and Climate
Change Canada (2023): Canadian Environmental Sustainability Indicators, illustrates the annual P loading
into Lake Erie from 2008 to 2022, distinguishing contributions from the U.S. and Canada. The United States
consistently accounts for the majority of P loading, contributing over 75% of the total load annually.

2 Background

The Lake Erie basin, straddling the border between the U.S. and Canada, presents a significant
environmental management challenge due to P loading, which has profound impacts on water
quality, aquatic ecosystems, and economic activities (Lake Erie LaMP 2011; Downing et al.
2021). Phosphorus is an essential nutrient for plant growth, but when introduced in excessive
amounts into freshwater systems, it accelerates eutrophication, leading to the proliferation
of HABs (Arrow et al. 2004; Conley et al. 2009; Paudel and Crago 2021; Vasseghian et al.
2024). These blooms can produce toxins harmful to aquatic life, degrade drinking water
supplies, and contribute to hypoxic zones (low-oxygen areas) that threaten fish populations
and biodiversity.

The sources and magnitudes of P loading to Lake Erie vary across time, space, and
jurisdiction, making effective management particularly complex (Scavia et al. 2014; Maccoux
et al. 2016). As shown in Figure 1, total P loading to Lake Erie exhibits substantial interannual
variability. The U.S. consistently contributes a larger share of total P inputs compared to
Canada, with peak loading years. This binational disparity in P contributions has important
policy and economic implications. Since Canada contributes a smaller share of total P

loading, unilateral mitigation efforts by Canada alone would be costly and inefficient, yielding
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Figure 2: Annual average (2013-2022) phosphorus loading patterns and source contributions.
The data, sourced from Environment and Climate Change Canada (2023): Canadian Environmental Sus-
tainability Indicators. Figure 2 shows the total P loading into Lake Erie (2008-2022) from multiple sources.
Point sources refer to P discharges from municipal sewage treatment plants and industrial effluent, whereas
non-point sources primarily stem from agricultural activities and urban stormwater runoff. Atmospheric
deposition involves phosphorus settling directly into the lake from the air (Environment and Climate Change
Canada 2023).

limited environmental improvements unless matched by reductions in the U.S. watershed.
The transboundary nature of P pollution means that any successful and economically efficient
reduction strategy should involve coordinated efforts between the two nations to avoid cost
asymmetries and ensure that the benefits of P reductions are shared equitably. The Great
Lakes Water Quality Agreement (GLWQA) provides a framework for such collaboration,
setting joint P reduction targets to prevent the burden from falling disproportionately on one
country (Loadings and Blooms 2014).

A key challenge in reducing P loading to Lake Erie is the dominance of non-point sources,
which account for 77% to 90% of total P inputs across all basins, as shown in Figure 2.
While the western basin experiences the highest P loading, non-point sources—mainly from
agriculture—are the largest contributors across the western, central, and eastern basins
(Environment and Climate Change Canada 2023). Point and atmospheric sources play a
relatively minor role, making non-point source management the primary focus for reduction
efforts.

Given that non-point source (agriculture) are the primary contributor to P pollution and
that P management is inherently a binational challenge, any effective reduction strategy
must address both farmers’ decision-making and cross-border policy coordination. Since

P pollution does not adhere to political boundaries, unilateral efforts are often inefficient



and costly, requiring strategic interactions between the U.S. and Canada to achieve shared
reduction goals. At the same time, the effectiveness of P mitigation hinges on how farmers
adjust their fertilizer use and conservation adoption over time in response to environmental
conditions, economic incentives, and policy interventions. Unlike static regulatory approaches,
which assume fixed behavioral responses, P management requires a dynamic framework that
captures the interactions between policymakers, farmers, and environmental processes across
both temporal and spatial scales.

This complexity makes a dynamic game model particularly relevant, as it allows us to
analyze how strategic behavior among stakeholders evolves over time. By incorporating
economic incentives, uncertainty, and transboundary externalities, the model provides insights
into optimal policy coordination between the U.S. and Canada while considering the adaptive
nature of agricultural decision-making. In the next section, we develop a dynamic game-
theoretic framework to assess how fertilizer application choices, conservation adoption, and

regulatory interventions interact, ultimately shaping long-term P loading in Lake Erie.

3 Model

This section introduces the dynamic game model governing soil P accumulation on agricultural
land and the resulting economic damages due to soil P runoff. The model captures key
processes of the dynamic game modeling approach for the optimal management of soil P,
including the carry-over dynamics of soil P, the economic implications of P runoff on farm-level
profits, and the stochastic nature of P accumulation and depletion. We first present the
transition function of soil P and then extend it to address the resulting runoff and associated

economic damages.

3.1 Stochastic soil phosphorus dynamics

We consider a set of farmers denoted by V¥, each managing their P fertilization strategies.
Specifically, for any farmer ¢ € ¥, the model follows their decisions on the application of P
fertilizer over time. The evolution of the stock of soil P, l;;, on farmer 7’s land per hectare at

time ¢, is governed by a dynamic equation that captures both deterministic and stochastic



elements. The formulation in this paper builds on the model of Cho et al. 2025.

The evolution of soil P for farmer 7 is described as:

Concentration on Yield
7\

~

Ligr = me (L — 1) Ly + (01 + S2lit) | fir — (03log(li) + 64) y (Lit, fir) (1)
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TV
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where [;; is the stock of soil P at time ¢, r; is the P runoff rate to surface water from farm
1, and 1 is the stochastic carry-over rate, governing the proportion of soil P that persists
from period t to t + 1. f;; represents the amount of P fertilizer applied by farmer ¢ at time .
y(Ly, Fy) is the crop yield function, which depends on both soil P [;; and applied P fertilizer
fit- (01 4 d2l;y) captures the response of soil P surplus to the initial stock level and the rate
of P application (Ekholm et al. 2005).

The expression inside the brackets represents the soil P surplus, which is the difference
between the P applied through fertilizer f;; and the P uptake by crops. Crop uptake is modeled
by a yield response function y(l; ¢, fi+) scaled by a diminishing return term (03 log(l; ;) + 64).
This diminishing return effect reflects well-documented agronomic principles, whereby the
marginal productivity of P in crop yield decreases as Soil P accumulates (Myyra et al. 2007;
Fulford and Culman 2018; Culman et al. 2023).

The soil P carry-over rate 7, contributes to stochastic motions in this dynamic model. It
is formulated to capture the uncertainty in P retention or depletion between periods, and it

incorporates both deterministic and stochastic components. Specifically, we model 7, as:

8727 (lzt)
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where p, represents the log mean rate of change in soil P, which reflects the natural rate
of P retention or decay in the soil. s,(l;;) is the standard deviation of the log percentage
growth rate of soil P, which is modeled as a function of the current stock l;;. w; is a normally
distributed shock term (w; ~ N(0, 1)), which introduces randomness into the carry-over rate,

representing external factors such as weather conditions, soil characteristics, or management



practices that affect P retention.

The parameter p, is assumed to be negative, reflecting the fact that, in the absence of
further P application or crop uptake, soil P is expected to decay over time (Ekholm et al. 2005;
Tho and Laukkanen 2012). However, this decay process is stochastic, as represented by the
inclusion of the standard deviation term s, (l;;)w;. This stochastic component acknowledges
that soil P dynamics are influenced by factors beyond the farmer’s control, such as soil type,
precipitation patterns, and other environmental variables.

The variance of the carry-over rate is specified as:

2
2 (Iy) = In (1 + U—) (3)
(A li2t “Ene | lz’t]2

where 02 is an uncertainty variance, and E[r; | I;;] represents the expected carry-over rate
conditional on the current stock of soil P. This formulation ensures that the variance of the
next-period soil P stock remains bounded as l;; accumulates, ! preventing unrealistic behavior
where the uncertainty would grow without bound for large /;;. Such a specification follows
well-established approaches in modeling environmental stocks under uncertainty (Loury 1978,
Gilbert 1979; Melbourne and Hastings 2008, Sims et al. 2017; Sloggy et al. 2020).

The introduction of stochasticity in the carry-over process captures real-world complexities
where P retention and depletion are not deterministic processes. Factors such as variations in
soil composition, temperature, moisture, and microbial activity contribute to the stochastic
nature of P dynamics, which this model seeks to represent. By introducing a stochastic
component into the P carry-over, the model can better account for observed variabilities in

soil P stocks across farms and over time.

!The expression E[n: | l;z] = exp(u,) represents the expected carry-over rate of soil P conditional on
the current stock l;;. Given the log-normal specification of 7; and assuming the shock term w; ~ N (0, 1),
we can derive the expected value of n; by taking the conditional expectation with respect to wy. Since the
expectation of the exponential of a normal random variable wy is given by exp(s3(li;)/2), the stochastic term
cancels out with the variance adjustment term s (l;)/2, leaving E[n; | lit] = exp(u,). This result implies
that the expected value of the carry-over rate is determined solely by the log mean growth rate p,, while the
variance s%(lit) introduces uncertainty around this mean, capturing the effects of stochastic shocks.



3.2 Dynamic game formulation and equilibrium

The strategic interactions between countries U are captured through a Markov perfect
equilibrium, which accounts for the fact that each farmer’s decision impacts not only their
own payoff but also the runoff and associated damages that affect both players. This approach
allows us to study the externalities arising from P runoff and how these externalities influence
the optimal management of P fertilization.

The annual payoff of country + € ¥ is evaluated as the profit generated by crop yields
minus the cost of P fertilizer and the damages incurred due to soil P runoff. Formally, the

expected per-hectare profit for country i is expressed as:
T (lita {ljt}jexpi :fit) = p?tyz‘t (lm fit) - pz]';fit —d; (lita {ljt}jepl) (4)

where W; = W\ {7} indicates the population ¥ excluding country . pf, ., is the price of the
crop, plft is the price of the P fertilizer, and y;; (i, fir) represents the crop yield as a function
of the soil P stock [;; and the current P fertilizer application f.

The last term, d; (lm {lﬁ}je\m)’ represents the damage function, which models the
economic damages due to P runoff from both country 7’s farm and other neighboring country’s
farms j. Many studies in the literature define the damage function as a linear relationship
where environmental (eutrophication) damage is proportional to P runoff, typically expressed
as a constant marginal damage parameter multiplied by the amount of soil P runoff (Smith
et al. 1995; Sharpley et al. 1996; Tho and Laukkanen 2012, Tang 2018). This approach
assumes that each additional unit of P runoff causes the same incremental increase in damage,
without accounting for potential threshold effects. However, empirical evidence suggests that
eutrophication damage often exhibits nonlinear patterns, where small increases in P runoff
may have minimal effects at low concentrations but lead to severe ecological damage once
critical thresholds are exceeded (Carpenter et al. 1999; Jarvie et al. 2013, and Schindler et al.
2016). To better capture these dynamics, we define the damage function to a power function

with elasticity, given by:
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where r; and r; represent the runoff rates of soil P from countries 7 and j, respectively, and c is
the constant marginal damage of P loading. 7 is the weight reflecting differences in P transport
efficiency between regions. To capture the uncertainty in P transport efficiency between
regions, we model 7; ~ Beta(a;, 3;), as the Beta distribution is well-suited for variables
bounded between 0 and 1 and allows for flexible shapes depending on the parameterization.
This damage function allows for flexible responses through p, where p > 1 captures threshold
effects and 0 < p < 1 reflects diminishing marginal damage.

In the dynamic game setting with multiple countries, the strategic decisions are made over
time, considering not only the current payoff but also future consequences of P runoff and its
cumulative effects on the environment. Each country optimizes their fertilizer application
strategy by weighing the immediate benefits of increased crop yields against the future costs
of environmental degradation caused by P runoff. These intertemporal trade-offs are captured
by a Markov perfect equilibrium (MPE), where each country’s strategy depends only on the
current state of the system—specifically, the soil P stocks on both countries, l;; and ;.

The equilibrium concept of the MPE assumes that both countries are noncooperative and
forward-looking and that their actions take into account not only the current conditions but
also the expected future actions of the other country (Gollier and Treich 2003; Miranda and
Fackler 2004; Hovi et al. 2015). The problem is inherently dynamic because the decisions
made by each country at time ¢ affect the soil P stock in future periods, which in turn impacts
future crop yields and environmental damages. This leads to a situation where both countries
must strategically anticipate the other’s actions, given the shared nature of the runoff-induced
damage.

The optimization problem for each country is framed through the Bellman equation,
which represents the recursive nature of the decision-making process. For country 7, the value
function V; (lit, {l]‘t}j e%) reflects the maximum expected net present value (ENPV) of their

profits over time, given the current state of soil P stocks on both countries. The Bellman



equation for country i is formulated as follows:

Ve (lit’ {ljt}je\h> = max = [Wi (lit’ {ljt}je‘l’i ’ f”ﬂ

fit 07fT *
E[ ] +6]E |:‘/z (lit+17 {ljtJrl}je\I,i) | lit7 {l]t}]E\I/L 7fit7 {fjt}]E\I/L
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where the [ is the discount factor and the expectation E[-| represents the uncertainty in
future outcomes, conditional on both countries’ current decisions.

The dynamic nature of the problem stems from the fact that each country’s decision at
time ¢ affects the future states of soil P stocks on both countries, l;;1; and lj;4,. Moreover,
since P runoff creates externalities that affect both farmers, the value function depends on the
current and future decisions of the other country. The term {f;;} ., represents the optimal
fertilizer application policy of country j, assuming they are also acting optimally given the
current state. This interdependence between each country’s decisions is central to the MPE,
where each country’s strategy is the best response to the other’s actions in each period.

To solve for the equilibrium strategies, the system of Bellman equations for the countries
must be solved simultaneously. The solution yields the optimal P application policies for both
countries, fj; and f,, which specify the optimal amount of fertilizer to apply in each period,
given the current soil P stocks on both countries. These strategies balance the trade-offs
between the short-term benefits of increased crop yields and the long-term costs of P runoff.

The MPE ensures that the strategies of both countries are mutually consistent, meaning
that neither country has an incentive to deviate from their equilibrium strategy, given the
strategy of the other. This equilibrium captures the strategic interdependence between the
countries, as each country internalizes the externality caused by P runoff. By following
their equilibrium strategies, the countries contribute to managing P runoff in a way that
considers not only their own profits but also the broader environmental impacts on the shared

ecosystem.
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4 Empirical model specification for yield response

4.1 Data description

In this section, we outline the empirical model used to estimate the yield response function
yir that analyzes the impact of P fertilizer application and soil P on corn yield. The data
used in this estimation originate from long-term field trials in Ohio (Clark, Wayne, and Wood
counties) assessing P fertilizer application and their effect on crop yield given soil P levels.
Specifically, we focus on the field trials reported in Culman et al. (2023) Dataset 2, covering
16 years of experiments (2006-2021) at three research farms in Ohio. The trials employed
a randomized complete block design with three P application rates: an unfertilized control
(0x), an estimated crop removal rate (1x), and an excessive application rate (2 — 3x the
removal rate) ? Soil samples were analyzed before planting to determine baseline Mehlich-3
extractable P levels, and crop yield data were recorded after harvest.

For our estimation, we focus exclusively on trials where P fertilizer application resulted in
a statistically significant yield increase, excluding non-responsive cases. The dataset thus
reflects only instances where P fertilizer had a positive impact on crop yield, ensuring that
our estimates capture the actual effect of P application rather than noise from non-significant
responses.

Table 1 presents the summary statistics for the Ohio field trial dataset, which includes
observations from three experimental locations. The variables reported are corn yield (Mg/ha),
P fertilizer application (kg/ha), and soil P concentration (mg/kg). The average corn yield
across all sites is 10.23 Mg/ha, with values ranging from 6 to 15 Mg/ha. The mean P
application rate is 121.25 kg/ha, with a standard deviation of 126.49 kg/ha, which appears
relatively large due to the experimental design. Since this dataset originates from a controlled
field experiment with discrete P application treatments (0x, 1x, and 2-3x the estimated

crop removal rate) rather than a continuous distribution of fertilizer use, most observations

2During the initial phase of the experiment (2006-2014), the estimated crop removal rate for P fertilizer
was P20O5 60.1kg/ha, based on the estimated removal rate of 2005 Ohio (Vitosh et al. 1995, Fulford and
Culman 2018). The field trials consider 2x the removal rate for excessive application cases during this period
(Fulford and Culman 2018). However, Fulford and Culman (2018) found that actual removal rates exceeded
these estimates. Consequently, from 2015-2021, the fertilizer application rates were adjusted to 112.1kg/ha
(Ix), and the experiment considered 336.3kg/ha for excessive application cases (3x).

11



Experimental location  Variable Obs mean Std dev min/max

Clark Corn yield (Mg/ha) 30 10.21 2.14 6.2/12.9
P application (kg/ha) 30 122.66 128.99 0/336.3
Soil P (mg/kg) 30 20.25 7.88 9.8/40
Wayne Corn yield (Mg/ha) 36 11.17 2.71 6/15
P application (kg/ha) 36 127.13 131.29 0/336.3
Soil P (mg/kg) 36 16.37 9.09 4.3/37.3
Wood Corn yield (Mg/ha) 48 9.54 2.22 6/14.3
P application (kg/ha) 48 115.95 123.74 0/336.3
Soil P (mg/kg) 48 21.28 7.67 11.9/39
Total Corn yield (Mg/ha) 114 10.23 2.45 6/15
P application (kg/ha) 114 121.25 126.49 0/336.3
Soil P (mg/kg) 114 19.46 8.40 4.3/40

Table 1: Summary statistics for Ohio field trials data. The experimental location level is county in
Ohio.

cluster around these predetermined levels rather than being evenly spread across the range.
This results in a high standard deviation, as the experimental setup includes both unfertilized
plots and excessively fertilized treatments to capture the full range of P fertilizer effects on

yield.

4.2 Estimation framework

To quantify the yield response, we specify the following log-linear model:

In(yit) = Bo + Bufir + BoIn(lie) + Bafi + Bafie In(lie) + wi + v + € (7)

where wu; is the experimental location fixed effect and v; is the time fixed effet. The estimation
results are in Table 2. The estimated coefficient on the interaction term ( f;; x In(l;;)) is -0.0003

with standard error 0.0002; p-value = 0.16). While this coefficient slightly above than the

12



Log Corn Yield (Mg/ha)

fit 0.0025***
(0.0008)
In(li;) 0.1492**
(0.0602)
2 —0.000003**
(0.000001)
fir x In(ly) —0.0003
(0.0002)
Const. 1.1959***
(0.2269)
Location Fixed Effects Yes
Time Fixed Effects Yes
Observations 114
Adjusted R? 0.7810

Table 2: Corn yield response estimation. Robust
standard errors are in parentheses. *, ** and *** indicate
significance at the 10%, 5%, and 1% levels, respectively.

conventional significance thresholds (i.e., p-value = 0.1), it is included in the dynamic game
model due to its agronomic and theoretical importance; first, prior agronomic research has
emphasized the importance of soil P availability in shaping the response to fertilizer inputs
(Fulford and Culman 2018), and second, excluding this term could omit a key mechanism
driving farmer decision-making, potentially biasing policy-relevant estimates. Thus, this
term remains essential for capturing the full economic and environmental implications of P

application.

5 Results

5.1 Optimal phosphorus application

In our analysis of the Lake Erie case, we simplify the farmer population ¥ to two groups:
U = {U.S., Canada}. The other parameter values are summarized in Table 3. Given the

interconnected nature of agricultural markets and trade between the U.S. and Canada, we

13



assume that both countries share the same prices for P fertilizer and corn. This assumption
helps isolate the effects of P runoff dynamics rather than confounding them with price
differences, allowing the model to focus on the strategic interactions between farmers in

managing P application and the resulting transboundary environmental impacts.

Parameter Value Desccription

Biophysical parameters

i -0.02 Average depreciation rate (Myyré et al. 2007)
o? 9 Uncertainty variance
51 0.0032 .
Response parameter of soil P surplus (Ekholm et al. 2005)
o 0.00084
53 0.000186 _ .
Concentration parameter on crop yield (Iho and Laukkanen 2012)
04 0.003
1) 1.2 Elasticity of environmental damage to P runoff
rUS 0.02 P runoff rate of US farm (Myyra et al. 2007)

T'Canada 0.02 P runoff rate of Canada farm (Myyra et al. 2007)
E[rus] 0.795 Proportion of US’s P loading affecting Canada (ays = 10 and Sys = 2.572)
E[Tcanada) 0.205 Proportion of Canada’s P loading affecting US (ays = 10 and Syg = 38.78)

Economic parameters

B 0.9259  Discount factor with 8% discount rate (Duquette et al. 2012)
py 1.737  Corn Price ($ per bushel)

pf 262.357 P fertilizer Price ($ per short ton.)

c 136.5  Marginal cost of P loading (125 €/kg) (Pitkanen et al. 2007)

Table 3: Parameters and descriptions. Corn and P fertilizer prices are from the 2014 prices (USDA
2024a, USDA 2024b) and inflation-adjusted using the using the Consumer Price Index (CPI) for all urban
consumers (index 1983=100), with data sourced from the Federal Reserve Bank of Minneapolis 2024.04.
The values for Tcanada—us and Tyus—s Canada are calculated as the proportion of P loading from each country
relative to the total P loading in a given year (Environment and Climate Change Canada 2023). These yearly
proportions are then averaged over the period from 2008 to 2022 to obtain the final values.

Figure 3 presents the optimal P application policies for the U.S. and Canada under

different soil P conditions and transboundary interactions. The results compare unilateral
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policies, derived using stochastic dynamic programming (SDP), where each country assumes
no transboundary P effect, with binational policies, which account for P spillover across
borders. The analysis highlights the inefficiencies in unilateral decision-making and the extent
of P misallocation, which exacerbates environmental externalities and results in significant
welfare losses for both agricultural producers and environmental stakeholders.

The unilateral P application policy represents the optimal strategy when each country
assumes that the other does not contribute to transboundary P levels. In other words, the
model optimize P application under the assumption that transboundary P contribution
remains constant at zero. This assumption leads to policies that focus solely on domestic soil
P levels, disregarding the impact of cross border nutrient flow. However, unilateral policies
in shared environmental systems often lead to policy myopia, where short-term gains in
productivity come at the cost of long-term environmental degradation.

Conversely, the binational P application policy accounts for the interaction between
U.S. and Canada agricultural runoff. When both countries recognize the contribution
of transboundary P, the optimal P application rates adjust accordingly, leading to lower
application levels as transboundary P increases. The consideration of shared P loads ensures
that each country internalizes the externalities of its P use, leading to more environmentally
sustainable outcomes. Additionally, this lower application pattern increases when the country
has higher domestic P levels.

An important finding of our analysis is the presence of P misallocation (shaded region
in Figure 3), where P application under unilateral policies deviate from the binationally
optimal levels. This misallocation arises because unilateral policies ignore transboundary P
contributions, leading to over application of P fertilizer relative to the socially optimal level.
Over-application not only reduces the economic efficiency of fertilizer use but also increases
the likelihood of policy intervention in the form of stricter environmental regulations.

For instance, as transboundary P contribution increases, a country adhering to a unilateral
policy continues to apply P at the same rate, whereas the binational approach would dictate
a reduction in application. This failure to adjust results in excessive P inputs, further
contributing to P loading in shared water bodies (e.g., Lake Erie), increasing the risk

of eutrophication and HABs. The literature on environmental spillovers suggests that
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Figure 3: Optimal phosphorus application under domestic and transboundary soil P levels.
Domestic soil P level refers to the P concentration within a country’s own farmland, affecting its fertilizer
needs. Transboundary soil P level represents P levels in a neighboring country, which can influence optimal
fertilizer application. For the US, the domestic soil P level (rows) refers to P within the US, while the
transboundary soil P level (x-axis) represents P levels in Canada.
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misallocated resources in transboundary pollution settings often generate deadweight losses,
where both nations suffer greater costs than necessary due to inefficient policy design (Phaneuf
and Requate 2016). Our findings shows the need for cooperative P management policies
between the US and Canada to mitigate the environmental consequences of misaligned

agricultural practices.

5.2 Crop production and environmental damage dynamics

Figure 4 presents the long-term evolution of corn production and environmental damage
under different P management for the U.S. and Canada. The figure shows differences between
U.S. and Canada, as well as the implications of unilateral versus binational P management
approaches.

The first row of Figure 4 compares corn production and environmental damage in the U.S.
and Canada under binational optimal P application and soil P dynamics. One distinction is
that the U.S. receives relatively less external P inflow from Canada than vice versa, due to
the directional nature of P runoff as depicted in Figure 1. Because of this asymmetric flow,
the U.S. experiences lower external environmental damage from cross-border P spillovers,
making the marginal cost of additional P application appear lower. This incentivizes U.S.
farmers to apply more P fertilizer, leading to higher soil P levels and greater crop yields
compared to Canada. However, due to the directional flow of P runoff, Canada experiences
higher long-term environmental damage, as much of the excess P applied in the U.S. This
results in greater eutrophication risks and water quality degradation in Canada.

An important implication of this difference is that unilateral strategies, where each country
ignores transboundary effects, disproportionately increase the environmental costs borne
by Canada. Since U.S. runoff significantly affects Canada but not vice versa, unilateral
U.S. policies that fail to account for transboundary nutrient spillovers result in excessive
environmental degradation in Canada. This reinforces the need for coordinated binational P
management to ensure more sustainable agricultural production in both countries.

The second row of Figure 4 compares total corn production and total environmental
damage across both countries under unilateral and binational P application policies. In a

unilateral scenario, each country maximizes its own short-term agricultural output without
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Canada is the minimum level (i.e., 1 mg/kg). Other initial conditions are in the Appendix.
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considering cross-border externalities. This results in higher P application levels, leading
to greater crop production, as seen in Figure 4 for the unilateral scenario. However, this
strategy also leads to substantial long-term environmental damage. Importantly, total
environmental damage under the binational scenario is lower than under the unilateral
approach, demonstrating that the binational policy suggests the need to consider cross-border
P spillovers in optimizing P application and mitigating environmental damage.

These results emphasize the trade-offs between productivity gains and environmental
damage in transboundary agricultural systems. Unilateral P application generates more
crop yields but leads to excessive environmental damage, necessitating costly regulatory
interventions. These results motivate further analysis of potential policy interventions, which

are explored in the following section.

5.3 Policy analysis

To evaluate the economic and environmental implications of P management, Figure 5 presents
the accumulated total crop production and environmental damage under binational decision-
making. This figure illustrates how different policy interventions—fertilizer taxes, subsidies,
and application thresholds—affect long-term agricultural productivity and environmental
outcomes when applied in a binational optimization framework ®. Unlike unilateral policies
that maximize national objectives without accounting for transboundary effects, the binational
approach explicitly incorporates cross-border nutrient spillovers into the optimization process.
The results highlight that policies imposing stricter regulations, such as higher taxes or lower
application thresholds, generally lead to lower environmental damage but also reduce total
crop production.

Next, we extend this analysis by examining the effects of policies under unilateral decision
making. Figure 6 presents the accumulated total crop production and environmental damage.

Figure 6 explores how unilateral policies—such as fertilizer taxes, subsidies, and application

3For clarity, we refer to these price increases as ad valorem taxes and subsidies and adjust the fertilizer
price accordingly. Specifically, the taxed fertilizer price is defined as plft’tax = p{t’tax - (1 + Tax Rate) where plft
represents the producer price, and plft denotes the effective price farmers pay after taxation. Similarly, the
subsidized fertilizer price is computed as p{t’sub = p{t - (1 — Subsidy Rate) where pzft’sub represents the reduced

price farmers pay after applying the subsidy.
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Figure 5: Accumulated production and environmental damage under P policies Figure 5 presents
the accumulated total production and environmental damage over a 50-year period based on 10,000 Monte
Carlo simulations(The initial level of soil P is the minimum level (i.e., 1 mg/kg)). The results are derived by
computing annual averages and summing them over time. For threshold-based policies, the 300 kg/ha limit
represents the 90th percentile of the maximum P application observed in our dataset (330 kg/ha), while the
245 kg/ha and 165 kg/ha thresholds correspond to the 75th and 50th percentiles, respectively.

thresholds—affect long-term agricultural productivity and environmental outcomes when
applied separately in the U.S., Canada, and jointly. A key question is whether certain
unilateral policies can approximate the outcomes of a binationally optimized P management
strategy, in which each country internalizes transboundary effects in its decision-making
process.

The results indicate that aggressive unilateral policies, such as high fertilizer taxes or
strict application caps, lead to both lower crop yields and reduced environmental damage, in
some cases achieving even greater reductions in P runoff than the binational benchmark. This
suggests that stringent regulation at the national level can effectively curb environmental
externalities, though often at the expense of economic output. However, the defining
characteristic of a binational approach is not necessarily the direct imposition of strict
regulations, but rather the incorporation of cross-border nutrient spillovers into optimal

decision-making. Unlike unilateral policies, which maximize national objectives without

considering transboundary effects, a binational strategy explicitly accounts for how one
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Figure 6: Accumulated Production and Environmental Damage under Unilateral P Policies
Figure 5 presents the accumulated total production and environmental damage over a 50-year period based
on 10,000 Monte Carlo simulations(The initial level of soil P is the minimum level (i.e., 1 mg/kg)). The
results are derived by computing annual averages and summing them over time. For threshold-based policies,
the 300 kg/ha limit represents the 90th percentile of the maximum P application observed in our dataset
(330 kg/ha), while the 245 kg/ha and 165 kg/ha thresholds correspond to the 75th and 50th percentiles,
respectively.

country’s actions influence the other.

A notable insight from these findings is that simply incorporating the externalities
associated with P runoff into each country’s optimization problem—without imposing any
additional policy interventions—naturally leads to lower environmental damage. In other
words, if each country were to adjust its fertilizer application while accounting for cross-border
spillovers, the resulting P use decisions would already lead to a more sustainable outcome.
This suggests that the environmental inefficiency in unilateral P management arises from the
lack of coordination rather than the absence of strict policies. While unilateral policies can
force reductions in environmental damage through taxation or application limits, a binational
approach achieves similar or better outcomes by aligning incentives without necessarily
resorting to heavy-handed interventions.

These findings underscore the importance of designing P management strategies that

facilitate cross-border coordination, rather than relying solely on unilateral regulatory mecha-
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nisms. Policies that encourage farmers to internalize transboundary effects—whether through
cooperative agreements, information-sharing, or incentive-based mechanisms—could achieve

significant environmental benefits without imposing excessive costs on agricultural production.

5.4 Marginal User Cost and Transboundary Sensitivity

To examine the intertemporal tradeoffs embedded in fertilizer use decisions, we compute
the marginal user cost (MUC) from the Bellman equation (6) (Cho et al. 2024). This term
captures the shadow value associated with increasing soil P today—namely, the effect of a
marginal rise in current P application on the present value of future payoffs, via its influence
on soil P accumulation.

Differentiating the equation (6) with respect to the fertilizer decision f;; yields:

d‘/i(lih {l]t}]E\Pl) aETj [ﬂ'i(lit? {l]t}]E\I/ZJ flt)] a‘/i(lit+17 {ljt+1}j€\lf¢) . alit+1

=0= + BE
dfit Ofit Oli g1 Ofit
N ~~ 4 A ~~ 4
current-period marginal profit marginal user cost (MUC;;) Fu=fr
m—Jqt

(8)

The first term reflects the immediate marginal profit of fertilizer use—the yield gain net

of input cost. The second term represents the MUC, which captures the discounted change
in future value resulting from additional accumulation of soil P. Rearranging the first-order

condition for an interior optimum gives:

) ay<lita fit)
TS

where p, - Qy/0fi: is the marginal revenue product of fertilizer. Thus, the MUC enters as

= py — MUG; (9)

an implicit shadow tax: the farmer equates the private marginal benefit to the sum of the
market price and the opportunity cost of degrading future soil quality and environmental
conditions.

The two inner components of the MUC expression also have clear interpretations. The
first term, OV;(l; 141, {lj141}jew,)/Oli1+1, represents the shadow value of soil P in the next

period—that is, how much the farmer values an incremental unit of future soil P, accounting
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Figure 7: Marginal user cost by transboundary and domestic soil phosphorus levels. Marginal
user cost is computed for fixed domestic soil P levels (5, 15, 25 mg/kg).

for both its productivity benefits and its environmental consequences. The second term,

Oli 1+1/0 fi, captures the extent to which current fertilizer use contributes to future soil
P accumulation. Unlike standard resource economics models where resource use depletes
the stock, our model features an accumulative state: fertilizer use increases the soil P stock.
As a result, the sign and magnitude of the MUC depend not on resource depletion, but
on the trade-off between the yield benefits and environmental damage associated with P
accumulation.

Figure 7 plots the computed MUC for the U.S and Canada across varying levels of
transboundary soil P, holding domestic soil P fixed at Low (5 mg/kg), Medium (15 mg/kg),
and High (25 mg/kg) levels. At low domestic P, the MUC is positive in both countries,
indicating that additional fertilizer use increases future value-reflecting the low baseline stock
of soil P and the productivity benefit of further accumulation. As domestic P increases, the
MUC becomes negative, suggesting that further fertilizer use imposes net future costs due to
higher environmental damage outweighing marginal yield gains.

A key result is that MUC declines with transboundary soil P, and this decline is more
pronounced for Canada. When legacy P builds up in the U.S., Canada’s total damage
increases sharply, and so does the shadow value of preserving its own soil P. As a result, the

marginal cost of adding to Canada’s own legacy stock becomes more severe as U.S. legacy P
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rises.

This asymmetry implies that Canada bears a disproportionate shadow cost of future
degradation, especially when U.S. legacy P is high. In a non-cooperative setting, Canada is
therefore induced to reduce fertilizer use more aggressively, while the U.S. remains relatively
insulated. The result is a strategic imbalance: U.S. soil P growth raises Canada’s marginal
user cost more than it raises its own, leading to a situation where Canada self-restricts while
still suffering external damage from across the border.

The economic implication is clear: an incremental rise in U.S. soil P makes Canada far more
reluctant to build up their own legacy stock, whereas U.S. faces weaker incentives to adjust.
In the absence of coordination, this dynamic generates a misalignment between abatement
effort and environmental responsibility. An efficient policy would require internalizing these
cross-border externalities—either through nutrient trading indexed to transboundary loading,
or a cooperative mechanism that equates marginal user costs across jurisdictions. Without
such instruments, Canada faces a choice between absorbing growing damage or tightening

fertilizer restrictions beyond what is socially optimal in isolation.

6 Discussion

This study explores the economic and environmental damage associated with phosphorus
P management in a transboundary setting, such as Lake Erie, demonstrating how strategic
interactions between countries influence long-term agricultural productivity and environmental
outcomes. The results show the inefficiencies of unilateral decision-making in managing
P runoff, where countries optimizing solely for domestic objectives fail to account for the
external costs imposed on their neighbors. This misalignment leads to excessive P application,
exacerbating environmental damage beyond socially optimal levels.

A key insight from the dynamic game model is that binational cooperation does not
necessarily require imposing stringent regulatory interventions, such as high fertilizer taxes
or strict application caps, to achieve lower environmental damage. Instead, the mere act of
incorporating transboundary nutrient spillovers into the optimization process naturally leads

to more sustainable P application decisions. In contrast, aggressive unilateral policies, while
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capable of reducing runoff, often do so at the cost of lower agricultural productivity, indicating
a fundamental trade-off between environmental preservation and economic efficiency.

The policy simulations further reveal that both unilateral and binational approaches
involve trade-offs. While fertilizer taxes and application caps effectively reduce environmental
damage, they also constrain crop production, raising concerns about long-term food security
and economic viability. This suggests that policy interventions should not only focus on
reducing P runoff but also consider complementary strategies to sustain or enhance agricultural
productivity. Technological innovations, such as precision agriculture, improved fertilizer
efficiency, and soil health management, could mitigate the negative effects of regulatory
policies by maintaining yields while minimizing nutrient losses. Future research should
explore how integrating these advancements into P management frameworks could achieve
both environmental and economic objectives simultaneously, reducing the need for strict
regulatory interventions that inherently limit productivity.

Another important aspect that warrants further investigation is the unobservability of
soil P levels, particularly in a transboundary context. Farmers face two layers of uncertainty:
(i) uncertainty regarding their own soil P levels due to imperfect soil testing and nutrient
cycling processes, and (ii) uncertainty regarding their neighbor’s soil P status, which affects
cross-border runoff and environmental damage. The current model assumes that decision-
makers have full knowledge of soil P conditions, but in reality, such information is often
incomplete or noisy. Future work should explore how information asymmetry and learning
mechanisms affect optimal P application decisions, particularly under binational coordination.
Developing policies that enhance soil P monitoring—such as improved sampling techniques or
incentive-based information-sharing mechanisms—could significantly improve the effectiveness
of P management strategies in transboundary agricultural systems.

Overall, these findings emphasize the importance of designing policies that align economic
incentives with environmental sustainability. Market-based instruments, such as nutrient
trading programs or regionally coordinated subsidy schemes, could provide a more efficient
pathway for managing P runoff while preserving agricultural productivity. However, policies
that solely rely on economic disincentives, such as taxes, may not be sufficient in the long run

without parallel investments in technology-driven solutions that enhance production efficiency.
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Addressing soil P unobservability, particularly the dual challenges of self-monitoring and cross-
border information asymmetry, is critical for ensuring that P management strategies remain
both effective and adaptable under real-world conditions. Future research should examine
how these policy instruments can be optimally combined with technological advancements
and improved information systems to achieve sustainable phosphorus management in shared

agricultural systems.
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A Appendix

A.1 Dynamic Game Algorithm

We use the algorithm from Miranda and Fackler (2004) to solve a dynamic game of phosphorus
(P) fertilizer management between two interacting countries, the U.S. and Canada. Algorithm
1 iteratively solves the Bellman equation using a projection method to approximate the value
function and determines the optimal P fertilizer application policy for each country. Starting
with initial guesses for the value function and control policy, the algorithm updates both by
evaluating the reward and transition functions at collocation points in the state space * .
Newton’s method is employed to refine the control policy by minimizing the Bellman equation
residuals using the gradient and Hessian of the value function. This process is repeated until

convergence, ensuring that each country’s optimal policy internalizes the externalities of P

runoff from the other farm, leading to strategic interdependence in decision-making.

4The initial guess for the value function and control policy is obtained from solving a single-agent stochastic
dynamic programming (SDP) with a 100-year time horizon. This provides a reasonable benchmark for the
starting values in the dynamic game framework.



Algorithm 1 Dynamic Game Solver

1:

- w

10:

12:

13:
14:
15:
16:
17:

18:

19:
20:
21:
22:
23:
24:

25:
26:
27:
28:
29:
30:
31:
32:

CD(s).

Input: Model structure (R;(s;,s;,ai,a;), R;(S;,si,a;,a:),9(si, 85, a;,a5), ), initial
guesses for Vi(s;, s;), Vj(s;,s;), policies a;, a;, collocation nodes s;,s;, tolerance tol,
maximum iterations maxit.

Output: Optimal policies a;, a}, value functions V;*(s;, s;), V;*(s5, 8i).

procedure INITIALIZATION

Compute collocation nodes for state space s; and s;, and the basis function matrix

Initialize value functions V;(s;, s;), Vj(s;, s;) and control policies a;, a;.
end procedure
procedure ITERATIVE VALUE FUNCTION AND PoLiCY UPDATE
for each iteration until convergence or maximum iterations do
Step 1: Value Function Update for Player :
Compute reward R;(s;, s;, a;, a;).
Compute future state g(s;, s;, a;, a;) and future value function Vi(sj, s}).
Update value function for Player i:

Vi(si, 55) < Ri(si, 85, ai, a;) + BE[Vi(s}, 85) | 81,85, s, a;]

Step 2: Optimal Control Update for Player i with First-Order Condition
Solve for the optimal control a} using the Newton method:

Compute the first derivative (gradient) of the value function with respect to a;.
Compute the second derivative (Hessian) of the value function with respect to a;.
Update the control a; using Newton’s method:

a; < a; — H(ai)_1VV(ai)
Check the first-order optimality condition:
Error = max(|VV(a;)])

if Error < tol then
Converged for Player i; store a;.
else
Continue iterations.
end if
(Repeat the same steps for Player j): Update value function V;(s;, s;), compute
rewards
R;(s;, si,aj,a;), and solve for optimal control a; using the Newton method.
end for
end procedure
procedure OUTPUT
Return v;, v;: Final value functions at evaluation points.
Return af, a}: Optimal actions (controls) for both players at evaluation points.
end procedure
Source from Miranda and Fackler 2004




A.2 Additional Figures
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Figure A1l: Example of corn production and environmental damage dynamics (Low initial
value). The initial level of soil P for the U.S. and Canada is the low level (i.e., 5 mg/kg)
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Figure A2: Example of corn production and environmental damage dynamics (Medium initial
value). The initial level of soil P for the U.S. and Canada is the medium level (i.e., 15 mg/kg)
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Figure A3: Example of corn production and environmental damage dynamics (High initial
value). The initial level of soil P for the U.S. and Canada is the high level (i.e., 25 mg/kg).
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