

The World's Largest Open Access Agricultural & Applied Economics Digital Library

This document is discoverable and free to researchers across the globe due to the work of AgEcon Search.

Help ensure our sustainability.

Give to AgEcon Search

AgEcon Search
<http://ageconsearch.umn.edu>
aesearch@umn.edu

Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only. No other use, including posting to another Internet site, is permitted without permission from the copyright owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C.

No endorsement of AgEcon Search or its fundraising activities by the author(s) of the following work or their employer(s) is intended or implied.

1 **Recognizing Non-Pecuniary Labor Benefits in Technology Adoption: Evidence from**
2 **Automatic Milking Systems in U.S. Dairy Farming**

3
4
5
6 **Jingyuan Zhang, Department of Agricultural Economics, Texas A&M University,**
7 **jayzhang1207@gmail.com**
8 **Grace Melo, Department of Agricultural Economics, Texas A&M University, gmelo@tamu.edu**

9 *prepared for presentation at the 2025 AAEA & WAEA Joint Annual Meeting*
10 *in Denver, CO; July 27-29, 2025*

11
12
13
14
15
16
17
18
19
20
21
22 *Copyright 2025 by [authors]. All rights reserved. Readers may make verbatim copies of this document*
23 *for non-commercial purposes by any means, provided that this copyright notice appears on all such*
24 *copies.*

26 **Recognizing Non-Pecuniary Labor Benefits in Technology Adoption: Evidence from**

27 **Automatic Milking Systems in U.S. Dairy Farming**

28

29 **Abstract**

30 This study examines pecuniary (e.g., labor cost savings) and non-pecuniary (e.g., improved
31 flexibility) labor benefits in technology adoption through a discrete choice experiment involving
32 212 dairy farmers in the U.S. Midwest focusing on automatic milking systems. Results reveal
33 that farmers value flexible time 2.17 times more than hired labor savings, suggesting
34 practitioners differentiate non-pecuniary benefit from pecuniary ones and utilize multiple
35 methods to assess preference heterogeneity for robustness: we consistently found that farmers
36 experienced labor difficulties favor hired labor savings, whereas those with secondary income
37 value both benefits less. For other characteristics (e.g., herd size), preference heterogeneity is
38 ambiguous.

39

40 **Keywords: farmers preferences, willingness to pay, farm automation, milking systems**

41 **JEL codes: D22, Q12, Q16**

42

43 **Introduction**

44 Labor-saving technologies are fundamental in advancing efficiency in agriculture (Edan, Han &
45 Kondo, 2009; Gallardo & Sauer, 2018). These technologies reduce labor inputs, improve
46 management practices and well-being (Staccioli & Virgillito, 2020). The literature emphasizes
47 the adoption of technologies must be economically viable (Sunding & Zilberman, 2001) and the
48 primary motivation for adoption is often the promise of labor benefits —typically referring to
49 labor input savings and improved labor efficiency (Gallardo and Sauer 2018).

50 Studies on labor-saving technologies generally fall into two categories: cost-benefit
51 analyses to inform potential adopters' decisions, and economic studies that analyze adoption
52 behavior, industrial impact, and policy design (Dedrick, Gurbaxani & Kraemer, 2003; Salfer et
53 al., 2017; Lowenberg-DeBoer et al., 2020). These studies have traditionally estimated the total
54 value of labor benefits by measuring the difference in total labor input hours before and after
55 adoption—often termed “labor savings”—without distinguishing the source or nature of the
56 change, and then multiplying the difference by the market wage rate.

57 However, discussions in the literature (Edan, Han, and Kondo 2009; Gallardo and Sauer
58 2018) have observed that potential adopters often value not only the commonly recognized
59 pecuniary benefit of hired labor savings, but also non-pecuniary benefits, such as the improved
60 flexibility, lifestyle, and overall well-being. These findings challenge the traditional approach:
61 when non-pecuniary labor benefits are overlooked or when analyses rely solely on labor input
62 differences and market wage rate, the total value of labor benefits may be misrepresented,
63 leading potential adopters to make decisions based on incomplete information.

64 In this study, we investigate non-pecuniary benefits in the technology adoption decision-
65 making process, focusing on the Automatic Milking System (AMS) in U.S. Midwest dairy

66 farming. The U.S. Midwest is the leading region for milk production, contributing 24.16% of the
67 nation's supply (USDA, 2024). Similar to other agricultural sectors, dairy farmers represent one
68 of the most burdened workforces, averaging over 60 hours of on-farm work per week (USDA,
69 2018). The industry depends on a consistent farm labor supply but currently faces severe labor
70 shortages (Hertz & Zahniser, 2013; Zahniser, 2018).

71 AMS offers a potential solution to the labor challenges in dairy farming by automating
72 the milking process using robotic arms and sensors, allowing cows to walk in and be without
73 human intervention (Cogato et al., 2021). The primary motivations for AMS adoption are
74 reduced labor inputs and improved flexibility by freeing farmers from rigid milking schedules,
75 while the main barrier is substantial investment (Latvala & Pyykkonen, 2005; Svennersten-
76 Sjaunja & Pettersson, 2008; Cogato et al., 2021). The economic returns of AMS remain
77 inconclusive. Prior cost-benefit analyses have emphasized the pecuniary benefits of hired labor
78 savings, estimating the economic value of AMS adoption based on market wage rates (Latvala &
79 Pyykkonen, 2005; Bijl et al., 2007; Salfer et al., 2017; Hansen et al., 2019; Gargiulo et al., 2020).

80 A handful of qualitative survey studies have noted that non-pecuniary benefits play an
81 important role in AMS adoption. For instance, Schewe & Stuart (2015) found that lifestyle
82 benefits, particularly increased family time and recreation, are among the most important factors
83 in AMS adoption. Peña-Lévano, Burney & Beaudry (2023) reported that improved flexibility is
84 perceived positively by farmers and encourage adoption. However, quantitative evidence
85 regarding the value potential adopters place on these non-pecuniary benefits remains scarce.

86 Despite mixed findings on economic returns, over 6,000 dairy farms worldwide had
87 adopted AMS by 2018, and adoption continues to grow globally (Mathijs, 2004; Gallardo &
88 Sauer, 2018). In the U.S., AMS adoption remains limited as of 2024, which may be due to the

89 previously sufficient supply of immigrant and migrant labor (Becerra 2020; Gutiérrez-Li et al.
90 2025), lack of information about AMS benefits, and the perceived hassle of reconstruction and
91 adaptation (Mathijs 2004; Svennersten-Sjaunja and Pettersson 2008; Hansen, Herje & Höva
92 2019). However, with changes to immigration administration anticipated in 2025, the labor
93 structure and conditions may shift.

94 To the best of our knowledge, this is the first study to differentiate and quantify potential
95 adopters' valuation of the non-pecuniary labor benefits of AMS adoption. This study contributes
96 to two strands of literature. First, it advances the cost-benefit analysis of AMS by offering a more
97 complete view of benefits to inform stakeholders. We elicit potential adopters' willingness to pay
98 (WTP) for two quantitatively comparable benefits, hired labor savings (pecuniary) and increased
99 owner flexible time (non-pecuniary), under scenarios involving trade-offs. Our findings
100 underscore the importance of differentiating and incorporating non-pecuniary labor benefits both
101 qualitatively and quantitatively in future analyses to better inform adoption decisions.

102 Second, by evaluating non-pecuniary labor benefits, which have often been omitted or
103 subsumed under pecuniary benefits in prior research, our study contributes to the broader
104 literature on the economics of technology adoption and provides insights into adoption behavior.
105 Furthermore, since preferences and valuations of non-pecuniary attributes often vary among
106 potential adopters (Farzin, 2009; Ortiz & Sarrias, 2022), we evaluate preference heterogeneity
107 based on farmer characteristics though multiple methods for robustness, including farm size,
108 income source, confidence in future profitability, experience with labor difficulties, risk aversion,
109 and time discounting preferences.

110 **Experimental Design**

111 The currently low adoption rate of AMS in the U.S. limits available farm-level data. Moreover,
112 without placing potential adopters in decision-making contexts involving trade-offs and
113 controlling for variation in AMS models, farm structures, and production types—as done in a
114 DCE—it is challenging to elicit farmers' valuations of pecuniary and non-pecuniary labor
115 benefits. To address these limitations, we employed a stated preference approach using a DCE
116 implemented through mailed surveys, which are effective for reaching farmers (Pennings, 2002).

117 DCE has been widely applied to study technology adoption (Ortiz, Avila-Santamaría &
118 Martinez-Cruz, 2023) and consumer preferences (Van Loo et al. 2011). Compared to previous
119 qualitative AMS surveys, DCE allows for quantitative examination of trade-offs between
120 pecuniary and non-pecuniary benefits in scenarios that mirror actual investment situations. It
121 helps reduce hypothetical and strategic biases, isolates individual attribute effects, and is
122 generally considered more effective (Caputo & Lusk, 2020).

123 In the DCE, participants faced nine choice scenarios, each asking to choose to invest
124 between two AMS options (A or B) with varying attributes, or to retain their current CMS
125 (status-quo, option C). As only a few suppliers offer AMS with comparable prices and features,
126 scenarios are framed with all AMS options come from a recognized brand with a 10-15 years
127 expected lifespan, differing only in the attribute levels. An unlabeled design was employed to
128 focus on labor benefits rather than brands or models.

129 Given the length constraints of mailed surveys and the cognitive burden of DCE tasks, to
130 maintain a high response rate and attention, we focus on the most important attributes as detailed
131 in Table 1¹: *Price*, *Hired labor saving*, and *Owners' flexible time*, each with three levels
132 comparable to those revealed in the market. A pilot study was conducted with stakeholders to
133 ensure that the choice scenarios were realistic, relevant, and practical.

134 Figure 1 provides an example of how instructions, attributes, and a choice scenario were
135 presented to the dairy farmers. To reduce the number of choice scenarios presented to each
136 participant, the DCE was generated using a sequential Optimal Orthogonal-in-the-Differences
137 design, resulting in nine choice scenarios per survey (Street, Burgess & Louviere, 2005). To
138 minimize order effects, the sequence of choice scenarios was randomized. Additionally, a cheap
139 talk script was included to mitigate hypothetical bias (Özdemir, Johnson, & Hauber, 2009). Each
140 choice scenario included two questions: the uninduced question “*I would choose*” and the
141 induced question “*Between A&B, I prefer.*” The uninduced question allowed participants to
142 make investing decisions on all three options while the induced question excluded the status quo
143 option, forcing a choice between the two AMS options. For this study, only responses from the
144 unforced choice are used to improve realism without external prompting.²

145 In addition to evaluating farmers' valuation for the pecuniary and non-pecuniary labor
146 benefits, we also tested whether information regarding production influences potential adopters'
147 decisions. We utilized a between-subject design, randomly distributing an equal number of
148 surveys with and without additional information about a non-labor benefit: a 10% increase in
149 milk production upon AMS adoption. The information is expected to lower the utility of staying
150 with CMS if their adoption decisions are influenced by such non-labor benefit.

151 To investigate whether risk aversion affects potential adopters' preferences in technology
152 adoption decisions, participants were asked a hypothetical question following Barsky et al.
153 (1997), given a choice between receiving \$1,000 without risk or a 50% chance to win \$2,000
154 (and a 50% chance of receiving nothing). Those who chose a certain \$1,000 were classified as
155 risk-averse, while those who preferred to gamble or were indifferent were labeled as non-risk-
156 averse. Similarly, to assess time-discounting preferences, we include a hypothetical question

157 asking whether participants would prefer receiving \$1,000 today or \$1,500 next year, following
158 Khwaja, Silverman & Sloan (2007). Those who opted for immediate payment were categorized
159 as impatient. In the last part of the survey, participants' characteristics such as herd size, income
160 source, confidence in future profitability, and experience with labor difficulties were recorded.

161 The [Blinded for Review] Institutional Review Board approved the study (IRB-FY2021-
162 207). The power analysis based on the “T choices per parameter” rule (Assele, Meulders &
163 Vandebroek, 2023) suggests a minimum sample size of 45 to identify each attribute. We mailed a
164 six-page survey to a random representative sample of 1,000 dairy farmers currently using CMS
165 in the region from November 2023 to March 2024³. We received a total of 316 responses, among
166 which 212 were complete. Responses with missing answers were dropped, resulting in an
167 effective response rate of 21.2%, which is average for mailed surveys with farmers (Pennings,
168 Irwin & Good, 2002).

169 Table 2 provides an overview of the sample's characteristics, demonstrating a balanced
170 response between the groups receiving surveys with and without the information regarding the
171 non-labor benefit (i.e., milk production improvement of AMS adoption). Nationally, the average
172 age of farmers is 58.1 years, and 35% have a college degree (USDA, 2024). In the dairy industry,
173 approximately 74.2% of dairy farms have a herd size smaller than 100 (Njuki, 2022). In our
174 survey with dairy farmers in the Midwest, 81% of farmers are aged 50 and above, 19% have a
175 college degree, and 62% have a herd size smaller than 100. Overall, our sample is comparable to
176 the national agriculture sector with fewer having a college degree.

177 **Econometric Model**

178 DCE is grounded in Lancaster's theory of consumer choice, which posits that consumption
179 decisions are determined by the utility derived from the attributes of the goods consumed

180 (Lancaster, 1966). The econometric foundation of this approach relies on Random Utility Theory
181 (RUM, McFadden, 1974). Within this framework, the utility that individual n derives from
182 choosing alternative j in choice scenario t is represented as:

$$(1) \quad V_{njt} = \alpha_n Price_{njt} + \beta_{n1} Hired\ labor\ saving_{njt} + \\ \beta_{n2} Owner's\ flexible\ time_{njt} + \beta_{n3} ASC_j + \beta_{n4} ASC_{info_{nj}} + \varepsilon_{njt}$$

183 where α_n is the marginal utility of price for individual n ; $Price_{njt}$ represents the price of
184 alternative j faced by individual n in choice scenario t ; $Hired\ labor\ saving_{njt}$ and
185 $Owner's\ flexible\ time_{njt}$ are continuous variables indicating the hired labor savings and
186 additional owner's flexible time, respectively, associated with alternative j . ASC_j is an
187 alternative-specific constant, taking the value 1 for the status quo option and 0 otherwise; ε_{njt} is
188 the unobservable component, assumed to be Type I Extreme Value distributed.

189 Based on the separability of attribute effects in RUM and choice modeling theory
190 (McFadden, 1974; Train, 2009), the information effect on production benefits should not
191 influence the valuation of labor-related attributes but rather the overall alternative-specific
192 constant ASC_j , which captures aspects of the status quo beyond labor benefits. Accordingly,
193 $ASC_{info_{nj}}$ is created as an interaction term of ASC_j and a dummy variable indicating whether
194 the individual n received information about a 10% production improvement with AMS adoption
195 (1 if received, 0 otherwise), thereby accounting for the potential information effect.

196 The DCE data were analyzed using a mixed logit (MXL) model to account for taste
197 variation across individuals. Following previous literature (Espinosa-Goded, Barreiro-Hurlé &
198 Ruto, 2010), the price coefficient α_n is assumed fixed, while coefficients β_n are specified as
199 random variables following normal distributions. The model is estimated using simulated
200 maximum likelihood estimation with 1,000 Halton draws, implemented via the *logitr* package in

201 R (Helveston, 2021). The marginal WTP for each attribute is calculated as $-\frac{\beta}{\alpha}$, and standard
202 errors are estimated using the Delta method (Train, 2009). For direct interpretability, we also
203 estimate the MXL model in the WTP space, following previous studies on consumer preferences
204 (Hole & Kolstad, 2012). The units for the two attributes, *Hired labor saving* and *Owner's flexible*
205 *time*, are presented as hours per week. To enhance interpretability, marginal WTP was estimated
206 in dollars per week, and a discount factor was applied using a 4.68% interest rate (based on the
207 10-year U.S. Treasury rate as of April 2024), assuming a 12.5-year lifespan for AMS.

208 Previous qualitative AMS surveys have suggested that farm characteristics and
209 stakeholders' sociodemographic profiles may affect AMS adoption (Peña-Lévano, Burney &
210 Beaudry 2023; Lage et al. 2024). In our study, we explore preference heterogeneity on
211 characteristics including herd size, income source, confidence in future profitability, experience
212 with labor difficulties, risk aversion, and time discounting preferences.⁴.

213 While the MXL model accounts for unobserved heterogeneity, it does not explain the
214 sources (Boxall and Adamowicz ,2002). We employed four methods for robustness following
215 previous literature, focusing on both estimated sample mean WTP and conditional individual
216 WTP (which incorporates observed individual choices using Bayes' theorem): (1) interactions
217 between individual characteristics and attributes and/or alternative-specific constants in the
218 utility function, as proposed by McFadden and Train (2000), and applied in Brouwer, Martin-
219 Ortega, and Berbel (2010); Kragt and Llewellyn (2014); Chèze, David, and Martinet (2020); (2)
220 subsample analysis, which divide the whole sample into subsamples based on individual
221 characteristics and compare model estimates across subsamples (Balcombe, Fraser & Falco,
222 2010; Lin, Nayga & Yang, 2024); (3) obtain the conditional individual WTP following Ishaq,
223 Kolady & Grebitus (2023) and Lin, Nayga, and Yang (2024), and utilize ordinary least square

224 (OLS) along with (4) weighted least squares (WLS) regression on the estimated conditional
225 individual WTP. A detailed explanation is presented in the Appendix IV.

226 **Results**

227 **Whole Sample Analysis**

228 Table 3 presents the estimated WTP from the MXL models in preference and WTP space. The
229 consistency of estimated coefficients across both spaces indicates good model stability (Train
230 2009, Hole & Kolstad 2012). For interpretability, the WTP-space model is used for the following
231 analysis.

232 As expected, the *Price* coefficient is negative and significant, confirming that higher
233 investment reduces utility. Both *Hired labor saving* and *Owners' flexible time* show positive and
234 strongly significant coefficients, underscoring the importance of both pecuniary and non-
235 pecuniary labor benefits in AMS adoption. The interaction term for information *ASC_info* is not
236 statistically significant, implying that information about milk production gains does not
237 significantly shift preferences away from the status quo.

238 On average, farmers are willing to pay \$3,150 for one hour of hired labor savings per
239 week and \$6,827—2.17 times more—for one hour of additional owner flexible time per week,
240 assuming a 10–15 years AMS lifespan. Applying a 4.68% discount rate over an average of 12.5
241 years, the discounted marginal WTP equates to \$6.37 per hour for hired labor savings and \$13.80
242 for the owner's flexible time. Standard deviations for *Hired labor saving* and *Owner's flexible*
243 *time* are marginally significant ($0.05 < p < 0.1$), indicating modest heterogeneity in preferences

244 **Heterogeneity Analysis**

245 Table 4 summarizes heterogeneity in preferences for the pecuniary benefit of Hired Labor Saving
246 and the non-pecuniary benefit of Owner's Flexible Time, assessed across four approaches:

247 interaction models, subsample analyses, and OLS and WLS regressions on conditional individual
248 WTP. Detailed results are provided in the Appendix V and VI.

249 Among six characteristics evaluated, only two consistent findings emerge across
250 methods: First, farmers who have experienced labor difficulties are likely to place a higher value
251 on the pecuniary labor benefit Hired labor saving during AMS adoption. Second, farmers with
252 secondary income sources are likely to show lower valuations for both labor benefits, a result
253 that holds across all methods except the WLS model.

254 **Discussion**

255 This study provides key insights into technology adoption and how farmers value pecuniary and
256 non-pecuniary labor benefits, and emphasizes the importance of recognizing and distinguishing
257 non-pecuniary from pecuniary benefits. Traditional cost-benefit analyses often conclude that
258 AMS adoption yields comparable or negative economic returns to CMS under certain
259 management conditions (Rotz, Coiner & Soder, 2003; Bijl et al., 2007; Steeneveld et al., 2012;
260 Shortall et al., 2016; Gargiulo et al., 2020). Our results suggest that gains from workload
261 flexibility and improved well-being may be underestimated. Failure to account for these benefits
262 may lead to an incomplete and inaccurate understanding and prediction of the adoption behavior
263 and industry impact (Pannell and Claassen 2020). Future evaluations should incorporate non-
264 pecuniary labor benefits to better inform decision-makers.

265 We find that providing information about improved production did not significantly affect
266 farmers' AMS adoption decisions. Beyond the main model estimated on the total sample
267 showing no information effect, we analyzed all subsamples divided by each characteristic in the
268 subsample analysis (Appendix V) and found no information effect in any subgroup.⁵ No
269 information effects could be attributed to several factors. First, although previous surveys (Lage

270 et al., 2024), noted that farmers consider production increase an important motivation for AMS
271 adoption, our model suggests that participants may not view it as critical, instead focus primarily
272 on labor-related benefits, as suggested by Michler et al. (2019). An alternative explanation is
273 that: participants were already familiar with such information before receiving the survey, or they
274 may not have paid sufficient attention to the information provided, resulting in no changes in
275 their beliefs and therefore no observed effect on their choices (Grebitus, Roosen & Seitz, 2015).
276 This explanation is supported by our survey findings indicating that participants who received
277 the information about improved milk production with AMS adoption were not more likely to
278 agree with the statement that AMS can improve milk production than those who did not receive
279 it.

280 Consistent findings on preference heterogeneity align with expectations. It is reasonable
281 that farmers who have experienced labor difficulties value hired labor savings higher, as they
282 may desire the labor security offered by technology adoption (Foster & Rosenzweig, 2010;
283 Staccioli & Virgillito, 2020). Regarding income sources, farmers with secondary incomes may be
284 less dependent on dairy farming, prioritize their time allocation to other businesses, and have
285 established ways to balance multiple tasks and incomes, making them less likely to value the
286 labor benefits from AMS. Alternatively, incorporating findings from Fernandez-Cornejo et al.
287 (2007) on farmers' secondary income and opportunity cost, dairy farmers with secondary income
288 may earn lower wage rates compared to dairy income, which drives down the valuation of AMS.

289 Despite previous literature suggesting that risk-averse and impatient decision-makers
290 typically have a decreased likelihood of adoption (Holt & Laury, 2002; Barham et al., 2014;
291 Barham et al., 2015; Brick & Visser, 2015; Falk et al., 2023), we did not find strong evidence
292 that risk and time-discounting attitudes affect preferences. Potential reasons could include that

293 the risk-averse and time-discounting questions were not incentivized and hypothetical bias may
294 have affected responses (Özdemir, Johnson & Hauber, 2009).

295 When interpreting our findings, an important consideration is that the extent to which
296 non-pecuniary labor benefits influence adoption may depend on the nature of technology,
297 industry, and adopter. While the dairy industry and AMS provide an ideal context for
298 investigating non-pecuniary labor benefits, our findings may not generalize to all technologies
299 without accounting for their unique characteristics. Moreover, even the same technology in the
300 same industry may offer different magnitudes of non-pecuniary labor benefits depending on
301 adopters' characteristics. For instance, small family-owned dairy farms that rely on the owners
302 for labor may derive greater non-pecuniary benefits from AMS adoption (Cogato et al. 2021;
303 Peña-Lévano, Burney & Beaudry 2023; Lage et al. 2024). Conversely, larger farms that depend
304 heavily on hired labor may see minimal gains in the manager's flexible time, with most labor
305 benefits accruing from reduced hired labor costs (Rotz et al., 2003; Mathijs, 2004; Bijl et al.,
306 2007; Steeneveld et al., 2012; Shortall et al., 2016; Gargiulo et al., 2020). In the latter case, the
307 traditional approach of calculating hired labor cost savings by incorporating market wage rates
308 multiplied by labor input differences may yield less bias, as the non-pecuniary labor benefit is
309 minimal.

310 **Conclusion and Implications**

311 Labor benefits of technology can be categorized into pecuniary benefits and non-pecuniary
312 benefits. We examined the WTP of potential adopters in the U.S. Midwest for pecuniary labor
313 benefits of hired labor savings and non-pecuniary labor benefits of owners' flexible time in the
314 context of AMS adoption. Using data from a mailed survey inducting a DCE involving 212 dairy

315 farmers, we find that one hour of owner's flexible time is valued at \$13.80, 2.17 times higher
316 than the hired labor savings at \$6.37.

317 Our study finds that measuring labor benefits by estimating labor cost savings (as
318 differences in labor inputs) while overlooking non-pecuniary benefits may underestimate the
319 economic value of technology adoption and yield a partial understanding of the adoption impact.

320 While both pecuniary and non-pecuniary labor benefits are positively valued across
321 characteristics, heterogeneity exists. The common methods used in literature may yield different
322 results when examining such heterogeneity, and it is crucial to check the robustness of findings
323 by using multiple approaches. In our study, results were robust only for two characteristics out of
324 six. For instance, farmers who have experienced labor difficulties (44%) value hired labor
325 savings consistently more than their counterparts, while farmers who have secondary income
326 sources (47%) value both pecuniary and non-pecuniary labor benefits less.

327 These findings have important implications. First, they emphasize accounting for non-
328 pecuniary labor benefits in future studies when estimating the value of labor benefits from
329 technology adoption. Future research should explore the trade-offs between pecuniary and non-
330 pecuniary labor benefits across different technologies and stakeholder characteristics.

331 Policymakers and scholars should consider the value of non-pecuniary benefits and preference
332 heterogeneity when predicting adoption and formulating policies to better serve stakeholders.
333 Second, our results suggest that targeted promotion strategies may effectively encourage AMS
334 adoption. Since non-pecuniary labor benefits are valued significantly higher than pecuniary
335 benefits, promotion efforts could emphasize these non-pecuniary advantages. As heterogeneity
336 exists, AMS may not be cost-effective for everyone. Communication strategies might focus on
337 farmers who rely solely on dairy income by highlighting the overall labor benefits. Similarly,

338 farmers who have experienced labor difficulties could be targeted by emphasizing the pecuniary
339 labor benefits of hired labor savings and labor security. Tailoring marketing messages to specific
340 farmer segments may increase adoption rates.

¹ Other potentially relevant factors (model, features, barn and farm types, etc) were excluded to keep the DCE cognitively manageable for farmers. For example, maintenance cost represents a recurring payment and would require discounting to combine with the lump-sum investment, introducing complexity and potential bias (Savage & Waldman 2008; Galesic & Bosnjak 2009; Revilla & Ochoa 2017).

² The choice between uninduced and induced formats in DCE depends on survey objectives (Breffle & Rowe, 2002), though uninduced questions are generally preferred for enhancing realism by avoiding forced choices (Ortúzar & Willumsen, 2024). However, including a status quo option can trigger status quo bias (Samuelson & Zeckhauser, 1988) or the endowment effect (Kahneman, Knetsch & Thaler, 1991), where respondents disproportionately favor the current state. Given the low AMS adoption rate in the U.S., we included an induced version as a backup to assess conditional preferences if the uninduced format yielded limited variation (e.g., all respondents selecting the status quo). To minimize potential interference, the uninduced question was presented first. Literature suggests that responses to both formats are generally consistent and do not interfere with one another (Collins & Vossler, 2009). 60.6% of participants chose the status quo in uninduced questions, providing sufficient variation.

³ We focus on farmers currently using CMS for several reasons. First, CMS users represent the vast majority of the regional dairy sector and constitute the primary pool of potential adopters (Becerra, 2020; Cogato et al., 2021). They therefore provide a more relevant sample for understanding widespread barriers and drivers of adoption. Second, CMS users' valuations of

AMS are ex-ante and unaffected by ex-post rationalizations or learning effects, which can bias perceptions toward overly positive assessments and inflated WTP. This distinction is especially important for policy-oriented research aimed at informing adoption decisions before they occur. Third, restricting the sample to potential adopters helps minimize self-selection bias, as current AMS users may have unobserved characteristics that limit generalizability. Finally, because our study aims to inform policies and stakeholder engagement around AMS adoption, understanding how potential adopters perceive both pecuniary and non-pecuniary benefits is critical for designing effective outreach and incentives. Compared to studies focusing solely on current adopters, our approach better captures ex-ante investment preferences, aligning with the DCE framework. Ultimately, we aim to answer the question: “*What drives the decision to adopt?*” rather than “*How do farmers evaluate the technology after adoption?*”

⁴ Among the characteristics collected, age, education, and whether farmers work overtime had insufficient variation (less than 45 respondents belonged to a specific level) required by the power analysis, and were excluded for the heterogeneity analyses.

⁵ The coefficient for *ASC_info* is not significant in all subsamples except for those who are confident about future profitability. Further inspection shows that the significance is driven by an unbalanced subsample that experienced labor difficulties. Among farmers who were confident and did not receive the information nudge, 65.9% had experienced labor difficulties. In contrast, for those who were confident and received the treatment, only 38.2% had not experienced labor difficulties. After including an interaction term of $ASC_info * I_{labor\ difficulties}$ in the subsample for those who are confident about future profitability, the coefficient for *ASC_info* is no longer significant.

341 **References**

342 Assele, Samson Yaekob, Michel Meulders, and Martina Vandebroek. 2023. “Sample Size
343 Selection for Discrete Choice Experiments Using Design Features.” *Journal of Choice
344 Modelling* 49 (December):100436. <https://doi.org/10.1016/j.jocm.2023.100436>.

345 Balcombe, Kelvin, Iain Fraser, and Salvatore Di Falco. 2010. “Traffic Lights and Food Choice: A
346 Choice Experiment Examining the Relationship between Nutritional Food Labels and
347 Price.” *Food Policy* 35 (3): 211–20. <https://doi.org/10.1016/j.foodpol.2009.12.005>.

348 Barham, Bradford L., Jean-Paul Chavas, Dylan Fitz, Vanessa Ríos-Salas, and Laura Schechter.
349 2015. “Risk, Learning, and Technology Adoption.” *Agricultural Economics* 46 (1): 11–
350 24. <https://doi.org/10.1111/agec.12123>.

351 Barham, Bradford L., Jean-Paul Chavas, Dylan Fitz, Vanessa Ríos Salas, and Laura Schechter.
352 2014. “The Roles of Risk and Ambiguity in Technology Adoption.” *Journal of Economic
353 Behavior & Organization* 97 (January):204–18.
354 <https://doi.org/10.1016/j.jebo.2013.06.014>.

355 Barsky, R. B., F. T. Juster, M. S. Kimball, and M. D. Shapiro. 1997. “Preference Parameters and
356 Behavioral Heterogeneity: An Experimental Approach in the Health and Retirement
357 Study.” *The Quarterly Journal of Economics* 112 (2): 537–79.
358 <https://doi.org/10.1162/003355397555280>.

359 Becerra, David. 2020. “‘They Say We Are Criminals’: The Stress, Fears, and Hopes of Migrant
360 Dairy Workers as a Result of US Immigration Policies.” *Journal of Poverty* 24 (5–6):
361 389–407. <https://doi.org/10.1080/10875549.2019.1655691>.

362 Bijl, R., S. R. Kooistra, and H. Hogeweene. 2007. "The Profitability of Automatic Milking on
363 Dutch Dairy Farms." *Journal of Dairy Science* 90 (1): 239–48.
364 [https://doi.org/10.3168/jds.S0022-0302\(07\)72625-5](https://doi.org/10.3168/jds.S0022-0302(07)72625-5).

365 Boxall, Peter C., and Wiktor L. Adamowicz. 2002. "Understanding Heterogeneous Preferences
366 in Random Utility Models: A Latent Class Approach." *Environmental and Resource
367 Economics* 23 (4): 421–46. <https://doi.org/10.1023/A:1021351721619>.

368 Breffle, William S., and Robert D. Rowe. 2002. "Comparing Choice Question Formats for
369 Evaluating Natural Resource Tradeoffs." *Land Economics* 78 (2): 298–314.
370 <https://doi.org/10.2307/3147275>.

371 Brick, Kerri, and Martine Visser. 2015. "Risk Preferences, Technology Adoption and Insurance
372 Uptake: A Framed Experiment." *Journal of Economic Behavior & Organization*,
373 Economic Experiments in Developing Countries, 118 (October):383–96.
374 <https://doi.org/10.1016/j.jebo.2015.02.010>.

375 Brouwer, Roy, Julia Martin-Ortega, and Julio Berbel. 2010. "Spatial Preference Heterogeneity: A
376 Choice Experiment." *Land Economics* 86 (3): 552–68.
377 <https://doi.org/10.3368/le.86.3.552>.

378 Chèze, Benoît, Maia David, and Vincent Martinet. 2020. "Understanding Farmers' Reluctance to
379 Reduce Pesticide Use: A Choice Experiment." *Ecological Economics* 167
380 (January):106349. <https://doi.org/10.1016/j.ecolecon.2019.06.004>.

381 Cogato, Alessia, Marta Brščić, Hao Guo, Francesco Marinello, and Andrea Pezzuolo. 2021.
382 "Challenges and Tendencies of Automatic Milking Systems (AMS): A 20-Years
383 Systematic Review of Literature and Patents." *Animals* 11 (2): 356.
384 <https://doi.org/10.3390/ani11020356>.

385 Collins, Jill P., and Christian A. Vossler. 2009. “Incentive Compatibility Tests of Choice
386 Experiment Value Elicitation Questions.” *Journal of Environmental Economics and
387 Management* 58 (2): 226–35. <https://doi.org/10.1016/j.jeem.2009.04.004>.

388 Dedrick, Jason, Vijay Gurbaxani, and Kenneth L. Kraemer. 2003. “Information Technology and
389 Economic Performance: A Critical Review of the Empirical Evidence.” *ACM Comput.
390 Surv.* 35 (1): 1–28. <https://doi.org/10.1145/641865.641866>.

391 Edan, Yael, Shufeng Han, and Naoshi Kondo. 2009. “Automation in Agriculture.” In *Springer
392 Handbook of Automation*, edited by Shimon Y. Nof, 1095–1128. Berlin, Heidelberg:
393 Springer. https://doi.org/10.1007/978-3-540-78831-7_63.

394 Espinosa-Goded, María, Jesús Barreiro-Hurlé, and Eric Ruto. 2010. “What Do Farmers Want
395 From Agri-Environmental Scheme Design? A Choice Experiment Approach.” *Journal of
396 Agricultural Economics* 61 (2): 259–73. [https://doi.org/10.1111/j.1477-9552.2010.00244.x](https://doi.org/10.1111/j.1477-
397 9552.2010.00244.x).

398 Falk, Armin, Anke Becker, Thomas Dohmen, David Huffman, and Uwe Sunde. 2023. “The
399 Preference Survey Module: A Validated Instrument for Measuring Risk, Time, and Social
400 Preferences.” *Management Science* 69 (4).

401 Farzin, Y. H. 2009. “The Effect of Non-Pecuniary Motivations on Labor Supply.” *The Quarterly
402 Review of Economics and Finance* 49 (4): 1236–59.
403 <https://doi.org/10.1016/j.qref.2009.09.001>.

404 Fernandez-Cornejo, Jorge, Ashok K. Mishra, Richard F. Nehring, Chad Hendricks, Malaya
405 Southern, and Alexandra Gregory, eds. 2007. *OFF-FARM INCOME, TECHNOLOGY
406 ADOPTION, AND FARM ECONOMIC PERFORMANCE*. Economic Research Report.
407 <https://doi.org/10.22004/ag.econ.7234>.

408 Foster, Andrew D., and Mark R. Rosenzweig. 2010. "Microeconomics of Technology Adoption."
409 *Annual Review of Economics* 2 (Volume 2, 2010): 395–424.
410 <https://doi.org/10.1146/annurev.economics.102308.124433>.
411 Galesic, Mirta, and Michael Bosnjak. 2009. "Effects of Questionnaire Length on Participation
412 and Indicators of Response Quality in a Web Survey." *Public Opinion Quarterly* 73 (2):
413 349–60. <https://doi.org/10.1093/poq/nfp031>.
414 Gallardo, R. Karina, and Johannes Sauer. 2018. "Adoption of Labor-Saving Technologies in
415 Agriculture." *Annual Review of Resource Economics* 10 (Volume 10, 2018): 185–206.
416 <https://doi.org/10.1146/annurev-resource-100517-023018>.
417 Gargiulo, J.I., N.A. Lyons, K. Kempton, D.A. Armstrong, and S.C. Garcia. 2020. "Physical and
418 Economic Comparison of Pasture-Based Automatic and Conventional Milking Systems."
419 *Journal of Dairy Science* 103 (9): 8231–40. <https://doi.org/10.3168/jds.2020-18317>.
420 Grebitus, Carola, Jutta Roosen, and Carolin Claudia Seitz. 2015. "Visual Attention and Choice: A
421 Behavioral Economics Perspective on Food Decisions." *Journal of Agricultural & Food
422 Industrial Organization* 13 (1): 73–81. <https://doi.org/10.1515/jafio-2015-0017>.
423 Gutiérrez-Li, Alejandro, Grace Melo, Shaheer Burney, Cesar Escalante, and Shree Ram Acharya.
424 2025. "Automatic Milking Systems: Labor-Savings Route or Costly Gamble for Dairy
425 Farmers?" *Choices*. <https://doi.org/10.22004/ag.econ.348932>.
426 Hansen, Bjørn Gunnar, Hans Olav Herje, and Jonas Höva. 2019. "Profitability on Dairy Farms
427 with Automatic Milking Systems Compared to Farms with Conventional Milking
428 Systems." *International Food and Agribusiness Management Review* 22 (2): 215–28.
429 <https://doi.org/10.22434/IFAMR2018.0028>.

430 Helveston, John. 2021. “Logitr: Logit Models w/Preference & WTP Space Utility
431 Parameterizations.” <https://doi.org/10.32614/CRAN.package.logitr>.

432 Hertz, Tom, and Steven Zahniser. 2013. “Is There A Farm Labor Shortage?” *American Journal of*
433 *Agricultural Economics* 95 (2): 476–81. <https://doi.org/10.1093/ajae/aas090>.

434 Hole, Arne Risa, and Julie Riise Kolstad. 2012. “Mixed Logit Estimation of Willingness to Pay
435 Distributions: A Comparison of Models in Preference and WTP Space Using Data from a
436 Health-Related Choice Experiment.” *Empirical Economics* 42 (2): 445–69.
437 <https://doi.org/10.1007/s00181-011-0500-1>.

438 Holt, Charles A., and Susan K. Laury. 2002. “Risk Aversion and Incentive Effects.” *The*
439 *American Economic Review* 92 (5): 1644–55.

440 Ishaq, Mariam, Deepthi Kolady, and Carola Grebitus. 2023. “Analyzing Behavioral Factors of
441 Willingness to Pay for Sustainability.” *Journal of the Agricultural and Applied*
442 *Economics Association* 2 (4): 703–17. <https://doi.org/10.1002/jaa2.86>.

443 Kahneman, Daniel, Jack L. Knetsch, and Richard H. Thaler. 1991. “Anomalies: The Endowment
444 Effect, Loss Aversion, and Status Quo Bias.” *Journal of Economic Perspectives* 5 (1):
445 193–206. <https://doi.org/10.1257/jep.5.1.193>.

446 Khwaja, Ahmed, Dan Silverman, and Frank Sloan. 2007. “Time Preference, Time Discounting,
447 and Smoking Decisions.” *Journal of Health Economics* 26 (5): 927–49.
448 <https://doi.org/10.1016/j.jhealeco.2007.02.004>.

449 Kragt, M.e., and R.s. Llewellyn. 2014. “Using a Choice Experiment to Improve Decision
450 Support Tool Design.” *Applied Economic Perspectives and Policy* 36 (2): 351–71.
451 <https://doi.org/10.1093/aep/ppu001>.

452 Lage, Camila Flavia De Assis, Thaisa Campos Marques, Daniela R. Bruno, Marcia I. Endres,
453 Fernanda Ferreira, Ana Paula Alves Pires, Karen Leão, and Fabio Soares De Lima. 2024.
454 “Farmers’ Perceptions on Implementing Automatic Milking Systems in Large USA
455 Dairies: Decision-Making Process, Management Practices, Labor, and Herd
456 Performance.” *Animals* 14 (2): 218. <https://doi.org/10.3390/ani14020218>.

457 Lancaster. 1966. “A New Approach to Consumer Theory.”

458 Latvala, Terhi, and Perttu Pyykkonen. 2005. “Profitability of and Reasons for Adopting
459 Automatic Milking Systems.” *2005 International Congress, August 23-27, 2005,*
460 *Copenhagen, Denmark*, 2005 International Congress, August 23-27, 2005, Copenhagen,
461 Denmark, . <https://ideas.repec.org//p/ags/eaae05/24534.html>.

462 Lin, Wen, Rodolfo M. Nayga, and Wei Yang. 2024. “Preferences and Willingness to Pay for a
463 Novel Carbon Label: A Choice Experiment in the United States.” *Journal of the*
464 *Agricultural and Applied Economics Association*, March, jaa2.116.
465 <https://doi.org/10.1002/jaa2.116>.

466 Lowenberg-DeBoer, James, Iona Yuelu Huang, Vasileios Grigoriadis, and Simon Blackmore.
467 2020. “Economics of Robots and Automation in Field Crop Production.” *Precision*
468 *Agriculture* 21 (2): 278–99. <https://doi.org/10.1007/s11119-019-09667-5>.

469 Mathijs, Erik. 2004. “Socio-Economic Aspects of Automatic Milking.” In *Automatic Milking, a*
470 *Better Understanding*, edited by A. Meijering, H. Hogeweegen, and C.J.A.M. De Koning,
471 46–55. Brill | Wageningen Academic. https://doi.org/10.3920/9789086865253_004.

472 McFadden, Daniel, and Kenneth Train. 2000. “Mixed MNL Models for Discrete Response.”
473 *Journal of Applied Econometrics* 15 (5): 447–70. [https://doi.org/10.1002/1099-1255\(200009/10\)15:5<447::AID-JAE570>3.0.CO;2-1](https://doi.org/10.1002/1099-1255(200009/10)15:5<447::AID-JAE570>3.0.CO;2-1).

475 Michler, Jeffrey D., Emilia Tjernstrom, Simone Verkaart, and Kai Mausch. 2019. "Money
476 Matters: The Role of Yields and Profits in Agricultural Technology Adoption." *American
477 Journal of Agricultural Economics* 101 (3): 710–31. <https://doi.org/10.1093/ajae/aay050>.

478 Ortiz, Cristhian A., Jorge J. Avila-Santamaría, and Adan L. Martinez-Cruz. 2023. "Dairy
479 Farmers' Willingness to Adopt Cleaner Production Practices for Water Conservation: A
480 Discrete Choice Experiment in Mejia, Ecuador." *Agricultural Water Management* 278
481 (March):108168. <https://doi.org/10.1016/j.agwat.2023.108168>.

482 Ortiz, Cristian, and Mauricio Sarrias. 2022. "Estimating the Non-Pecuniary Benefit of Engaging
483 in pro-Environmental Behaviors: Incorporating Both Heterogeneous Preferences and
484 Income Endogeneity." *Journal of Environmental Management* 302 (January):114040.
485 <https://doi.org/10.1016/j.jenvman.2021.114040>.

486 Ortúzar, Juan de Dios, and Luis G. Willumsen. 2024. *Modelling Transport*. John Wiley & Sons.

487 Özdemir, Semra, F. Reed Johnson, and A. Brett Hauber. 2009. "Hypothetical Bias, Cheap Talk,
488 and Stated Willingness to Pay for Health Care." *Journal of Health Economics* 28 (4):
489 894–901. <https://doi.org/10.1016/j.jhealeco.2009.04.004>.

490 Pannell, David J., and Roger Claassen. 2020. "The Roles of Adoption and Behavior Change in
491 Agricultural Policy." *Applied Economic Perspectives and Policy* 42 (1): 31–41.
492 <https://doi.org/10.1002/aepp.13009>.

493 Peña-Lévano, Luis, Shaheer Burney, and Jalyssa Beaudry. 2023. "Automatic Milking Systems:
494 An Exploratory Study of Wisconsin Dairy Farms."

495 Pennings, Joost M.E., Scott H. Irwin, and Darrel L. Good. 2002. "Surveying Farmers: A Case
496 Study." *Applied Economic Perspectives and Policy* 24 (1): 266–77.
497 <https://doi.org/10.1111/1467-9353.00096>.

498 Revilla, Melanie, and Carlos Ochoa. 2017. "Ideal and Maximum Length for a Web Survey."

499 *International Journal of Market Research* 59 (5): 557–65. <https://doi.org/10.2501/IJMR-2017-039>.

500

501 Rotz, C. A., C. U. Coiner, and K. J. Soder. 2003. "Automatic Milking Systems, Farm Size, and

502 Milk Production." *Journal of Dairy Science* 86 (12): 4167–77.

503 [https://doi.org/10.3168/jds.S0022-0302\(03\)74032-6](https://doi.org/10.3168/jds.S0022-0302(03)74032-6).

504 Salfer, J.A., K. Minegishi, W. Lazarus, E. Berning, and M.I. Endres. 2017. "Finances and

505 Returns for Robotic Dairies." *Journal of Dairy Science* 100 (9): 7739–49.

506 <https://doi.org/10.3168/jds.2016-11976>.

507 Samuelson, William, and Richard Zeckhauser. 1988. "Status Quo Bias in Decision Making."

508 *Journal of Risk and Uncertainty* 1 (1): 7–59. <https://doi.org/10.1007/BF00055564>.

509 Savage, Scott J., and Donald M. Waldman. 2008. "Learning and Fatigue during Choice

510 Experiments: A Comparison of Online and Mail Survey Modes." *Journal of Applied*

511 *Econometrics* 23 (3): 351–71.

512 Schewe, Rebecca L., and Diana Stuart. 2015. "Diversity in Agricultural Technology Adoption:

513 How Are Automatic Milking Systems Used and to What End?" *Agriculture and Human*

514 *Values* 32 (2): 199–213. <https://doi.org/10.1007/s10460-014-9542-2>.

515 Shortall, J., L. Shalloo, C. Foley, R. D. Sleator, and B. O'Brien. 2016. "Investment Appraisal of

516 Automatic Milking and Conventional Milking Technologies in a Pasture-Based Dairy

517 System." *Journal of Dairy Science* 99 (9): 7700–7713. <https://doi.org/10.3168/jds.2016-11256>.

518

519 Staccioli, Jacopo, and Maria Enrica Virgillito. 2020. "The Present, Past, and Future of Labor-

520 Saving Technologies." In *Handbook of Labor, Human Resources and Population*

521 *Economics*, edited by Klaus F. Zimmermann, 1–16. Cham: Springer International
522 Publishing. https://doi.org/10.1007/978-3-319-57365-6_229-1.

523 Steeneveld, W., L. W. Tauer, H. Hogeveen, and A. G. J. M. Oude Lansink. 2012. “Comparing
524 Technical Efficiency of Farms with an Automatic Milking System and a Conventional
525 Milking System.” *Journal of Dairy Science* 95 (12): 7391–98.
526 <https://doi.org/10.3168/jds.2012-5482>.

527 Street, Deborah J., Leonie Burgess, and Jordan J. Louviere. 2005. “Quick and Easy Choice Sets:
528 Constructing Optimal and Nearly Optimal Stated Choice Experiments.” *International
529 Journal of Research in Marketing* 22 (4): 459–70.
530 <https://doi.org/10.1016/j.ijresmar.2005.09.003>.

531 Sunding, David, and David Zilberman. 2001. “Chapter 4 The Agricultural Innovation Process:
532 Research and Technology Adoption in a Changing Agricultural Sector.” In *Handbook of
533 Agricultural Economics*, 1:207–61. Elsevier. [https://doi.org/10.1016/S1574-0072\(01\)10007-1](https://doi.org/10.1016/S1574-0072(01)10007-1).

535 Svennersten-Sjaunja, K. M., and G. Pettersson. 2008. “Pros and Cons of Automatic Milking in
536 Europe1.” *Journal of Animal Science* 86 (suppl_13): 37–46.
537 <https://doi.org/10.2527/jas.2007-0527>.

538 Van Loo, Ellen J., Vincenzina Caputo, Rodolfo M. Nayga, Jean-Francois Meullenet, and Steven
539 C. Ricke. 2011. “Consumers’ Willingness to Pay for Organic Chicken Breast: Evidence
540 from Choice Experiment.” *Food Quality and Preference* 22 (7): 603–13.
541 <https://doi.org/10.1016/j.foodqual.2011.02.003>.

542 Zahniser, Steven. 2018. “Farm Labor Markets in the United States and Mexico Pose Challenges
543 for U.S. Agriculture.”

Figure 1. DCE instructions, information and choice scenario example

Choice Scenarios (please read carefully)	
<p>Imagine investing in your FIRST milking robot. In the following Choice Scenarios, we will show you different models of milking robots. While all models come from a leading brand with excellent service and reliability, and last 10-15 years, they only differ by the following attributes:</p>	
<i>Price</i>	Lump-sum payment for purchasing and installing one box of milking robot that handles 60-70 cows (payment does not include barn retrofit or construction).
<i>Labor Savings</i>	Reduction in hired employees (family or non-family)'s working time.
<i>Owner's Flexible Time</i>	Reduction in owner or manager's time in running the farm.
<p>In each Choice Scenario: first, choose the milking robot model you would invest in. If neither model is preferred, select "Keep using CMS". Then, if the CMS option is no longer available, select which robot you would prefer between the two.</p>	
<p>There are no right or wrong answers. Please approach each question with the mindset that you bear the cost of buying the robot in real life.</p>	

There are no right or wrong answers. Please approach each question with the mindset that you bear the cost of buying the robot in real life.

A milking robot may increase **milk yield by 10%**.

Choice Scenario 1			
Attribute	Milking robot A	Milking robot B	Keep using CMS
Price	\$270,000	\$170,000	
Labor savings	40 hours/week	30 hours/week	
Owner's flexible time	4 hours/week	6 hours/week	
I would choose	<input type="radio"/> Robot A	<input type="radio"/> Robot B	<input type="radio"/> Keep CMS
Between A&B, I prefer	<input type="radio"/> Robot A	<input type="radio"/> Robot B	

Note: Only group that receive production improvement information saw the last statement.

Table 1. DCE attributes and levels

Attributes	Description	Levels
	Lump-sum payment for purchasing and installing one box of milking robots that handles 60-70 cows (payment does not include barn retrofit or construction).	\$170,000 \$220,000 \$270,000
<i>Price</i>		30 hours/week
<i>Labor Savings</i>	Reduction in hired employees (family or non-family)'s working time.	35 hours/week
		40 hours/week
<i>Owner's</i>	Reduction in owner or manager's time in running the farm.	4 hours/week
<i>Flexible Time</i>		6 hours/week
		8 hours/week

Note: The attribute levels are determined by previous AMS literature (Salfer et al., 2017; Cogato et al., 2021), qualitative research (Peña-Lévano, Burney & Beaudry 2023), interviews with industry experts, dairy extension specialists, and dairy farmer representatives conducted in September 2023.

Table 2. Sample descriptive characteristics

Farmer characteristic	Overall, N = 212 ¹	Not informed, N = 105 ¹	Informed, N = 107 ¹	p-value ²
Age 50 and above	172 (81%)	84 (80%)	88 (82%)	0.7
College degree	40 (19%)	19 (18%)	21 (20%)	0.8
Herd size smaller than 100	131 (62%)	60 (57%)	71 (66%)	0.2
Secondary income source on farm	100 (47%)	48 (46%)	52 (49%)	0.7
Work overtime ³	191 (90%)	94 (90%)	97 (91%)	0.8
Experienced labor difficulties in past 5 years	94 (44%)	53 (50%)	41 (38%)	0.075
Confident about future profitability	75 (35%)	41 (39%)	34 (32%)	0.3
Risk-averse	156 (74%)	79 (75%)	77 (72%)	0.6
Patient	154 (73%)	77 (73%)	77 (72%)	0.8

¹The informed group receives information about 10% production improvement with AMS adoption.

²Pearson's Chi-squared test.

³Respondents are labeled as working overtime if they work more than 40 hours per week. This is comparable to the national average working time for dairy farmers, which is 64 hours per week on the farm (USDA ERS, 2016).

Table 3. Mixed logit model in preference and WTP space on total sample

Variable	MXL-preference space		MXL-WTP space	
	Coeff.	SE	Coeff.	SE
Mean				
Price ^a	-0.026***	0.002	-0.026***	0.002
Hired labor saving ^c	3.123***	0.577	3.150***	0.575
Owner's flexible time	6.770***	1.483	6.827***	1.465
ASC	63.321*	35.588	71.997*	38.646
ASC_info	41.114	37.839	28.482	47.238
Standard deviation				
Hired labor saving	1.337**	0.608	1.190*	0.719
Owner's flexible time	4.756**	2.305	4.366*	2.491
ASC	396.877***	60.462	417.014***	63.914
ASC_info	206.179***	42.565	107.082**	50.049
Log likelihood	-764.839		-765.218	
AIC	1547.677		1548.437	
BIC	1597.661		1598.421	
R ²	0.635		0.635	

^a For better comparison with models in preference space, the reported price parameter of models in WTP space is $-\lambda_n$.

^b *: $p < 0.1$; **: $p < 0.05$; ***: $p < 0.01$.

^c The unit of estimated WTP is \$1000; the unit of hired labor saving and owner's flexible time is hour per week.

Table 4. Results comparison of heterogeneity analyses on characteristics

Characteristics	Sample mean WTP analyses				Conditional Individual WTP analyses			
	Model with interaction		Subsample analysis		OLS model		WLS model	
	<i>Hired labor</i>	<i>Owner's flexible saving</i>	<i>Hired labor</i>	<i>Owner's flexible saving</i>	<i>Hired labor</i>	<i>Owner's flexible saving</i>	<i>Hired labor</i>	<i>Owner's flexible saving</i>
Small herd size			-				-	
Secondary income	-	-	-	-	-	-	-	-
Confident on future profitability	+	+	+	+				
Experienced labor difficulties	+		+		+	+	+	+
Risk averse					+			
Patient								

Note: + indicates a positive correlation, while – indicates a negative correlation, found between characteristic and the corresponding approach. As shown, characteristic of experienced labor difficulties on *Hired labor saving* is consistently positive across all methods while characteristic of secondary income on both benefits is consistently negative across model with interaction, subsample analysis and OLS model.