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ABSTRACT

Mutagenesis is one of the most effective methods for crop improvement as it
expands the genetic pool, offering more opportunities for selecting desirable traits,
especially in cowpea, which is predominantly self-pollinating. For effective mass
irradiation at acute doses, the sensitivity of cowpea genotypes to gamma rays
needs to be determined. The objective of this study was to determine the lethal
dose (LDso) at 50% germination and reduction in the appearance of cowpea growth
(RDso) when exposed to gamma radiation. Five cowpea genotypes, namely,
Hansadua, WC-36, ACC122WxWC-10, IT97K-819, and WC-10, were irradiated
with gamma radiation from a ¢°Co radioactive source at 0-1200Gy with an interval
of 100 Gy. The results showed significant wide variations in the responses of
genotypes. Hansadua, an improved cultivar, had the lowest LDso and RDso values
of 531.0 and 452.0 Gy, respectively, indicating its high sensitivity to gamma
radiation. Thus, suggesting a relatively lower dose is required to kill half of the
population and more so, a tendency to produce more useful mutants at lower
doses of radiation from which selection could be made. In addition, the highest
values of LDsp and RDso were observed for ACC122WxWC-10 at 903.0 and 694.0
Gy, respectively. This implies that the ACC122WxWC-10 genotype was the least
sensitive to gamma radiation, as more radiation was required to reduce the growth
of the control population to half. In addition, there were progressive reductions in
other parameters such as plant height, root length, shoot weight, and whole plant
weight in all genotypes as the radiation dose increased.
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Introduction

Cowpea (Vigna unguiculata L. Walp.) is a
vital grain legume extensively cultivated
across diverse agro-ecological zones in Africa
and tropical regions worldwide. While it is
also grown in temperate climates such as
California's  Central Valley and the
Mediterranean basin (Ba et al., 2004), Africa
remains the primary production hub. The
crop is essential for supporting subsistence
farmers and rural livelihoods, particularly in
low-input farming systems. In 2017, Africa
contributed a staggering 98% of global

cowpea harvest across 12.5 million hectares,
yielding nearly 7.1 million of the total 7.4
million tons of dried cowpeas produced
worldwide (www.iita.org/cropsnew/cowpea/;
accessed 15/07/2020).

Cowpea is a food crop, forage, and vegetable
source, especially in tropical regions (Steele,
1972). With protein-rich green leaves, pods,
and grains, cowpea offers a dietary protein
source. Its grains contain approximately 50-
60% carbohydrates, while the leaves hold
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27-34% proteins (Sebetha et al., 2015). This
nutritional profile is especially valuable for
rural populations lacking access to
alternative protein sources. Cowpea is
cultivated for fodder in Sahelian areas of
West Africa and fiber in dry Asian areas
(Steele, 1972; Ba et al., 2004).

As a leguminous crop, cowpea has the
unique ability to harness atmospheric
nitrogen through interaction with rhizobia,
soil-borne bacteria. This characteristic is
particularly important for small-scale
farmers who cannot afford synthetic
fertilizers. Despite its resilience to moderate
drought levels, cowpea productivity remains
constrained by the poor fertility of the soils
in many production areas. For instance, the
average yield in Ghana hovers around 1.41
MT ha'l, representing 56% of its potential
yield (MoFA, 2016; Gyasi, 2016). Factors like
persistent drought, use of low-yielding
cultivars, and susceptibility to pests and
diseases limit its productivity. In the context
of climate change, developing cowpea
varieties resistant to these stresses emerges
as an environmentally sustainable approach
to enhancing yields (Kouressy et al., 2008).
Therefore, creating cowpea genetic materials
that are resistant to stresses and has
desired  traits becomes  pivotal for
productivity improvement.

While cowpea's genetic diversity is limited
(Sharawy and El-Fiky, 2003; Asare et al.,
2010; Wamalwa et al.,, 2016), variability is
essential for successful crop breeding
(Cooper et al., 2001; Mudibu et al, 2012;
Horn and Shimelis, 2013). Cowpea's
predominantly self-pollinating nature and
early flower fertilization pose challenges to
generating new variations. Meanwhile, plant
breeding can only result in significant
improvements when the breeder has access
to sufficient variation for a given trait
(Swarup et al., 2021; Yali and Mitiku, 2022).
Mutagenesis, involving mutagens like
gamma rays, has been suggested as an
efficient and cost-effective means of
increasing genetic variability (Yali and
Mitiku, 2022). Since its discovery by Muller
(1927) and Stadler (1928), mutagenesis has
been applied to modify agronomic traits,
enhance stress tolerance, and boost yields in
existing varieties and landraces. This
approach holds promise for crops like
cowpea, which inherently exhibit limited
genetic variation. Mutations, according to
Yali and Mitiku (2022), are heritable
alterations in an organism's phenotype.
Heritability of different traits after the
mutation process has been found to be

variable for different traits and at different
generations after mutagenesis. For example,
the heritability of iron, calcium, and protein
content was reported to be high in the M3
generation mutant (Waghmode et al., 2020),
while the heritability of M4 generation was
reported to be high in yield characteristics
(Vasisth et al.,, 2022; Adhi et al., 2024).

In addition to creating genetic mutations
and chromosomal changes, mutagens
induce physiological damage to genetic
materials, termed mutagenic sensitivity
(Bashir et al., 2013). Factors influencing
mutagenic sensitivity include mutagen dose
(Shah et al, 2008; Laskar et al, 2015).
Therefore, determining optimal doses is
crucial to induce maximum variability
without damaging genetic material. This
study aimed to introduce genetic variation in
cowpea using gamma rays and identify
optimal mutation doses.

Materials and Methods
Genetic materials and irradiation

The research was conducted at the
Biotechnology and Nuclear Agriculture
Research Institute (BNARI) of the Ghana
Atomic Energy Commission. The study
involved five distinct cowpea genotypes: two
landraces (WC-10 and WC-36) and an inbred
line (ACC122WxWC-10) sourced from
Uganda; IT97K-819, an inbred line acquired
from the International Institute of Tropical
Agriculture (IITA); and Hansadua, an
improved variety obtained from the Crops

Research Institute of the Council for
Scientific and Industrial Research (CRI-
CSIR).

Seeds of the cowpea genotypes were

subjected to gamma irradiation using a
range of 13 irradiation doses from O Gy to
1200 Gy, spaced at an interval of 100 Gy.
Each of the five genotypes had 10 seeds
irradiated with 12 radiation doses, ranging
from 100 to 1200 Gy. An additional set of 10
seeds for each genotype served as non-
irradiated controls. This resulted in three
replications per genotype per radiation dose,
amounting to 30 seeds for each genotype
and radiation dose combination. To achieve
the desired moisture content of
approximately 8%, irradiated seeds were
placed in separate zip-lock bags within a
desiccator for three days. The gamma
irradiation was carried out using a category
IV gamma irradiation facility at the Ghana
Atomic Energy Commission, utilizing a ¢°Co
source at a dose rate of 303 Gy/hr.
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Sowing, experimental data

collection, and analysis

design,

Seven days following irradiation, the treated
seeds were sown in polythene nursery pots
filled with smooth-textured loamy soil, each
measuring 13 cm in width and 15.5 cm in
depth. The experiment was conducted in a
screen house, with the pots arranged in a
Completely Randomized Design. Harvesting
was done after 21 days of sowing, and the
parameters such as germination, seedling
height, fresh whole plant weight, fresh root
weight, root length, and fresh shoot weight
were recorded.

Germination counts were conducted on days
3, 5,8, 13, and 18 after sowing, while other
parameters were measured at 21 days after
sowing. Plant height was measured from the
soil surface to the tip of the primary leaf,
and root length was measured from the
taproot tip to the soil level. Germination
rates were calculated as percentages. Per
cent differences compared to the control
were computed for plant height.

Data was subjected to standard analysis of
variance procedures using Genstat 12th
edition version 12.1 statistical software. This

at LDso (dose at 50% germination inhibition)
and RDso (dose causing 50% reduction in
growth). The LDso values were determined
based on seed germination percentages,
pinpointing the dose at which the 50 percent
point intercepts the curve.

Results

The irradiation doses significantly affected
the performance of cowpea genotypes. The
LDso values varied from 531 Gy in Hansadua
to 903 Gy in ACC122WxWC-10 (Figure 1;
Table 1). In decreasing order, LD50 values of
903, 858.7, 762, 705, and 531 Gy were
achieved for ACC122WxWC-10, WC-36,
IT9O7K-819, WC-10, and Hansadua,
respectively. Figure 2a shows the emergence
reduction curve (RDso) for the cowpea
genotypes. Emergence reduction defines the
dose that reduces the growth and seed
production of an M; population by 50% and
varies between the genotypes (Table 1). The
RDsp values were 694, 662, 591, 590.5 and
452 for ACC122WxWC-10, WC-36, IT97K-
819, WC-10 and Hansadua, respectively.
Thus, Hansadua had the least LDsy; and
RDsp values of 531 and 452 Gy and
ACC122WxWC-10 recorded the highest LDsg
and RDs values of 903 and 694 Gy.

facilitated genotype comparisons and
identification of optimal lethal dose aiming
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Fig. 1. Radio-sensitivity curves for five cowpea genotypes: (a) Hansadua, (b) ACC122WxWC-

10, (c) WC-36, (d) IT97K-819 and () WC-10.
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Fig. 2. Emergence reduction curves for five cowpea genotypes.

Table 1. LDspand RDsg values of five cowpea genotypes.

Hansadua

WC-36
ACC122WxWC-10
IT97K-819

WC-10

Significant differences (P< 0.001) were found
among radiation doses and their effect on
germination. The germination percentage in
the radio-sensitivity test is expressed as a
percentage of the control or unirradiated.

120 +

100

» o)) 0]
o o o

% Germination of control
N
o)

o

531.0 452.0
858.7 662.0
903.0 694.0
762.0 590.5
705.0 591.0

The results indicated a rise in germination
percentage from control (0 Gy), which
peaked at 300 Gy and gradually declined to
800 Gy. There was a slight rise at 900 Gy,
which declined to 1200 Gy (Fig. 3).

0Gy 100 200 300 400 500 600 700 800 900 1000 1100 1200
Gy Gy Gy Gy Gy Gy Gy Gy Gy Gy Gy Gy

Dose rate (Gy)

Fig. 3. Mean seed germination (%) of five genotypes at various doses.
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There were varied responses of seed and
other plant propagules to various gamma-
ray doses administered. Gamma-ray doses
between 0-300 Gy had no significant effect
on germination. There were no significant
differences in plant height between
irradiation doses 0-200 Gy for plant height
and root length (Figure 4), shoot weight and
whole plant weight between 0-100 Gy. The
differential effect of gamma rays was

observed beyond 300 Gy in germination, 200
Gy in plant height, and 100 Gy in root
length, shoot weight, and whole plant
weight. The results also showed varying
effects of different radiation doses on pod
architecture, as shown in Figure 5.
Variations in pod architecture included
reduced pod length, increased pod length,
curved pods, and misshapen pods in some
treatments.

. Y | ~. ‘. !
|
= 500Gy [ 600Gy | 700Gy | 800Gy
~ "oasd

Fig. 4. Effect of different gamma radiation doses on the plant height of WC36 cowpea genotype.

Table 2. Growth traits of cowpea plants exposed to different radiation doses.

Doses Germination Plant Root Shoot Whole plant
Height (cm) Length (cm) Weight (g) weight (g)
0 8.0 a 20 a 21.5a 16.5 a 18.0 a
100 7.8 a 19.8 a 20.3 a 16.4 a 159 a
200 7.8 a 19.6 a 17.7 b 13.6 b 14.4 b
300 7.8 a 19b 16.5b 12.6 b 109b
400 7.2 b 12.4 ¢ 12.0c 7.6 c 3.2c
500 6c 12.2 ¢ 109 c 7.4 c 6.9c
600 4.6d 11.2d 9.4d 4.8d 7.9d
700 4.4d 6.8¢e 6.6 e 29d 2.3d
800 32e 4.6 f 5.0e 1.7e 2.1e
900 2.8 e 2.8¢g 19f 09e 1.7e
1000 2f 0.8h 0.4f 0.3e 0.0e
Mean 5.6 11.7 11.1 7.7 7.6
STDEV 2.3 7.2 7.3 6.2 6.4
CV% 40.7 61.6 65.4 79.8 84.0
LSD 0.6 0.7 1.9 2.6 2.7
Int. J. Agril. Res. Innov. Tech. 15(1): 127-135, June 2025 131
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Discussion

This study investigated the responses of five
cowpea genotypes to twelve gamma radiation
doses, including a control (non-irradiated),
to determine the LDso and RDso values for
use in mass irradiation experiments. The
observation that seedling survival was
minimal at radiation doses of 1000 Gy and
higher indicated that high doses of
mutagens could inhibit seed germination
across genotypes. Increased radiation doses
were associated with more pronounced
adverse effects on plant height and other
traits. The LDso and RDsp values increased
similarly, though LDso values were generally
higher. Hansadua was the most sensitive
among the genotypes, while ACC122WxWC-
10 demonstrated the highest tolerance
(Figures 1 and 2). Hansadua exhibited the
most significant reduction in plant height at
minimal radiation doses, whereas
ACC122WxWC-10 was the least affected.
These findings align with those of Bhagwat
and Duncan (1998), who explored mutation
breeding in bananas (Musa spp., AAA
Group) using chemical mutagens to induce
Fusarium wilt resistance.

Plant species, genera, and, to a lesser extent,
genotypes and varieties exhibit varying levels
of radiosensitivity due to differences in
genetic, physiological, morphological, and
other biological factors, such as ontogeny.
Environmental conditions like oxygen and
water content also play a crucial role in

Fig. 5. Effect of gamma rays on pod architecture as shown by M1 mutants.
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modulating seed and plant responses to
ionizing radiation and chemical mutagens.
Also, seed texture, coat color, and testa size
influence the effects of mutagens on plant
propagules. Olasupo et al. (2016) observed
that cowpea accessions with rough testa
surfaces and thin testas were more
radiosensitive to gamma irradiation. In
contrast, those with smooth testas were
more tolerant, showing higher seed
germination and survival rates. Seed weight
also affects radiosensitivity, with lighter
seeds being more radiosensitive than heavier
ones.

Germination  percentage exhibited an
exponential increase, reaching 64.31% at
900 Gy, possibly due to mutagen dose
saturation, before declining to 23.94% at
1200 Gy (Figure 3). This suggests that
germination is still possible at 1200 Gy in
cowpea. The mixed responses of cowpea
genotypes to irradiation underscore the need
for independent radiosensitivity testing
before  mass irradiation. @ Gamma-ray
exposure at 300 Gy had the most
pronounced effect on mean germination
across the five cowpea genotypes, indicating
that this dose is sufficient to induce
mutations in cowpea. This observation
corroborates the findings of Girija and
Dhanavel (2009), who reported that 300 Gy
effectively produced a high frequency of
mutants in cowpeas, including chlorina and
xanthan types.
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The study demonstrated a consistent decline
in seed germination, plant height, root
length, shoot weight, and overall plant
biomass across all cowpea genotypes as
gamma radiation doses increased (Table 2).
This pattern aligns with findings by Manju
and Gopimony (2009), who proposed that
reductions in plant survival reflect post-
germination mortality driven by cytological
and physiological disturbances caused by
ionizing radiation. Similar observations were
reported in rice (Oryza sativa) varieties,
where plant height and growth decreased
significantly with exposure to radiation
doses up to 600 Gy (Harding et al, 2012).
These observations can be attributed to the
destruction of the growth hormone auxin, as
suggested by Sparrow and Evans (1961),
likely resulting from ionizing radiation-
induced genetic damage, including
chromosomal aberrations (Horn, 2016). This
inverse relationship between gamma-ray
doses and germination percentage has been
corroborated by multiple studies in various
species, including fenugreek (Trigonella
foenum-graecum) (Bashir et al, 2013)
and Moluccella laevis (Minisi et al., 2013),
where higher doses of gamma radiation
consistently reduced germination rates and
plant survival.

Gamma radiation doses between 0 and 200
Gy produced similar effects on plant height
across genotypes, but doses above 200 Gy
led to significant reductions in plant height,
corroborating findings by Songsri et al
(2019) in Jatropha curcas. For doses below
100 Gy, there were no significant changes in
root length, shoot weight, or whole plant
biomass in cowpea. However, high doses of
radiation have been associated with toxicity,
as described by Mudibu et al. (2012), which
leads to adverse effects such as
chromosomal aberrations, lethality, reduced
fertility, and developmental anomalies like
chlorophyll-deficient chimeras. These
findings align with reports from Verma et al
(2017), which further confirmed that higher
radiation doses result in substantial
reductions in plant growth parameters,
survival rates, and reproductive success due

to genotoxic effects and cytological
disruptions.
For optimal mutant induction in crop

improvement programmes, Spencer-Lopes et
al. (2018) recommended that irradiation
levels be maintained within *20% of the
experimentally determined optimal dose.
Owoseni et al. (2007) and Mba et al. (2010)
suggested a narrower range of +5 units for

achieving desired mutagenic outcomes. To
maximize the effectiveness of radiation-
induced mutagenesis, plant breeders must
also consider factors beyond radiation doses,
such as the survival and reproductive
capacity of M; plants, to ensure viable seed
production at maturity. Determining
appropriate dose ranges for inducing
beneficial mutations remains crucial for
advancing crop improvement initiatives
(Ahloowalia et al., 2004; Jain, 2010).

Conclusion

The study confirmed that varying doses of
gamma radiation had a considerable impact
on different parts of the cowpea plant.
Gamma rays differentially affected
germination, plant height, root length, shoot
weight and whole plant weight. The LDso and
RDso of cowpea differ with the genotypes,
and Hansadua had 531 Gy followed by WC-
10 with 705, IT97K-819 with 762, WC-36
with 858.7 and ACC122WxWC-10 with 903
Gy in increasing order of LDso values. The
same order of genotypes had increasing RDsg
values of 452, 590.5, 591, 662 and 694 Gy,
respectively. Hansadua had the least LDsp
and RDso values of 531.0 and 452.0 Gy,
respectively, thus indicating that it was most
sensitive to gamma radiation because a
minimal dose was required to kill half of the
population. Also, the highest values of LDsg
and RDso were observed for ACC122WxWC-
10 at 903.0 and 694.0 Gy, respectively. This
implies that the ACC122WxWC-10 genotype
was least sensitive to gamma radiation
because higher doses of irradiation were
needed to reduce the growth of the control
population to half. The experimentally
selected dose of gamma radiation may help
as a dose to induce mass mutagenesis in
cowpeas for breeding studies.
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