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Determinants of the Joint Adoption of Climate-Smart Agriculture 
Practices by Agro-Pastoralists in Sokoto State, Nigeria 

Abstract. This study examined the determinants of the joint adoption of climate-smart agriculture 

practices by agro-pastoralists in Sokoto State, Nigeria. A multi-stage sampling technique was used to 

select 428 agro-pastoralists who were surveyed using a structured questionnaire. The data were 
subjected to multivariate probit, ordered probit regression, and factor analysis. The climate-smart 

practices considered were water, nutrients, carbon, the weather, and crop-smart activities. The results 

show that the majority of the agro-pastoralists were male (85%), married (90%), and had formal 
education (55%). The mean score for age, farming experience, household size, and farm size was 44.81 

years, 22.26 years, 10.25 persons, and 7.33 hectares, respectively. The multivariate model revealed that 

land tenure, extension contact, awareness of climate incidences, farming systems, sources of credit, 
gender, perception, and association membership significantly influenced the joint adoption of climate-

smart agricultural practices. This study advocates that resources and conditions that promote the joint 

adoption of climate-smart practices should be identified to facilitate the dissemination and effective 
adoption of technologies.  
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Introduction 

Aside from oil, the primary source of employment and GDP in Nigeria is agriculture, 

which is mostly dependent on rainfall and is severely impacted by climate change (Ayanlade 

& Radeny, 2020). Due to limited adaptation capacity, human development, political will, 

infrastructure and technology, and insufficient resources, climate change threatens and makes 

agricultural livelihoods more vulnerable. As a result, both individuals and governments must 

take critical action (IPCC, 2021). The necessity to provide for the food demands of a fast-

expanding population and shifting dietary preferences makes the issue more serious. Nigeria 

contributed 66.6 million tonnes of carbon (CO2) emissions, along with methane (CH4) and 

nitrous oxide (N20), accounting for 2% of global agricultural emissions between 2015 and 

2021, according to Climate Trace (2021). Deforestation, improper fertiliser handling, and 

livestock management have all had an impact on greenhouse gas (GHG) emissions. The 

effects of climate change include declining crop and animal productivity, unpredictable 
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rainfall, fluctuating temperatures, and an increase in the prevalence of pests and diseases. The 

periodic migration of cattle between various agroecological zones to investigate grazing 

supplies is another example of transhumance pastoralism, which is a cultural adaptation tactic 

in reaction to climate change. Drought and desertification have increased and intensified 

competition for scarce resources, making it more likely that farmer-herder conflicts will 

occur. Nigeria's agriculture cannot continue to be of a "rentier status" in terms of relying on 

income from natural resources through extractive activities, and such adaptation practices are 

necessary to mitigate the effects of climate change. Fadairo et al. (2020) and the IPCC (2021) 

stated that adaptation practices are crucial to reducing the impacts of climate change on food 

systems and agriculture. There have been a number of farmer-herder fatalities over the past 

ten years, with 2,000 deaths recorded in 2018. 

Climate-smart agriculture (CSA) has been pushed as a key adaptation intervention by 

governments, non-governmental organisations, and other agencies worldwide. The FAO 

(2021) and the World Bank (2022) defined CSA as agriculture that enhances resilience, 

reduces or eliminates greenhouse gas emissions where feasible, promotes the achievement of 

national food security and development goals, and raises production in a sustainable manner. 

According to Antwi-Agyei et al. (2022) and Dougill et al. (2021), the implementation of 

climate-smart agriculture improved food security and livelihood, boosted farmer adaptability, 

reduced greenhouse gas emissions, and boosted resilience. A CSA practice that aims to 

achieve one CSA goal can also help achieve another goal, which has several benefits (FAO, 

2021). Reduced GHG emissions, increased food production, and improved farmer resilience 

to climate change are all benefits of climate-smart agriculture (Barasa et al., 2021). Smart 

practices covering water, energy, nutrients, crops, and weather interventions are CSA 

practices that smallholder farmers could implement for sustainable agricultural production, 

according to IFPRI 2014; AGRA, 2014; Khatri-Chhetri et al., 2017; and Olorunfemi et al. 

(2020). Table 1 illustrates these practices. 

Table 1. Categorisation of climate-smart agricultural practices 

Water-smart Energy/carbon-smart Nutrient-smart  Weather-smart Crop-smart 

Rainwater control & 

use 

Minimum tillage 

Reduced tillage 

Zero tillage 

 

Green manure  Farm insurance  Drought-tolerant 

varieties 

Land levelling  Agroforestry  Integrated nutrient 

use 

Weather advisory 

services 

Enterprise 

diversification 

Efficiency-enhanced 

irrigation 

 

Improved feeding 

techniques 

Compost making Timing of 

planting/harvest 

Early maturing 

varieties 

Mulching  Planting energy crops Rotational grazing Climate-smart 

housing 

Crop rotation 

Traversing Planting 

on slopes 

Biochar  Intercropping   Seed banks  

Cover cropping  Green energy    

Source: Authors’ compilation. 
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According to several studies, many factors influence the adoption of climate-smart 

agriculture in Nigeria. In the southeastern part of the country, these factors include farming 

experience, education, income, ownership of livestock, credit, extension services, land 

ownership, land area cultivated, exposure to the media, distance to the market, water sources, 

leadership position, and gender (Ifeanyi-Obi et al., 2017). In the semi-arid region, non-farm 

activities, irrigation, various crop varieties, and soil and water conservation were adopted 

(Haider, 2019). In the northeastern region, the factors were the planting of improved varieties, 

pest-resistant varieties, weather-tolerant crop varieties, timely planting, and early maturing 

crop varieties (Fawole and Aderinoye-Abdulwahab, 2021). According to several authors 

across several studies (Kargbo et al., 2020; Muyanga et al., 2021; Tesfaye et al., 2020; 

Nhemachena et al., 2020), it was discovered that smallholder farmers' adoption of climate-

smart agriculture practices is influenced by their access to information, credit, market 

information, technical assistance, and extension services. 

Literature review and Literature gaps 

In order to increase their resilience to climate change, agro-pastoralists combined 

climate-smart technologies, such as diversified farming (crop and animal production), 

minimum tillage, timely planting, fertiliser and manure use, agroforestry, and improved crop 

varieties (Nantongo et al., 2022).  

In addition to using locally made pesticides, burning pastures and farm residues, early 

planting, indigenous medicines, indigenous crops and livestock breeds, farming and grazing 

along rivers and wetlands, and using tolerant or early maturing crops, Habakubaho et al. 

(2023) report that agro-pastoral communities also use traditional cloud/sky colour, 

temperature changes throughout the day, wind direction and strength, lightning, and thunder 

for weather forecasting. 

In order to adapt to climate change, pastoralists used a variety of tactics, including 

restricted grazing, herd diversification, labour distribution among family members, and 

varied livestock product usage, according to Imana and Zenda (2023). According to Madaki 

et al. (2025), agro-pastoralists responded to weather fluctuations by combining knowledge 

about livestock with crop residue, hay conservation, irrigation, and destocking. Ndebele and 

Zenda (2023) report that agro-pastoral farmers can adapt to climate change by planting trees, 

diversifying their crop-cattle businesses, practising mixed farming, conserving soil and 

water, reducing the number of livestock, adjusting planting dates, adjusting irrigation, and 

applying fertiliser. Gudere et al. (2022) show that agro-pastoralists used various 

combinations of climate-smart technologies to manage diversity on the farm, manage water 

and water use, manage soil fertility, manage livestock, and manage pastures and conserve 

them. Because the majority of adaptation techniques were intended to improve household 

food security and livelihoods, Zampaligré and Fuchs (2019) discovered that pastoral and 

agro-pastoral households embraced a variety of adaptation practices rather than just one. 

Despite the potential for combining climate-smart agriculture to enhance natural resources 

and attain food security, not much research has been done on the variables influencing the 

adoption of multiple technologies. The adoption of collaborative climate-smart technologies 

has been impacted by a number of factors, including the ability of farmers to implement joint 

practices, adopt individual techniques, or neither. The research question that emanates from 

this study is: What factors influence the joint adoption of climate-smart agriculture practices 
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among agro-pastoralists? The main objective of this study was to examine the determinants 

of the joint adoption of climate-smart agriculture practices by agro-pastoralists in Sokoto 

State, Nigeria. 

Materials and Methods 

Sokoto State, Nigeria (Figure 1), borders the Republic of the Niger in the arid Sahel and 

is encircled by isolated hills within the sandy savannah with an average annual temperature 

of 28.3 °C (82.9 °F). For this study, the factors that influence agro-pastoralists' joint adoption 

of climate-smart agriculture practices in Sokoto State were studied. Reduced agricultural 

output, water scarcity, widespread food insecurity, and difficulties with income security are 

the state's main climate change effects.  

 

Fig. 1. Map of Nigeria showing Sokoto State 

Source: Kaltungo et al. (2019). 

This study focused on Sokoto State in North-West Nigeria, one of the northern states 

that is more severely affected by climate change (Figure 1). To get the sample, a multi-stage 

sampling process was employed. Twelve of the twenty-three LGAs in Sokoto State were 

chosen at random for the first phase. The following LGAs were selected: Shagari, Tambuwal, 

Tangaza, Wamakko, Wurno, Dange Shuni, Isa, Kware, Sokoto South, and Bodinga. 32 out 
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of 307 villages were purposefully chosen for the second stage, again because of the large 

number of agro-pastoralists living in the villages. From the chosen communities, 428 farmers 

were picked at random for the third stage. Using an interview schedule based on a structured 

questionnaire, primary data for this study were collected from June to August 2022 during 

the 2022 farming season. The data included information on the socioeconomic characteristics 

of the farmers, their farming systems, their awareness of climate change indicators, their 

perception of climate change, and their adoption of various climate-smart agriculture 

practices under the categories of water, energy, nutrients, crops, and weather. This study is 

limited to the list of climate-smart agricultural practices listed in this study only and within 

the context of Sokoto State and its environment where the study was conducted. 

The data were described using descriptive statistics, including frequency counts, 

percentages, and averages. The factors that influence agro-pastoralists' collaborative adoption 

of climate-smart agriculture techniques were determined using probit regression and 

multivariate probit regression analysis. According to Nagler (1994), agro-pastoralists are 

presumed to have two options when it comes to the probit models: they can choose to 

implement each of the climate-smart agriculture practices or not. Binary outcome variables, 

such as yes/no, were regarded as dependent variables with two possible outcomes in order to 

address the issues of heteroscedasticity, the model's suitability, and the satisfaction of the 

cumulative normal probability distribution assumptions (Gujarati, 2004). 

It is assumed that Y can be specified as follows: 

Y= β0+β1 X1i + β2X2i+………………..+ βkiXki+U1 

And that: 

Yi=1 if Y>0  

Yi=0  

Otherwise, where X1, X2……………………Xn represents vectors of random variables, 

β represents a vector of unknown parameters and U represents random disturbance terms 

(Nagler, 1994). Table 1 presents the list and level of measurements of variables in the probit 

model. 

The factor analysis, as specified by Koutsoyiannis (1972), is presented as follows: 

Given variables (!"… original variables of the climate-smart practices)  

!#…!$ measured in ‘n’ farmers, 

%#…%$:  uncorrelated linear combinations of components from the original variable, 

!#…!$, given as: 

%# &= &'##!# + '#(!( &+ )+ '#$!$  

%( &= &'(#!# + '((!( &+ )+          .              .                      . 

.               .              .                      . 

%$ &= &'$#!# + '$(!( &+ )+ '#$$!$*............................................................................ (1) 

It is assumed that the components were not related and that the first component would 

account for the maximum possible proportion of the total variation in the original variables. 

As a result of the interdependencies between the error terms of various techniques, 

farmers may choose to use a number of climate-smart agriculture methods in order to adapt 

to climate change. The determinants of the joint adoption of climate-smart agriculture 

practices were evaluated using a multivariate probit (MVP) model, whereas the individual 

probit model examined one practice at a time (Musafiri et al., 2022; Omodara et al., 2023). 
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The correlation of error terms indicates that a positive sign indicates complements and 

a negative sign indicates substitutes (Musafiri et al., 2020). 

Ua indicates the utility of adopting the jth practice and Un otherwise. Farmers can adopt 

the jth approach if Yij = Ua-Uo > 0. Therefore, the net utility Y*ij a farmer obtains for 

adopting the jth practice is a latent variable that can be predicted by the experimental factors 

and the multivariate normally distributed error terms (εi)  

,-./ = 0.  !- +&1- ……………………………(2) 

where Xi indicates a vector of independent variables, j climate-smart agriculture practice, βj 

Vector coefficient, and εi error term. In utility maximisation theory, farmers could adopt 

climate-smart agriculture if the expected benefits are higher than non-adoption. This can be 

presented as an observable dichotomous outcome for each choice of climate-smart 

agriculture adopted by farmers, as shown: 

= ,-./2&345678-"6
#&-9&:;<

/
      where j = W, E, N, C, T…………….. (3) 

where Yij indicates a binary observable variable for adopting the jth practice by the ith farmer. 

If the joint adoption of climate-smart agriculture technologies is to occur, the error terms of 

the equation can be described using a variance-covariance matrix as: 

> =

?
@
@
@
A B CDE CDF CDG CDH
CEI B CEF CEG CEH
CFI CFE B CFG CFH
CGI CGE CGF B CGH
CHI CHE CHF CHG B J

K
K
K
L
………………………………(4) 

where rho (δ) is a pairwise correlation between any pair of climate-smart agriculture 

technologies, the sign of δ between any two practices shows the relationship with a positive 

sign indicating complements and a negative sign showing substitutes. 

An ordered probit regression model was applied to determine adoption intensity and the 

number of climate-smart agriculture techniques adopted by the ith farmer because it was 

considered an ordinal variable. The ordered outcome could be assessed as a latent variable 

Y*, where Y* is the unobservable measure of farmers’ adoption intensity and depicted as: 

,./ = !.&M0 +&N. …………………………………………..(5) 

For the ith farmer where normalisation is that the regressors x do not include an intercept, the 

adoption intensity increases with Y*. The probability of observing a j outcome is described 

as: 

%O[PNQRPST&U = V] = %O&WX.Y#& Z&!.&M0 +&N. \&'.^………………………(6) 

The coefficients β1, β2… βj-1 were estimated jointly with the cut points α1, α2, …, αj where 

j is the number of the possible outcomes. Ui is assumed to be normally distributed with 

a standard normal cumulative distribution function. The ordered probit model is pooled and 

works under the assumption that the unobserved heterogeneity is uncorrelated with the 

independent variables.  
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Ethical consideration  

According to the research ethics and criteria suggested by Usmanu Danfodio 

University's Department of Agricultural Extension and Rural Development in Sokoto, 

Nigeria, the study was carried out with farmers' informed consent, anonymity, and voluntary 

participation. 

Results 

Socioeconomic features, joint adoption, joint adoption substitutes and complements, 

joint adoption intensity, and factors analysis of the adoption variables are the categories into 

which the data are arranged. According to the descriptive data of agro-pastoralists shown in 

Table 1, the majority of respondents were married (90%), had formal education (55%) and 

were male (85%). The average score is 44.81 years, 22.26 years, 10.25 people, and 7.33 

hectares for age, agricultural experience, and household size, respectively. 

Table 2. Descriptive statistics of the sampled agro-pastoralists 

Variables Description Mean Std Dev 

Land tenure Dummy =1 if owned, 0 otherwise na na 

Age  Age in years 44.81 13.55 

Gender Dummy =1 if male, 0 female na na 

Farming experience Farming experience in years 22.26 12.67 

Marital status Dummy =1 if married, 0 otherwise na na 

Educational level 
Dummy =1 formal education, 0 

otherwise 
na na 

Household size Number of persons  10.25 7.17 

Main crop farm size  Farm size in hectares 8.18  

Farm labour size Number of farm labourers 10.02 9.04 

Contact with extension services  Number of contacts with extension 1.12 2.4 

Farmers’ association 

membership 
Dummy =1 if member, 0 otherwise na na 

Credit accessed (Amount) Amount in Naira 2.44 1.12 

Sources of credit 
Dummy =1 if family & friends, 0 
otherwise 

na na 

Total crop farm size Farm size in hectares  7.33 5.17 

Total herd size Total livestock units 25.01 3.80 

Farming systems 
Dummy =1 livestock-based, 0 

otherwise 
na na 

Awareness Awareness score 25.99 8.28 

Perception  Perception score 39.72 17.70 

na – not available. 

Source: Authors’ compilation. 
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 Table 2. Determinants of the joint adoption of climate-smart agricultural practices among 

agro-pastoralists in Sokoto State, Nigeria 

Source: Authors’ compilation 

Specification 

Multivariate probit estimates Individual probit estimates 

Water-

smart 

Coeff. 

(S.E) 

Nutrient-

smart 

Coeff. 

(S.E) 

Carbon-

smart 

Coeff. 

(S.E) 

Crop-

smart 

Coeff. 

(S.E) 

Weather-

smart 

Coeff. 

(S.E) 

Water-

smart 

Coeff. 

(S.E) 

Nutrient-

smart 

Coeff. (S.E) 

Carbon-

smart 

Coeff. 

(S.E) 

Crop-

smart 

Coeff. 

(S.E) 

Weather-

smart 

Coeff. 

(S.E) 

Land tenure 
0.034 

(0.012) *** 

0.014 

(0.012) 

0.035 

(0.011) *** 

0.02 

 (0.013) * 

0.02  

(0.012) 

0.101  

(0.036) *** 

0.0434 

(0.0354) 

0.117 

(0.038) *** 

0.054 

(0.034) 

0.06 

(0.04) * 

Age 
0.003 

(0.003) 

0 

(0.003) 

0 

(0.003) 

-0.002 

(0.003) 

0.002 

(0.003) 

0.012 

(0.008) 

0.0031 

(0.0089) 

0.002 

(0.009) 

-0.003 

(0.009) 

0.01 

(0.01) 

Gender 
0.19 

(0.134) 

0.298 

(0.134) ** 

0.193 

(0.124) 

0.216 

(0.141) * 

0.031 

(0.134) 

0.626 

(0.440) 

0.0000 

(0.000) 

0.951 

(0.562) * 

0.957  

(0.479) * 

0.30 

(0.45) 

Farming 

experience 

0 

(0.003) 

0 

(0.003) 

0.002 

(0.003) 

0.001 

(0.003) 

0 

(0.003) 

-0.001 

(0.008) 

-0.0002 

(0.0083) 

0.007 

(0.009) 

0.003 

(0.008) 

0.00 

(0.01) 

Educational 

level 

-0.011 

(0.023) 

0.015 

(0.023) 

0.003 

(0.021) 

-0.001 

(0.024) 

0.02 

(0.023) 

-0.024 

(0.067) 

0.0804  

(0.0712) 

0.042 

(0.074) 

0.019 

(0.067) 

0.07 

(0.07) 

Household 

size 

-0.001 

(0.004) 

0 

(0.004) 

0.001 

(0.004) 

0.001 

(0.004) 

0.004 

(0.004) 

-0.004 

(0.011) 

-0.0004  

(0.0121) 

0.006 

(0.012) 

0.002 

(0.011) 

0.01 

(0.01) 

Main crop 

farm size 
0(0) 

0 

(0) 

0 

(0) 

0 

(0) 

0 

(0) 

-0.001 

(0.002) 

-0.0165  

(0.0147) 

-0.019 

(0.016) 

-0.001 

(0.002) 

0.00  

(0.00) 

Farm labour 

size 

0 

(0.002) 

0.003 

(0.002) 

0 

(0.002) 

-0.001 

(0.003) 

-0.003 

(0.002) 

-0.001 

(0.007) 

0.0143  

(0.0094) 

0.003  

(0.009) 

-0.004 

(0.007) 

-0.01 

(0.01) 

Extension 

contact 

-0.016 

(0.01) * 

-0.006 

(0.009) 

0.008 

(0.009) 

0 

(0.01) 

0 

(0.01) 

-0.044 

(0.027) 

-0.0104  

(0.0273) 

0.036  

(0.033) 

-0.001 

(0.027) 

0.00 

(0.03) 

Association 

membership 

-0.004 

(0.005) 

-0.01 

(0.005) * 

-0.001 

(0.005) 

0 

(0.005) 

-0.011 

(0.005) ** 

-0.014 

(0.015) 

-0.0315  

(0.0164) ** 

-0.004  

(0.016) 

-0.002  

(0.015) 

-0.03 

(0.02) ** 

Credit 

accessed 

(Amount) 

0 

(0) 

0 

(0) 

0 

(0) 

0 

(0) 

0 

(0) 

0.000 

(0.000) 

0.0000  

(0.0000) 

0.000 

(0.000) 

0.000  

(0.000) 

0.00 

(0.00) 

Sources of 

credit 

-0.006 

(0.028) 

-0.016 

(0.028) 

0.059 

(0.026) ** 

0.012 

(0.03) 

-0.016 

(0.028) 

-0.017 

(0.081) 

-0.0359  

(0.0829) 

0.149 

(0.097) 

0.003  

(0.087) 

-0.04 

(0.08) 

Total farm 

size 

0.006 

(0.005) 

0.004 

(0.005) 

0.003 

(0.004) 

-0.004 

(0.005) 

0.008 

(0.005) * 

0.016 

(0.013) 

0.0188  

(0.0139) 

0.019 

(0.015) 

-0.008  

(0.014) 

0.03 

(0.01) * 

Total herd 

size 

0.001 

(0.001) 

0.001 

(0.001) 

0.001 

(0.001) 

0.001 

(0.001) 

-0.001 

(0.001) 

0.003 

(0.004) 

0.0024  

(0.0041) 

0.001  

(0.004) 

0.012  

(0.021) 

0.00 

(0.01) 

Farming 

systems 

-0.004 

(0.002) *** 

-0.002 

(0.002) 

-0.001 

(0.001) 

-0.001 

(0.002) 

-0.001 

(0.002) 

-0.013 

(0.005) *** 

-0.0051  

(0.0046) 

-0.004  

(0.005) 

-0.004  

(0.005) 

0.00 

(0.00) 

Awareness 
0.013 

(0.004) 

0.017 

(0.004) *** 

0.015 

(0.003) *** 

0.02 

(0.004) *** 

0.009 

(0.004) ** 

0.039 

(0.011) *** 

0.0554  

(0.0119) *** 

0.049  

(0.012) *** 

0.063  

(0.012) *** 

0.03 

(0.01) ** 

Perception 
-0.001 

(0.002) 

-0.001 

(0.002) 

0 

(0.002) 

-0.004 

(0.002) ** 

0.004 

(0.002) ** 

-0.003 

(0.005) 

-0.0033  

(0.0050) 

-0.002 

(0.005) 

-0.010  

(0.005) ** 

0.01 

(0.00) ** 

_cons 
1.034 

(0.139) *** 

0.859 

(0.139) *** 

0.934 

(0.129) *** 

0.905 

(0.146) *** 

0.992 

(0.139) 

*** 

-1530978 

(0.526) *** 

-144875  

(0.4452) *** 

-2418548  

(0.713) *** 

-2379234 

(0.650) *** 

-1859196 

(0.58) *** 

RMSE 0.456 0.455 0.421 0.457 0.479 
LR chi- 

61.10 
54.88 77.08 64.94 55.43 

R-Sq 0.136 0.150 0.170 0.142 0.108 

Pseudo 

R2- 

0.1093 

0.1008 0.1501 0.1152 0.0943 

F 3.79 3.28 4.26 3.99 2.93 
Log like. = 

-249.06 
-244.731 -218.17 -249.37 -266.026 

P 0.000 0.000 0.000 0.000 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 
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The elements that influenced the combined adoption of climate-smart agriculture 

technology were evaluated and are shown in Table 3. Multivariate probit regression analysis 

parameters yielded F-statistics of 2.93–4.26 and coefficients of determination (R2) ranging 

from 0.108 to 0.170. This suggests that the predictor variables in the models were able to 

explain between 45% and 47% of the variances in the selection of climate change adaptation 

strategies. The use of Multivariate Probit Analysis is justified by the model’s importance. 

The findings demonstrate the interdependence of climate-smart agriculture approaches and 

the biased estimates generated by the individual probit model. 

Table 4 presents the results of the complements and substitutes of the joint adoption of 

climate-smart agriculture practices. The likelihood ratio test (Chi2 = 485.502 Prob > Chi2 = 

0.0001.) of the error terms of different climate-smart agriculture practices equations from the 

multivariate probit regression model was significant at a 1% level of significance, thus 

indicating that the equations for adopting individual climate-smart practices were 

interdependent. The positive and negative correlation coefficients indicate both complements 

and substitutes between climate-smart agriculture practices. 

Table 4. Correlation coefficients of the climate-smart agricultural practices (estimation from 

the multivariate probit model) 

 Water-smart Nutrient-smart Carbon-smart Weather-smart Crop-smart 

Water-smart 1.000     

Nutrient-smart 0.2413** 1.000    

Carbon-smart 0.344** 0.4061*** 1.000   

Weather-smart 0.2279** 0.4047*** 0.4847*** 1.000  

Crop-smart 0.1949* 0.3646** 0.2542** 0.3260*** 1.000 

Likelihood ratio test of rho21 = rho31 = rho41 = rho51 = rho32 = rho42 = rho52 = rho43 = rho53= rho54 = 0: Chi2 

(10) = 485.502 Prob > Chi2 = 0.0001. **p < 0.05. ***p < 0.01. 

Source: Authors’ compilation 

In Table 5, the intensity of the joint adoption is important among agro-pastoralists to 

ensure their adaptation and enhance the yields of their crops and the productivity of their 

animals with less exposure to conflicts and other vulnerability factors. The results of the 

ordered probit regression show that LR Chi2 = 144.03, Pseudo R2 = 0.161, and Prob > Chi2 

= 0.000 to affirm that the ordered probit is reliable. 
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Table 5. Factors influencing the number of climate-smart agricultural practices adopted using 

an ordered probit model 

Variables Coefficient Std. err. z P>|z| [95% conf. interval] 

Land tenure 0.019 0.032 0.610 0.543 -0.043 0.081 

Age -0.005 0.008 -0.670 0.503 -0.020 0.010 

Gender 0.201 0.393 0.510 0.609 -0.569 0.972 

Farming experience -0.005 0.007 -0.610 0.542 -0.019 0.010 

Educational level -0.062 0.063 -1.000 0.319 -0.185 0.060 

Household size 0.018 0.010 1.760 0.078 -0.002 0.038 

Main crop farm size 0.000 0.000 0.470 0.640 -0.001 0.001 

Farm labour size 0.002 0.006 0.330 0.739 -0.010 0.014 

Extension contact 0.044 0.026 1.700 0.089 -0.096 0.007 

Association 
membership 

0.016 0.013 1.280 0.201 -0.009 0.041 

Credit accessed 

(Amount) 
0.000 0.000 -1.020 0.307 0.000 0.000 

Sources of credit -0.048 0.075 -0.640 0.521 -0.196 0.099 

Total farm size 0.005 0.012 0.440 0.658 -0.018 0.028 

Total herd size 0.001 0.002 0.510 0.609 -0.003 0.005 

Farming systems 0.048 0.004 10.930 0.000 0.039 0.057 

Awareness 0.012 0.010 1.190 0.233 -0.008 0.031 

Perception -0.003 0.004 -0.630 0.528 -0.011 0.006 

LR Chi2 144.03      

Pseudo R2 0.1609      

Log likelihood -375.699      

P 0.0000      

Source: Authors’ compilation 

In Table 6, an exploratory factor analysis was applied to examine the structure and 

dimensions of several climate-smart practices. This will help identify a set of practices 

usually uncorrelated from a large set of techniques, most of which are often correlated to 

each other. 
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Table 6. Exploratory factor analysis of climate-smart agriculture technologies 

Factors Eigenvalue Difference Proportion Cumulative Uniqueness 

Water conservation 9.069 6.809 0.603 0.603 0.421 

Water harvesting 2.259 0.442 0.150 0.754 0.413 

Drip irrigation 1.817 0.998 0.121 0.874 0.368 

Furrow-irrigated beds for planting 0.819 0.179 0.055 0.929 0.573 

Land levelling 0.640 0.072 0.043 0.971 0.598 

Mulching 0.568 0.154 0.038 1.009 0.507 

Drainage management 0.414 0.074 0.028 1.037 0.517 

Planting of cover crops 0.340 0.060 0.023 1.059 0.755 

Nutrient-smart 0.280 0.076 0.019 1.078 0.292 

Integrated soil fertility management 0.204 0.029 0.014 1.092 0.460 

Green manuring 0.175 0.069 0.012 1.103 0.611 

Use of organic fertilisers 0.107 0.026 0.007 1.110 0.630 

Energy/carbon-smart 0.081 0.023 0.005 1.116 0.304 

Agroforestry 0.058 0.027 0.004 1.120 0.432 

Biochar application 0.032 0.020 0.002 1.122 0.366 

Minimum tillage 0.012 0.021 0.001 1.123 0.737 

Integrated pest management -0.009 0.007 -0.001 1.122 0.510 

Weather-smart -0.015 0.019 -0.001 1.121 0.264 

Livestock climate-smart housing -0.034 0.009 -0.002 1.119 0.531 

Weather agro-advisory services -0.044 0.016 -0.003 1.116 0.470 

Farm insurance -0.059 0.014 -0.004 1.112 0.386 

Crop-smart -0.074 0.005 -0.005 1.107 0.407 

Planting improved crop varieties -0.078 0.049 -0.005 1.102 0.547 

Contingency crop planning -0.128 0.017 -0.009 1.093 0.480 

Planting of early-maturing varieties -0.145 0.009 -0.010 1.084 0.566 

Crop rotation -0.154 0.041 -0.010 1.073 0.527 

Total crop farm size -0.195 0.006 -0.013 1.060 0.584 

Total herd size (TLU) -0.201 0.009 -0.013 1.047 0.032 

Farming system -0.210 0.017 -0.014 1.033 0.328 

Awareness of climate change 

incidence 
-0.226 0.045 -0.015 1.018 0.481 

Perception of climate change -0.271 . -0.018 1.000 0.031 

Source: Authors’ compilation  
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Discussion 

The sampled agro-pastoralists are in their prime working years and would be open to 

innovations that would improve their standard of living and ensure sustainability, according 

to the trend of socioeconomic parameters in Table 2. These findings are consistent with those 

of other authors who found that agro-pastoralists had a mean herd size of 20 cows, were 

mostly male, under 35, married, untrained, unable to obtain credit, and not affiliated with 

cooperative societies (Yakubu et al., 2016; Abdulkarim et al., 2022). 

Joint adoption of climate-smart agriculture technologies  

In Table 3, the adoption of climate-smart agriculture techniques, socioeconomic 

factors, extension services, awareness, and perception of the technologies are shown. The 

adoption of water-smart practices was influenced by land tenure (β = 0.034, p < 0.01), 

extension contact (β = -0.016, p < 0.01), awareness (β = 0.009, p < 0.01), and farming systems 

β = -0.004, p < 0.01) with extension contact and the farming system being inversely related. 

The adoption of climate-smart agriculture practices has been found to be influenced by 

a number of factors, including age, gender, and education level (Kosoe and Ahmed, 2022); 

agroecological zones, land tenure systems, and religion (Mamun et al., 2021); marital status, 

income, access to credit, and extension services (Myeni and Moeletsi, 2020); the source of 

information (Olorunfemi et al., 2020); and education, household size, income, perceptions of 

climate change, and farmland size (Kassa and Abdi, 2022). 

The determinants of carbon-smart adoption are land tenure (β = 0.035, p < 0.05), sources 

of credit β = 0.059, p < 0.05), and awareness (β = 0.015, p < 0.01). Telephone-mediated 

agricultural guidance, according to Gupta, Ponticelli, and Tesei (2021), would boost 

agricultural output and modernisation.  Crop-smart techniques were significantly and 

positively influenced by land tenure β = 0.02, p < 0.05), gender (β = 0.216, p < 0.10), 

awareness (β = 0.02, p < 0.001) and perception (β = -0.004, p < 0.05). Male and female 

farmers have varying access to climate-smart farming information and inputs (Gebre et al., 

2019; Oduniyi and Tekana, 2021). The adoption of nutrient-smart practices was significantly 

influenced by gender (β = 0.298, p < 0.05), association membership (β = -0.01, p < 0.10) and 

awareness (β = 0.017, p < 0.001). According to Otitoju and Enete (2016), farmers' 

deep understanding of climate change influences their adoption of smart practices and 

association membership ( β =  -0.011, p < 0.05), total farm size ( β = 0.008, p < 0.10), 

perception ( β = 0.004, p < 0.005) and statistically significantly influenced the adoption of 

weather-smart practices.  Climate and ecological zoning, access to extension services, and 

the diversity of agricultural systems influence adoption (Nyang'au et al., 2021; García-

Jiménez, 2022; Dhehibi, 2022). Several authors have identified a number of factors that 

influence farmers' adoption of climate-smart agriculture techniques, including agroecological 

zones, input accessibility and availability (Mulema et al., 2020), market product demand, 

knowledge, awareness, as well as skills in farming systems, policy and institutional support, 

household size and educational attainment, information access (Kassie et al., 2021; Mofya et 

al., 2021), access to finance and other productive resources (Saidu et al., 2020), and land 

tenure systems (Amare et al., 2020). Omodara et al. (2023) discovered that these 

characteristics corroborated the authors previously mentioned, whereas Musafiri et al. (2022) 

revealed similar parameters as predictors of the joint adoption of climate-smart agriculture 

techniques in Kenya. 
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Complements and substitutes of the joint adoption of climate-smart agriculture practices  

Table 4 illustrates the recognised complements between weather-smart, crop-smart, 

carbon-smart, nutrient-smart, and water-smart activities. According to Musafiri et al. (2022) 

and Omodara et al. (2023), farmers in Kenya and Nigeria, respectively, reported 

complements and substitutes. The use of common resources and the fact that one company's 

byproducts are used as inputs by another can be used to explain technology complementarity. 

Similarly, cooperative use of resources can raise income, adjust to climate change, and 

improve agricultural productivity. The phrases "carbon-smart and crop-smart", "weather-

smart and crop-smart", and "nutrient-smart and crop-smart" can be substituted by agro-

pastoralists. Replacements frequently result from improvising the application of certain 

approaches for a variety of early maturation and weather adaptation goals. 

The intensity of the joint adoption of climate-smart agriculture practices 

In Table 5, only three variables were significantly influencing the intensity of the joint 

adoption of climate-smart agriculture, namely, household size (β = 0.018, p < 0.10), extension 

contact (β = 0.044, p < 0.10) and farming systems (β = 0.048, p < 0.001). A favourable 

correlation was found between the degree of collaborative adoption of climate-smart 

agriculture technology and the involvement of extension agents. According to this, agro-

pastoralists who interacted with extension services more frequently were more likely to 

simultaneously implement climate-smart practices than those who did not. Serote et al. 

(2023) claim that engaging with extension services removes barriers to the implementation 

of climate-smart agriculture. For Kelil et al. (2020), extension services improve the use and 

accessibility of climate-smart agriculture knowledge. Elia (2017) asserts that extension 

services in central semi-arid Tanzania enhanced farmers' understanding of climate change 

and variability, hence fostering climate change adaptation. Extension services are an 

important way to communicate with farmers, and according to Colussi et al. (2022), 

communication affects how technology is used. 

Household size had a positive correlation with the extent to which households 

implemented climate-smart agriculture practices together. The findings indicated that large 

families were more likely to embrace climate-smart practices cooperatively. To meet their 

immediate labour demands, many farm families rely on their own family members because 

implementing climate-smart practices may require more man-days than traditional farming 

methods. The combined use of climate-smart agricultural practices may lead to a higher 

demand for labour, which could be the result of a more intense adoption. Farming systems 

predicted the degree of collaborative adoption of climate-smart agriculture solutions 

favourably. As a result, the demand for agricultural systems practices will determine the 

quantity and diversity of climate-smart methods used by agro-pastoralists. Collaborative 

adoption of innovations may also be facilitated by the resources that farming systems make 

available to other agricultural enterprises. Ricart et al. (2022) stress that farming systems 

have an impact on the adoption of climate-smart agriculture approaches. Akano et al. (2022) 

assert that farming practices influence the adoption of climate-smart agriculture practices. 

Factors analysis of the adoption factors on climate-smart agriculture 

Factor loadings are the weights and correlations between each variable and adoption in 

Table 6. The greater the load, the more significant it is in determining the dimensionality of 

the component. A negative value indicates an inverse influence on the factor. The factors that 
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have the opposite effects include climate-smart livestock housing, weather-advisory services, 

farm insurance, crop-smart, planting improved crop varieties, planting early-maturing 

varieties, crop rotation, total crop farm size, total herd size (TLU), farming system, and 

awareness of the incidence of climate change. The activities are not particularly popular, and 

either fewer people are using them or people don't think much of them. Farmers' decisions 

and willingness to pay for the adoption of climate-smart agriculture are influenced by the 

cost of technology implementation, according to Khatri-Chhetri et al. (2017). The 

eigenvalues are the total variance accounted for by each factor. The Kaiser criterion suggests 

retaining those factors with eigenvalues equal to or higher than 1. The results depict that the 

first five factors explained 97% of the variance, with factors 1 to 5 contributing 60.3%, 

15.0%, 12.1%, 5.5%, and 4.3%, respectively. Factor 1 demonstrated the highest eigenvalue 

with 9.06, followed by Factor 2 with 2.25, Factor 3 with 1.18, Factor 4 with 0.82, and Factor 

5 with 0.64. The difference between one eigenvalue and the next depicts some form of 

magnitude between sequential eigenvalues. The proportion indicates the relative weight of 

each factor in the total variance. The first factor explains 60.3% of the total variance, while 

the cumulative shows the amount of variance explained by successive factors. For example, 

Factor 1 and Factor 2 account for 67.54% of the total variance.  The uniqueness is the variance 

that is ‘unique’ to the variable and not shared with other variables. It is equal to 1 – 

communality (variance that is shared with other variables). The overall factor model shows 

that water conservation accounts for about 42 percent of the variance. With 29.2% and 26.4% 

of the variance not explained by other variables, respectively, nutrition-smart and weather-

smart exhibit low variance. Significantly, the more "uniqueness" a variable has, the less 

relevant it is in the factor model. The highest coefficients of uniqueness are found in 

minimum tillage and cover crop planting, with respective values of 0.73 and 0.75. This 

suggests that these methods have been widely used and adopted in the research region. In 

Nigeria, conservation agriculture practices include minimum tillage and using cover crops 

(Kolapo and Kolapo, 2023). To lessen the long-term effects of climate change, farmers in 

northern Nigeria use legumes and cover crops, compost, and practise minimal tillage (Fawole 

and Aderinoye-Abdulwahab, 2020). 

Conclusions!and policy implications 

Although the parameters had conflicting effects that impacted the joint use of climate-

smart techniques, the study found that agro-pastoralists used various climate-smart 

agriculture practices. Association membership, gender, perception, farming systems, land 

tenure, extension contact, awareness of climate incidents, and sources of credit all had a big 

impact on the collective adoption of climate-smart agricultural practices. Variations in the 

socioeconomic characteristics of agro-pastoralists have diverse effects on the degree and 

intensity of the adoption of climate-smart practices. The climate-smart activities' positive and 

negative correlation coefficients show that they complement and replace one another. In 

order to effectively spread and embrace climate-smart practices among agro-pastoralists, 

which curbs the practice of transhumance and its associated conflicts, the significant 

variables serve as indicators of important issues that must be thoroughly studied. 

The study's findings have several policy implications, including the necessity of 

improving end users' access to various streams of climate adaptation solutions due to the 
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accompanying services that each of the innovations in the package of climate-smart 

agricultural practices requires. Similar to this, implementing several climate-smart 

agricultural practices (CSAPs) has important policy ramifications, such as improved food 

security, heightened climate change resilience, and decreased greenhouse gas emissions, all 

of which eventually support sustainable agricultural development and the accomplishment of 

more general sustainable development objectives. 
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