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Does Complexity Pay? Forecasting Corn and
Soybean Yields Using Crop Condition Ratings

Jiarui Li, Scott H. Irwin, and Todd Hubbs

We compare the accuracy of crop condition models from existing literature in
forecasting U.S. corn and soybean yields. The data for the study consists of weekly
state and national crop condition ratings from the USDA over 1986 through 2022.
A battery of statistical tests is applied to perform out-of-sample forecasts over 2000
through 2022. While there are differences in the accuracy of the models, test results
are uniform in suggesting that no model has statistically significant superior forecast
accuracy. A key finding is that relatively simple models perform just as well as
more complex and computationally demanding models.
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Introduction

Accurate forecasts of crop yield are highly valuable for several reasons. From a market
perspective, yield forecasts are an essential component of supply, demand, and price forecasting.
From a policy perspective, yield forecasts are important to governments around the world to assess
drought impacts and food insecurity. In addition, these forecasts are crucial for farmers and
agribusiness firms in developing marketing and risk management plans.

Given the importance of crop yield forecasts, it is no surprise that there is a very large
literature on the relationship between weather, technology, and crop yields dating back to the early
1900s (e.g., Tannura, Irwin, and Good, 2008). Broadly speaking, this literature shows that
summer precipitation and air temperature directly influence yield potential, along with other
factors including soil quality, planting date, disease, insects, and technological improvements
from seed genetics, fertilizers, and grower management techniques.

A popular approach among market analysts in both the private and public sectors is to forecast
U.S. crop yields based on U.S. Department of Agriculture (USDA) condition ratings. The ratings
are released weekly during the growing season and reflect the subjective judgment of thousands
of observers about crop yield prospects. Importantly, the ratings are reported as the percentage
of a crop rated in five mutually exclusive and exhaustive categories: very poor, poor, fair, good,
and excellent. Many analysts use the sum of good and excellent condition ratings to build a simple
condition index and relate this to trend-adjusted crop yields. Several representative articles
applying this approach to forecasting U.S average corn and soybean yields can be found at the
farmdoc daily website (Irwin and Good, 2017a, b; Irwin and Hubbs, 2018a, b, c, d).
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Despite the widespread use of crop condition ratings to forecast crop yields in private and
public organizations, there are only a few studies in the academic literature that investigate
condition-based forecasts. The general idea behind these studies is to transform the ordinal
condition ratings to a numeric condition index and then construct a time-series model between
yields and the condition index. For example, Kruse and Smith (1994) developed a weighting
system that estimates a changing yield weight for each crop condition class in the growing season
for corn and soybean. By multiplying each crop condition ratings by the corresponding yield
weight, they computed an average in-sample yield estimate at the state-level. Fackler and
Norwood (1999) built a similar state-level yield forecasting model for corn, cotton, soybeans, and
spring wheat with an estimated yield weight that is unchanging throughout the growing season.
They showed that for each condition class, the product of estimated yield weight and condition
rating reflects its average yields. Bain and Fortenbery (2017) used fixed weights to construct a
condition index in a yield forecasting model for wheat. Their condition index is based on a
straightforward system where for the lowest very poor condition is assigned a weight of zero, and
as the condition increases by one category level, the corresponding weight increases by 0.25 until
it reaches the highest excellent condition with a weight of one.

Begueria and Maneta (2020) developed a sophisticated two-stage yield forecasting model
based on crop condition ratings for corn, cotton, soybeans, and winter wheat at the state level.
They argued that spatial and temporal differences in crop condition information should be directly
modeled before making yield forecasts. Hence, the authors developed a cumulative link mixed
model to transform raw condition data to a continuous and almost normal-distributed crop
condition index. After removing space and time effects, they argued that maximum information
can be extracted from crop condition ratings, which offers a better possibility of providing
unbiased and accurate yield forecasts. Begueria and Maneta (2020) provided evidence that their
modeling approach achieves large improvements in accuracy over simpler condition-based
forecasts, such as Jorgensen and Diersen (2014) and Irwin and Good (2017a, b).

The improvements in forecast accuracy reported by Begueria and Maneta (2020) are
interesting for three reasons. First, the finding that a complex model beats simpler models in
terms of forecast accuracy runs counter to a large body of literature on the forecasting of various
variables, including GDP growth, inflation rates, unemployment levels, stock prices and market
trends. Armstrong (2001, p. 693) summarizes the evidence as “...showing that while some
complexity may improve accuracy, seldom does one need highly complex methods. In some
studies, complexity harmed accuracy.” The results reported by Begueria and Maneta (2020) may
represent an important exception to this general result. Second, the forecast results in Begueria
and Maneta are based on a cross-validation procedure that leaves out one observation at a time
and forecasts the “missing observation” regardless of its ordering in time. This procedure is only
applied to the second stage of the estimation, which is quite different from the recursive out-of-
sample procedures that are standard in the time-series forecasting literature. Third, Begueria and
Maneta (2020) did not compute forecast error statistics for simpler models using the same data
set as in their study, but, rather, relied on forecast statistics reported in the original articles.

The purpose of this study is to evaluate the forecast accuracy of crop condition models for
U.S. average corn and soybean yields. Specifically, we compare the forecast accuracy of the
simpler models designed by Irwin and Good (2017a, b) and Bain and Fortenbery (2017) to the
model developed by Begueria and Maneta (2020), which provides a representative set of models
ranging from relatively simple to highly complex specifications. The data for the study consists
of weekly state and national crop condition ratings from 1986 through 2022 for corn and soybeans.
To evaluate the predictability of the yield forecasting models, we use data from 2000 through
2022 as the out-of-sample period. A battery of statistical tests is applied to the out-of-sample crop
yield forecasts. The test results contradict Begueria and Maneta’s (2020) finding that their model
outperforms simpler models, which include the Kruse and Smith (1994) regression model for the
period 1986-1993; the Jorgensen and Diersen (2014) regression model for the period 1986-2012;
and the Irwin and Good (2017a) regression model for the period 1986-2016.
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Data

From roughly late April through the end of November each growing season, USDA weekly Crop
Progress reports provide progress and condition ratings for corn and soybean in 18 major
producing states. The reports are published on the first business day of the week after 4:00 pm
Eastern time. Estimates in the report are based on non-probability subjective surveys conducted
by nearly 4,000 local crop observers, who are drawn from the ranks of extension agents, USDA
Farm Service Agency (FSA) staff, elevator managers, and other agricultural professionals. Each
local observer follows the standard definitions and guidelines provided by the USDA to conduct
assessments of crops in their local area. Data are reported on the progress of producer activities
(e.g., planting and harvesting), various phenological stages of development (e.g., emergence,
flowering), and crop condition ratings. It is important to emphasize that weekly observations are
entirely subjective and the result of visual field observations, direct conversations with farmers,
and expert local knowledge. For this reason, the data collection process for USDA Crop Progress
reports can be described as a system of “people as crop sensors.” Finally, state-level estimates
are based on weighting of local observer estimates, usually at the county level, and national-level
estimates are based on weighting of each state’s planted acreage estimate from the previous year
(Irwin and Good, 2017a).!

The data released in the weekly Crop Progress report are followed closely by grain market
participants. For example, Lehecka (2014) notes that these reports are among the most requested
publications distributed by the USDA between monthly Crop Production and World Agricultural
Supply and Demand Estimates (WASDE) reports. Using event study methods, Lehecka shows
the strongest corn and soybean futures market reactions are found in July and August, when
weather conditions are most critical for crop development. He also finds that market reaction to
the release of the weekly Crop Progress report has increased over time.

Lehecka’s work shows that Crop Progress reports have substantial informational value to
participants in the grain futures markets. As discussed above, this is especially true during the
heart of the summer growing season for corn and soybean. It is during these months that crop
condition ratings take center stage. The ratings are reported in five exhaustive categories as
follows:?

Very Poor — Extreme degree of loss to yield potential, complete or near crop failure. Pastures
provide very little or no feed considering the time of year. Supplemental feeding is required to
maintain livestock condition.

Poor — Heavy degree of loss to yield potential which can be caused by excess soil moisture,
drought, disease, etc. Pastures are providing only marginal feed for the current time of year. Some
supplemental feeding is required to maintain livestock condition.

Fair— Less than normal crop condition. Yield loss is a possibility, but the extent is unknown.
Pastures are providing generally adequate feed but still less than normal for the time of year.

Good —Yield prospects are normal. Moisture levels are adequate and disease, insect damage,
and weed pressures are minor. Pastures are providing adequate feed supplies for the current time
of year.

Excellent — Yield prospects are above normal. Crops are experiencing little or no stress.
Disease, insect damage, and weed pressures are insignificant. Pastures are supplying feed in
excess of what is normally expected at the current time of year.

The ratings for a given crop in each condition category are expressed as a percentage,
reflecting the proportion of the crop rated in a particular category. Since the categories are
exhaustive, the percentages in the five categories sum to 100.

1 See the discussion at the USDA/NASS website here:
https://www.nass.usda.gov/Surveys/Guide_to NASS Surveys/Crop_Progress and_Condition/index.php.
2 The definitions are found on this page at the NASS website:

https://www.nass.usda.gov/Surveys/Guide to NASS Surveys/Crop Progress and Condition/index.php.
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We collected all weekly condition ratings for corn and soybeans at the state and national level
starting in 1986, when the program was established, through 2022. For each year, the coverage
of weeks in the growing season is not the same because ratings do not begin until a substantial
part of the crop has emerged and do not end until most of the crop is mature. Since dates for
emergence and maturity vary from year-to-year, the beginning and ending dates for condition
ratings also vary. To obtain a consistent evaluation period for all competing models, we use weeks
23 through 39 for corn and weeks 25 through 39 for soybeans to evaluate the yield forecasts. The
ranges roughly correspond to early June to late September for corn and late June to late September
for soybean. Corn and soybean ratings are available for all years during the sample period for
these weeks and for all but a few of the 18-states included for each crop in the Crop Progress
report.

The Begueria and Maneta (2020) model provides weekly yield forecasts at the state-level for
the 18 major-producing states included in the Crop Progress report for corn and soybean due to
the design of their framework. We are interested in yield forecasts at the national level because
this is a key determinant of market prices rather than yield in any individual state. To compare
all competing models at the national level, we developed a straightforward method of converting
a set of state-level forecasts to one national level forecast. Specifically, we use the ratio of
weighted-average yields of 18 states to the national yields. Once the state-level yield forecasts
are available, forecasts of national yields can be easily calculated using the estimated ratio. For
these 18 states, each individual state has different productivity for corn and soybean. We use the
proportion of individual state’s harvested acres out of the total harvested acres of 18 states to
estimate the yield weight for each state. Each year for each state, we use the previous five-year
moving-average yield weight as a forecast for current year’s yield weight. For the ratio of
weighted sum of state-level yields to the final estimates of national yields, we apply a similar
previous five-year moving-average procedures to acquire a forecast for the current year’s state-
to-national yield ratio.

Since a five-year moving-average procedure is applied to harvested acres, and the first year
we use the crop condition ratings for yield forecasts is 1986, we collected harvested acres for each
state from 1981 through 2022. The harvested acres data are obtained from the NASS Quick Stats
website and are originally published in the Acreage report released each year at the end of June.?
The Acreage report includes revised harvested acres for the previous year and forecasted
harvested area for the current year. The timing of the Acreage report roughly lines up with the
beginning of the forecast window each year for the present study.

Yield Forecasting Models

The yield forecasting models used in this study provide early yield projections when weekly
condition ratings are available for corn and soybean. Figure 1 uses corn to illustrate a typical
forecast cycle. Each year of our sample, the first yield prediction starts in week 23 (the week of
June 3). The yield forecasts for week 23 are obtained using crop condition ratings published in
this week. Importantly, all the forecast models are estimated recursively using samples that end
before a given forecast week. The out-of-sample period is 2000 through 2022 and forecasts for
corn are made for week 23 through week 39 (the week of Sep. 23) in each year and for soybean
for week 25 (the week of June 17) through week 39. To evaluate the performance of yield
forecasting models, we compare the weekly forecasts with final yield estimates published in the
USDA’s Crop Production Annual Summary report that is released in January after the growing
season.

The design of the Irwin and Good (2017a) model makes it applicable for both state-level and
national-level yield forecasts. At the national level, the Irwin and Good National model (IG
National model, hereinafter) is specified as follows:

3 https://www.nass.usda.gov/Quick _Stats/
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Figure 1. Yield Forecasting Cycle for Corn
Notes: we use corn as an example to illustrate the forecasting cycle. For soybeans, the first prediction is in
week 25 and the last prediction is in week 39.
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Figure 3. Recursive Out-of-Sample Yield Forecasts with Irwin and Good State Model and

Irwin and Good National Model
Notes: We use corn as an example to illustrate the forecasting cycle. For soybeans, the first prediction is in
week 25 and the last prediction is in week 39.

(1) Yield, = By + fiyear_index; + [,SUM; + €,

where Yield, is national final yield estimates in year t; year_index; is the time index in year t;
SUM, is the sum of excellent and good ratings at the end of the season in year t. With corn as an
example, Figure 3 illustrates how to provide recursively out-of-sample yield forecasts with the
model. In particular, yield forecasts for week 23 in 2000 are obtained with the following steps.
First, first ordinary least squares (OLS) regression is used to estimate the IG National model from
1986 to 1999 with the time index, the percentage of corn rated in good and excellent condition at
the end of the year, and the national final yield estimate. Second, the sum of ratings in week 23
and the year index for 2000 are entered in the regression model estimated over 1986 through 1999
to obtain a corn yield forecast for week 23 in 2000.

State-level yield forecasts follow the same procedure as at the national level. Instead of using
national yield estimates, we use state-level final yield estimates to estimate the Irwin and Good
State model (IG State model, hereinafter) and generate weekly yield forecasts for each state.
State-level forecasts are aggregated to the national level using the procedure described earlier.
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Irwin and Good (2017b) point out that a disadvantage of their approach is that it does not
consider bias in the early week condition ratings during the growing season. Irwin and Good
show that early condition ratings for corn and soybean, on average, are over-estimated. Early in
the growing season, crops often are in a “green” state and retain full yield potential. However, in
a few years adverse weather conditions (like the drought in 2012) and the development of plant
disease (like the outbreaks of tar spot, a fungal disease damages corn leaf, since 2015) cause crop
yield prospects deteriorate. As a result, ratings later in the growing season, on average, tend to be
lower than early ratings. This is sometimes referred to as the “browning” of crop condition
ratings. To measure the size of this bias, we follow definition of bias proposed by Irwin and
Hubbs (2018a, c):

(2) bias; = final week rating, — early week rating,,

where final week rating, is the current year’s sum of good and excellent ratings at the end of
growing season and early week rating, is the sum of good and excellent ratings of each early
week in year t. We expect the bias to be negative, hence, to adjust the bias in the early weeks, we
need to add the bias to the early weeks’ ratings as:

3) adj_early_rating, = early week rating, + bias;.

For both corn and soybean, the data show that bias is minimal after week 30. Therefore, the
bias adjustment is applied only to week 23 through week 30 for corn and week 25 through week
30 for soybean.

We apply moving-average procedures to estimate the size of bias. With ten-year and five-
year moving-average approaches, we first calculate the weekly rating difference between the final
week and each of the early weeks over the previous ten or five years. Then, we add the estimated
bias to the reported ratings for the current forecast year. For some weeks, we do not have
consecutive observations in all years. In these scenarios, we use all the available data we have
from the previous ten or five years. These two augmented approaches are considered labeled the
IG National with Bias Adjustment model.*

The Bain and Fortenbery (2017) fixed weight model (BF model, hereinafter) assigns fixed
weights to each condition category to transform the ordinal condition ratings to a numerical crop
condition index (CCI).> Below is the definition:

CCIndex = 1.0 - Excellent + 0.75 - Good + 0.50 - Fair +
@) .25 Poor + 0.00 - Very Poor.

The ratings for each condition category are in percentages, therefore fixed weights CCI is
bounded between 0 and 1. The BF model is specified as follows:

5) Yield; = ay + ay - Trend; + B, - CCIndex; + e;,

where Yield; is the final yields in year i, Trend; is the time index for year i, CCIndex; is the end
of season CCIndex value for year i. For example, the yield forecasts for week 23 in 2000 for corn
are estimated with the following steps. First, crop conditions are transformed at the end of
growing season to the fixed weight CCIndex from 1986 through 1999. Second, model (5) is via
OLS using the final yield estimates as the response variable and year index and fixed weight
CCIndex as explanatory variables. Third, once we obtain the crop condition ratings for week 23
in 2000, we transform them to the fixed weight CCIndex and enter them in the model estimated
over 1986 through 1999.

4Model comparisons with bias adjustment based on a five-year moving average are similar to those based
on a ten-year moving average and are omitted to save space.
3 Jorgensen and Dierson (2014) use the CCI developed by Bain and Fortenbery.
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The Begueria and Maneta (2020) model (BM hereafter) is the most technically sophisticated
model considered in this forecast evaluation. They argue that spatial and temporal differences in
crop condition information should be directly modeled before making yield forecasts. Hence, a
cumulative link mixed model (CLMM) is used to transform raw condition data to a continuous
and almost normal-distributed crop condition index (CCI). After removing space and time effects,
they argue that maximum information can be extracted from crop condition ratings, which offers
a better possibility of providing unbiased and accurate yield forecasts.

In the first stage of the BM modeling approach a CLMM is estimated using a probit link
function to connect ordinal response with numeric factors. The CLMM is specified as:

(6) probit(P(Y; < jls,y,w)) = 0; + B,y + Buw + Vs + Uy sy + Uy oW + €,

where probit(P Y; <jls,y, W)) is the probability that the ith report’s condition ratings are no
greater than category j, and je[1,4] since there are five condition categories; s, y and w are state
year and week in report i, respectively; and 6; is a threshold parameter which remains constant
and determines the range of the response variable in a certain category j. There are two fixed
effects in the model: a long-term (year) effect and a temporal (week) effect. Three random effect
components are included: state, the interaction between state and year, and the interaction between
state and week. The error term €g; is the unbiased CCI that is specific for each state and is free of
any long-term or temporal time effects.

In the second stage of the BM modeling process, a mixed model is specified where the fixed
effects are the long-term (year) and CCI effects and the random effect is conditional on year and
CCl interactions. This model provides weekly yield forecasts for each state and is specified as:

(7 1i(s) = Po + Byyi + BCCI + v(s) + vy, (8)y; + v (s)CCI; + €,
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Figure 2. Recursive Out-of-Sample Yield Forecasts with Begueria and Maneta Model
(2020)

Notes: We use corn as an example to illustrate the forecasting cycle. For soybeans, the first prediction is in
week 25 and the last prediction is in week 39.
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where y; (s) is the expected yield at state s and time i, y; is the transformed year index at time i,
CClI; is the crop condition index at time i, f, is the global intercept, f, is the long-term year
effects and £, is the CCI effect (they are both fixed effects and have the same effects on all the
states). The BM model treats the state as a random component, which implies that different states
have different temporal effects and CCI effects.

Figure 2

uses corn as an example to illustrate how the BM model recursively provide out-of-sample
weekly yield forecasts. Yield forecasts for week 23 in 2000 are estimated with the following
steps. First, the CLMM model is estimated using crop condition ratings from the first published
Crop Progress report in 1986 to the most recent report published in week 23 of 2000. With the
updated model, we can transform and update the ordinal crop condition ratings for all the weeks
until week 23 in 2000. Second, we can estimate the mixed model using the updated CCI and other
variables in week 23 from 1986 to 1999. Third, the updated CCI and year index for week 23 in
2000 are entered in the mixed model to obtain a yield projection for week 23 in 2000. Following
these steps, as we move forward in the growing season, we generate weekly updates of yield
forecasts. Fourth, national yield forecasts are generated from the state-level forecasts using the
procedures described earlier.

Forecast Evaluation

We conduct two sets of model comparisons in our study. First, we compare all five yield
forecasting models to a naive trend yield model to evaluate the value of crop condition ratings as
a yield indicator. Second, we set the BM model as a benchmark to compare it with the other four
yield forecasting models. The comparisons are conducted at both the state and national levels.
Weekly forecast errors e‘f” for model i are defined as the percentage difference between the
USDA final yield and a model’s yield forecast:
(ve-2e)

(®) el =100 28,

where y; is the final USDA yield estimates and y/,;t is the predicted yield in year t for week w
produced by model i. We use the root mean squared percentage error (RMSPE) to measure each
model’s predictive accuracy. RMSPE is defined as

. 1 . 2
©) RMSPES,: = [23(el)’,

where n is the number of observations in each week over the out-of-sample period.

Naive Trend Yield Model

One of the key factors that determines crop yields is technology improvement over time. Crops
tend to increase in yield year-by-year, which is known as the “trend yield.” A naive trend yield
model serves as the base model that we use to compare with five yield forecasting models since
it only accounts for the variation in time. The Naive trend yield model is specified as below:

(10) Yield, = By + By cyear_index, + €,

where Yield, is the national final yield estimates in year t, year_index; is the corresponding
year index running from 1 to 35 for the year from 1986 to 2022.
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Figure 4. Forecast Error of the BM Model and IG State Model for Week 29 for Illinois and
South Dakota in Corn, 2000 — 2022

Notes: BM model is proposed by Begueria and Maneta (2020), IG State model is proposed by Irwin and
Good (2017a).
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(a) Illinois Soybeans
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Figure 5. Forecast Error of the BM Model and IG State Model for Week 29 for Illinois and
South Dakota in Soybeans, 2000 — 2022

Notes: BM model is proposed by Begueria and Maneta (2020), IG State model is proposed by Irwin and
Good (2017a).
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(a) Ilinois Corn
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(a) Illinois Soybeans
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Notes: BM model is proposed by Begueria and Maneta (2020), IG State model is proposed by Irwin and
Good (2017a).
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Figure 8: Forecast Error (%) of Five Yield Forecasting Models for Week 29 at the
National Level in Corn, 2000 — 2022
Notes: BM model is proposed by Begueria and Maneta (2020), IG State model, IG National model, IG

National with Bias Adjustment Model are proposed by Irwin and Good (2017a), and BF model is proposed
by Bain and Fortenbery (2017).
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Figure 9. Forecast Error (%) of Five Yield Forecasting Models for Week 29 at the
National Level in Soybeans, 2000 — 2022
Notes: BM model is proposed by Begueria and Maneta (2020), IG State model, IG National model, IG

National with Bias Adjustment Model are proposed by Irwin and Good (2017a), and BF model is proposed
by Bain and Fortenbery (2017).
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Figure 10. RMSPE of Five Corn Yield Forecasting Models at the National Level, 2000 —
2022

Notes: BM model is proposed by Begueria and Maneta (2020), IG State model, IG National model, IG
National with Bias Adjustment Model are proposed by Irwin and Good (2017a), and BF model is proposed
by Bain and Fortenbery (2017). We also include naive trend yield model to illustrate the value of crop
condition ratings as a yield indicator. The RMSPE of the IG National and IG National with bias
adjustment models is the same starting on July 29th because the bias adjustment is set to zero starting this
week.
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Figure 11. RMSPE of Five Soybeans Yield Forecasting Models at the National Level, 2000
-2022

Notes: BM model is proposed by Begueria and Maneta (2020), IG State model, IG National model, IG
National with Bias Adjustment Model are proposed by Irwin and Good (2017a), and BF model is proposed
by Bain and Fortenbery (2017). We also include naive trend yield model to illustrate the value of crop
condition ratings as a yield indicator. The RMSPE of the IG National and IG National with bias adjustment
models is the same starting on July 29th because the bias adjustment is set to zero starting this week.
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The yield forecasts provided by naive trend yield model also follow the recursive out-of-
sample forecasting approach. For example, when we are in year 2000, we use yields and time
indices from 1986 to 1999 to train the model. In 2000, we make yield predictions using the
updated year index of 15 for all weeks during the growing season for corn and soybeans.

Comparisons at State Level

We begin the forecast comparisons for two representative states that have significant geographic
differences in production characteristics—Illinois and South Dakota. The state-level forecasts are
generated by the BM and IG State models. Figures 4 and 5 present the percentage errors of the
forecast yields of these two models for a mid-season week (week 29) over the out-of-sample
period for corn and soybeans, respectively. Figures 4a and 5a show that in Illinois the errors for
the two models are quite similar and there is no clear pattern of which model performs best over
time. Figures 4b and 5b show more variability for South Dakota, but there is no clear pattern of
which model performs best over time. For 2012, when crop production was sharply impacted by
a historic drought, we observe that the BM model provided more accurate yield forecasts than the
IG State model in the mid-growing season for Illinois, whereas for South Dakota, the IG State
model was more accurate.

Figures 6 and 7 show the RMSPE for each week during the growing season over the entire
out-of-sample period (2000-2022) for corn and soybeans, respectively, in Illinois and South
Dakota. Figure 6a indicates that the BM model has better performance from mid-July until the
end of growing season for corn in Illinois. Figure 7a shows the IG State model outperforms the
BM model in Illinois from mid-July to mid-August for soybean. For South Dakota, Figure 6b
shows that the BM model takes the lead from early-June to early-July for corn, then the IG State
model provides more accurate yield forecasts from early-July until the end of growing season for
corn. Figure 7b suggests that the BM model has better forecasting performance from early-June
to late-August for soybeans, then the Irwin and Good model takes the lead through the end of
growing season.

Comparisons at National Level

All yield forecasting models in this study provide national-level yield forecasts for each week
during the growing season over the out-of-sample period. Table 1 presents the RMSPE of the
five forecasting models for each week for corn and soybeans. The RMSPE of all five models for
corn are bounded with a maximum level of 8.8% (IG National model) to a minimum of 3.4% (BF
model). The average RMSPE for corn is about 5% throughout the growing season. For soybean,
the patterns are similar, with RMSPE are in the range of 3.6% to 8.0%, and the overall average
RMSPE across the entire forecasting cycle about 6%. We begin by focusing on the forecast errors
for mid-growing season from 2000 through 2022. Figures 8 and 9 present the forecast errors
through the out-of-sample period for the five yield forecasting models for week 29, approximately
the middle of the growing season. The variability of the forecast errors is similar to the mid-
season errors at the state-level shown earlier in Figures 4 and 5. In general, it appears that the
errors for the five forecasting models are highly correlated through time.

We also compare yield forecasts provided by the naive tend yield model to the five
forecasting models in Figures 10 and 11. Figure 10 shows the not too surprising result in corn that
the individual models substantially outperform the naive trend model except for the first few
weeks of the growing season. It is interesting to note that both the BM and IG National with Bias
Adjustment outperform the naive trend for every week. Overall, these results indicate that crop
condition ratings provide useful information to project corn yield early in the growing season.



16  Preprint Journal of Agricultural and Resource Economics

Table 1. RMSPE of Weekly Yield Forecasting Models for Corn and Soybean at the
National Level, 2000 — 2022

BM IG State  IG National  IG National with

Date Model Model Model Bias Adjustment Model BF Model
Panel A: Corn

June 03 7.6 8.3 8.8 7.6 8.5
June 10 7.4 7.8 8.4 73 8.1
June 17 6.9 7.3 7.7 6.4 7.5
June 24 6.1 6.5 6.9 5.6 6.5
July o1 5.7 5.6 6.1 5.1 5.6
July 08 5.0 4.8 5.1 4.5 4.6
July 15 4.4 4.3 4.5 4.3 4.1
July 22 4.2 4.0 4.4 4.3 3.9
July 29 4.2 4.0 4.2 4.2 3.8
August 05 4.2 3.9 4.2 4.2 3.9
August 12 4.1 3.9 4.1 4.1 3.8
August 19 4.0 3.8 3.9 3.9 3.6
August 26 4.2 3.9 4.1 4.1 3.9
September 02 4.1 4.1 4.2 4.2 4.0
September 09 4.0 41 4.2 4.2 3.9
September 16 3.8 3.9 4.0 4.0 3.7
September 23 3.7 3.8 3.8 3.8 3.4
Panel B: Soybean

June 17 6.5 6.9 7.2 6.4 8.0
June 24 6.6 7.0 7.2 6.5 7.6
July o1 6.8 7.0 7.1 6.6 7.5
July 08 6.7 6.7 7.0 6.7 7.5
July 15 6.5 6.6 7.0 6.7 7.4
July 22 6.3 6.4 6.7 6.4 7.3
July 29 5.7 5.4 6.5 6.5 73
August 05 4.8 4.3 6.5 6.5 7:1
August 12 4.2 3.8 5.8 5.8 7.0
August 19 4.1 3.0 4.9 4.9 6.8
August 26 4.0 3.5 4.5 4.5 6.0
September 02 3.8 33 4.3 4.3 5.1
September 09 3.6 3.1 4.2 4.2 4.5
September 16 3.7 3.1 4.0 4.0 4.2
September 23 3.0 3.5 3.8 3.8 4.2

Notes: For each week, there are 22 observations in the out-of-sample period from 2000 — 2022. The
RMSPE measures the average forecast errors over the out-of-sample period, and it is measured in
percentage. BM model is proposed by Begueria and Maneta (2020), IG State model, IG National model,
IG National with Bias Adjustment Model are proposed by Irwin and Good (2017a), and BF model is
proposed by Bain and Fortenbery (2017).

Figure 11 reveals a very different picture for soybeans. None of the individual models
consistently beats the naive trend model until early August. The BF model does not do so in
soybeans until mid-July. These results likely reflect the fact that the critical growing period for
soybeans occurs later in the summer than for corn. Recent research (Irwin, 2023b) shows that
August weather is most important for determining soybean yields, whereas July weather is most
important for corn (Irwin, 2023a).
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Single-Horizon Forecast Tests

For each week we conduct a pairwise comparison between the benchmark BM model and the
other four models. We apply the modified Diebold-Mariano (MDM) test for each week to test if
the BM model provides more accurate yield forecasts than an alternative model at a given week
during the growing season. The MDM test was developed by Harvey, Leybourne, and Newbold
(1997), and has been shown to work well in small samples. Furthermore, as the forecasting
horizon increases the test is over-sized and remains stable. For each week, there are 21
observations as the out-of-sample period covers 2000 through 2022.

The null hypothesis is that two models have the same predictive accuracy. The MDM test
determines if the difference in RMSPE between the BM model and other models is significant. If
we assume the loss function to be quadratic, we have:

(11) dye = (e2e)" = (ebe)”
(12) E(dw:) =0,

where ey, , represents the yield errors from BM model, and e, represents the yield errors from
one of its competing models.
For the h-step ahead yield forecasts, the MDM statistic is defined as:

- 1 1

(14) V((ZW) = [n_l(yo +2 Zgz_ll YS)]a

where d,, is the sample mean of dy ¢, w is the forecast week and w = 1,2,3, ...,17 for corn and
w=12.3,..,15 for soybeans, yo =n"* ¥ (d, . —dy,)? as the variance of d,;, ys =
n! ?=S+1(dw_t - &w)(dw,t—s - JW), s =1,2,3,..,h — 1, as the sth auto-covariance of d,, ;.
The weekly forecasts are one-step ahead forecasts (by year), and therefore, h = 1. Hence, the
MDM statistic for each forecast week is:

(15) MDM,, = [(n = 1)J: -y - [0 (S5 Ay — d) )]

The MDM test statistics for corn and soybeans are shown in Tables 3 and 4, respectively.
The null hypothesis is that each week throughout the out-of-sample forecasting period, the
forecasting performance of BM model and one of its competing models is the same. Test statistics
show that for corn, out of 68 cases of pair-wise yield forecast comparisons for week 23 to week
39, all test statistics are insignificant. These results suggest that we fail to reject the null
hypothesis that BM model does not have better forecasting performance than other models. For
soybeans, out of 60 cases of pair-wise yield forecast comparisons covering forecast weeks 25 to
week 39, there is again no significant case. These results suggest that the benchmark BM model
does not significantly outperform its competitors for each week throughout the growing season
for both corn and soybeans.

Best Model Confidence Set Tests

Each week, all five yield forecasting models produce weekly yield forecasts for corn and
soybeans. In the previous section, we applied the MDM test to conduct a pairwise yield
performance test between the BM model and other models. To extend the pairwise comparisons,
the Model Confidence Set (MCS) test allows model selection across all yield forecasting models
(Hansen, Lunde, and Nason, 2011). For a given significance level a, the MCS test selects the
model with best forecasting accuracy from a set of models.
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Table 2. Modified Diebold Mariano (MDM) Test Statistics for Corn Yield Forecasting
Models at the National Level, 2000 - 2022

BMvs IG
Date gM vsIG BM.VS IG National with BM vs BF
tate National Bi :
ias Adjustment
June 03 0.387 0.817 -0.409 0.579
(0.702) (0.423) (0.686) (0.568)
June 10 0.074 0.561 -0.831 0.341
(0.942) (0.580) (0.415) (0.737)
June 17 0.008 0.379 -1.360 0.173
(0.993) (0.709) (0.188) (0.864)
June 24 0.027 0.424 -1.391 0.131
(0.978) (0.676) (0.178) (0.897)
July o1 -0.457 0.059 -1.449 -0.427
(0.652) (0.954) (0.162) (0.674)
July 08 -0.576 -0.090 -1.396 -0.692
(0.570) (0.929) (0.177) (0.496)
July 15 -0.621 0.025 -0.640 -0.761
(0.541) (0.981) (0.529) (0.455)
July 22 -0.703 0.024 -0.103 -0.793
(0.489) (0.981) (0.919) (0.436)
July 29 -1.003 -0.278 -0.278 -1.053
(0.327) (0.784) (0.784) (0.304)
August 05 -1.103 -0.300 -0.300 -0.660
(0.282) (0.767) (0.767) (0.516)
August 12 -1.559 -0.406 -0.4006 -0.826
(0.133) (0.689) (0.689) (0.418)
August 19 -1.375 -0.840 -0.840 -1.008
(0.183) (0.410) (0.410) (0.324)
August 26 -1.140 -0.729 -0.729 -0.391
(0.267) (0.474) (0.474) (0.700)
September 02  -0.138 0.363 0.363 0.093
(0.891) (0.720) (0.720) (0.927)
September 09  0.140 0.480 0.480 0.026
(0.890) (0.636) (0.630) (0.980)
September 16  0.482 0.789 0.789 -0.087
(0.634) (0.438) (0.438) (0.932)
September 23  0.229 0.239 0.239 -0.847
(0.821) (0.813) (0.813) (0.400)

Notes: This table presents the t-statistics and p-values (in parenthesis) for the MDM test. *, ** *** g the
significance level at 10%, 5%, 1% respectively. The null hypothesis is that for each week, each of the four
competing forecasting models have the same predictability as the BM model. BM model is proposed by
Begueria and Maneta (2020), IG State model, IG National model, IG National with Bias Adjustment
Model are proposed by Irwin and Good (2017a), and BF model is proposed by Bain and Fortenbery
(2017).

BM model is proposed by Begueria and Maneta (2020), IG State model, IG National model,
IG National with Bias Adjustment Model are proposed by Irwin and Good (2017a), and BF model
is proposed by Bain and Fortenbery (2017). Colino et al. (2012) showed that an equal-weighted
composite provides more accurate forecasts than individual outlook programs for hog prices.
Following their approach, we build the Equal Weighted Model that produces composite forecasts
which are the arithmetic average of the five individual yield forecasts. We include the composite
forecasts in the set of yield forecasting models and apply the MCS test to test whether composite
forecasts outperform individual forecasts.
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Table 3. Modified Diebold Mariano (MDM) Test Statistics for Soybean Yield Forecasting
Models at the National Level, 2000 — 2022

. BMvs IG
Date BM vsIG BM.VS IG National with BM vs BF
State National 2 :
Bias Adjustment
June 17 0.24 0.445 -0.123 0.605
(0.812) (0.661) (0.903) (0.551)
June 24 0.094 0.413 -0.12 0.631
(0.920) (0.684) (0.900) (0.535)
July o1 0.006 0.242 -0.073 0.451
(0.995) (0.811) (0.942) (0.656)
July 08 0.047 0.136 -0.189 0.396
(0.963) (0.893) (0.852) (0.696)
July 15 -0.002 0.113 -0.347 0.691
(0.998) (0.911) (0.732) (0.497)
July 22 -0.322 -0.371 -2.081 0.452
(0.751) (0.714) (0.049) (0.656)
July 29 -0.214 -0.34 -0.34 0.495
(0.832) (0.737) (0.737) (0.625)
August 05 -0.23 -0.064 -0.064 0.559
(0.82) (0.95) (0.95) (0.582)
August 12 -1.462 -0.11 -0.11 0.564
(0.158) (0.914) (0.914) (0.578)
August 19 -1.677 0.473 0.473 1.202
(0.108) (0.641) (0.641) (0.242)
August 26 -1.006 0.948 0.948 1.511
(0.325) (0.354) (0.354) (0.145)
September 02 -0.694 1.24 1.24 0.881
(0.495) (0.228) (0.228) (0.388)
September 09  -0.65 1.251 1.251 1.224
(0.522) (0.224) (0.224) (0.234)
September 16  -0.601 1.266 1.266 0.559
(0.554) (0.219) (0.219) (0.582)
September 23 -0.814 1.219 1.219 0.811
(0.424) (0.2360) (0.236) (0.426)

Notes: This table presents the t-statistics and p-values (in parenthesis) for the MDM test. *, ** *** ig the
significance level at 10%, 5%, 1% respectively. The null hypothesis is that for each week, each of the four
competing forecasting models have the same predictability as the BM model.

The MCS test is built on an iterative procedure at each step, where it eliminates the worst
performing model from the set of six models (M) until the last model survives from the tests in
all previous five steps. To select which model should be eliminated, the following #-statistic
proposed by Hansen, Lunde, and Nason (2011) are used:

(16) ti.=J%®, fori,j € M,

where di.= m™ Yjep, dy, dy =n il dyje, dije = Lig — Lje, L() is the squared error
function. Corresponding p-values are collected from a bootstrap of the test statistics. The best
model selected by MCS has p-value equals to 1. When more than one model has a p-value equal
to 1, we use the equivalence test, Tp = ZiEMO(ti.)z, to test if the last model outperforms its
competitors.

Our study reports the last model selected by the MCS test based on p-values produced by
2,000 bootstrap replicates for each week. We first show MCS test results for the set of models
only consisting of the five individual yield forecasting models; next we show the MCS test results
for the set of models adding the Equal Weight Model to the five individual yield forecasting
models. The significance level for MCS test is 10% in order to be conservative in determining
the best model. We also report the p-values for the equivalence test. When the estimated p-value
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is greater than 0.1, the MCS test indicates that the forecast accuracy of the best selected model is
not statistically superior to the competing models in the set.

Weekly MCS test results for corn and soybeans are reported in Table 4 and 5. In Table 4, we
report the best model from the set of five individual yield forecasting models. For both corn and
soybeans, the best models early in the growing season are the IG National with Bias Adjustment
model and the 1G State model. By the end of growing season, the BM model and IG State model
provide the most accurate yield predictions. In Table 5, we report the MCS test for the set of
models that include the Equal Weighted composite model and five individual yield forecasting
models. For both crops throughout the growing stages, the best model selected is the Equal
Weighted model, except for corn in the week of August 19 (when the selected best model is BF
model) and for soybean after the week of August 12 (when IG State model ranked the best).
Equivalence test p-values are also reported in Tables 4 and 5. They fail to reject the null hypothesis
of that the set of models have equal predictive ability. These findings indicate that there are
models with more accurate corn and soybean yield forecasts, however, the differences are not
statistically significant.

Multi-Horizon Forecast Tests

One limitation of the MDM test is that it only provides comparisons for two competing models at
each horizon w. It is very common to find that at some horizons the first model outperforms the
second, and at some other horizons the situation reverses. For two competing models that cover
multi-horizons, it is helpful to also perform an omnibus test based on all forecasting horizons.
Quaedvlieg (2021) introduced a multi-horizon superior predictive ability (SPA) test that enables
the comparison of forecasts of different models jointly, combining the models’ predictability
across all horizons. The author proposed two tests, the first one is the uniform SPA test that tests
if a model has superior forecasting performance at each individual horizon; the second is the
average SPA test that determines if a model has superior forecasting performance considering the
entire forecasting path. For our study, we follow the Quaedvlieg average SPA (aSPA) test as it is
the less restrictive of the two tests.

We denote USDA final yields as y;, and the weekly yield forecasts produced by model i as
5’2 In a multi-horizon test framework, 37; is a 17-dimension vector, }7; =
[}71‘\ . 3721\ £r e y/;l\ 1o yf;‘t], where h indicates the week of a yield forecast; i represents different
choice of forecasting models; t is the year when the fixed-event forecasts are made. We define
the loss function as L = L(yt, 3’1;’), and it projects the final yield estimates onto a 17-dimension
space. The loss function is defined in a quadratic form, that is the square of the percentage
difference between the final yield estimates and each week’s yield forecasts provided by model i.
Here we use notation “1” to stand for the benchmark BM model, and “2” for its competing model.
Then we define the loss differential for the two competing yield forecasts as d, = LZ — L}. D is
the loss differential matrix and its dimensions are 21 x 17. D = [d],...,dT, ...,d%;]", where
d, = [d},...,d}, ...,d}7]. Each entry of the matrix D is denoted as d, and D is specified as:

a .. dbvr .. dv
(17) pD=|d} .. dF .. dg7‘
di, ..ody .o ddl
aSPA _

We use the mean loss differential, u P Wpi,, to compare overall predictability.
aSPA

u can be taken as the weighted sum of each week’s average differentials, where wy, is the
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Table 4. Best Individual Model Selected by the MCS Test for Corn and Soybeans at the National Level, 2000 — 2022

Panel A: Corn Panel B: Soybean
. MCS . MCS
Date Best Model with MCS Test Date Best Model with MCS Test
p-values p-values
June 03 IG National with Bias Adjustment 0.175
June 10 IG National with Bias Adjustment 0.261
June 17 IG National with Bias Adjustment 0.284 June 17 IG National with Bias Adjustment 0.509
June 24 IG National with Bias Adjustment 0.298 June 24 IG State 0.433
July o1 IG National with Bias Adjustment 0.499 July o1 IG State 0.65
July 08 IG National with Bias Adjustment 0.638 July 08 IG National with Bias Adjustment 0.61
July 15 BF 0.664 July 15 IG National with Bias Adjustment 0.361
July 22 IG State 0.26 July 22 IG National 0.369
July 29 BF 0.59 July 29 1G National 0.321
August 05 1G State 0.585 August 05 1G State 0.316
August 12 IG State 0.221 August 12 IG State 0.273
August 19 BF 0.752 August 19 IG State 0.161
August 26 IG State 0.236 August 26 IG State 0.193
September 02 IG State 0.917 September 02 IG State 0.198
September 09 BM 0.883 September 09 IG State 0.756
September 16 BM 0.696 September 16 IG State 0.103
September 23 BF 0.758 September 23 IG State 0.518

Notes: MCS p-values are all greater than the 10% significance level, suggesting the selected best performing model fails to significantly outperform other individual
yield forecasting models. The best model selected by MCS test is based on a significance level of 10%, with p-values are produced with 2000 bootstrap replicates for the
test statistics.
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Table 5. The Best Individual and Composite Model Selected by the MCS Test for Corn and Soybeans at the National Level, 2000 — 2022

Panel A: Corn Panel B: Soybean
. MCS _ MCS
Date Best Model with MCS Test Date Best Model with MCS Test
p-values p-values

June 03 Equal Weighted model 0.112

June 10 Equal Weighted model 0.209
June 17 Equal Weighted model 0.2 June 17 Equal Weighted model 0.436
June 24 Equal Weighted model 0.22 June 24 Equal Weighted model 0.373
July o1 Equal Weighted model 0.421 July o1 Equal Weighted model 0.596
July 08 Equal Weighted model 0.58 July 08 Equal Weighted model 0.551
July 15 Equal Weighted model 0.694 July 15 Equal Weighted model 0.331
July 22 Equal Weighted model 0.174 July 22 Equal Weighted model 0.301
July 29 Equal Weighted model 0.603 July 29 Equal Weighted model 0.253
August o5 Equal Weighted model 0.611 August o5 Equal Weighted model 0.273
August 12 Equal Weighted model 0.266 August 12 IG State 0.24
August 19 BF 0.813 August 19 IG State 0.141
August 26 Equal Weighted model 0.2 August 26 IG State 0.179
September 02 Equal Weighted model 0.908 September 02 Equal Weighted model 0.158
September 09 Equal Weighted model 0.877 September 09 IG State 0.759
September 16 Equal Weighted model 0.764 September 16 IG State 0.116
September 23 Equal Weighted model 0.796 September 23 IG State 0.133

Notes: The Equal Weighted model produced yield forecast composites of five yield forecasting models. MCS p-values are all greater than 10% significance level,
suggesting the Equal Weighted model fails to outperform individual yield forecasting models. The best model selected by MCS test is based on the 10% significance
level, with p-values produced via 2000 bootstrap replicates for the test statistics.
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Table 6. Multi-Horizon Average Superior Predictive Ability (aSPA) Test between Yield
Forecasting Models for Corn and Soybeans at the National Level with Fixed Weights, 2000

-2022
BM vs IG National
Crop BHEva TG B a6 with Bias BM vs BF
State National »
Adjustment

Corn -0.194 0.278 -0.724 -0.224

(0.5206) (0.449) (0.617) (0.545)
Soybeans -0.471 0.205 -0.2006 0.558

(0.697) (0.491) (0.581) (0.446)

Notes: This table presents the t-statistics and p-values (in parenthesis) for the multi-horizon aSPA test. *,
*k *E* is the significance level at 10%, 5%, 1% respectively. The null hypothesis is that considering all

horizons, on average, the competing yield forecasting model has better performance than BM model. BM
model is proposed by Begueria and Maneta (2020), IG State model, IG National model, IG National with
Bias Adjustment Model are proposed by Irwin and Good (2017a), and BF model is proposed by Bain and
Fortenbery (2017).

weights for each forecast week; u, = Tlim %Z{ﬂ dl is the mean of each week’s loss differentials
—00

and we use dj, = %Zf;l d" to estimate yy,. The null hypothesis of the aSPA test is u®P4 < 0,

which implies that, on average, the benchmark BM model fails to provide better performance than
competitors across all forecast horizons. The studentized statistic for aSPA test is:

VT Bl Wi dh

(18) taspa = c

where ¢ = Vw'Qw; w = [wy, ... , Wp, ..., w;,]Tis the 17-dimentional weight vector. Q is the
variance-covariance matrix of matrix D. We denote D = [D{, ..., D}, ...,D}’], where D} =
[dh, ...,d%]". The variance-covariance matrix Q of matrix D is defined as:

var(Dt) .. cov(D}, D7)
(19) Q= ; : ,
cov(Dt, D7y .. war(D{) 1.,

where var(D}) = 2 (D)T(D}) = 2X8,(dH)? ; cov(DE, DY) =~ (DHT (DY) = - 322, d} -
d}”. Since each week s differentials are highly correlated, we use the Newey-West HAC estimator

to find its estimator, . The choice of weights is flexible. We follow the examples proposed by

h

Quaedvlieg (2021): first, we select an equal weight where w" = 1—17 for each week; second, we use

“efficient” weights to minimize ¢ as the yield forecasts during the growing season are based on
accumulated information. We assign small weights to early forecasts where variance is high, and

we assign large weights to near end-of-season forecasts where variance is low. Therefore, the

h —

inverse-variance weights are defined as w and they satisfy the condition that the

;
2(Zl 1 l
sum of weights is equal to 1. To obtain the critical values and p-values, we use a moving block
bootstrap (MBB) technique to simulate the distribution. We focus on the significance level at 5%,

and the significance level is the corresponding percentile of the bootstrap distribution.
The null hypothesis of the aSPA test is that the benchmark BM model is no more accurate
than a competing model across all forecast horizons. Test results are summarized in Table 7. The
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Table 7. Multi-Horizon Average Superior Predictive Ability (aSPA) Test between Yield
Forecasting Models for Corn and Soybeans at the National Level with Varying Weights,
2000 — 2022

BM vs IG National
Crop BM vs IG BM s IG with Bias BM vs BF
State National :
Adjustment
Corn -0.816 -0.076 -0.398 -0.913
(0.670) (0.525) (0.560) (0.722)
Soybeans -1.418 1.963 1.716 1.576
(0.709) (0.188) (0.207) (0.305)

Notes: This table presents the t-statistics and p-values (in parenthesis) for the multi-horizon aSPA test. *,
*% *E* is the significance level at 10%, 5%, 1% respectively. The null hypothesis is that considering all
horizons, on average, the competing yield forecasting model has better performance than BM model. BM
model is proposed by Begueria and Maneta (2020), IG State model, IG National model, IG National with
Bias Adjustment Model are proposed by Irwin and Good (2017a), and BF model is proposed by Bain and
Fortenbery (2017).

multi-horizon aSPA test p-values are all greater than 5%, suggesting the BM model fails to
significantly outperform the other models considering all forecast horizons during the corn and
soybean growing seasons. We also conduct the average SPA test with varying weights for each
week of the growing season, and these test results are summarized in Table 8. Once again, the
multi-horizon aSPA test p-values are all greater than 5%, suggesting the BM model fails to
significantly outperform the other models considering all forecast horizons. Overall, the findings
based on the aSPA tests are consistent with what we found with the single horizon MDM test.
That is, the benchmark BM model fails to systematically outperforms competing models during
the growing season for corn and soybeans. A plausible argument for this finding is that the BM
model only controls for the time and spatial variations in the state-level crop condition ratings, so
the transformed weekly CCI does not contain any more information relevant to forecasting corn
and soybean yields than simple approaches that make similar adjustments.

Conclusions

Crop condition ratings provide unique information for predicting crop yields. The ratings are
widely used by market analysts in the public and private sectors to forecast crop yields. In this
study, we compare the accuracy of relatively simple single equation condition models (Irwin and
Good, 2017a, b; Bain and Fortenbery, 2017) to a sophisticated and computationally demanding
specification (Begueria and Maneta, 2020) in forecasting U.S. corn and soybean yields. The data
for the study consists of weekly state and national crop condition ratings from the USDA over
1986 through 2022. To evaluate the predictability of all yield forecasting models, we use data
from 2000 through 2022 as the out-of-sample period.

A battery of statistical tests is applied to the out-of-sample crop yield forecasts. The modified
Diebold-Mariano test is used to conduct a weekly pair-wise comparison between models. Test
results suggest that no model has statistically superior forecast accuracy. We also apply Model
Confidence Set tests to select the best individual yield forecasting models. Moreover, we add
composite forecasts as the arithmetic average of the five individual yield forecasts to the set of
models. Test results for individual yield forecasting models suggest that early in the growing
season the Irwin and Good model with bias adjustment is the best, and by the end of growing
season the Bain and Fortenbery Begueria and Maneta models are selected as having the best yield
forecasting performance. When we include equal-weighted composite forecasts, test results show
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composite forecasts provide the most accurate yield predictions. However, test statistics indicate
all the best models fail to significantly outperform their competitors. Lastly, we apply the multi-
horizon average Superior Predictive Ability (aSPA) test developed by Quaedvlieg (2021) to
compare models across the entire growing season. Again, test results indicate no statistically
significant difference in the accuracy of yield forecasts for simpler versus more complex models.
In sum, the results of this study are consistent with the conventional wisdom in the forecasting
literature that complex models generally do not outperform simpler models in terms of forecast
accuracy. Complexity does not pay when forecasting corn and soybean yields based on crop
condition ratings. The simple models widely used in the grain industry are at least as accurate as
the most sophisticated model available in the literature.

[First submitted October 2024, accepted for publication May 2025.]
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