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Does Complexity Pay? Forecasting Corn and 

Soybean Yields Using Crop Condition Ratings 

Jiarui Li, Scott H. Irwin, and Todd Hubbs *

We compare the accuracy of crop condition models from existing literature in 

forecasting U.S. corn and soybean yields.  The data for the study consists of weekly 

state and national crop condition ratings from the USDA over 1986 through 2022. 

A battery of statistical tests is applied to perform out-of-sample forecasts over 2000 

through 2022.  While there are differences in the accuracy of the models, test results 

are uniform in suggesting that no model has statistically significant superior forecast 

accuracy.  A key finding is that relatively simple models perform just as well as 

more complex and computationally demanding models. 
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Introduction 

Accurate forecasts of crop yield are highly valuable for several reasons.  From a market 

perspective, yield forecasts are an essential component of supply, demand, and price forecasting. 

From a policy perspective, yield forecasts are important to governments around the world to assess 

drought impacts and food insecurity.  In addition, these forecasts are crucial for farmers and 

agribusiness firms in developing marketing and risk management plans.  

Given the importance of crop yield forecasts, it is no surprise that there is a very large 

literature on the relationship between weather, technology, and crop yields dating back to the early 

1900s (e.g., Tannura, Irwin, and Good, 2008).  Broadly speaking, this literature shows that 

summer precipitation and air temperature directly influence yield potential, along with other 

factors including soil quality, planting date, disease, insects, and technological improvements 

from seed genetics, fertilizers, and grower management techniques. 

A popular approach among market analysts in both the private and public sectors is to forecast 

U.S. crop yields based on U.S. Department of Agriculture (USDA) condition ratings.  The ratings 

are released weekly during the growing season and reflect the subjective judgment of thousands 

of observers about crop yield prospects.  Importantly, the ratings are reported as the percentage 

of a crop rated in five mutually exclusive and exhaustive categories: very poor, poor, fair, good, 

and excellent.  Many analysts use the sum of good and excellent condition ratings to build a simple 

condition index and relate this to trend-adjusted crop yields.  Several representative articles 

applying this approach to forecasting U.S average corn and soybean yields can be found at the 

farmdoc daily website (Irwin and Good, 2017a, b; Irwin and Hubbs, 2018a, b, c, d).  
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Despite the widespread use of crop condition ratings to forecast crop yields in private and 

public organizations, there are only a few studies in the academic literature that investigate 

condition-based forecasts.  The general idea behind these studies is to transform the ordinal 

condition ratings to a numeric condition index and then construct a time-series model between 

yields and the condition index.  For example, Kruse and Smith (1994) developed a weighting 

system that estimates a changing yield weight for each crop condition class in the growing season 

for corn and soybean.  By multiplying each crop condition ratings by the corresponding yield 

weight, they computed an average in-sample yield estimate at the state-level.  Fackler and 

Norwood (1999) built a similar state-level yield forecasting model for corn, cotton, soybeans, and 

spring wheat with an estimated yield weight that is unchanging throughout the growing season.  

They showed that for each condition class, the product of estimated yield weight and condition 

rating reflects its average yields.  Bain and Fortenbery (2017) used fixed weights to construct a 

condition index in a yield forecasting model for wheat.  Their condition index is based on a 

straightforward system where for the lowest very poor condition is assigned a weight of zero, and 

as the condition increases by one category level, the corresponding weight increases by 0.25 until 

it reaches the highest excellent condition with a weight of one.  

Begueria and Maneta (2020) developed a sophisticated two-stage yield forecasting model 

based on crop condition ratings for corn, cotton, soybeans, and winter wheat at the state level.  

They argued that spatial and temporal differences in crop condition information should be directly 

modeled before making yield forecasts.  Hence, the authors developed a cumulative link mixed 

model to transform raw condition data to a continuous and almost normal-distributed crop 

condition index.  After removing space and time effects, they argued that maximum information 

can be extracted from crop condition ratings, which offers a better possibility of providing 

unbiased and accurate yield forecasts.  Begueria and Maneta (2020) provided evidence that their 

modeling approach achieves large improvements in accuracy over simpler condition-based 

forecasts, such as Jorgensen and Diersen (2014) and Irwin and Good (2017a, b).  

The improvements in forecast accuracy reported by Begueria and Maneta (2020) are 

interesting for three reasons.  First, the finding that a complex model beats simpler models in 

terms of forecast accuracy runs counter to a large body of literature on the forecasting of various 

variables, including GDP growth, inflation rates, unemployment levels, stock prices and market 

trends.  Armstrong (2001, p. 693) summarizes the evidence as “…showing that while some 

complexity may improve accuracy, seldom does one need highly complex methods.  In some 

studies, complexity harmed accuracy.”  The results reported by Begueria and Maneta (2020) may 

represent an important exception to this general result.  Second, the forecast results in Begueria 

and Maneta are based on a cross-validation procedure that leaves out one observation at a time 

and forecasts the “missing observation” regardless of its ordering in time.  This procedure is only 

applied to the second stage of the estimation, which is quite different from the recursive out-of-

sample procedures that are standard in the time-series forecasting literature.  Third, Begueria and 

Maneta (2020) did not compute forecast error statistics for simpler models using the same data 

set as in their study, but, rather, relied on forecast statistics reported in the original articles.  

The purpose of this study is to evaluate the forecast accuracy of crop condition models for 

U.S. average corn and soybean yields.  Specifically, we compare the forecast accuracy of the 

simpler models designed by Irwin and Good (2017a, b) and Bain and Fortenbery (2017) to the 

model developed by Begueria and Maneta (2020), which provides a representative set of models 

ranging from relatively simple to highly complex specifications.  The data for the study consists 

of weekly state and national crop condition ratings from 1986 through 2022 for corn and soybeans.  

To evaluate the predictability of the yield forecasting models, we use data from 2000 through 

2022 as the out-of-sample period.  A battery of statistical tests is applied to the out-of-sample crop 

yield forecasts.  The test results contradict Begueria and Maneta’s (2020) finding that their model 

outperforms simpler models, which include the Kruse and Smith (1994) regression model for the 

period 1986-1993; the Jorgensen and Diersen (2014) regression model for the period 1986-2012; 

and the Irwin and Good (2017a) regression model for the period 1986-2016. 
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Data 

From roughly late April through the end of November each growing season, USDA weekly Crop 

Progress reports provide progress and condition ratings for corn and soybean in 18 major 

producing states.  The reports are published on the first business day of the week after 4:00 pm 

Eastern time.  Estimates in the report are based on non-probability subjective surveys conducted 

by nearly 4,000 local crop observers, who are drawn from the ranks of extension agents, USDA 

Farm Service Agency (FSA) staff, elevator managers, and other agricultural professionals.  Each 

local observer follows the standard definitions and guidelines provided by the USDA to conduct 

assessments of crops in their local area. Data are reported on the progress of producer activities 

(e.g., planting and harvesting), various phenological stages of development (e.g., emergence, 

flowering), and crop condition ratings.  It is important to emphasize that weekly observations are 

entirely subjective and the result of visual field observations, direct conversations with farmers, 

and expert local knowledge.  For this reason, the data collection process for USDA Crop Progress 

reports can be described as a system of “people as crop sensors.”  Finally, state-level estimates 

are based on weighting of local observer estimates, usually at the county level, and national-level 

estimates are based on weighting of each state’s planted acreage estimate from the previous year 

(Irwin and Good, 2017a).1  

The data released in the weekly Crop Progress report are followed closely by grain market 

participants.  For example, Lehecka (2014) notes that these reports are among the most requested 

publications distributed by the USDA between monthly Crop Production and World Agricultural 

Supply and Demand Estimates (WASDE) reports.  Using event study methods, Lehecka shows 

the strongest corn and soybean futures market reactions are found in July and August, when 

weather conditions are most critical for crop development.  He also finds that market reaction to 

the release of the weekly Crop Progress report has increased over time.  

Lehecka’s work shows that Crop Progress reports have substantial informational value to 

participants in the grain futures markets.  As discussed above, this is especially true during the 

heart of the summer growing season for corn and soybean.  It is during these months that crop 

condition ratings take center stage. The ratings are reported in five exhaustive categories as 

follows:2 

Very Poor – Extreme degree of loss to yield potential, complete or near crop failure.  Pastures 

provide very little or no feed considering the time of year. Supplemental feeding is required to 

maintain livestock condition. 

Poor – Heavy degree of loss to yield potential which can be caused by excess soil moisture, 

drought, disease, etc.  Pastures are providing only marginal feed for the current time of year.  Some 

supplemental feeding is required to maintain livestock condition. 

Fair – Less than normal crop condition.  Yield loss is a possibility, but the extent is unknown.  

Pastures are providing generally adequate feed but still less than normal for the time of year. 

Good – Yield prospects are normal.  Moisture levels are adequate and disease, insect damage, 

and weed pressures are minor.  Pastures are providing adequate feed supplies for the current time 

of year. 

Excellent – Yield prospects are above normal.  Crops are experiencing little or no stress. 

Disease, insect damage, and weed pressures are insignificant.  Pastures are supplying feed in 

excess of what is normally expected at the current time of year. 

The ratings for a given crop in each condition category are expressed as a percentage, 

reflecting the proportion of the crop rated in a particular category.  Since the categories are 

exhaustive, the percentages in the five categories sum to 100.  

 
1 See the discussion at the USDA/NASS website here: 

https://www.nass.usda.gov/Surveys/Guide_to_NASS_Surveys/Crop_Progress_and_Condition/index.php. 
2 The definitions are found on this page at the NASS website: 

https://www.nass.usda.gov/Surveys/Guide_to_NASS_Surveys/Crop_Progress_and_Condition/index.php. 
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We collected all weekly condition ratings for corn and soybeans at the state and national level 

starting in 1986, when the program was established, through 2022.  For each year, the coverage 

of weeks in the growing season is not the same because ratings do not begin until a substantial 

part of the crop has emerged and do not end until most of the crop is mature.  Since dates for 

emergence and maturity vary from year-to-year, the beginning and ending dates for condition 

ratings also vary.  To obtain a consistent evaluation period for all competing models, we use weeks 

23 through 39 for corn and weeks 25 through 39 for soybeans to evaluate the yield forecasts.  The 

ranges roughly correspond to early June to late September for corn and late June to late September 

for soybean.  Corn and soybean ratings are available for all years during the sample period for 

these weeks and for all but a few of the 18-states included for each crop in the Crop Progress 

report. 

The Begueria and Maneta (2020) model provides weekly yield forecasts at the state-level for 

the 18 major-producing states included in the Crop Progress report for corn and soybean due to 

the design of their framework.  We are interested in yield forecasts at the national level because 

this is a key determinant of market prices rather than yield in any individual state.  To compare 

all competing models at the national level, we developed a straightforward method of converting 

a set of state-level forecasts to one national level forecast.  Specifically, we use the ratio of 

weighted-average yields of 18 states to the national yields.  Once the state-level yield forecasts 

are available, forecasts of national yields can be easily calculated using the estimated ratio.  For 

these 18 states, each individual state has different productivity for corn and soybean. We use the 

proportion of individual state’s harvested acres out of the total harvested acres of 18 states to 

estimate the yield weight for each state.  Each year for each state, we use the previous five-year 

moving-average yield weight as a forecast for current year’s yield weight.  For the ratio of 

weighted sum of state-level yields to the final estimates of national yields, we apply a similar 

previous five-year moving-average procedures to acquire a forecast for the current year’s state-

to-national yield ratio.  

Since a five-year moving-average procedure is applied to harvested acres, and the first year 

we use the crop condition ratings for yield forecasts is 1986, we collected harvested acres for each 

state from 1981 through 2022.  The harvested acres data are obtained from the NASS Quick Stats 

website and are originally published in the Acreage report released each year at the end of June.3  

The Acreage report includes revised harvested acres for the previous year and forecasted 

harvested area for the current year.  The timing of the Acreage report roughly lines up with the 

beginning of the forecast window each year for the present study.  

Yield Forecasting Models 

The yield forecasting models used in this study provide early yield projections when weekly 

condition ratings are available for corn and soybean.  Figure 1 uses corn to illustrate a typical 

forecast cycle.  Each year of our sample, the first yield prediction starts in week 23 (the week of 

June 3).  The yield forecasts for week 23 are obtained using crop condition ratings published in 

this week.  Importantly, all the forecast models are estimated recursively using samples that end 

before a given forecast week.  The out-of-sample period is 2000 through 2022 and forecasts for 

corn are made for week 23 through week 39 (the week of Sep. 23) in each year and for soybean 

for week 25 (the week of June 17) through week 39.  To evaluate the performance of yield 

forecasting models, we compare the weekly forecasts with final yield estimates published in the 

USDA’s Crop Production Annual Summary report that is released in January after the growing 

season.  

The design of the Irwin and Good (2017a) model makes it applicable for both state-level and 

national-level yield forecasts.  At the national level, the Irwin and Good National model (IG 

National model, hereinafter) is specified as follows: 

 
3 https://www.nass.usda.gov/Quick_Stats/ 
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Figure 1. Yield Forecasting Cycle for Corn 
Notes: we use corn as an example to illustrate the forecasting cycle. For soybeans, the first prediction is in 

week 25 and the last prediction is in week 39.  

 

Figure 3. Recursive Out-of-Sample Yield Forecasts with Irwin and Good State Model and 

Irwin and Good National Model  
Notes: We use corn as an example to illustrate the forecasting cycle. For soybeans, the first prediction is in 

week 25 and the last prediction is in week 39.  

(1) 𝑌𝑖𝑒𝑙𝑑𝑡 = 𝛽0 + 𝛽1𝑦𝑒𝑎𝑟_𝑖𝑛𝑑𝑒𝑥𝑡 + 𝛽2𝑆𝑈𝑀𝑡 + 𝜖𝑡  

where 𝑌𝑖𝑒𝑙𝑑𝑡 is national final yield estimates in year 𝑡; 𝑦𝑒𝑎𝑟_𝑖𝑛𝑑𝑒𝑥𝑡 is the time index in year 𝑡; 

𝑆𝑈𝑀𝑡 is the sum of excellent and good ratings at the end of the season in year 𝑡.  With corn as an 

example, Figure 3 illustrates how to provide recursively out-of-sample yield forecasts with the 

model. In particular, yield forecasts for week 23 in 2000 are obtained with the following steps.  

First, first ordinary least squares (OLS) regression is used to estimate the IG National model from 

1986 to 1999 with the time index, the percentage of corn rated in good and excellent condition at 

the end of the year, and the national final yield estimate.  Second, the sum of ratings in week 23 

and the year index for 2000 are entered in the regression model estimated over 1986 through 1999 

to obtain a corn yield forecast for week 23 in 2000.  

State-level yield forecasts follow the same procedure as at the national level.  Instead of using 

national yield estimates, we use state-level final yield estimates to estimate the Irwin and Good 

State model (IG State model, hereinafter) and generate weekly yield forecasts for each state.  

State-level forecasts are aggregated to the national level using the procedure described earlier.   
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Irwin and Good (2017b) point out that a disadvantage of their approach is that it does not 

consider bias in the early week condition ratings during the growing season.  Irwin and Good 

show that early condition ratings for corn and soybean, on average, are over-estimated.  Early in 

the growing season, crops often are in a “green” state and retain full yield potential. However, in 

a few years adverse weather conditions (like the drought in 2012) and the development of plant 

disease (like the outbreaks of tar spot, a fungal disease damages corn leaf, since 2015) cause crop 

yield prospects deteriorate.  As a result, ratings later in the growing season, on average, tend to be 

lower than early ratings.  This is sometimes referred to as the “browning” of crop condition 

ratings.  To measure the size of this bias, we follow definition of bias proposed by Irwin and 

Hubbs (2018a, c):  

(2)                           𝑏𝑖𝑎𝑠𝑡 = 𝑓𝑖𝑛𝑎𝑙 𝑤𝑒𝑒𝑘 𝑟𝑎𝑡𝑖𝑛𝑔𝑡 − 𝑒𝑎𝑟𝑙𝑦 𝑤𝑒𝑒𝑘 𝑟𝑎𝑡𝑖𝑛𝑔𝑡,                            

where 𝑓𝑖𝑛𝑎𝑙 𝑤𝑒𝑒𝑘 𝑟𝑎𝑡𝑖𝑛𝑔𝑡 is the current year’s sum of good and excellent ratings at the end of 

growing season and 𝑒𝑎𝑟𝑙𝑦 𝑤𝑒𝑒𝑘 𝑟𝑎𝑡𝑖𝑛𝑔𝑡 is the sum of good and excellent ratings of each early 

week in year 𝑡.  We expect the bias to be negative, hence, to adjust the bias in the early weeks, we 

need to add the bias to the early weeks’ ratings as: 

(3)                          𝑎𝑑𝑗_𝑒𝑎𝑟𝑙𝑦_𝑟𝑎𝑡𝑖𝑛𝑔𝑡 = 𝑒𝑎𝑟𝑙𝑦 𝑤𝑒𝑒𝑘 𝑟𝑎𝑡𝑖𝑛𝑔𝑡 + 𝑏𝑖𝑎𝑠𝑡 .                                

For both corn and soybean, the data show that bias is minimal after week 30.  Therefore, the 

bias adjustment is applied only to week 23 through week 30 for corn and week 25 through week 

30 for soybean.  

We apply moving-average procedures to estimate the size of bias.  With ten-year and five-

year moving-average approaches, we first calculate the weekly rating difference between the final 

week and each of the early weeks over the previous ten or five years.  Then, we add the estimated 

bias to the reported ratings for the current forecast year.  For some weeks, we do not have 

consecutive observations in all years.  In these scenarios, we use all the available data we have 

from the previous ten or five years.  These two augmented approaches are considered labeled the 

IG National with Bias Adjustment model.4  

The Bain and Fortenbery (2017) fixed weight model (BF model, hereinafter) assigns fixed 

weights to each condition category to transform the ordinal condition ratings to a numerical crop 

condition index (CCI).5  Below is the definition:  

𝐶𝐶𝐼𝑛𝑑𝑒𝑥 = 1.0 ⋅ 𝐸𝑥𝑐𝑒𝑙𝑙𝑒𝑛𝑡 + 0.75 ⋅ 𝐺𝑜𝑜𝑑 + 0.50 ⋅ 𝐹𝑎𝑖𝑟 + 

(4)                                                   .25 ⋅ 𝑃𝑜𝑜𝑟 + 0.00 ⋅ 𝑉𝑒𝑟𝑦 𝑃𝑜𝑜𝑟.                                                     

The ratings for each condition category are in percentages, therefore fixed weights CCI is 

bounded between 0 and 1.  The BF model is specified as follows: 

(5)                                     𝑌𝑖𝑒𝑙𝑑𝑖 = 𝛼0 + 𝛼1 ∙ 𝑇𝑟𝑒𝑛𝑑𝑖 + 𝛽1 ⋅ 𝐶𝐶𝐼𝑛𝑑𝑒𝑥𝑖 + 𝑒𝑖,                                 

where 𝑌𝑖𝑒𝑙𝑑𝑖  is the final yields in year i, 𝑇𝑟𝑒𝑛𝑑𝑖 is the time index for year i, 𝐶𝐶𝐼𝑛𝑑𝑒𝑥𝑖 is the end 

of season 𝐶𝐶𝐼𝑛𝑑𝑒𝑥 value for year i.  For example, the yield forecasts for week 23 in 2000 for corn 

are estimated with the following steps.  First, crop conditions are transformed at the end of 

growing season to the fixed weight 𝐶𝐶𝐼𝑛𝑑𝑒𝑥 from 1986 through 1999.  Second, model (5) is via 

OLS using the final yield estimates as the response variable and year index and fixed weight 

𝐶𝐶𝐼𝑛𝑑𝑒𝑥 as explanatory variables.  Third, once we obtain the crop condition ratings for week 23 

in 2000, we transform them to the fixed weight 𝐶𝐶𝐼𝑛𝑑𝑒𝑥 and enter them in the model estimated 

over 1986 through 1999.  

 
4 Model comparisons with bias adjustment based on a five-year moving average are similar to those based 

on a ten-year moving average and are omitted to save space.  
5 Jorgensen and Dierson (2014) use the CCI developed by Bain and Fortenbery.  



Li, Irwin, and Hubbs Crop Condition Yield Forecasting 7 

The Begueria and Maneta (2020) model (BM hereafter) is the most technically sophisticated 

model considered in this forecast evaluation.  They argue that spatial and temporal differences in 

crop condition information should be directly modeled before making yield forecasts.  Hence, a 

cumulative link mixed model (CLMM) is used to transform raw condition data to a continuous 

and almost normal-distributed crop condition index (CCI).  After removing space and time effects, 

they argue that maximum information can be extracted from crop condition ratings, which offers 

a better possibility of providing unbiased and accurate yield forecasts.  

In the first stage of the BM modeling approach a CLMM is estimated using a probit link 

function to connect ordinal response with numeric factors.  The CLMM is specified as: 

(6)             𝑝𝑟𝑜𝑏𝑖𝑡(𝑃(𝑌𝑖 ≤ 𝑗|𝑠, 𝑦, 𝑤)) = 𝜃𝑗 + 𝛽𝑦𝑦 + 𝛽𝑤𝑤 + 𝑣𝑠 + 𝑣𝑦,𝑠𝑦 + 𝑣𝑤,𝑠𝑤 + 𝜖𝑠𝑖,                

where 𝑝𝑟𝑜𝑏𝑖𝑡(𝑃(𝑌𝑖 ≤ 𝑗|𝑠, 𝑦, 𝑤)) is the probability that the 𝑖th report’s condition ratings are no 

greater than category 𝑗, and 𝑗𝜖[1,4] since there are five condition categories; 𝑠, 𝑦 and 𝑤 are state 

year and week in report 𝑖, respectively; and 𝜃𝑗 is a threshold parameter which remains constant 

and determines the range of the response variable in a certain category 𝑗.  There are two fixed 

effects in the model: a long-term (year) effect and a temporal (week) effect.  Three random effect 

components are included: state, the interaction between state and year, and the interaction between 

state and week.  The error term 𝜖𝑠𝑖 is the unbiased CCI that is specific for each state and is free of 

any long-term or temporal time effects.  

In the second stage of the BM modeling process, a mixed model is specified where the fixed 

effects are the long-term (year) and CCI effects and the random effect is conditional on year and 

CCI interactions.  This model provides weekly yield forecasts for each state and is specified as: 

(7)                         𝜇𝑖(𝑠) = 𝛽0 + 𝛽𝑦𝑦𝑖 + 𝛽𝑐𝐶𝐶𝐼𝑖 + 𝑣(𝑠) + 𝑣𝑦(𝑠)𝑦𝑖 + 𝑣𝑐(𝑠)𝐶𝐶𝐼𝑖 + 𝜖𝑖,                    

 

Figure 2. Recursive Out-of-Sample Yield Forecasts with Begueria and Maneta Model 

(2020) 
Notes: We use corn as an example to illustrate the forecasting cycle. For soybeans, the first prediction is in 

week 25 and the last prediction is in week 39.  
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where 𝜇𝑖(𝑠) is the expected yield at state 𝑠 and time 𝑖, 𝑦𝑖  is the transformed year index at time 𝑖, 
𝐶𝐶𝐼𝑖  is the crop condition index at time 𝑖, 𝛽0  is the global intercept, 𝛽𝑦  is the long-term year 

effects and 𝛽𝑐 is the CCI effect (they are both fixed effects and have the same effects on all the 

states).  The BM model treats the state as a random component, which implies that different states 

have different temporal effects and CCI effects. 

Figure 2 

 uses corn as an example to illustrate how the BM model recursively provide out-of-sample 

weekly yield forecasts.  Yield forecasts for week 23 in 2000 are estimated with the following 

steps.  First, the CLMM model is estimated using crop condition ratings from the first published 

Crop Progress report in 1986 to the most recent report published in week 23 of 2000.  With the 

updated model, we can transform and update the ordinal crop condition ratings for all the weeks 

until week 23 in 2000.  Second, we can estimate the mixed model using the updated CCI and other 

variables in week 23 from 1986 to 1999.  Third, the updated CCI and year index for week 23 in 

2000 are entered in the mixed model to obtain a yield projection for week 23 in 2000.  Following 

these steps, as we move forward in the growing season, we generate weekly updates of yield 

forecasts.  Fourth, national yield forecasts are generated from the state-level forecasts using the 

procedures described earlier.  

Forecast Evaluation 

We conduct two sets of model comparisons in our study.  First, we compare all five yield 

forecasting models to a naïve trend yield model to evaluate the value of crop condition ratings as 

a yield indicator.  Second, we set the BM model as a benchmark to compare it with the other four 

yield forecasting models.  The comparisons are conducted at both the state and national levels. 

Weekly forecast errors 𝑒𝑤,𝑡
𝑖  for model 𝑖 are defined as the percentage difference between the 

USDA final yield and a model’s yield forecast: 

(8)                                                               𝑒𝑤,𝑡
𝑖 = 100 ∙

(𝑦𝑡−𝑦𝑤,𝑡
𝑖̂ )

𝑦𝑡
,                                                    

where 𝑦𝑡 is the final USDA yield estimates and 𝑦𝑤,𝑡
𝑖̂  is the predicted yield in year 𝑡 for week 𝑤 

produced by model 𝑖.  We use the root mean squared percentage error (RMSPE) to measure each 

model’s predictive accuracy.  RMSPE is defined as 

(9)                                                 𝑅𝑀𝑆𝑃𝐸𝑤,𝑡
𝑖 = √

1

𝑛
∑(𝑒𝑤,𝑡

𝑖 )
2
,                                                          

where 𝑛 is the number of observations in each week over the out-of-sample period.  

Naïve Trend Yield Model  

One of the key factors that determines crop yields is technology improvement over time.  Crops 

tend to increase in yield year-by-year, which is known as the “trend yield.” A naïve trend yield 

model serves as the base model that we use to compare with five yield forecasting models since 

it only accounts for the variation in time.  The Naïve trend yield model is specified as below: 

(10)                                             𝑌𝑖𝑒𝑙𝑑𝑡 = 𝛽0 + 𝛽1,𝑡𝑦𝑒𝑎𝑟_𝑖𝑛𝑑𝑒𝑥𝑡 + 𝜖𝑡,                                                

where 𝑌𝑖𝑒𝑙𝑑𝑡 is the national final yield estimates in year 𝑡, 𝑦𝑒𝑎𝑟_𝑖𝑛𝑑𝑒𝑥𝑡 is the corresponding 

year index running from 1 to 35 for the year from 1986 to 2022.  
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(a) Illinois Corn 

 
 

(b) South Dakota Corn 

 

Figure 4. Forecast Error of the BM Model and IG State Model for Week 29 for Illinois and 

South Dakota in Corn, 2000 – 2022 
Notes: BM model is proposed by Begueria and Maneta (2020), IG State model is proposed by Irwin and 

Good (2017a).  
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(a) Illinois Soybeans 

 
 

(b) South Dakota Soybeans 

 

Figure 5. Forecast Error of the BM Model and IG State Model for Week 29 for Illinois and 

South Dakota in Soybeans, 2000 – 2022 
Notes: BM model is proposed by Begueria and Maneta (2020), IG State model is proposed by Irwin and 

Good (2017a).  
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(a) Illinois Corn 

 
 

(b) South Dakota Corn 

 

Figure 6. Weekly RMSPE of the BM Model and IG State Model for Illinois and South 

Dakota in Corn, 2000 – 2022 
Notes: BM model is proposed by Begueria and Maneta (2020), IG State model is proposed by Irwin and 

Good (2017a).   
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(a) Illinois Soybeans 

 
 

(b) South Dakota Soybeans 

 

Figure 7. Weekly RMSPE of the BM Model and IG State Model for Illinois and South 

Dakota in Soybeans, 2000 – 2022  
Notes: BM model is proposed by Begueria and Maneta (2020), IG State model is proposed by Irwin and 

Good (2017a).  
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Figure 8: Forecast Error (%) of Five Yield Forecasting Models for Week 29 at the 

National Level in Corn, 2000 – 2022 
Notes: BM model is proposed by Begueria and Maneta (2020), IG State model, IG National model, IG 

National with Bias Adjustment Model are proposed by Irwin and Good (2017a), and BF model is proposed 

by Bain and Fortenbery (2017). 

 

Figure 9. Forecast Error (%) of Five Yield Forecasting Models for Week 29 at the 

National Level in Soybeans, 2000 – 2022 
Notes: BM model is proposed by Begueria and Maneta (2020), IG State model, IG National model, IG 

National with Bias Adjustment Model are proposed by Irwin and Good (2017a), and BF model is proposed 

by Bain and Fortenbery (2017). 
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Figure 10. RMSPE of Five Corn Yield Forecasting Models at the National Level, 2000 – 

2022 
Notes: BM model is proposed by Begueria and Maneta (2020), IG State model, IG National model, IG 

National with Bias Adjustment Model are proposed by Irwin and Good (2017a), and BF model is proposed 

by Bain and Fortenbery (2017). We also include naïve trend yield model to illustrate the value of crop 

condition ratings as a yield indicator.  The RMSPE of the IG National and IG National with bias 

adjustment models is the same starting on July 29th because the bias adjustment is set to zero starting this 

week. 

 

Figure 11. RMSPE of Five Soybeans Yield Forecasting Models at the National Level, 2000 

– 2022 
Notes: BM model is proposed by Begueria and Maneta (2020), IG State model, IG National model, IG 

National with Bias Adjustment Model are proposed by Irwin and Good (2017a), and BF model is proposed 

by Bain and Fortenbery (2017).  We also include naïve trend yield model to illustrate the value of crop 

condition ratings as a yield indicator. The RMSPE of the IG National and IG National with bias adjustment 

models is the same starting on July 29th because the bias adjustment is set to zero starting this week. 
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The yield forecasts provided by naïve trend yield model also follow the recursive out-of-

sample forecasting approach.  For example, when we are in year 2000, we use yields and time 

indices from 1986 to 1999 to train the model.  In 2000, we make yield predictions using the 

updated year index of 15 for all weeks during the growing season for corn and soybeans. 

Comparisons at State Level 

We begin the forecast comparisons for two representative states that have significant geographic 

differences in production characteristics—Illinois and South Dakota.  The state-level forecasts are 

generated by the BM and IG State models.  Figures 4 and 5 present the percentage errors of the 

forecast yields of these two models for a mid-season week (week 29) over the out-of-sample 

period for corn and soybeans, respectively.  Figures 4a and 5a show that in Illinois the errors for 

the two models are quite similar and there is no clear pattern of which model performs best over 

time.  Figures 4b and 5b show more variability for South Dakota, but there is no clear pattern of 

which model performs best over time.  For 2012, when crop production was sharply impacted by 

a historic drought, we observe that the BM model provided more accurate yield forecasts than the 

IG State model in the mid-growing season for Illinois, whereas for South Dakota, the IG State 

model was more accurate.  

Figures 6 and 7 show the RMSPE for each week during the growing season over the entire 

out-of-sample period (2000-2022) for corn and soybeans, respectively, in Illinois and South 

Dakota.  Figure 6a indicates that the BM model has better performance from mid-July until the 

end of growing season for corn in Illinois.  Figure 7a shows the IG State model outperforms the 

BM model in Illinois from mid-July to mid-August for soybean.  For South Dakota, Figure 6b 

shows that the BM model takes the lead from early-June to early-July for corn, then the IG State 

model provides more accurate yield forecasts from early-July until the end of growing season for 

corn.  Figure 7b suggests that the BM model has better forecasting performance from early-June 

to late-August for soybeans, then the Irwin and Good model takes the lead through the end of 

growing season.  

Comparisons at National Level  

All yield forecasting models in this study provide national-level yield forecasts for each week 

during the growing season over the out-of-sample period.  Table 1 presents the RMSPE of the 

five forecasting models for each week for corn and soybeans.  The RMSPE of all five models for 

corn are bounded with a maximum level of 8.8% (IG National model) to a minimum of 3.4% (BF 

model).  The average RMSPE for corn is about 5% throughout the growing season.  For soybean, 

the patterns are similar, with RMSPE are in the range of 3.6% to 8.0%, and the overall average 

RMSPE across the entire forecasting cycle about 6%.  We begin by focusing on the forecast errors 

for mid-growing season from 2000 through 2022.  Figures 8 and 9 present the forecast errors 

through the out-of-sample period for the five yield forecasting models for week 29, approximately 

the middle of the growing season.  The variability of the forecast errors is similar to the mid-

season errors at the state-level shown earlier in Figures 4 and 5. In general, it appears that the 

errors for the five forecasting models are highly correlated through time. 

We also compare yield forecasts provided by the naïve tend yield model to the five 

forecasting models in Figures 10 and 11. Figure 10 shows the not too surprising result in corn that 

the individual models substantially outperform the naïve trend model except for the first few 

weeks of the growing season.  It is interesting to note that both the BM and IG National with Bias 

Adjustment outperform the naïve trend for every week.  Overall, these results indicate that crop 

condition ratings provide useful information to project corn yield early in the growing season.  
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Table 1.  RMSPE of Weekly Yield Forecasting Models for Corn and Soybean at the 

National Level, 2000 – 2022 

Notes: For each week, there are 22 observations in the out-of-sample period from 2000 – 2022. The 

RMSPE measures the average forecast errors over the out-of-sample period, and it is measured in 

percentage. BM model is proposed by Begueria and Maneta (2020), IG State model, IG National model, 

IG National with Bias Adjustment Model are proposed by Irwin and Good (2017a), and BF model is 

proposed by Bain and Fortenbery (2017). 

Figure 11 reveals a very different picture for soybeans.  None of the individual models 

consistently beats the naïve trend model until early August.  The BF model does not do so in 

soybeans until mid-July.  These results likely reflect the fact that the critical growing period for 

soybeans occurs later in the summer than for corn.  Recent research (Irwin, 2023b) shows that 

August weather is most important for determining soybean yields, whereas July weather is most 

important for corn (Irwin, 2023a).  
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Single-Horizon Forecast Tests 

For each week we conduct a pairwise comparison between the benchmark BM model and the 

other four models.  We apply the modified Diebold-Mariano (MDM) test for each week to test if 

the BM model provides more accurate yield forecasts than an alternative model at a given week 

during the growing season.  The MDM test was developed by Harvey, Leybourne, and Newbold 

(1997), and has been shown to work well in small samples.  Furthermore, as the forecasting 

horizon increases the test is over-sized and remains stable.  For each week, there are 21 

observations as the out-of-sample period covers 2000 through 2022.  

The null hypothesis is that two models have the same predictive accuracy.  The MDM test 

determines if the difference in RMSPE between the BM model and other models is significant.  If 

we assume the loss function to be quadratic, we have: 

(11)                                                    𝑑𝑤,𝑡 = (𝑒𝑤,𝑡
2 )

2
− (𝑒𝑤,𝑡

1 )
2
                                                       

(12)                                                         𝐸(𝑑𝑤,𝑡) = 0,  

where 𝑒𝑤,𝑡
1  represents the yield errors from BM model, and 𝑒𝑤,𝑡

2  represents the yield errors from 

one of its competing models.  

For the ℎ-step ahead yield forecasts, the MDM statistic is defined as: 

(13)                                       𝑀𝐷𝑀 = [
𝑛+1−2ℎ+𝑛−1ℎ(ℎ−1)

𝑛
]

1

2
∙ 𝑑̅𝑤 ∙ [𝑉(𝑑̅𝑤)]

−
1
2                                            

(14)                                         𝑉(𝑑̅𝑤) = [𝑛−1(𝛾0 + 2∑ 𝛾𝑠
ℎ−1
𝑠=1 )],                                                       

where 𝑑̅𝑤 is the sample mean of 𝑑𝑤,𝑡, 𝑤 is the forecast week and 𝑤 = 1,2,3, … ,17 for corn and 

𝑤 = 1,2,3, … ,15  for soybeans, 𝛾0 = 𝑛−1 ∑ (𝑑𝑤,𝑡 − 𝑑̅𝑤)2𝑛
𝑡=1  as the variance of 𝑑𝑤,𝑡 , 𝛾𝑠 =

𝑛−1 ∑ (𝑑𝑤,𝑡 − 𝑑̅𝑤)(𝑑𝑤,𝑡−𝑠 − 𝑑̅𝑤), 𝑠 = 1,2,3, … , ℎ − 1𝑛
𝑡=𝑠+1 , as the 𝑠th auto-covariance of 𝑑𝑤,𝑡.  

The weekly forecasts are one-step ahead forecasts (by year), and therefore, ℎ = 1.  Hence, the 

MDM statistic for each forecast week is: 

(15)                         𝑀𝐷𝑀𝑤 = [(𝑛 − 1)]
1
2 ∙ 𝑑̅𝑤 ∙ [𝑛−1(∑ (𝑑𝑡,𝑤 − 𝑑̅𝑤

𝑛
𝑡=1 )

2
)]

−
1
2
                                  

The MDM test statistics for corn and soybeans are shown in Tables 3 and 4, respectively.  

The null hypothesis is that each week throughout the out-of-sample forecasting period, the 

forecasting performance of BM model and one of its competing models is the same.  Test statistics 

show that for corn, out of 68 cases of pair-wise yield forecast comparisons for week 23 to week 

39, all test statistics are insignificant.  These results suggest that we fail to reject the null 

hypothesis that BM model does not have better forecasting performance than other models.  For 

soybeans, out of 60 cases of pair-wise yield forecast comparisons covering forecast weeks 25 to 

week 39, there is again no significant case.  These results suggest that the benchmark BM model 

does not significantly outperform its competitors for each week throughout the growing season 

for both corn and soybeans. 

Best Model Confidence Set Tests 

Each week, all five yield forecasting models produce weekly yield forecasts for corn and 

soybeans.  In the previous section, we applied the MDM test to conduct a pairwise yield 

performance test between the BM model and other models.  To extend the pairwise comparisons, 

the Model Confidence Set (MCS) test allows model selection across all yield forecasting models 

(Hansen, Lunde, and Nason, 2011).  For a given significance level 𝛼, the MCS test selects the 

model with best forecasting accuracy from a set of models.  
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Table 2. Modified Diebold Mariano (MDM) Test Statistics for Corn Yield Forecasting 

Models at the National Level, 2000 - 2022 

 
Notes: This table presents the t-statistics and p-values (in parenthesis) for the MDM test.  *, **, *** is the 

significance level at 10%, 5%, 1% respectively. The null hypothesis is that for each week, each of the four 

competing forecasting models have the same predictability as the BM model. BM model is proposed by 

Begueria and Maneta (2020), IG State model, IG National model, IG National with Bias Adjustment 

Model are proposed by Irwin and Good (2017a), and BF model is proposed by Bain and Fortenbery 

(2017). 

BM model is proposed by Begueria and Maneta (2020), IG State model, IG National model, 

IG National with Bias Adjustment Model are proposed by Irwin and Good (2017a), and BF model 

is proposed by Bain and Fortenbery (2017). Colino et al. (2012) showed that an equal-weighted 

composite provides more accurate forecasts than individual outlook programs for hog prices.  

Following their approach, we build the Equal Weighted Model that produces composite forecasts 

which are the arithmetic average of the five individual yield forecasts.  We include the composite 

forecasts in the set of yield forecasting models and apply the MCS test to test whether composite 

forecasts outperform individual forecasts.  
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Table 3. Modified Diebold Mariano (MDM) Test Statistics for Soybean Yield Forecasting 

Models at the National Level, 2000 – 2022 

 
Notes: This table presents the t-statistics and p-values (in parenthesis) for the MDM test. *, **, *** is the 

significance level at 10%, 5%, 1% respectively. The null hypothesis is that for each week, each of the four 

competing forecasting models have the same predictability as the BM model.  

The MCS test is built on an iterative procedure at each step, where it eliminates the worst 

performing model from the set of six models (ℳ0) until the last model survives from the tests in 

all previous five steps.  To select which model should be eliminated, the following t-statistic 

proposed by Hansen, Lunde, and Nason (2011) are used: 

(16)                                                  𝑡𝑖 . =
𝑑𝑖.̅̅̅̅

√𝑣𝑎𝑟̂(𝑑𝑖.̅̅̅̅ )
, for 𝑖, 𝑗 ∈ ℳ0                                                         

where 𝑑𝑖.̅̅̅̅ ≡ 𝑚−1 ∑ 𝑑𝑖𝑗̅̅ ̅̅
𝑗∈ℳ0

, 𝑑𝑖𝑗̅̅ ̅̅ = 𝑛−1 ∑ 𝑑𝑖𝑗,𝑡
𝑛
𝑡=1 , 𝑑𝑖𝑗,𝑡 = 𝐿𝑖,𝑡 − 𝐿𝑗,𝑡 , 𝐿(∙)  is the squared error 

function.  Corresponding p-values are collected from a bootstrap of the test statistics.  The best 

model selected by MCS has p-value equals to 1.  When more than one model has a p-value equal 

to 1, we use the equivalence test, 𝑇𝐷 ≡ ∑ (𝑡𝑖 . )
2

𝑖∈ℳ0
, to test if the last model outperforms its 

competitors.  

Our study reports the last model selected by the MCS test based on p-values produced by 

2,000 bootstrap replicates for each week.  We first show MCS test results for the set of models 

only consisting of the five individual yield forecasting models; next we show the MCS test results 

for the set of models adding the Equal Weight Model to the five individual yield forecasting 

models.  The significance level for MCS test is 10% in order to be conservative in determining 

the best model. We also report the p-values for the equivalence test.  When the estimated p-value 
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is greater than 0.1, the MCS test indicates that the forecast accuracy of the best selected model is 

not statistically superior to the competing models in the set.   

Weekly MCS test results for corn and soybeans are reported in Table 4 and 5. In Table 4, we 

report the best model from the set of five individual yield forecasting models.  For both corn and 

soybeans, the best models early in the growing season are the IG National with Bias Adjustment 

model and the IG State model.  By the end of growing season, the BM model and IG State model 

provide the most accurate yield predictions.  In Table 5, we report the MCS test for the set of 

models that include the Equal Weighted composite model and five individual yield forecasting 

models.  For both crops throughout the growing stages, the best model selected is the Equal 

Weighted model, except for corn in the week of August 19 (when the selected best model is BF 

model) and for soybean after the week of August 12 (when IG State model ranked the best).  

Equivalence test p-values are also reported in Tables 4 and 5. They fail to reject the null hypothesis 

of that the set of models have equal predictive ability.  These findings indicate that there are 

models with more accurate corn and soybean yield forecasts, however, the differences are not 

statistically significant.  

Multi-Horizon Forecast Tests 

One limitation of the MDM test is that it only provides comparisons for two competing models at 

each horizon 𝑤.  It is very common to find that at some horizons the first model outperforms the 

second, and at some other horizons the situation reverses.  For two competing models that cover 

multi-horizons, it is helpful to also perform an omnibus test based on all forecasting horizons.  

Quaedvlieg (2021) introduced a multi-horizon superior predictive ability (SPA) test that enables 

the comparison of forecasts of different models jointly, combining the models’ predictability 

across all horizons.  The author proposed two tests, the first one is the uniform SPA test that tests 

if a model has superior forecasting performance at each individual horizon; the second is the 

average SPA test that determines if a model has superior forecasting performance considering the 

entire forecasting path.  For our study, we follow the Quaedvlieg average SPA (aSPA) test as it is 

the less restrictive of the two tests.   

We denote USDA final yields as 𝑦𝑡, and the weekly yield forecasts produced by model 𝑖 as  

𝑦𝑡.
𝑖̂   In a multi-horizon test framework, 𝑦𝑡

𝑖̂  is a 17-dimension vector, 𝑦𝑡
𝑖̂ =

[𝑦1,𝑡
𝑖̂ , 𝑦2,𝑡

𝑖̂ , … 𝑦ℎ,𝑡
𝑖̂ , … , 𝑦17,𝑡

𝑖̂ ], where ℎ indicates the week of a yield forecast; 𝑖 represents different 

choice of forecasting models; 𝑡 is the year when the fixed-event forecasts are made.  We define 

the loss function as 𝐿𝑡
𝑖 = 𝐿(𝑦𝑡 , 𝑦𝑡

𝑖̂), and it projects the final yield estimates onto a 17-dimension 

space.  The loss function is defined in a quadratic form, that is the square of the percentage 

difference between the final yield estimates and each week’s yield forecasts provided by model 𝑖.  
Here we use notation “1” to stand for the benchmark BM model, and “2” for its competing model.  

Then we define the loss differential for the two competing yield forecasts as 𝑑𝑡 = 𝐿𝑡
2 − 𝐿𝑡

1.   𝐷 is 

the loss differential matrix and its dimensions are 21 ×  17.  𝐷 = [𝑑1
𝑇 , … , 𝑑𝑡

𝑇 , … , 𝑑21
𝑇 ]𝑇, where  

𝑑𝑡 = [𝑑𝑡
1 , … , 𝑑𝑡

ℎ , … , 𝑑𝑡
17].  Each entry of the matrix 𝐷 is denoted as 𝑑𝑡

ℎ, and 𝐷 is specified as: 

(17)                                        𝐷 =

[
 
 
 
 
𝑑1

1 … 𝑑1
ℎ … 𝑑1

17

⋮ ⋱ ⋮ ⋱ ⋮
𝑑𝑡

1 … 𝑑𝑡
ℎ … 𝑑𝑡

17

⋮ ⋱ ⋮ ⋱ ⋮
𝑑21

1 … 𝑑21
ℎ … 𝑑21

17]
 
 
 
 

21×17

                                                 

We use the mean loss differential, 𝜇𝑎𝑆𝑃𝐴 = ∑ 𝑤ℎ𝜇17
ℎ=1 ℎ

, to compare overall predictability.  

𝜇𝑎𝑆𝑃𝐴  can be taken as the weighted sum of each week’s average differentials, where 𝑤ℎ is the  
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Table 4. Best Individual Model Selected by the MCS Test for Corn and Soybeans at the National Level, 2000 – 2022 

 
Notes: MCS p-values are all greater than the 10% significance level, suggesting the selected best performing model fails to significantly outperform other individual 

yield forecasting models. The best model selected by MCS test is based on a significance level of 10%, with p-values are produced with 2000 bootstrap replicates for the 

test statistics. 
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Table 5. The Best Individual and Composite Model Selected by the MCS Test for Corn and Soybeans at the National Level, 2000 – 2022 

 
Notes: The Equal Weighted model produced yield forecast composites of five yield forecasting models. MCS p-values are all greater than 10% significance level, 

suggesting the Equal Weighted model fails to outperform individual yield forecasting models. The best model selected by MCS test is based on the 10% significance 

level, with p-values  produced via 2000 bootstrap replicates for the test statistics. 
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Table 6. Multi-Horizon Average Superior Predictive Ability (aSPA) Test between Yield 

Forecasting Models for Corn and Soybeans at the National Level with Fixed Weights, 2000 

– 2022 

 

 
Notes: This table presents the t-statistics and p-values (in parenthesis) for the multi-horizon aSPA test.  *, 

**, *** is the significance level at 10%, 5%, 1% respectively.  The null hypothesis is that considering all 

horizons, on average, the competing yield forecasting model has better performance than BM model. BM 

model is proposed by Begueria and Maneta (2020), IG State model, IG National model, IG National with 

Bias Adjustment Model are proposed by Irwin and Good (2017a), and BF model is proposed by Bain and 

Fortenbery (2017). 

weights for each forecast week; 𝜇ℎ = lim
𝑇→∞

1

𝑇
∑ 𝑑𝑡

ℎ𝑇
𝑡=1  is the mean of each week’s loss differentials 

and we use 𝑑̅ℎ = 
1

21
∑ 𝑑𝑡

ℎ̂21
𝑡=1  to estimate 𝜇ℎ. The null hypothesis of the aSPA test is 𝜇𝑎𝑆𝑃𝐴 ≤ 0, 

which implies that, on average, the benchmark BM model fails to provide better performance than 

competitors across all forecast horizons.  The studentized statistic for aSPA test is: 

(18)                                                         𝑡𝑎𝑆𝑃𝐴 =
√𝑇  ∑ 𝑤ℎ⋅𝑑̅ℎ

17
ℎ=1

𝜍̂
,                                                             

where 𝜍̂ = √𝑤′Ω̂𝑤 ; 𝑤 = [𝑤1, … , 𝑤ℎ , … , 𝑤17]
𝑇 is the 17-dimentional weight vector.  Ω is the 

variance-covariance matrix of matrix 𝐷 .  We denote 𝐷 = [𝐷𝑡
1, … ,𝐷𝑡

ℎ , … , 𝐷𝑡
17] , where 𝐷𝑡

ℎ =
[𝑑1

ℎ , … , 𝑑21
ℎ ]𝑇.  The variance-covariance matrix Ω of matrix D is defined as: 

(19)                                     Ω = [
𝑣𝑎𝑟(𝐷𝑡

1) … 𝑐𝑜𝑣(𝐷𝑡
1, 𝐷𝑡

17)
⋮ ⋮ ⋮

𝑐𝑜𝑣(𝐷𝑡
1, 𝐷𝑡

17) … 𝑣𝑎𝑟(𝐷𝑡
17)

]

17×17

,                                    

where 𝑣𝑎𝑟(𝐷𝑡
1) =

1

𝑇
(𝐷𝑡

1)𝑇(𝐷𝑡
1) =

1

𝑇
∑ (𝑑𝑡

1)221
𝑡=1 ; 𝑐𝑜𝑣(𝐷𝑡

1, 𝐷𝑡
17) =

1

𝑇
(𝐷𝑡

1)𝑇(𝐷𝑡
17) =

1

𝑇
∑ 𝑑𝑡

1 ∙21
𝑡=1

𝑑𝑡
17. Since each week’s differentials are highly correlated, we use the Newey-West HAC estimator 

to find its estimator, Ω̂.  The choice of weights is flexible.  We follow the examples proposed by 

Quaedvlieg (2021): first, we select an equal weight where 𝑤ℎ =
1

17
 for each week; second, we use 

“efficient” weights to minimize 𝜍 as the yield forecasts during the growing season are based on 

accumulated information.  We assign small weights to early forecasts where variance is high, and 

we assign large weights to near end-of-season forecasts where variance is low.  Therefore, the 

inverse-variance weights are defined as 𝑤ℎ =
1

𝜎ℎ
2(∑ 𝜎𝑖

217
𝑖=1 )

 and they satisfy the condition that the 

sum of weights is equal to 1.  To obtain the critical values and p-values, we use a moving block 

bootstrap (MBB) technique to simulate the distribution.  We focus on the significance level at 5%, 

and the significance level is the corresponding percentile of the bootstrap distribution.  

The null hypothesis of the aSPA test is that the benchmark BM model is no more accurate 

than a competing model across all forecast horizons.  Test results are summarized in Table 7.  The  
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Table 7. Multi-Horizon Average Superior Predictive Ability (aSPA) Test between Yield 

Forecasting Models for Corn and Soybeans at the National Level with Varying Weights, 

2000 – 2022 

Notes: This table presents the t-statistics and p-values (in parenthesis) for the multi-horizon aSPA test. *, 

**, *** is the significance level at 10%, 5%, 1% respectively. The null hypothesis is that considering all 

horizons, on average, the competing yield forecasting model has better performance than BM model. BM 

model is proposed by Begueria and Maneta (2020), IG State model, IG National model, IG National with 

Bias Adjustment Model are proposed by Irwin and Good (2017a), and BF model is proposed by Bain and 

Fortenbery (2017). 

multi-horizon aSPA test p-values are all greater than 5%, suggesting the BM model fails to 

significantly outperform the other models considering all forecast horizons during the corn and 

soybean growing seasons.  We also conduct the average SPA test with varying weights for each 

week of the growing season, and these test results are summarized in Table 8.  Once again, the 

multi-horizon aSPA test p-values are all greater than 5%, suggesting the BM model fails to 

significantly outperform the other models considering all forecast horizons.  Overall, the findings 

based on the aSPA tests are consistent with what we found with the single horizon MDM test.  

That is, the benchmark BM model fails to systematically outperforms competing models during 

the growing season for corn and soybeans.  A plausible argument for this finding is that the BM 

model only controls for the time and spatial variations in the state-level crop condition ratings, so 

the transformed weekly CCI does not contain any more information relevant to forecasting corn 

and soybean yields than simple approaches that make similar adjustments.  

Conclusions 

Crop condition ratings provide unique information for predicting crop yields.  The ratings are 

widely used by market analysts in the public and private sectors to forecast crop yields.  In this 

study, we compare the accuracy of relatively simple single equation condition models (Irwin and 

Good, 2017a, b; Bain and Fortenbery, 2017) to a sophisticated and computationally demanding 

specification (Begueria and Maneta, 2020) in forecasting U.S. corn and soybean yields.  The data 

for the study consists of weekly state and national crop condition ratings from the USDA over 

1986 through 2022.  To evaluate the predictability of all yield forecasting models, we use data 

from 2000 through 2022 as the out-of-sample period. 

A battery of statistical tests is applied to the out-of-sample crop yield forecasts.  The modified 

Diebold-Mariano test is used to conduct a weekly pair-wise comparison between models.  Test 

results suggest that no model has statistically superior forecast accuracy.  We also apply Model 

Confidence Set tests to select the best individual yield forecasting models.  Moreover, we add 

composite forecasts as the arithmetic average of the five individual yield forecasts to the set of 

models.  Test results for individual yield forecasting models suggest that early in the growing 

season the Irwin and Good model with bias adjustment is the best, and by the end of growing 

season the Bain and Fortenbery Begueria and Maneta models are selected as having the best yield 

forecasting performance.  When we include equal-weighted composite forecasts, test results show 
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composite forecasts provide the most accurate yield predictions.  However, test statistics indicate 

all the best models fail to significantly outperform their competitors.  Lastly, we apply the multi-

horizon average Superior Predictive Ability (aSPA) test developed by Quaedvlieg (2021) to 

compare models across the entire growing season.  Again, test results indicate no statistically 

significant difference in the accuracy of yield forecasts for simpler versus more complex models.  

In sum, the results of this study are consistent with the conventional wisdom in the forecasting 

literature that complex models generally do not outperform simpler models in terms of forecast 

accuracy.  Complexity does not pay when forecasting corn and soybean yields based on crop 

condition ratings.  The simple models widely used in the grain industry are at least as accurate as 

the most sophisticated model available in the literature.   

[First submitted October 2024; accepted for publication May 2025.] 
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