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Abstract

Monte Carlo experiments are designed to compare the finite sample performances of two
Monte Carlo hypothesis tests with Pesaran and Pesaran's Cox-type test.  The size of the
Pesaran and Pesaran test is generally incorrect.  The Monte Carlo tests perform equally well
and are both preferred to Pesaran and Pesaran's test.
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The Cox statistic for testing separate families of hypotheses is the difference between the log

likelihood ratio and its expected value (Cox, 1961; 1962).  While the log likelihood ratio is

straightforward to obtain, the computation of its expected value is generally intractable (Cox,

1962; Pesaran and Pesaran, 1993).  Thus, a number of Cox-type tests that are easier to

compute have been proposed in the econometric literature (Pesaran; Pesaran and Deaton;

Aneuryn-Evans and Deaton).  These tests, however, were developed for specific problems.

Simulation approaches to conducting Cox’s test that are applicable to many problems

have been proposed.  One approach, due to Pesaran and Pesaran (1993; 1995), uses stochastic

simulation to calculate the numerator of the Cox test statistic.  A second approach to

conducting Cox’s test is to use Monte Carlo hypothesis testing procedures based on the log-

likelihood ratio statistic.  Cox-type tests using this approach have been developed by Williams

and Lee and Brorsen.  Only the Lee and Brorsen test uses Noreen’s Monte Carlo hypothesis

testing procedures.  These procedures allow directly computing the significance level (p-value)

of the test statistic being used.  The Lee and Brorsen test is considered here.

Since introduced by Barnard, Monte Carlo tests have received considerable attention. 

Monte Carlo tests are very useful when the distribution of the test statistic being used is

unknown or difficult to obtain analytically (Hope; Noreen).  Monte Carlo tests have excellent

size and power properties (Hall and Titterington; Hope).  In particular, a Monte Carlo test that

is based on an asymptotically pivotal statistic has better size properties than the corresponding

asymptotic test (Hall and Titterington).  Hope showed that Monte Carlo tests have powers that

are very close to those of most uniformly powerful tests provided that sufficient random
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samples are used.  Hall and Titterington proved that the excellent power properties of Monte

Carlo tests hold even if the test statistic used is not asymptotically pivotal, but the same is not

true for the size properties.

The log-likelihood ratio statistic used in previous Monte Carlo tests is not

asymptotically pivotal.  An alternative Cox-type test is proposed here.  This test uses Monte

Carlo hypothesis testing procedures based on an asymptotically pivotal statistic.  The finite

sample performances of this test are compared with those of Pesaran and Pesaran (1993; 1995)

and Lee and Brorsen test procedures through Monte Carlo experiments.

Pesaran and Pesaran and Lee and Brorsen Test Procedures

Consider the following two nonnested hypotheses:

where y is a T x 1 vector of dependent variables, x and z are T x (K0 + 1) and T x (K1 + 1)

matrices of independent variables,0θ and 1θ are unknown vectors of parameters, f and g are

density functions, K0 and K1 are the number of independent variables under H0 and H1,

respectively, and T is the number of observations.  For the test of H0 against the alternative

hypothesis H1 Pesaran and Pesaran and Lee and Brorsen proposed the following test

procedures.

0 0H :   y  f(x, )_ θ (1)1 1H :   y  g(z, ),_ θ (2)
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Pesaran and Pesaran's Test (PP)

Pesaran and Pesaran (1993; 1995) used the standardized version of the Cox statistic.  The

expected value of the log-likelihood ratio is approximated by the Kullback-Leibler measure of

closeness of H0 with respect to H1.  The simulated estimator of the closeness

measure, R 0 1

*
C ( , (R)),$ $θ θ is obtained as:

where R is the number of random samples generated using the maximum likelihood parameter

estimates 0
$θ under H0, 1

*
(R)$θ is a consistent estimator of the probability limit of1θ ,

and 0 0 jL ( , y )$θ and 1 1
*

jL ( (R), y )$θ are the log-likelihoods functions for the jth random sample

under H0 and H1, respectively.  The estimators0
$θ and 1

*
(R)$θ are thus treated as fixed (Pesaran

and Pesaran, 1993).  Note that yj is the jth vector of the T artificially generated observations on

the dependent variable y.

Pesaran and Pesaran (1995) indicated three asymptotically equivalent methods for

computing the variance of the Cox's statistic.  The method based on the "outer-product"

expression of the information matrix will not be used here since it often yields negative values

for the variance (Pesaran and Pesaran, 1993; 1995).  The variance obtained using the "inner-

product" expression of the information matrix will be referred to asn0
2v .$   The simplified version

of the variance will be notedd0
2v .$

R 0 1
*

j=1

R

0 0 j 1 1
*

jC ( , (R)) =  
1

R
( L ( , y ) -  L ( (R), y )),$ $ $ $θ θ θ θ∑

(3)
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These results allow consistently estimating the standardized Cox statistic as:

where 0 01 R 0 1
*

T (R) =  L  -  C ( , (R))$ $θ θ under H0. n0
2v$ could also be used in the denominator of

S0(R).

Lee and Brorsen's Test (MC(LB))

Lee and Brorsen used the log-likelihood ratio as the test statistic.  Using Noreen’s approach,

the significance level of the test is calculated as (Lee and Brorsen):

where L0j and L1j are the log-likelihoods obtained from the jth random sample under H0 and H1,

respectivelly, and numb[] means the number of elements of the set for which the specified

relationship is true.

An Alternative Test Procedure

An alternative test procedure for conducting Cox's test is proposed in this section.  The test is

implemented using Noreen’s Monte Carlo hypothesis testing approach.  Unlike MC(LB),

however, the test statistic used here is asymptotically pivotal.  The test statistic is the

standardized version of the Cox test.  The variance can be computed using any of the methods

0
0

2
d0

S (R) =  
nT (R)

v
,

$ (4)

p -value =  
(numb[(L  -  L )  L ] +  1)

R +  1
,

0j 1j 01≤

(5)
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discussed above.  The expected value of L01, however, is calculated by simulation as follows:

where 01j 0 0j j 1 1j jL  =  L ( , y ) -  L ( , y ),$ $θ θ 0j
$θ is the maximum likelihood estimator of0θ for

the jth random sample, and all other parameters and variables are defined as previously.  Note

that, contrary to Pesaran and Pesaran, the parameter estimates used here to calculate the

expected value of the log-likelihood ratio are not treated as fixed.  The simulated log-likelihood

ratios computed here are independently distributed random variables.  Thus, by the strong law

of large numbers, Ê0(L01) converges to the true value of E0(L01) as the number of random

samples R and the number of observation T increase. 

Under H0, the standardized Cox test statistic (ST) can be consistently estimated as:

ST0 can be computed usingn0
2v$ as well.

ST0 is the value of the test statistic for the actual data.  To implement the Monte Carlo

test, the values of the Cox statistic for each jth random sample are computed as:

where L01j is defined as above,d0j
2v$ is the variance of the simulated log-likelihood ratio for the jth

0 01
j=1

R

01jE ( L ) =  
1

R
L ,$ ∑

(6)

0
01 0 01

d0
2

ST  =  
n [ L  -  E ( L )]

v
.

$

$ (7)

0j
01j 0 01j

d0j
2

ST  =  
n [ L  -  E ( L )]

v
.

$

$

(8)
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sample, and 0 01jE ( L )$

is obtained by simulation.  R values of ST0j are computed and the p-value

of the Cox test is obtained as:

Monte Carlo Experiments

The Monte Carlo experiments are conducted using data from a real world problem.  The

design matrix contains weekly data on hamburger prices and advertising expenditures.  These

data are taken from Griffiths, Hill, and Judge (pp. 295).  The following two nonnested models

are considered:

where trt is weekly hamburger chain's total receipts, pt is price, at is advertising expenditures,

and the et’s are normally distributed with means equal zeros and variances s0 and s1,

respectively.  These two functional forms closely approximate each other.  We purposely

selected a case where it would be difficult to discriminate between the two hypotheses.

When the semi-logarithmic model is the true model (H0), the dependent variable is

generated according to:

p -value =  
numb[ST   ST ] +  1

R +  1
.

0j 0≤

(9)

0 t 0 1 t 2 t 0tH :   tr  =   +  ( a ) +  ( p ) +  eα α αlog log (10)
1 t 0 1 t 2 t 1tH :   ( tr ) =   +  ( a ) +  ( p ) +  e ,log log logβ β β (11)

t t t 0tr  =  82.514 +  24.841 (a ) -  21.509 (p ) +  e .log log $ (12)
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When the log-linear model is true (H1), log(trt) is generated as:

The parameter estimates of these data generating processes are obtained using 78 observations

on trt, at, and pt.  Bothê 0 andê 1 are generated using the RNDN command of GAUSS and

standard errors s0 = (2.327, 6.984) and s1 = (0.020, 0.055), respectively.  Note that 6.984 and

0.055 are the actual estimates of the standard errors of the error terms under H0 and H1,

respectively.  The standard errors are varied to determine the effects of the variances on the

Monte Carlo results.  A different seed is used only when s0 and s1 are varied.

The experiments are conducted using samples of 20, 50, 100, and 200 observations. 

The design matrix is duplicated when the samples of 100 and 200 observations are used.  The

number of replications is 1000 for samples sizes 20 and 50, and 500 for samples sizes 100 and

200.  For Pesaran and Pesaran test procedure, the measure of closeness is calculated using 100

random samples.  The number of random samples (R) used in the Monte Carlo tests is 99. 

Conducting the experiments with larger numbers of random samples did not substantially

change the results.  The log-likelihood functions of the log-linear model are adjusted for

Jacobian terms.

Monte Carlo Results

The sizes and powers of the Pesaran and Pesaran (PP) test, MC(LB), and ST are reported in

tables 1 and 2 along with their standard errors in parentheses.  The standard errors were

log log log $( tr ) =  4.466 +  0.206 (a ) -  0.177 (P ) +  e .t t t 1 (13)
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obtained as the square root of N-1
a(1 - a), where N is the number of replications and a is the

estimated size or power.  The nominal significance level selected is 0.05.

All of the tests have high power, which make them good candidates for discriminating

among nonnested regression models.  There is, however, a clear difference between the sizes of

the Monte Carlo tests and the PP test.  Consider the case where the inner product of the

information matrix is used to calculate the variance of the Cox test.  The size of the PP test is

too high, except for samples of sizes 100 and 200 in table 2.  Pesaran and Pesaran (1995)

found similar results.  Similarly, when the simplified version of the variance is used, the PP test

over-rejects for all sample sizes but sample size 200 in table 1.  In table 2, the size of the PP test

is also incorrect in small samples, but sometimes the PP test under-rejects.

As expected, ST has correct size for all samples, irrespective of which version of the

variance is used.  Interestingly, the MC(LB) test also has correct size for all samples.  The

excellent size properties of the MC(LB) test could not be guaranteed a priori since the log-

likelihood ratio is not an asymptotically pivotal statistic.

The ST and MC(LB) tests have very similar powers for all sample sizes.  Since the PP

test tends to reject too often, it is not surprising that it often has the largest power.  In the few

cases that the size of the PP test is correct, its power is roughly equal to the powers of the ST

and MC(LB) tests.

Conclusions
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This paper has determined the finite sample performances of three simulated Cox-type tests. 

The first test is not a true Monte Carlo test and is due to Pesaran and Pesaran.  It uses

stochastic simulation to compute the numerator of the Cox test statistic and tests are conducted

based on asymptotic normality.  The second test uses Monte Carlo hypothesis testing

procedures to discriminate between two separate families of hypotheses.  In this approach, the

log-likelihood ratio is considered as the test statistic.  The third Cox-type test is a new Monte

Carlo test.  Unlike the second test, however, the test statistic used in the third approach is

asymptotically pivotal.  Pivotalness assures that the excellent size properties of Monte Carlo

tests hold.

The results of the Monte Carlo experiments show that, in general, the Pesaran and

Pesaran test has incorrect size.  As expected, the test proposed here has excellent size

properties for all sample sizes, irrespective of which version of the variance is being used. 

Interestingly, the Monte Carlo test based on the log-likelihood ratio also has excellent size and

power properties for all sample sizes, even though the log-likelihood ratio statistic is not

asymptotically pivotal.

On the basis of their sizes, the Monte Carlo tests are clearly preferred to the Pesaran

and Pesaran test.  When the size of the Pesaran and Pesaran test is correct, its power is close or

even equal to the powers of the Monte Carlo tests.  Thus, we would recommend against using

the Pesaran and Pesaran test.  The Monte Carlo tests (ST and MC(LB)) have similar powers. 

The MC(LB) test is by far the simplest to compute and therefore we recommend that it be used

in applied work.

Table 1.  Monte Carlo Results.  The Semi-logarithmic Model (H0) is the True Model. 
The Log-linear Model is the Alternative Model.
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________________________________________________________________________
s0 = 2.327    s0 = 6.984

Sample  ____________________________   ________________________________
Size  Test      Size Power      Size  Power
________________________________________________________________________

 20  PP1 0.121* (0.010) 0.657 (0.015) 0.172* (0.012) 0.375 (0.015)
 PP2 0.144* (0.011) 0.738 (0.014) 0.203* (0.012) 0.421 (0.016)
 ST1 0.042 (0.006) 0.487 (0.016) 0.039 (0.006) 0.181 (0.012)
 ST2 0.057 (0.007) 0.569 (0.016) 0.043 (0.012) 0.246 (0.015)

    MC(LB) 0.059 (0.007) 0.529 (0.016) 0.056 (0.007) 0.239 (0.013)

 50  PP1 0.098* (0.009) 0.935 (0.008) 0.138* (0.011) 0.537 (0.016)
 PP2 0.140* (0.011) 0.953 (0.007) 0.161* (0.012) 0.615 (0.015)
 ST1 0.052 (0.007) 0.892 (0.010) 0.042 (0.006) 0.404 (0.016)
 ST2 0.073 (0.008) 0.936 (0.008) 0.053 (0.007) 0.474 (0.016)

    MC(LB) 0.047 (0.007) 0.946 (0.007) 0.054 (0.007) 0.519 (0.016)

100 PP1 0.080* (0.012) 0.998 (0.002) 0.116* (0.014) 0.726 (0.020)
PP2 0.104* (0.014) 1.000 (0.000) 0.142* (0.017) 0.790 (0.018)
ST1 0.052 (0.010) 0.998 (0.002) 0.046 (0.009) 0.708 (0.020)
ST2 0.058 (0.010) 0.998 (0.002) 0.052 (0.010) 0.782 (0.018)

    MC(LB) 0.050 (0.010) 0.996 (0.003) 0.062 (0.011) 0.774 (0.019)

200 PP1 0.070 (0.011) 1.000 (0.000) 0.084* (0.012) 0.946 (0.010)
PP2 0.082* (0.012) 1.000 (0.000) 0.102* (0.014) 0.960 (0.009)
ST1 0.052 (0.010) 1.000 (0.000) 0.056 (0.010) 0.928 (0.012)
ST2 0.062 (0.011) 1.000 (0.000) 0.068 (0.011) 0.944 (0.010)

    MC(LB) 0.054 (0.010) 1.000 (0.000) 0.064 (0.011) 0.946 (0.010)
________________________________________________________________________

Note: An asterisk means the estimated size is significantly different from 0.05. 
Subscripts 1 and 2 refer to the inner product and simplified versions of
the variance, respectively.
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Table 2.  Monte Carlo Results.  The Log-linear Model (H1) is the True Model.  The
Semi-Logarithmic Model is the Alternative Model.
________________________________________________________________________

s1 = 0.020 s1 = 0.055
Sample         ____________________________    ______________________________
Size   Test        Size                  Power                 Size                 Power
________________________________________________________________________

 20 PP1 0.108* (0.010) 0.608 (0.015) 0.117* (0.010) 0.441 (0.016)
PP2 0.137* (0.011) 0.674 (0.015) 0.152* (0.011) 0.503 (0.016)
ST1 0.044 (0.006) 0.372 (0.015) 0.040 (0.006) 0.161 (0.012)
ST2 0.053 (0.007) 0.442 (0.016) 0.050 (0.007) 0.201 (0.013)

    MC(LB) 0.059 (0.007) 0.439 (0.016) 0.058 (0.007) 0.180 (0.012)

 50 PP1 0.053 (0.007) 0.936 (0.008) 0.075* (0.008) 0.630 (0.015)
PP2 0.082* (0.009) 0.958 (0.006) 0.095* (0.010) 0.698 (0.015)
ST1 0.051 (0.007) 0.853 (0.011) 0.049 (0.007) 0.353 (0.015)
ST2 0.062 (0.007) 0.893 (0.010) 0.057 (0.007) 0.425 (0.016)

    MC(LB) 0.044 (0.006) 0.897 (0.010) 0.047 (0.007) 0.445 (0.016)

100 PP1 0.036 (0.008) 0.996 (0.003) 0.056 (0.010) 0.858 (0.016)
PP2 0.052 (0.010) 0.998 (0.002) 0.074 (0.012) 0.886 (0.014)
ST1 0.056 (0.010) 0.994 (0.003) 0.062 (0.011) 0.648 (0.021)
ST2 0.062 (0.011) 0.996 (0.003) 0.072 (0.012) 0.696 (0.021)

    MC(LB) 0.058 (0.010) 0.996 (0.003) 0.056 (0.010) 0.722 (0.020)

200 PP1 0.034* (0.008) 1.000 (0.000) 0.058 (0.010) 0.974 (0.007)
PP2 0.042 (0.009) 1.000 (0.000) 0.064 (0.011) 0.976 (0.007)
ST1 0.058 (0.010) 1.000 (0.000) 0.060 (0.011) 0.932 (0.011)
ST2 0.062 (0.011) 1.000 (0.000) 0.058 (0.010) 0.958 (0.009)

    MC(LB) 0.054 (0.010) 1.000 (0.000) 0.040 (0.009) 0.936 (0.011)
________________________________________________________________________

Note: An asterisk means the estimated size is significantly different from 0.05. 
Subscripts 1 and 2 refer to the inner product and simplified versions of
the variance, respectively.
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