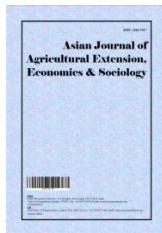


The World's Largest Open Access Agricultural & Applied Economics Digital Library

This document is discoverable and free to researchers across the globe due to the work of AgEcon Search.


Help ensure our sustainability.

Give to AgEcon Search

AgEcon Search
<http://ageconsearch.umn.edu>
aesearch@umn.edu

Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only. No other use, including posting to another Internet site, is permitted without permission from the copyright owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C.

No endorsement of AgEcon Search or its fundraising activities by the author(s) of the following work or their employer(s) is intended or implied.

Factors Influencing the Adoption of Sujala III Watershed Interventions and Constraints Faced by Farmers

N. Bindu ^{a*}, S. S. Dolli ^a and N. Manjula ^a

^a Department of Agricultural Extension Education, College of Agriculture, University of Agricultural Sciences, Dharwad, India.

Authors' contributions

This work was carried out in collaboration among all authors. All authors read and approved the final manuscript.

Article Information

DOI: 10.9734/AJAEES/2022/v40i330860

Open Peer Review History:

This journal follows the Advanced Open Peer Review policy. Identity of the Reviewers, Editor(s) and additional Reviewers, peer review comments, different versions of the manuscript, comments of the editors, etc are available here: <https://www.sdiarticle5.com/review-history/83935>

Original Research Article

**Received 24 December 2021
Accepted 28 February 2022
Published 04 March 2022**

ABSTRACT

The study aims to identify factors associated with the adoption of Sujala III watershed interventions and document the constraints faced by the farmers in adoption watershed interventions. An ex post facto research design was employed in the study. The study was conducted in Dindur sub watershed which belongs to Gadag and Bedwati sub watershed of Koppal district of Karnataka. A sample of 90 farmers representing each two sub watersheds was selected by simple random procedure making a total sample size of 180. The respondents were interviewed personally using pre tested interview schedule and the data were analyzed using descriptive statistical tools. The study observed that, there was a strong positive and significant relationship between independent variables like land holding, resource base, cropping intensity, scientific orientation, risk orientation and the adoption of Sujala III watershed interventions at one per cent. Therefore the extension agencies and policy makers should formulate programmes and extension activities by focussing on these factors which accelerate the adoption process. With respect to constraints in adoption, the highly ranked problem during planning stage was farmers consent was not taken (254). Lack of transparency (288) was the top most problem followed by favorability towards big farmers (231) with second rank faced at implementation stage. The major constraint faced in maintenance was the waste weir damage (174). As of technical issues were concerned, lack of guidance during post

*Corresponding author: E-mail: bindunarayan2172@gmail.com, bindunarayan217@gmail.com;

project (293) was the major problem followed by lack of knowledge about the management of common properties resources (256). Among the compatibility problems, top ranked problem was the fragmentation of land into unconventional shape (221) and low maintenance by committee (317) was the top ranked community related problem. It is of utmost importance to follow participatory approach in planning and implementation and post project maintenance.

Keywords: Sub watershed; resource base; cropping intensity; transparency.

1. INTRODUCTION

Agriculture is predominantly reliant on natural resources like soil, water and vegetation which are limited in supply and getting depleted day by day. Agricultural productivity rests on how effectively and efficiently these resources are conserved and managed [1]. Thus, conservation, up gradation and utilization of soil and water got greater importance in Indian economy. There are two possible alternatives exist in order to increase the crop production; one is that, bringing rainfed areas under irrigation which could not cross the 50.00 per cent of the cultivated area. Another alternative is to improve the crop production in rainfed areas by promoting improved watershed technologies [2]. Therefore, improved crop production technologies coupled with efficient utilization of available rain water, plays a significant role in augmenting crop yield per unit area in rainfed areas. The challenge before Indian farming is to transform rainfed agriculture into more sustainable and productive systems through participatory watershed development with emphasis on integrated farming systems for augmenting productivity, income and livelihood security in a sustainable manner to provide better support for the population dependent upon it.

Watershed is a geo-hydrological unit or a section of land that drains at a common point. Watershed is a geographical area drained by stream of connecting streams in such a way that all precipitation in this area leaves the area in a concentrated flow through a single outlet [3]. Watershed management has been defined in India as a rational utilization of resources like land and water for sustained production with minimal hazard to natural resources. It is principally associated with soil and water conservation [4].

The primary responsibility of implementing watershed development programmes rests with the State Government. The Central Government may provide coordination, technical guidance, financial assistance, training and research inputs

besides monitoring the progress of implementation and evaluating the impact of major programmes [5]. More than 70.00 per cent of Karnataka's major agricultural area falls under semi-arid zone, with the average precipitation ranging from 400 mm to 750 mm per year [6]. These lands are subject to periodic droughts, erratic rainfall, severe soil erosion and depleting ground water thereby eroding the natural resource base and significantly hindering agricultural productivity. Official figures show that close to 80.00 per cent of agricultural land in Karnataka is drought-prone [7].

The watershed projects have resulted in the augmented cropping intensity by way of soil and water conservation [8-10]. The farmers who adopt watershed interventions in terms of soil and water conservation measures witness improvement in crop productivity [11-14]. Hence, the World Bank assisted Sujala III project was implemented in 2015 aimed to come out with site specific information at watershed level, mainly on soil and site characteristics for watershed development in Karnataka. Therefore, the research has made an attempt to analyse the factors determining the adoption of interventions made by Sujala III project and constraints that come in the way of adoption. Hence the study aims at providing feedback to the implementing agencies in order to come up with the suggestions to overcome the constraints faced by the farmers in adoption of Sujala-III watershed interventions.

2. MATERIALS AND METHODS

2.1 Research Design

An Ex-post research design was used in the present study. The *Ex post-facto* design was selected because research, rather than evolving a remedy, evaluate the influence of a naturally occurring phenomenon after it occurs [15].

2.2 Sampling Procedure

The study was conducted in Gadag and Koppal districts of Northern Dry Zone of Karnataka by

covering Dindur (Fig. 1) and Bedwatti (Fig. 2) sub watersheds from respective districts. From each sub watersheds, 3 micro watersheds were

selected. Thirty farmers were selected from each micro watershed by simple random procedure constituting a sample of 180 farmers.

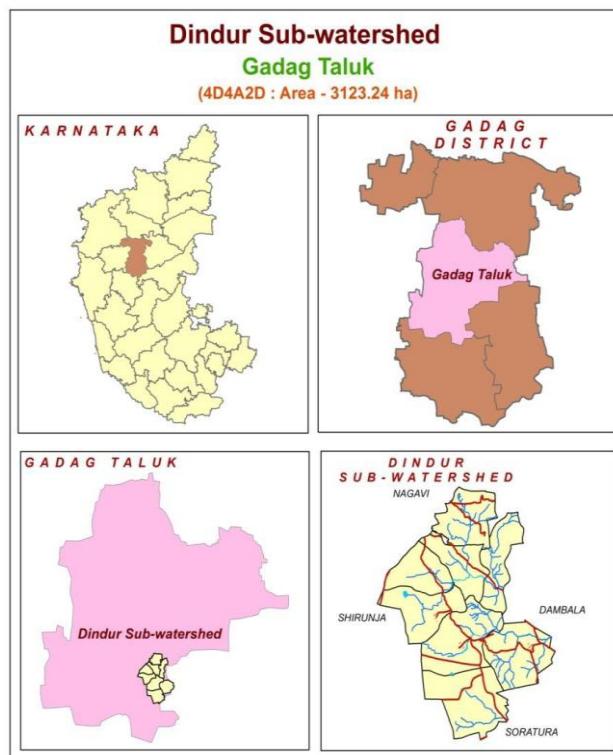


Fig. 1. Dindur sub watershed of Gadag district

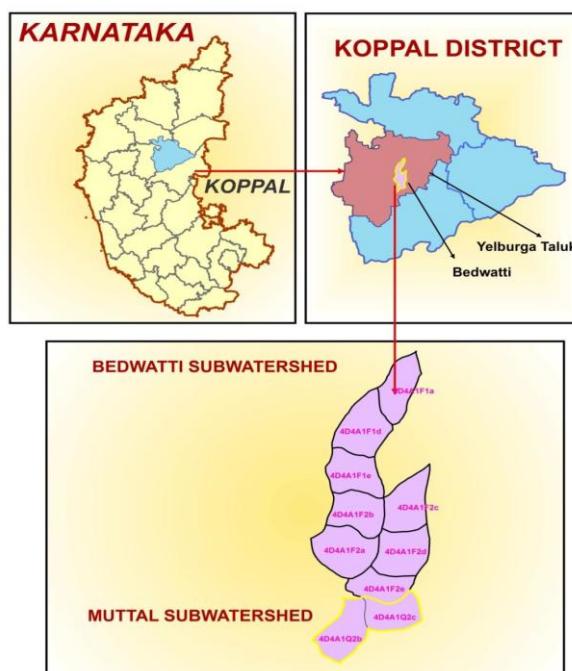


Fig. 2. Bedwatti sub watershed of Koppal district

2.3 Data Collection and Analysis

The data were collected using pre tested structured interview schedule. Statistical tools like correlation and regression were used to analyse data. The constraints were ranked based on the total score obtained on three point continuum as high, moderate and never with the score of 2, 1 and 0 respectively.

Correlation: Numerical measure of correlation coefficient is given by,

$$r(x, y) = \frac{\sum XY - (\sum X)(\sum Y)/n}{\sqrt{[\sum X^2 - (\sum X)^2 / n]} \sqrt{[\sum Y^2 - (\sum Y)^2/n]}}$$

Where, r is the correlation coefficient, x and y are two variables n is the sample size

The significance of the correlation coefficient (r) is tested by using 't' statistics and is given by,

Where,

r is the correlation coefficient n is the sample size

$$r_{(n-2)} = \frac{|r|}{\sqrt{(n-2)}} \sqrt{1-r^2}$$

Test statistics value is compared with table value for $(n-1)$ degrees of freedom at given level of significance.

2.4 Multiple Regression

Multiple regression is used for prediction or estimation of an unknown Y value corresponding to a set of X values.

$$y = mX_1 + mX_2 + \dots + mX_p + b$$

Where,

Y = dependent variable

m = slope of regression

x = independent variable

b = constant

3. RESULTS AND DISCUSSION

3.1 Factors Influencing the Adoption of Sujala III Watershed Development Interventions

Results in the Table 1 illustrated the ' r ' values depicting the association of adoption of

watershed interventions with independent variables. Among the independent variables land holding, cropping intensity, extension participation, scientific orientation and risk orientation were positively and significantly correlated with the adoption of Sujala III watershed development interventions at one per cent significant level. Whereas, education, annual income and resource base were positively correlated at five per cent significance level. Remaining variables such as age, farm experience and mass media exposure were not significantly correlated with the adoption of the watershed intervention in Dindur sub watershed.

In Bedwatti sub watershed, independent variables like education, resource base, scientific orientation and risk orientation were highly and positively correlated with the adoption of Sujala III watershed development interventions at one per cent significance level. While, land holding and cropping intensity were significantly correlated with the adoption of Sujala III watershed development interventions at five per cent level of significance. Remaining variables such as age, farm experience, annual income and mass media exposure were not significantly correlated with the adoption.

Overall, there was a positive and significant relationship between independent variables like land holding, resource base, cropping intensity, scientific orientation, risk orientation and the adoption of Sujala III watershed interventions at one per cent level of significance. The variables like education, annual income and extension participation were significantly correlated with adoption at five per cent. While, age, farming experience and mass media exposure had no relationship with the adoption of watershed interventions.

Education widens the horizons of an individual to gain better knowledge of watershed practices which results in better adoption. Hence it was positively correlated with adoption. The findings are in line with Manjunath [16] and inconsistent with Nkhoma [17]. Further, big farmers having large holdings with well economic conditions, better resource base and cropping intensity had more opportunities to try out new interventions which give them a better exposure and access to extension. It was obvious that with larger land holdings, higher resource base and cropping intensity, extent of adoption of watershed interventions had increased. Sujala III watershed project had conducted series of training

programmes and interaction with beneficiary farmers, educated farmers with higher resource base had taken advantage of them. Similar observations were found in the study by Graff [18], Kerse [19], Padmaja [20] and Rajendra [21].

Annual income was identified to be positively correlated with adoption of watershed interventions. The possible reason attributed to such relationship is that the farmers with more annual income will be having higher risk bearing ability and be able to bear the cost of maintenance of soil and water conservation measures. The results are in accordance with Kudachi [22]. Taking active participation in extension activities like training, demonstrations, field visits etc. provides a farmer with technical know-how of watershed interventions which resulted in positive relationship between extension participation and adoption. Education, extension participation helps farmers to get exposed to new knowledge and develop scientific orientation. Further, the study area is featured predominantly by rainfed condition that associates with higher risk of rainfall and other climatic variations leading them for better adoption of Sujala III watershed interventions. Farmers with high scientific and risk orientation tend to have higher adoption of watershed interventions. The results are in conformity with that of Manjunath [16] Ganesan [23], Pavan and Dhorey [24].

3.2 Overall Contribution of Independent Variables to the Adoption of Sujala III Watershed Development Interventions by the Farmers

Multiple linear regression was employed to measure the extent of contribution made by independent variables to the adoption of Sujala III watershed development interventions and the results were displayed in Table 2 according to which land holding, resource base, cropping

intensity and risk orientation had highly significant contribution to the adoption of watershed interventions at one per cent. While, risk orientation was found to have significant contribution at five per cent. The R^2 value is 0.619 which means all the independent variables put together contributed to 61 per cent of the variation in the adoption of watershed interventions.

3.2.1 Contribution of independent variables to the adoption of Sujala III watershed development interventions by the farmers of Dindur sub watershed of Gadag

It is clear from the result of Table 3 that land holding and cropping intensity were highly contributing to the adoption of watershed development interventions at one per cent significance level. Whereas, resource base and scientific orientation were contributing to adoption at five per cent level of significance. The R^2 value is 0.685 which means 68 per cent of the variation in the dependent variable is due to the change in the selected independent variable.

3.2.2 Contribution of independent variables to the adoption of Sujala III watershed development interventions by the farmers of Bedwatti Sub watershed of Koppal

Data in the Table 4 indicated the regression analysis of independent variables with adoption. Results revealed that education, land holding, resource base and risk orientation were highly significant at one per cent level of significance. Whereas, cropping intensity was significantly contributing at five per cent significance level. Further, the R^2 value is 0.598 which clearly indicates that 59 per cent of the variation in the dependent variable was due to the change in the selected independent variable.

Table 1. Factors influencing the adoption of Sujala III watershed development interventions n=180

Sl. No.	Independent Variables	'r' Value		
		Dindur SWS, Gadag (n ₁ =90)	Bedwatti SWS, Koppal (n ₂ =90)	Overall (n=180)
1	Age	0.082 ^{NS}	0.123 ^{NS}	0.972 ^{NS}
2	Education	0.262*	0.356**	0.299*
3	Land holding	0.383**	0.262*	0.374**
4	Farm experience	0.137 ^{NS}	0.168 ^{NS}	0.129 ^{NS}
5	Annual income	0.216*	0.134 ^{NS}	0.197*

Sl. No.	Independent Variables	'r' Value		
		Dindur SWS, Gadag (n ₁ =90)	Bedwatti SWS, Koppal (n ₂ =90)	Overall (n=180)
6	Resource base	0.132*	0.373**	0.385**
7	Cropping intensity	0.474**	0.250*	0.406**
8	Mass media exposure	0.102 ^{NS}	0.155 ^{NS}	0.135 ^{NS}
9	Extension participation	0.292**	0.176 ^{NS}	0.203*
10	Scientific orientation	0.351**	0.367**	0.391**
11	Risk orientation	0.417**	0.507**	0.484**

** - Significant at 1 per cent, * - Significant at 5 per cent, ^{NS} - Non-significant

Table 2. Overall contribution of independent variables to the adoption of Sujala III watershed development interventions by the farmers n=180

Sl. No.	Independent Variables	Regression coefficient	Standard error	't' Value
1	Age	1.042	0.462	0.219 ^{NS}
2	Education	3.142	0.233	1.971*
3	Land holding	2.968	0.436	2.853**
4	Farm experience	-0.081	0.148	0.384 ^{NS}
5	Annual income	0.163	0.201	1.925 ^{NS}
6	Resource base	3.126	0.231	2.939**
7	Cropping intensity	1.437	1.613	3.416**
8	Mass media exposure	0.108	0.071	0.485 ^{NS}
9	Extension participation	0.056	0.201	0.276 ^{NS}
10	Scientific orientation	0.417	0.410	1.347 ^{NS}
11	Risk orientation	0.631	1.092	2.038 ^{**}

$R^2 = 0.619$, F value = 5.36 ** - Significant at 1 per cent, * - Significant at 5 per cent, ^{NS} - Non-significant

Table 3. Contribution of independent variables to the adoption of Sujala III watershed development interventions by the farmers of Dindur sub watershed of Gadag n=90

Sl. No.	Independent Variables	Regression coefficient	Standard error	't' Value
1	Age	-0.004	0.222	0.020 ^{NS}
2	Education	0.165	0.142	1.513 ^{NS}
3	Land holding	2.985	0.525	2.876**
4	Farm experience	-0.062	0.277	0.223 ^{NS}
5	Annual income	0.192	0.125	1.413 ^{NS}
6	Resource base	0.077	0.041	1.857*
7	Cropping intensity	3.341	1.789	1.866**
8	Mass media exposure	0.021	0.063	0.402 ^{NS}
9	Extension participation	0.018	0.132	0.130 ^{NS}
10	Scientific orientation	0.512	0.410	1.506*
11	Risk orientation	2.932	2.197	1.334 ^{NS}

$R^2 = 0.685$, F value = 6.41 ** - Significant at 1 per cent, * - Significant at 5 per cent, ^{NS} - Non-significant

Table 4. Contribution of independent variables to the adoption of Sujala III watershed development interventions by the farmers of Bedwatti Sub watershed of Koppal n=90

Sl. No.	Independent Variables	Regression coefficient	Standard error	't' Value
1	Age	-0.016	0.315	0.253 ^{NS}
2	Education	3.142	0.233	2.927**
3	Land holding	2.968	0.436	2.794**
4	Farm experience	-0.081	0.148	0.179 ^{NS}
5	Annual income	0.163	0.201	1.128 ^{NS}
6	Resource base	3.126	0.231	1.742**
7	Cropping intensity	1.437	1.613	1.492*
8	Mass media exposure	0.108	0.071	0.296 ^{NS}
9	Extension participation	0.056	0.201	0.128 ^{NS}
10	Scientific orientation	0.417	0.410	1.136 ^{NS}
11	Risk orientation	0.631	1.092	2.399**

$R^2 = 0.598$, F value = 4.14, ** - Significant at 1 per cent, * - Significant at 5 per cent, ^{NS} - Non-significant

In Dindur sub watershed, land holding and cropping intensity were highly contributing to the adoption of watershed development interventions at one per cent significance level. Whereas, education, land holding, resource base and risk orientation were highly significant in Bedwatti sub watershed. Overall, land holding, resource base, cropping intensity and risk orientation were highly significant. This indicates that, farmers with large land holdings and higher cropping intensity in Dindur and farmers with more education, land holding, resource base and risk orientation in Bedwatti sub watershed had adopted more Sujala III watershed interventions. However in overall, the farmers with larger holdings, high resource base, cropping intensity and risk orientation had higher adoption of watershed interventions. Therefore, these variables are possibly considered as predictors of variation in adoption of watershed interventions in respective sub watersheds. Land holding and resource base are interrelated and have effect on cropping intensity. Such farmers with higher land other resources shown more interest to adopt possible interventions such as trench cum bund and farm ponds which further enhanced their resource base as well as good condition for crop production.

3.3 Constraints Faced by Farmers in Adoption of Sujala III Watershed Development Interventions

The problems faced by farmers in adoption of Sujala III watershed interventions were studied under different headings such as problems at planning stage, problems at implementation stage, maintenance problems, technical problems, compatibility problems, and

community related problems. It is pointed in Table 5 that, among the problems at planning stage 'farmers consent was not taken' (254) was the major problem which ranked highest followed by 'lack of interest among farmers' (198). Among problems at implementation stage 'lack of transparency' (288) was the top most problem followed by 'favorability towards big farmers' (231) with second rank, 'lack of people participation' (201) ranked third and 'difficult to mobilize people' (195) was ranked at last.

The major constraint faced in maintenance was 'waste weir damage' (174) which ranked top followed by 'breach of bund' (173) which ranked second, 'sedimentation of farm pond' (110) which ranked third. As of technical issues were concerned, 'lack of guidance during post project' (293) was the major problem being ranked at first followed by 'lack of knowledge about the management of common properties resources' (256) in second position, 'inadequate training of the farmers about the use of watershed' (249) in the third position and lastly 'lack of field visits to successfully implemented watershed areas' (236) in the fourth position. Among the compatibility problems, top ranked problem was the 'fragmentation of land into unconventional shape' (221) followed by 'obstruction for cultural operations' (216, II rank), 'loss of cultivable area' (210, III rank) and 'water stagnation near bunded area' (84, IV rank). Lastly in the community related problems 'low maintenance by committee' (317) considered as top most problem followed by 'ineffective functioning of watershed committee' (168, II rank), 'lack of cooperation by neighbors' (122, III rank) and 'local leaders are less interested in programme' (85, IV rank).

Table 5. Constraints faced by the farmers of Sujala III watershed in adoption of watershed development interventions n=180

Sl. No.	Problems	Total score	Rank
A	Problems at planning stage		
1	Farmers consent was not taken	254	I
2	Lack of interest among farmers	198	II
B	Problems at implementation stage		
1	Lack of people participation	201	III
2	Difficult to mobilize people	195	IV
3	Lack of transparency	288	I
4	Favourability toward big farmers	231	II
C	Maintenance problems		
1	Breach of bund	173	II
2	Waste weir damage	174	I
3	Sedimentation of farm pond	110	III
D	Technical problems		
1	Lack of guidance during post project	293	I
2	Lack of knowledge about the management of common properties resources	256	II
3	Lack of field visits to successfully implemented watershed areas	236	IV
4	Inadequate training of the farmers about the use of farmers about the use of watershed	249	III
E	Compatibility problems		
1	Obstruction for cultural operations	216	II
2	Water stagnation near bunded area	172	IV
3	Fragmentation of land into unconventional shape	221	I
4	Loss of cultivable area	210	III
F	Community related problems		
1	Lack of cooperation by neighbours	122	III
2	Local leaders are less interested in programme	85	IV
3	Ineffective functioning of watershed committee	168	II
4	Low maintenance by committee	317	I

Though Sujala III watershed project had followed participatory approach, it is unfortunate that farmers were not satisfied hence the problems such as no consent taken and lack of transparency were expressed by farmers. It is important that farmers' participation should be ensured and made responsible for post project management. The other most challenging problem was fragmentation of land into unconventional shape. This is because of small holdings their cultivable area could be divided into fragments on construction of trench cum bund and farm ponds. Low maintenance by committee followed by ineffective functioning of watershed committee was the problem majorly facing by farmers which calls for regular monitoring and follow-up activities by the project

officials which enable them to know the real time problems faced by farmers. The findings are in accordance with Manjunath [16], Supe [25], Jakkawad [26].

4. CONCLUSION

We could conclude that the variables that influence the adoption are very context-specific, and that generalisation is not possible [27]. Nevertheless, the common and important factors for the adoption are the land holding, resource base and cropping intensity. The farmers with larger holdings, higher resource base and cropping intensity inclined towards higher adoption. Hence these are the determinants of adoption of watershed development

interventions. From the findings, it can be seen that farmers were not satisfied with participatory approach. Major watershed development interventions related constraints were low maintenance by committee, lack of guidance during post project, lack of transparency. Formation of user groups and watershed committees should be encouraged and made responsible for watershed management. The watershed project should necessarily develop an exit plan for post project sustainability. Federation of the groups formed or Farmer Producer Organizations in such micro catchments can be considered as one of the strategies. This not only empowers the farmers but ensures the sustainability of Natural Resource Management. As a future line of work it is recommended that, since the study is based on recall data, further research work on this aspect should be carried out with the help of baseline data or through experimental methods.

COMPETING INTERESTS

Authors have declared that no competing interests exist.

REFERENCES

1. Anonymous. Watershed programmes in Karnataka. 94-124. Accessed 26 October 2020. Available:<http://www.watershedprogrammesinkarnataka.com/content/1/1/14>
2. Dhyani BL., Raizada A, Pradeep Dorga. Impact of water development and land use dynamics on agricultural productivity and socio- economic status of farmers in central Himalayas. Indian J. Soil Cons. 2006;34 (2):129-133.
3. Singh JP. Economic Evaluation of Manchal Watershed (report), MANAGE, Hyderabad. 2000.
4. Kudachi MP, Bheemappa A, Rudrapur S, Biradar A. Adoption of recommended soil and water conservation practices among the beneficiaries of Sujala Watershed Project in Northern Karnataka. Agric. Update. 2014;9(4):484-488.
5. Anonymous. Common Guidelines for Watershed Development Project. 2008. Accessed 18 September; 2020. Available: <http://www.nraa.gov.in>
6. Anonymous. Economic survey 2015-16. Accessed 18 September; 2020. Available: <http://www.indiabudget.gov.in>
7. Watershed Development Department, Government of Karnataka. Sujala Operations Manual. 2002;6-28.
8. Deshmukh JM, Hyalij VD, Suradkar DD, Badgire BB. Impact assessment of farm ponds on beneficiaries. Int. J. Curr. Microbial. App. Sci. 2017;6(9):1712-1717.
9. Agrawal S, Khare NK, Nitin S. Effect of watershed on socio-psychological profile of the beneficiaries. Int. J. Agri. Sci. 2016;8(40):1817-1820.
10. Tekale VS, Ingale M, Tayde VV. Impact of intensive watershed development project. Agric. Update. 2017;12(2):288-291.
11. Shilpa VC, Suvagiya D, Shah PR. Watershed development programmes: an evaluation and its impact in India. Int. Res. J. Soc. Sci. 2017;6(2):5-17.
12. Raju JP, Sharma SP, Padaria RN, Socio economic impact of watershed development. J. Community Mob. & Sus. Dev. 2012;7(2):158-164.
13. Mondal B, Singh A, Singh SD, Kalra BS, Samal P, Sinha MK, Ramajayam D, Kumar DS. Augmentation of water resources potential and cropping intensification through watershed programs. Water Env. Res., 2017;83-91.
14. Kerse BL. Factors affecting adoption of soil and water conservation practices in the case of Damota watershed, Wolaita zone, Southern, Ethiopia. Int. J. Agric. Sci. Res. 2018;7(1):001-009.
15. Kerlinger FN. Foundation of behavioural research: Holt, Rine Hart and Winston, New York; 1978.
16. Manjunath M. Adoption of watershed management practices by farmers in Sujala watershed project: a study in Chitradurga district of Karnataka. Ph. D. Thesis, Univ. Agric. Sci., Bengaluru, Karnataka (India); 2014.
17. Nkhoma S, Thomson K, Elias K. Adoption and impact of conservation agriculture on smallholder farmers' crop productivity and income in Luapula province, Zambia. J. Agril. Sci. 2017;9(9):168-181.
18. Graaff JD, Amsalu A, Bodna F, Kessler A, Posthumus H, Tenge A. Factors influencing adoption and continued use of long-term soil and water conservation measures in five developing countries. App. Geography. 2008;28:271– 280.
19. Kerse BL. Factors affecting adoption of soil and water conservation practices in the case of Damota watershed, Wolaita zone,

Southern, Ethiopia. *Int. J. Agric. Sci. Res.* 2018;7(1):001-009.

20. Padmaja B. Usage and opinion of farmers towards soil health card. M. Sc. (Agri.) Thesis, Univ. Agric. Sci., Dharwad, Karnataka (India). 2018.

21. Rajendra, DG. Knowledge and utilization of farm pond by farmers under Krishi Bhagya Yojane. M. Sc. (Agri.) Thesis, Univ. Agric. Sci., Dharwad, Karnataka (India). 2020.

22. Kudachi MP, Bheemappa A, Rudrapur S, Biradar A. Perception and constraints in adoption of soil and water conservation practices among the Sujala Watershed Project beneficiaries of Northern Karnataka. *Agric. Update.* 2014;9(4):538-542.

23. Ganesan M, Kavitha K, Suma P and Jayalakshmi U. An exploratory study of mobile multimedia agriculture advisory system: Challenges and lessons from Tamil Nadu, India. *The Electronic J. Info. Syst. Dev. Countries.* 2013;56 (5): 1-14.

24. Pavan Kumar P and Dhorey RK. Extent of adoption of farmers about Bt Cotton practices in Warangal district of Telangana state, India. *Int. J. of Curr. Microbiol. App.,* 2017;6 (11): 824-829.

25. Supe DV, Kadam RP and Pawar GS. Constraints faced by the beneficiaries in the use of farm pond in Marathwada region. *Agric. Update.* 2017;12(4): 593-596.

26. Jakkawad SR, Sawant RC. and Manvar VS. Study on profile and constraints faced by beneficiaries in use of farm pond in Aurangabad district of Maharashtra state. *J. Pharmacognosy & Phytochemistry.* 2020;9(4): 175-178.

27. Lapar LA and Pandey S. Adoption of soil conservation: The case of the Philippine uplands. *Agricultural Economics.* 1999;21:241-256.

© 2022 Bindu et al.; This is an Open Access article distributed under the terms of the Creative Commons Attribution License (<http://creativecommons.org/licenses/by/4.0>), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Peer-review history:
The peer review history for this paper can be accessed here:
[*https://www.sdiarticle5.com/review-history/83935*](https://www.sdiarticle5.com/review-history/83935)