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Multiple integrals encountered when evaluating posterior densities in Bayesian estimation

were approximated using Multivariate Gaussian Quadrature (MGQ).  Experimental results

for a linear regression model suggest MGQ provides better approximations to unknown

parameters and error variance than simple Monte Carlo based approximations.
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Approximating Bayesian Posterior Means

using Multivariate Gaussian Quadrature

Frequently, researchers wish to account for prior beliefs when estimating unknown

parameters.  For instance, prior beliefs regarding curvature restrictions may be

incorporated during demand system estimation, or one may believe the space of an

unknown parameter is bounded by a specific value.  In such cases, Bayesian analysis may

be used to incorporate prior beliefs.

In particular, consider the linear regression model denoted in matrix form as

Y=Xbb+ee, and suppose that previous work has lead a researcher to form prior beliefs about

the unknown parameter vector bb and the error variance, s
2.  Now, additional data are

available and new estimates of bb and s2 are required.  Moreover, the researcher wishes to

explicitly account for their prior beliefs about bb and s2.  Consequently, a Bayesian

approach to estimating the regression model may be used.

However, estimating parameters in a Bayesian framework, or using Bayesian

analysis for inference and hypothesis testing, requires the use of multiple integration. 

Frequently, such integrals may be difficult, if not impossible, to evaluate analytically.  In

these circumstances, numerical integration techniques may be used to approximate the

integrals.  Such techniques include Monte Carlo integration with Importance Sampling

(Kloek and van Dijk 1978, and Geweke 1989), Monte Carlo integration using antithetic

acceleration (Geweke 1988) and univariate Gaussian Quadrature using a Cartesian

product grid (Naylor and Smith 1988).
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Recently, DeVuyst (1993) presented a new approach to numerical integration

called Multivariate Gaussian Quadrature (MGQ).  This approach has the advantage of

being computationally inexpensive, and avoids independence problems encountered when

using a Cartesian product grid to approximate multiple integrals.

The purpose of this paper is to demonstrate how MGQ can be used to

approximate multiple integrals encountered in Bayesian analysis.  The paper is organized

as follows.  First the notation used throughout is stated.  Then, the Bayesian framework is

illustrated in the context of estimating a linear regression model with unknown parameters

and error variance.  Following this, the data and experimental procedures are outlined. 

Results from the MGQ approximation of the regression coefficients and error variance are

then presented, and juxtaposed to approximations computed using Monte Carlo

integration, and also analytical solutions.  Finally, results are summarized and discussed.

Notation

The following notation will be used in this study:  Y=Xbb+ee is a linear regression

model, where Y is a tx1 vector of dependent variable observations, X=[x1 x2 ... xk] is a txk

matrix of independent variable observations, xi is a tx1 vector of observations of the ith

explanatory variable (with every component of x1 equal to 1.0), bb=[b1 b2 ... bk] is a k x1

vector of unknown parameters to be estimated (bkÎ(-¥,+¥)), ee is a tx1 vector of error

terms (which is assumed to be an independently and identically distributed Normal with

mean 0 and variance s
2), s2 is the unknown error variance (s

2
Î(0,+¥)), t=1,2,...T

represents the number of observations, i=1,2,...,k represents the number of explanatory

variables, b=[b1 b2 ... bk] is a kx1 vector of estimated values for bb, s2 is an estimate of the
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unknown error variance, FF=[bb, s2]¢ is a (k+1)x1 vector of true parameter values and error

variance, ff=[b, s2]¢ is a (k+1)x1 vector of estimated parameter values and error variance,

WW is the k+1 dimensional space of FF, L(FF,ff)=[FF-ff]¢I [FF-ff]  is a quadratic loss function,

where I  is an identity matrix, l(Y½bb, s, X) is a likelihood function, p(bb, s) is a prior

density, q(bb, s½Y, X) is a posterior density, U(xL,xU) is a uniform density over the interval

(xL,xU), and N(q,t2) is a Normal density with mean q and variance t2.

Bayesian Framework

The Bayesian approach to estimation assumes the data may be described via a

likelihood function.  Here, it is assumed that the likelihood function is a normal

distribution:

However, Bayesians account for prior beliefs concerning parameters of interest with a

prior density.  Frequently, however, prior information is limited, in which case a non-

informative, or diffuse, prior is assumed.  Following Zellner (1971), the joint prior density

of bb and s2 is assumed to be Jeffrey’s prior (i.e., diffuse), and is denoted as:

To form the posterior, multiply the likelihood function and prior together and

integrate with respect to bb and s2 to obtain a marginal density for Y and X.  Now, apply

Bayes’ Theorem to obtain a density for bb and s2, conditional on Y and X.  This

p( , )  .-1β σ σ∝
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conditional density is referred to as the posterior density in Bayesian analysis.  The

posterior reflects updated beliefs after combining prior beliefs with information contained

in the sample (Berger 1985, p.126).  For the assumed likelihood function and prior

density, the posterior is:

Judge et al. (1988 p.103) show q(bb,s ½Y,X)=q(bb½s,Y,X)×q(s½Y), where q(bb½s,Y,X) is

a multivariate normal density and q(s½Y) is an inverted gamma density.  Consequently,

the posterior can be shown to equal the product of two densities, each with an analytical

solution to its mean.  Thus, the exact form of  q(bb,s ½Y,X) can be determined. 

Moreover, because the proportionality constant is contained in the numerator and

denominator of the posterior and is not a variable of integration, it cancels out and the

posterior can be stated as a strict equality.

In Bayesian analysis, the posterior is used in conjunction with a loss function to

estimate the unknown parameters of interest.  The framework is couched within an

optimization problem where the objective is to minimize the expected loss of the estimate.

 Here, the loss function measures the difference between the true parameter and the

estimated value, while the posterior serves as a weighting function in the expectation.

Thus, the Bayesian decision problem may be stated as:
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Since a quadratic loss function is assumed, the Bayesian estimate of FF, denoted as ff, is

the mean of the marginal posterior for FF.  As well, individual estimates of FF, fi, are

calculated from the marginal posterior for fi.  So, for fi, the Bayesian estimate is:

Thus, coefficients in Y=Xbb+ee, or s2, can be estimated by computing the expected value of

the marginal posterior.  Attention is now turned to the proposed MGQ framework.

Multivariate Gaussian Quadrature

As noted in the introduction, marginalization of the posterior requires multiple

integration.  Frequently, such integration is difficult, if not impossible to perform

analytically.  Consequently, numerical integration can be used to approximate these

integrals.  The approach proposed here is to approximate the marginal posteriors with the

MGQ approach found in DeVuyst.

The MGQ framework allows one to reduce the number of points needed to

numerically approximate a multiple integral.  The approximation works by selecting points

from the support of the density being approximated.  The integrand is then evaluated at

each point and multiplied by a corresponding probability weight.  The probability weight is

determined from a discrete distribution used to approximate the underlying density.  The

sum of the weighted evaluations is then used as the approximation to the integral.  Details

of which points to choose, and what weighting values to use are contained in Appendix 1.

In general, MGQ provides better approximations than Monte Carlo integration. 
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Moreover, if the variables of integration are correlated (or not independent), then MGQ is

preferred to a Cartesian product grid of univariate GQ approximation for each variable,

since the latter tend to place probability mass in negligible regions of the approximating

distribution.  In such instances, poor approximations may result.  Next, the data and

experimental procedures are outline.

Data and Procedure

To evaluate this framework, 10 replications were completed, each consisting of 25

observations of pseudo-random data for Y, X and ee, and a vector of coefficients, bb.  It is

assumed that the regression model consists of an intercept and two explanatory variables. 

In all 10 replications, the same set of randomly drawn explanatory variables was used. 

These data were generated as follow: x1 was a vector of ones, x2 was drawn from U(5,15)

and x3 from U(1,10).  However, in each replication, the error term, ee, was drawn from

N(0,1), b1 from U(2.0,5.0), b2 from U(3.5,6.5), and b3 from U(-5.0,-1.0).  The data,

parameters and error term were then combined to compute Y.  Thus, each replication

consists of 25 observations of same values for X, but different values for Y.

The approximation begins by assuming the approximating distribution is centered

on the OLS estimates.1  However, since WW is the product of three infinite parameter spaces

and one parameter space bounded below by zero, one must reduce the area of integration

in order to make the approximation feasible using a uniform density function (Arndt

1996).  This is done by assuming that most of the mass in the approximating distribution is

                                                       
1 This centering is arbitrary.  In fact, one could use other values, such as Maximum

Likelihood estimates.
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contained within a fixed number of standard deviations of the OLS estimates.

To simplify the computations, the area of integration is broken into smaller blocks.

 Each block is determined by forming a grid over the area of integration, where each block

initially has a dimension of one standard deviation by one standard deviation (this

approximation is referred to as MGQ-1).  In each block, 59 points were used to evaluate

the integrand in (1).  These points correspond to an order 5 MGQ for 4 variables using a

uniform weight function.

The sensitivity of MGQ approximation to the limits of integration was investigated

by changing the size of the grid considered.  Specifically, the grid was increased to ± two

standard deviations of the OLS estimates (MGQ-2), and then ± three standard deviations

(MGQ-3).  This increases the total number points used in the approximation because the

size of each block was maintained, while the number of blocks increased.

To show the efficacy of the MGQ framework versus a competing approach, simple

Monte Carlo integration was used to compute the mean of the marginal posteriors in each

replication.  The Monte Carlo approximations were based on 10,000 draws.  Since the

variables of integration are regression coefficients and the error variance, each draw had

an element corresponding to a regression coefficient and the error variance.  The intercept

term, b1, was drawn from U(-20,20), b2 from U(0.05,20), b3 from U(-20,-0.05), and s2

from U(0.05,1).  The corresponding 4-tuple was used in conjunction with Y and X to

evaluate the integrand in (1), with equal weights assigned to each evaluation.

To compare the MGQ and Monte Carlo approximations, the analytical solution to

the Bayesian decision problem is needed.  For the assumed likelihood function and prior
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density, the analytical solution to (1) is well known.  In particular, the marginal posterior

for bb is a multivariate Student t density, while the marginal posterior for s
2 is an inverted

gamma density (Judge et al. 1988, pp.219-220).

The analytical solutions were computed in each replication, and used to judge the

MGQ and Monte Carlo approximations.  This comparison is done in three ways: 1)

compare the mean of the approximations to the mean of the analytical solutions, 2)

compare the standard deviation of the approximations to the standard deviation of the

analytical solutions, 3) compare the MGQ and Monte Carlo approximations on the basis

of  mean absolute percent error (MAPE).  The latter criteria provides a percent measure of

the absolute deviation between the approximation and the analytical solution.

Results

Table 1 shows summary statistics (mean, standard deviation, maximum and 

minimum) for the analytical solutions, and the MGQ and Monte Carlo approximations,

and MAPE of the MGQ and Monte Carlo approximations.2  Compared to the analytical

solutions, the MGQ framework seems to provide better approximations to (1) than Monte

Carlo approximations. 

For MGQ-1, a total of 944 points were used in the approximation.  Note that the

mean approximation of b1 and s2 were below those of the analytical solution, while the

mean approximation for b2 and b3 were slightly above the mean of the analytical solution. 

In addition, there was little difference between the standard deviations of the MGQ-1

                                                       
2 Maximum and minimum values are shown to further indicate the spread of the

analytical solution and approximations, but are not be discussed.
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approximations and the standard deviations of the analytical solutions.  As well, the

approximation of s2 had the largest MAPE, followed by b1, then b3 and finally b2.

When the area of integration was increased to ± two standard deviations from the

OLS estimates (i.e., MGQ-2), the total number of points increased to 15,104.  In this case,

the mean of the MGQ-2 approximation of the regression coefficients were below the mean

of the analytical solutions.  However, when compared to MGQ-1, the mean of the MGQ-2

approximations of b1 and b2 increased, while those for b3 and s2 decreased slightly.   The

standard deviation of the MGQ-2 approximations for b2, b3 and s2 were below those

corresponding to the MGQ-1 approximations.  Compared to the MGQ-1 results, the

MGQ-2 approximation of b1 and s2 had higher MAPE values, but lower MAPE values for

b2 and b3.

Increasing the area of integration to ± three standard deviations from the OLS

estimates resulted in approximations based on a total of 79,464 points.  Except for s2, the

mean of MGQ-3 approximations were very precise compared to the mean of the analytical

solutions.  In particular, any differences in the means were in the second or third decimal

place.  As well, the standard deviations associated with the MGQ-3 approximations of b2,

b3 and s2 were not appreciably different from MGQ-1 and MGQ-2.  As well, MGQ-3

approximations of b2, b3 and s2 lower MAPE values than the other MGQ approximations.

Results from the Monte Carlo integration were not as good.  The mean

approximation of b1 and s2 differed substantially from the mean of the analytical solution

and the MGQ values.  Although, b2 and b3 appear to have been relatively close to the

analytical solutions.  In general, the standard deviation of these approximations suggests
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that Monte Carlo integration results in greater variability.  Realize, of course, that such a

result is conditional on the size of the interval from which samples are being drawn. 

Finally, notice that the MAPE values for the Monte Carlo approximations were higher

than those associated with the MGQ approximations.

Summary and Conclusions

Results from this study indicate that a Multivariate Gaussian Quadrature approach

to evaluating multiple integrals provides an alternative to Monte Carlo methods for

Bayesian analysis.  In particular, MGQ produced better estimates of linear regression

coefficients and error variance than Monte Carlo integration, but using only about 10% of

the integrand evaluations.

Moreover, as the number of points used in the MGQ approximation was increased,

the precision of the slope coefficients and error variance, relative to the analytical solution,

did not change appreciably.  At the same time, however, the approximated intercept terms

appear to diverge from the analytical solution.  This latter result is troubling, and is an area

of further investigation.  In addition, it would be illuminating to compare the MGQ

framework to other techniques when there are many variables of integration.
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                     Analytical          Monte
                     Solution          MGQ-1a           MGQ-2b         MGQ-3c         Carlod

No. of points          944           15,104           76,464          10,000
Meane

b1 3.5107 3.3215 3.3989 3.5285 2.4319
b2 4.6217 4.6293 4.6187 4.6111 4.6604
b3 -2.8906 -2.8994 -2.8872 -2.8995 -2.9132
s2 1.1939 1.1375 1.1309 1.1258 1.6119
Standard Deviationf

b1 0.7891 0.8417 0.8708 1.1392 2.0832
b2 0.6984 0.6882 0.6857 0.6947 0.7609
b3 0.9948 0.9873 0.9788 0.9848 0.7355
s2 0.0961 0.1053 0.1046 0.1064 0.2498
Maximum
b1 4.4708 4.5975 4.9611 5.2832 4.8839
b1 5.8222 5.8322 5.8390 5.8388 5.7251
b1 -1.3472 -1.2832 -1.2535 -1.3004 -1.7149
s2 1.3565 1.2664 1.2631 1.2655 1.8869
Minimum
b1 1.9734 1.7437 1.9529 1.8221 -0.4185
b1 3.8169 3.7859 3.8687 3.8222 3.5155
b1 -4.5785 -4.5468 -4.5317 -4.5656 4.2156
s2 1.0476 0.8776 0.8869 0.8936 1.1738
Mean Absolute Percent Error (MAPE)e

b1 6.0174 9.6004 21.8903 55.7686
b2 1.7376 0.7653 0.3883 5.9220
b3 1.9541 1.3863 1.0087 11.7076
s2 8.4430 8.6293 8.4012 35.7187
aMGQ-1 is Multivariate Gaussian Quadrature based on 10 replications, and evaluating (1) within one standa
he OLS estimate.
bMGQ-2 is Multivariate Gaussian Quadrature based on 10 replications, and evaluating (1) within two stan
the OLS estimate.
cMGQ-3 is Multivariate Gaussian Quadrature based on 10 replications, and evaluating (1) within three
ations of the OLS estimate.
dReported values are the mean and standard deviation of the approximation (or exact solution) over all

eMAPE is mean absolute percent error, and is calculated as:

MPAE =  
1

R
| Actual - Appr.|overActual

r=1

R

∑
where Actual is the analytical solution, Appr. is the numerical approximation, and R is the number of
replications.
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Appendix 1: Choice of sample points and corresponding probability weights.

The choice of points and weights used to evaluate the integrand is not arbitrary. 

The approach followed here is to form a uniform GQ of order d for each variable of

integration.  Then, create a Cartesian product GQ of order d using the uniform GQ

density.  The number of points required to approximate the underlying density in each

uniform GQ is determined from 2n-1=d, where n is the number of points.  So, the

Cartesian product has at most m points, where m is:

Now, use the (k+1)-tuples determined above to compute the corresponding

weights at each point.  This is done by solving the following system of linear simultaneous

equations:

where piÎ[0,1] is the probability mass used to weight the integrand evaluated at the ith

point, bij is the jth element of the (k+1)-tuple at the ith point, gj is an interger value, x=Sjgj,

w(bb) is a weighting function, and the right hand side are moments (including cross-

moments) of the polynomial function in the left hand side.  All points satisfying the above

system, and have non-negative probabilities are used in evaluating the multiple integral in

(1).

k+1

_
d +1

2
_

i=1

m

i
j=1

k+1

ij
j=1

k+1

j k+1 2 1p ... w( )j

1 2 k+1

j =  d ...d d     | | d∑ ∏ ∫ ∫ ∫ ∏ ∀ ≤γ γβ β β β β β ξ
Ω Ω Ω
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