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Nonpoint Source Pollution, Incomplete Information and Learning:
An Entropy Approach

Abstract

Kullback’s Cross Entropy, a methodology for modeling incomplete information and

learning, is applied to nonpoint source pollution management.  By definition, incomplete

information on the linkages between nonpoint source and load exists.  We have explicitly

model monitoring and learning, to focus attention on the manager’s budget tradeoff

between monitoring and abatement.
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Nonpoint Source Pollution, Incomplete Information and Learning:
An Entropy Approach

1. Introduction

Recently, policy makers have turned to the problem of nonpoint source (NPS)

pollution in an effort to further improve water quality.  In the past, most of the

implemented control measures have focused on the easier problem of reducing point

source pollution (Congdon et al.; Helfand; Larson et al.).  However, the majority of the

nation’s waters are polluted by NPS (USEPA).

In this paper, we provide a methodology for empirically modeling NPS control in

the presence of incomplete information and learning.  By definition, incomplete

information on the linkage between source and load exists for NPS, and thus creates

uncertainty on the efficient abatement level.  Over time, the manager can reduce

uncertainty on the linkages by learning from the collected information.  Ultimately, the

manager decides if reducing uncertainty warrants monitoring, and if so, at what frequency.

Two empirical applications motivate this research: Redwood National Park, Orick,

CA and the Hoopa Valley Indian Reservation, Hoopa, CA.  In both cases, logging activity

and related road networks have altered the “natural” rate of sediment loading.  If perfect

information exists on the linkages, the managers can allocate all of their limited budgets to

abatement control.  With incomplete information, the management of sediment loading

requires an explicit or implicit allocation of resources between information collection and

abatement control.

The information contained in the collected data  is fundamental to the analysis.  For

instance, if all collected data contains information, then monitoring expenditures are
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justified if the marginal value of monitoring equals or exceeds the monitoring costs.  If

however, there is no information in the collected data the marginal value of monitoring is

equal to zero.  Furthermore, we may expect that the manager will learn about the linkages

between source and load over time and thus further reduce the uncertainty and monitoring

expenditures.

In this analysis, the imperfect information is defined to be one of incomplete

information.  Pollution control problems have typically been cast as non-cooperative,

asymmetric information games because the private polluter has better information on the

cost of abatement than the water quality manager (Russell et al.; Garvie and Keeler;

Harford; Harford and Harrington; and Romstad and Bergland).  However, when polluting

activities have ceased or logging related activities are publicly controlled, as is the case in

Redwood National Park and the Hoopa Valley Indian Reservation, respectively,

asymmetric information does not exist.  The managers and the polluters are not fully

informed on each sources’ contribution to the pollution load but each knows the cost of

abatement.

By explicitly modeling monitoring and learning into a pollution control model, the

analysis allows us to focus on the tradeoffs between information content and abatement

productivity.  In the analysis, Kullback’s Cross Entropy (CE) formalism, a method for

modeling information and learning when data is ill-posed, is applied to sediment load

management.  Ill-posed statistical problems arise when the number of parameters to be

estimated exceeds the data points available.  Given the limited data from ambient pollutant

measures in a river and the large number of possible combinations of sources and pollution

loads, the estimation of relationships among NPS pollution problems is often ill-posed.
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In the following section, a brief literature review is provided.  Section 3. describes

the NPS management model with incomplete information and learning.  Section 4.

provides a discussion on the entropy approach and it’s application to NPS modeling.

Section 5 concludes with some final remarks.

2. Literature Review

Economic analysis of the pollution problem has been slow to consider the problem

of managing or enforcing water quality standards.  The economic literature on controlling

point and NPS pollution has mostly analyzed the economic efficiency of alternative policy

instruments such as command and control verse pigouvian taxes or tax/refund incentives

(see, for example, Griffin and Bromley; Shortle and Dunn; Segerson; Helfand; Malik et al.;

and Larson et al.).  Past empirical work on pollution control is limited.  LaPointe and

Rilstone (1996) and Magat and Viscusi (1990) analyze the impact that inspections have on

emissions from pulp and paper mills.  Gray and Deily consider manager behavior in a

similar empirical analysis of point source pollution control.

After a thorough review of the literature, it appears that the explicit modeling of

information collection and learning in NPS analyses has been neglected.  Cabe and

Herriges provide a theoretical model of NPS with Bayesian learning in a social welfare

framework.  They do not explicitly constrain the manager to work within a limited budget.

Kolstad (1996a) describes learning as either, active, purchased or passive depending upon

how the information is collected.  In his work, Kolstad (1996b) examines passive learning

in the case of climate change.  In our case of NPS, we analyze active learning where the
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manager actively collects information for the purpose of reducing the uncertainty on the

sediment loading parameters.

3. Management Model

Recently, Amacher and Malik introduced the pollution control problem as a

cooperative game in light of the bargaining potential that exists and can be observed in

actual management strategies.  The manager reduces asymmetric information by

bargaining technology changes for less compliance.  In our cooperative management

model, the manager does not rely on bargaining but rather on strategic monitoring to

reduce the incomplete information.

In the model, the manager has imperfect knowledge of the pollution each source

contributes to the ambient water quality, and must rely on estimated sediment loading

parameters q q q q q
I

= ( , , , ...... , )
1 2 3

, where qi is the sediment loading from source i.  To

reduce the uncertainty on the sediment loading parameters, the manager takes samples in

addition to an initial downstream sample.  These samples are taken during high storm

events with frequency, a.  After the rain season has ended, the manager chooses the

abatement effort for each source ,X x x x xI= ( , , , ......, )1 2 3 , in order to maximize

abatement.

We now introduce an information processing rule I(q(α )).  In deriving curvature

properties for the information process it is assumed that every monitoring sample has

some information content.  The curvature properties are explicitly derived below.

First we consider
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we choose an information processing rule that is also a shrinkage rule.  This implies that
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So, given a proper shrinkage rule, which cross entropy satisfies, the first right hand side

term is always negative.  Now, recall 
dI

dq
 and 

dq

dα
 have the same sign.  Since 

d q

d

2

2α
 and

dq

dα
 have opposite signs, the second right hand side term is also negative and thus the

second derivative on information with respect to monitoring is always negative.

With monitoring, the manager can improve her information on each source.  Under

uncertainty, the manager chooses a and X to maximize expected abatement based on the

information she has on each source’s contribution.  The objective function for the

management model defines an expected abatement production function where the

productivity depends on the chosen level of abatement and the expected level each source

contributes to the ambient water quality.  The ability to collect information and implement
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abatement technology is constrained by the management budget.  The abatement

production function f X I q( ; ( ( )))α  is twice differentiable with the following curvature:

fI>0, fx>0, fxx<0, fxI>0.  The manager’s objective function is:

Max Ω( , ) ( , ( ( )))X f X I qeα α= (1)

s.t.

αm cX B+ =' (2)

where, m is the per unit monitoring cost, c c c c cI= ( , , ...... , ),1 2 3  is the per unit cost of

abatement effort at each source, B is the annual budget and l is the Lagrangian multiplier

on (2).

The first order conditions are:

∂ α
∂

∂ α
∂

∂ α
∂α

λ
f X I q

I

I q

q

q
me( , ( ( ))) ( ( )) ( )

















= (3)

and

∂ α
∂

λ
f X I q

X
ce( , ( ( )))
'= (4)

From (3) we see that the manager optimally allocates resources such that the marginal

benefit from monitoring equals the marginal cost of monitoring.  From (4) we see that

resources are allocated optimally when the marginal abatement productivity equals the

marginal abatement cost.  Equating (3) and (4) shows that at the optimum, the manager

will recursively choose a and X such that the ratio of marginal benefit and cost is equal

across abatement and monitoring efforts.

Decomposing equation (3) we see that there are three components.  The first

component is the reduction in uncertainty given the change in information on sediment
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loading parameters.  The second and third components shows information changes with a

change in the monitoring frequency.  These latter components have been difficult to obtain

empirically.  The following section unravels this ill-posed problem.

4 The Ill-Posed Problem and the Entropy Approach

Although there is data to analyze the NPS pollution problem, it is insufficient for

conventional estimation.  Aggregate NPS data yields an estimation problem that is

generally ill-posed.  Given the limited data from ambient pollutant measures in a river and

the large number of possible combinations of sources and pollution loads, the estimation

of relationships among NPS pollution problems is often ill-posed.

Shannon and Jaynes established the maximum entropy (ME) approach as a logical

basis for making inferences from ill-posed problems.  Kullback showed how the cross

entropy (CE) approach incorporates prior information to reconstruct posterior

distributions consistent with ill-posed data.  ME-CE is a recent innovation in applied

economic analyses, and has yet to be used in the estimation of NPS pollution parameters,

particularly, the value of information.

ME-CE provide several benefits over traditional econometric techniques when

faced with ill-posed problems.  First, estimating parameters with limited data requires

restrictive assumptions.  With ME-CE, no underlying functional form is necessary and a

non-parametric distribution around the parameters is derived from the available data.

What ME-CE does is reconstruct the probability distribution most likely to have produced

the observed data.  Second, formal modeling of Bayesian learning by integrating over joint

density functions is often very complicated and time consuming.  Fortunately, CE is
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consistent with Bayes Rule and thus is an efficient information processing rule (Golan et

al. 1996).  Given that CE is easier to empirically model and has desirable consistency

properties, it is employed in the reconstruction of the unknown sediment loading

parameters.

As mentioned, entropy has been applied to a few economic problems.  For

example, Golan et al. (1993) use limited incomplete multisectoral economic data to

recover expenditure, trade and income flows.  Paris and Howitt apply a ME approach to

ill-posed production data.  Their study considers the typical data set of multiproduct/multi-

input production where the available data consists of total input use.  In their analysis they

reconstruct input cost shares for each of the output products.

To illustrate the ill-posed problem, suppose the ambient water quality samples are

taken which measure turbidity, an indicator of suspended sediment resulting from soil

erosion within the watershed.  Further, suppose that there are seven identified pollution

sources.  When the manager sets up the monitoring sites, she equips each site to take

multiple samples to measure ambient levels during high storm events.  For each storm,

assume the manager has optimally decided that each monitoring site collects three samples

at fixed intervals.  Figure 1 illustrates the matrix of sediment loading parameters.

Figure 1: Matrix of Sediment Loading Parameters.
S1 S2 S3 S4 S5 S6 S7 Total Loading

Turbidity1 q1+e11 q2+e12 q3+e13 q4+e14 q5+e15 q6+e16 q1+e17 Q1

Turbidity2 q1+e21 q2+e22 q3+e23 q4+e24 q5+e25 q6+e26 q1+e27 Q2

Turbidity3 q1+e31 q2+e32 q3+e33 q4+e34 q5+e35 q6+e36 q1+e37 Q3

This problem is ill-posed.  The task we face is to recover the 7 sediment loading

parameters from each ambient sample.  The relationship is written as:
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Q Sq e= ′ +

where we observe S S S S SI= ( , , ,...... , )1 2 3 the potential pollution sources, and

Q Q Q Q= ′( , , )1 2 3  the ambient water quality level for each sample, with e e e e= ′( , , )1 2 3 ,

the measurement error where e e j jj j i
i

= ∀ =
=
∑ , , , , , .1 2 3

1

7

The more structure we can place on the matrix, the smaller the space in which the

expected parameters are present.  First we know that the horizontal sum of each row must

equal the ambient level, Q with noise, e.  Furthermore, since we have three samples to

analyze we can infer that the sediment loading parameter for each source and each sample

will not change given the short time between sample collection.  In order to incorporate

learning and derive posterior distributions on the sediment loading parameters we turn to

the cross entropy (CE) approach.

The CE approach minimizes the entropy between a prior estimate and the

reconstructed probability.  If the cross entropy measure is greater than zero we have

gained information on the prior and thus learning has occurred.  In the presence of

repeated samples, cross entropy acts as a shrinkage rule so that the reconstructed

probability approaches the true probability as the sample size approaches infinity (Golan et

al., 1996).

Reparameterizing the problem for a generalized cross entropy (GCE) optimization

model, discrete random variables are constructed with prior weights, z and V, over k finite

supports that reflect non-sample information about q and e (Golan et al., 1996), which

yields:
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Now, suppose bo is the prior on the source probabilities.  The GCE program for each

sample is written as:

Min w w
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q Qi
i
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∑ =

1

7

 " j,j=1,2,3 (6)

To reconstruct learning in the management model, we let the manager choose the number

of samples to be taken during each storm event.  The cross entropy problem now relies on

the previous sample estimates on q as the priors.
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With these priors, the manager will optimize:

Min w w
w

j i k
j i k

j i k
j k j k

k

K

k

K

ij

J

β
β

β
β,

, ,
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1
111

7

1

s.t
(5)-(6).

With this model then we can empirically model the learning that occurs from repeated

samples.  These results can now be incorporated into the management model defined in

(1)-(4).

5. Concluding Remarks

The model presented in this paper provides an empirical method for deriving the

value of information and learning for NPS pollution control.  Given this theoretical and

methodological basis the research can be empiricized by collecting monitoring and

abatement data from currently engaged management programs and apply ME-CE

approach in order to estimate the value of information and learning.  Currently, data is

being collected from Redwood National Park and the Hoopa Valley Indian Reservation,

where logging and related practices have degraded water quality by increasing the

sediment loading in the respective watersheds.  Both of these cases are unique in that the

information problem is one of incomplete information only, since logging has ceased in the

Redwood case and in the Hoopa case the logging activities and water quality management

are coordinated through the Tribal government.

This research shows how empirical measures of the value of information for NPS

situations can be estimated.  We also intend to emphasize the often neglected cost of
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monitoring in designing efficient management programs.  An obvious extension of this

research will address asymmetric information in NPS pollution problems.
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