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Abstract

of

Target MOTAD for Risk Lovers

Although risk analyses of discrete alternatives often identify at least one efficient

set for persons who prefer risk, preference for risk is usually ignored when the

decision variables are continuous.  This paper presents a version of Target MOTAD

which can be used when there is preference for risk.



Target MOTAD for Risk Lovers

Agricultural economists use various techniques to evaluate risky alternatives.

When the decision variables are continuous, risk neutrality or risk aversion is almost

always assumed and mathematical programming is used to find optimal solutions.  By

contrast, when the number of choices is small, the assumptions about risk preferences

are sometimes less restrictive and stochastic dominance criteria are often applied.  It

is fairly common to identify efficient sets for decision makers who prefer risk as well

as for decision makers who are risk averse and/or approximately risk neutral.  The

recent study by Larson and Mapp is one of several for which this was done.

Friedman and others have suggested that risk seeking behavior should be rare

(or limited) in financial or production decision making because it is possible to buy

risk at very low prices through gambling.  This view is partly supported by empirical

studies of risk attitudes.  These studies usually find that more decision makers are risk

averse than risk loving.  Nonetheless, many of them also find that some persons are

risk seekers (Tauer; Love and Robison; King and Oamek).

It is appropriate to give more attention to risk aversion than to risk seeking.

However, it does not seem reasonable to consider both risk aversion and preference

for risk when a few discrete alternatives are feasible but to almost completely ignore

preference for risk when the decision variables are continuous.  This paper suggests

that it is often possible to consider preference for risk even when decision variables are

continuous.  One way of doing that is to apply a more general version of the Target

MOTAD model.

Two Simple Examples

We begin by considering two simple examples which illustrate some, but not

all, aspects of the problem of finding Target MOTAD solutions for decision makers
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who prefer risk.  For the first example, there are two equally likely states of nature and

two enterprises.  Let x1 and x2 be (nonnegative) activity levels for the enterprises.  The

net return received if the first state of nature occurs is 

(1)  y1 = 100x1 + 40x2.

If the second state of nature occurs, a net return of

(2)  y2 = 80x1 + 120x2

is received.  Assume that the sum of x1 plus x2 can be no greater than one.  These

assumptions imply that the set of feasible combinations of y1 and y2 is the triangle 0AE

in figure 1.  Table 1 presents the coordinates of the points labeled in figure 1.

Tauer's Target MOTAD model is consistent with the assumption of positive

marginal utility of net return.  This assumption seems reasonable for risk lovers as

well.  It means that only net return combinations associated with the line AE need to

be considered.
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TABLE 1.  Selected Feasible

Solutions for Simple Example

Label x1 x2 y1 y2

---$1000's--

0 0 0 0 0

A 0 1.00 40 120

B .35 .65 61 106

C .50 .50 70 100

D .90 .10 94 84

E 1.00 0 100 80

The traditional Target MOTAD model maximizes expected net return subject

to an upper limit on (the absolute value of) expected negative deviations (from the

Target level).  This can be illustrated by assuming a target of 98 and an upper limit

of 7 on expected deviations.  The optimal solution is D.

It is tempting to adopt an analogous approach for risk preferrers.  We might

maximize expected returns subject to either a lower limit on  expected negative

deviations or a lower limit on expected positive deviations from the target level.

Suppose the target level is 98 and we require expected negative deviations to be at

least 18.5.  B maximizes expected net return subject to the expected deviations

constraint.

Although indirect utility maximization of this sort works well when risk aversion

is assumed, there are at least two problems with it when preference for risk is

assumed.  The first problem is that although linear programming can help find optimal

solutions, the approach itself is not a linear program.  This difficulty may be

unavoidable; it seems to "go with the territory" when preference for risk is assumed.
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The second problem is that solutions obtained in this way often do not

maximize expected utility for any member of the relevant class of utility functions.  B

may maximize expected utility for some utility function but it probably does not

maximize expected utility function for any utility function consistent with preference for

risk.  It certainly does not maximize expected utility for any utility function belonging

to the family of utility functions which is analogous to (and extension of) the family of

utility functions consistent with conventional Target MOTAD.  B is associated with a

local maximum of expected utility for the member of the family of utility functions

(3)  U(z) = z + "[min(0, T - z)]

for which " equals -1/3.  B shares that property many of its neighbors.  The "global"

(constrained) maximum of expected utility for this utility function is at E.  Indeed, for

our simple example, only the "corners", A or E, maximize expected utility for (3) when

" is smaller than or equal to zero.  

A second simple example demonstrates that "corners" are not always the only

optimal solutions.  The second example is similar to the first.  The difference is that

the coefficients of x1 are 70 and 100 rather than 100 and 80.  The feasible set is now

0AC.  B is now not only maximizes expected utility locally for the utility function (3)

when " equals -1/3.  It is also a location of the global maximum.  It shares that

property with all of AC.  Thus, non-corners can be optimal but only if all of the corners

associated with the line segment or surface are also optimal.  For values of " other

than -1/3, either A or C is the unique optimal y vector.  Note that y1 is smaller than

the target level and y2 is larger than the target level everywhere on AC.  This absence

of target "crossing" is a necessary, but not a sufficient, condition for all of an edge or

surface to be optimal.  

A More General Target MOTAD Model
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Consider a more general Target MOTAD model:

(4)  Maximize Epi{yi + "[min(0, yi - T)]}

subject to

(5)  Cx - y = 0

(6)  Ax # b

(7)  x $ 0

In this model, summation (in (4)) is over i, p is an s-element column vector of

probabilities associated with the various states of nature, y is s-element column vector

of net returns associated with the states of nature, " is a risk aversion parameter, min

is the minimum function, T is a target return level, C is an s by n matrix of returns

associated with the enterprises for the various states of nature, x is an n-element vector

of enterprise levels, A is an m by n matrix of resource or technical requirements, b is

an m-element column vector of resource or technical levels, n is the number of

enterprises, m is the number of resource or technical constraints and s is the number

of states of nature.  We assume that the set of feasible y vectors is bounded from

above.

For positive or zero values of ", the model is consistent with the traditional

Target MOTAD model in the sense that any optimal solution of the traditional model

is also an optimal solution to (4) through (7) for some value of ".  Likewise, any

optimal solution of (4) through (7) is also an optimal solution to the traditional model

for some value of 8.  Despite the fundamental equivalence of the two models, they

appear to be different.  For that and other reasons, the traditional Target MOTAD

model is likely to continue to be used to examine implications of risk aversion.

This paper is more concerned with negative " values.  Note that " must be

greater than -1 to ensure that marginal utility is greater than zero for each state of
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nature.  The reader will recognize that (4) through (7) generally cannot be restated

as a linear program when " is negative.  This fact complicates finding of optimal

solutions.

Solution Procedure

Horst and Tuy suggest an iterative approach similar in spirit to, but different

in detail from, approaches used to solve linear and concave programming problems

which could be used to find optimal solutions.  We prefer an approach which involves

two or three more or less distinct phases.

The first phase identifies extreme or corner y vectors and also determines which

extreme y vectors are "adjacent" to each extreme y vector.  A second, optional, phase

applies screening criteria.  The final phase determines which extreme y vector(s) is

(are) optimal for the selected combination(s) of " and T.  It also determines whether

non-corner solutions are also optimal.  These phases are briefly discussed here.  More

information about them and other details of this study are available from the authors.

One method of identifying the set of extreme or corner y vectors is a multistage

branching procedure.  Murty (pp. 159-160) outlines a procedure of this type.

Any criterion which will not eliminate an optimal extreme y vector but which

might eliminate one or more suboptimal extreme y vectors may be a suitable screening

criterion.  Three criteria which have these characteristics are vector efficiency, first

degree stochastic dominance and (a weak version) of second stochastic inverse

dominance (SSID).  SSID is described by ZaraÑ (1987, 1989).  Pairwise application

of these criteria is usually less effective than applying them in a manner consistent with

convex set stochastic dominance.

Another Example

Hazell's data are sometimes used to illustrate risk analysis methods.  His data
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define a small problem which has several interesting features.  We assume that each

state of nature (year) is equally likely.  Thus, each element of p equals one-sixth.

There are eleven extreme y vectors for the Hazell example.  The screening step

eliminated all but four of them.  Enterprise mixtures associated with the "survivors" are

presented in table 2.  Adjacent extreme y vectors are also noted.

   TABLE 2.  Enterprise Mixtures Associated with Extreme y Vectors

   Enterprise Mixture 
Mixture
Number

Carrots
x1

Celery
x2

Cucumber
s

x3

Peppers
x4

Adjacent
to

---------------------------acres---------------------------
-

1 27.45 100.00 72.55 2,4
2 100.00 23.53 76.47 1,7
4 100.00 100.00 1,7
7 100.00 100.00 2,4

For any combination of " and T, the optimal solution can be determined by

simply computing the value of the objective function (in (4)) for each of the four

surviving extreme y vectors.  For example, extreme y vector/enterprise mixture 4 is

optimal if " equals -.8 and T equals $81,500.

Figure 2 is included to show how the optimal solution depends on " and T.

Point F is the ", T combination just mentioned.  The sets of ", T combinations for

which any given extreme y vector is optimal are delimited by the solid lines.  The

numbers in the body of figure 2 identify the optimal extreme y vector.  Only " values

smaller than or equal to -.6 are shown in the figure.  We found that only extreme y

vectors are optimal for negative " values.  I.e., there are no optimal edge or surface

solutions.

Extreme y vector 1 is optimal for all " values from -.6 to zero.  In fact, extreme
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Figure 2.  Alpha and T Values for Optimal Solutions
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expectations.  We expected that the mixture which maximizes expected returns might

also be optimal for at least moderate preference for and moderate aversion to risk.
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Extreme y vector 2 is not optimal for risk neutrality but is optimal both for

some combinations of " and T associated with preference for risk and for some

combinations associated with risk aversion.  Although they use a different format than

we do, McCamley and Kliebenstein's figure 1 and table 1 confirm the latter.  Their line

segment GN is associated with all combinations of " and T for which " is between

(about) 1.74 and 2.48 and T is between $47,264.71 and $55,629.41.

Extreme y vectors 1 and 2 are unique in this respect.  They are the only y

vectors which are optimal for both some risk lovers and some risk averters.  It easy to

verify that (our) extreme y vectors 4 and 7 are not among the infinite number of y

vectors included in the "complete set of Target MOTAD solutions" for risk averters.

The implications of risk programming models for marginal resource values

(shadow prices) are sometimes of interest.  The shadow price of any resource is a

function of " and T.  Within any subregion delimited by dotted and solid lines in figure

2, the shadow price vector has the form

(8)  (V0 + "V")/(1 + "P(z < T)).

P(z < T) is the probability that net return is smaller than T and is equal to the sum

of the probabilities associated with the states of nature for which net return is smaller

than the target level.  V0 is like an intercept vector in a system of regression or other

linear equations in that it is not observed unless " can be zero.  Since " can be zero

for extreme y vector 1, each V0 vector for extreme y vector 1 is equal to the (usual)
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          s h a d o w  p r i c e

vec to r a s s o c i a t ed

w i t h t h e

max im izat ion of

expect e d  n e t

return. I n  t h e

largest subregion of

" and T values for

w h i c h e x t r e m e

vector 4 is optimal, the land component of (8) is (363.25 + 194.67")/(1 + 2"/3).

This expression is combined with analogous expressions for extreme y vectors

1, 2 and 7 to show how the shadow price of land varies with " for two target levels,

$81,500 and $91,275.  Note that in figure 3, the land shadow price function is the

same for both target levels when " is between -.96 and .88.  It should also be

apparent that there are discontinuities in the shadow price graphs at " values for which

the optimal solution shifts from one extreme y vector to another.  This is one of several

differences between optimal solutions of (4) through (7) when " is negative and when

it is positive.  Shadow prices are continuous functions of " when " is positive.

Although shadow prices are not generally not continuous functions of " (for a

given T), the total (implied) value of the resources may be.  For the target level,

$81,500, the total value of the resource is a continuous function of "; for the target

level, $91,275, it is not.
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Concluding Remarks

We chose to present the optimal primal solutions and the shadow prices as

functions of " and T in order to be consistent with our model.  Presenting them as

functions of 8 (the limit on expected negative deviations) would have made them

superficially more consistent with the approach used by McCamley and Kliebenstein

but also more difficult to interpret than figures 2 and 3.

Many assumptions are made in this paper.  Linearity of the constraints (6) is

especially critical because it allows a problem with continuous decision variables to

(almost) be reduced to a problem with only a finite number of discrete alternatives.

The linearity assumption is not always satisfied.  However, the tendency to use linear

constraints (or linear approximations of nonlinear constraints) for empirical work

makes the limitation of our linearity assumption more theoretical than practical.
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