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ABSTRACT

This research presents a competitive dynamic modd to evauate the economic and groundwater quaity
benefits resulting from the adoption of soil/water nitrogen testing. The modd is gpplied to an irrigated
corn production county in the Nebraska Mid-State area where the groundwater contamination level
from nitrates is reported to be, on average, 18.7 parts per million (ppm). Adoption of nutrient

management practices would result in increased economic benefits to farmers and reduced nitrate
stocks in groundwater.



Economic and Environmental Benefits of Soil/Water Nitrogen Testing:
The Case of Central Nebraska

I ntroduction

Nitrogen fertilizers applied by farmers have the potentia to runoff into streams or ponds and to
leach into groundwater, where their accumulation tends to degrade water quality for a variety of
beneficid uses. It has been reported that fertilization efficiency associated with nitrogen fertilizer use
ranged between 30 percent and 70 percent in U.S. crop production (Legg and Meisinger, 1982). A
more recent study has reported that it ranges from 65 percent with a conventiona furrow irrigation
system to 85 percent with a center-pivot irrigation system in a continuous corn production area in
Kansas (Williamset al., 1997).

A policy for managing groundwater quaity that has been widely discussed in the literature is
an accounting procedure associated with the voluntary adoption of nitrogen fertilizer management
practices. Nitrogen fertilizer management practices discussed in these studies include testing for
resdua soil nitrogen in the root zone and for nitrates in groundwater used for irrigation. The
accounting procedure credits nitrates in the soil and groundwater in deriving the recommended
nitrogen application rate and is designed to increase economic efficiency by reducing nitrogen fertilizer
use. However, recent studies report that the adoption of soil/water nitrogen testing resulted in
increased yields (Fuglie and Bosch, 1995; Bosch, Cook, and Fuglie, 1995) which implies increased

nitrogen fertilizer use.

The objective of this sudy is to estimate economic and environmenta benefits resulting from

the adoption of soil/water nitrogen testing. To achieve this goa, a competitive dynamic model



associated with and without the voluntary adoption of nitrogen fertilizer management practices is
presented. The modd is then applied to a continuous corn production area in the Nebraska Mid-State
area, where the groundwater nitrogen contamination level was reported to be 18.7 parts per million

(ppm) on average during the period 1988-1990.

The Mode

Mogt economists who have examined nonpoint-source groundwater pollution problems have
assumed that both crop output and nonpoint-source pollution are jointly produced with the same
gpplication of nitrogen fertilizer. However, Kim, Sandretto, and Lee (KSL, 1999) have recently
demonstrated that individua specification of crop output and nonpoint-source pollution production
functions implies that the production processes are nonjoint in input quantities. Under the assumption
of nonjointness in nitrogen fertilizer use, the crop production function is specified as a function of
consumptive nitrogen fertilizer use rather than the amount of nitrogen fertilizer gpplied. This
gpecification is dso consstent with the fundamental assumption of production economics that al
variable inputs are fully employed in the production process. However, Kim et d. (1997) and KSL

(1999) have shown that
(1) Blsn(®] =sBn(®)],

where B represents economic benefits, s is a fertilization efficiency coefficient, and n is the amount of
nitrogen fertilizer applied, and therefore, sn' represents the consumptive use of nitrogen fertilizer.
Equation (1) indicates that the amount of nitrogen fertilizer lost through leaching and runoff does not

contribute to economic benefits. Since it is more convenient to use the gpplication rate rather than the



rate of consumptive use of nitrogen fertilizer, the condition presented in equation (1) reduces the
complexities associated with using consumptive nitrogen fertilizer use.

A quadratic crop production function has the advantage of generating a linear nitrogen
fertilizer demand function, which is easlly tractable mathematically. Furthermore, Berck and Helfand
(1990) demondtrated that aggregate production functions for estimating crop response across large
aress (fidds or regions) with heterogeneity or nonuniformities in the distribution of inputs, such as
nitrogen fertilizer and irrigation water, will result in smooth nonlinear functions that are concave with
positive marginal products such as a quadratic function.

(A). Adoption of Nitrogen Fertilizer Management Practices and Its Effects on Nitrogen
Fertilizer Use, Net Economic Benefits, and Groundwater Quality

When farmers adopt soil and water nitrogen testing, a crop production response to nitrogen
fertilizer isthen presented by:
@ YIO+SE+WN®] = all®+SE+WN®)] - (U2bN®+SE+WN O’
where the superscript i represents the ith irrigation technology, S(t) is the amount of nitrates in the root
zone areg, W isthe ratio of the amount of irrigation water use per acre to the amount of groundwater
avalable per acre from the underlying aguifer, N(t) represents the nitrate stock in groundwater,
therefore, wN(t) represents the amount of nitrates available from irrigation water, and a and b are
positive constants. The derived nitrogen fertilizer demand function given the adoption of nitrogen
fertilizer management practicesis then represented by:

3)  P.=RJa-bS - bwWN(t)] - Rbn(t).

The area undernegath the nitrogen fertilizer demand function described in equation (3)



represents the economic benefits resulting only from nitrogen fertilizer use. To measure economic
benefits resulting from use of both nitrogen fertilizer and residual nitrates available from the soil and
contaminated groundwater, the nitrogen fertilizer demand function is then represented by:

4 P=Rfa-bni@)],

where n'i(t) = ni(t)+§(t)+wiNi(t). Applying equation (1), net economic benefits (NB) resulting from
nitrogen fertilizer use under nutrient management practices are then represented by:

n*i(t) A
(5 NB'(t) = Sig PJa - bx]dx - Cn

=siRfani(t) - (U2)b(n'(t))7] - Cn,
where x is a variable of integration and C is the unit cost of nitrogen fertilizer (dollars per nutrient
pound).
For agiven soil type and topography, the amount of nitrogen fertilizer lost through

leaching depends largely on the adopted irrigation technology. Let the changeinthe

stock of nitrates in groundwater, N = JdN(t)/ot, be represented by the following system of first-order

differentia equations.

© N =tn® + SO +WN@O]-r'N@® fori=1,2...,m,

where t; represents the rate of nitrate leaching such that ti < (1-si), and ri represents the rate of nitrate
discharge from the stock of nitrates in groundwater, which is the sum of naturd nitrate discharge due
to groundwater flows and the rate of artificid nitrate discharge through pumping groundwater for
irrigation. Inserting equation (3) into equation (6), and then solving the resulting first-order differentia

equation resultsin the following:



@ N@O=f'+No-f)exp(-r)t fori=1,2,...,m,
wheref' = [(t'/r 'b)(a-C/Py)] and No = N(t=0).
The time path of nitrogen fertilizer use is then obtained by inserting equation (7) into equation
(3), and presented in equation (8).
®  Pa=R{a-bS-bwlf'+ (No-f)exp(r )} - Bbn().
Findly, the present value of net economic benefits (P\/NBi) with the nutrient management practices are

then represented by:

(99 PVNB'= fexp(—rt)NBi(t)dt,
where NBi(t) is as presented in equation (5).
(B). Effectson Nitrogen Fertilizer Use and Net Economic Benefits of Not Adopting Nutrient
Management Practices
When farmers do not adopt nutrient management practices such as soil and water nitrogen
testing, the crop production response to nitrogen fertilizer is then represented by:
(100 YIn®] =an() - (V2b[n®]’,
where ni(t) is the amount of nitrogen fertilizer application without nutrient management practices. The
derived nitrogen fertilizer demand function estimated from the crop production function (10) is
represented by:
11)  P.=PRfa-bn(t)].
The area underneath this nitrogen fertilizer demand function represents the economic benefits resulting
only from nitrogen fertilizer use. Farmers receive economic benefits from resdua nitrates even if they

do not adopt the nutrient management practices so that the necessary conditions for efficient use of



nitrogen fertilizer are independent of the residud nitrates available from the soil and contaminated
groundwater. Therefore, economic benefits resulting from nitrates use from al sources are represented
by the area undernesth the following nitrogen fertilizer demand function:

(12 P.=PRfa-bn’(t)],

where n°i(t) = ni(t) + S(t) + wiN;j(t). Net economic benefits (NB) resulting from nitrogen fertilizer use
without adopting nutrient management practices are then represented by:

(1)
(13)  NBy(t) =s;j] Pfa - bx]dx - Cni(t)

=sBlan’i(t) - (V2)siRblni®)]” - Cnict),
where x isavariable of integration.
Changes in the nitrate stock in groundwater are then represented by the following first-order

differentia equation:

@4) N = t[n®) + SO + WN@®] - rNi®) forj=1,2,...m.
Inserting equation (11), at the unit cost of nitrogen fertilizer C, into equation (13) and then solving the
resulting first-order differentia equation resultsin the following:
(15)  Ni(t) =f;+ (No- fj)exp(-ri+tjw)t  forj=1,2,...,m,
wheref; =tj[(a/b)-(C/Pyb)+S(t)]/[rj-t;w;] and No = N(t=0).
Inserting equation (15) into equation (13), the present value of net economic benefits (PVNB;)

without adopting the nutrient management practices are then represented as



follows:
(16)  PVNB = [ exp(-NB{(D)ct

By comparing the crop production function (2) associated with the nutrient management
practices and the crop production function (10) without the nutrient management practices, it is clear
that crop yield without the nutrient management practices would be higher. However, net economic
benefits resulting from nitrates use with the nutrient management practices are greater than those
without the nutrient management practices, because residud nitrates available from the soil and
contaminated groundwater are incorporated into the profit maximization modd for efficient nitrogen

fertilizer use.

Application to Merrick County, Nebraska

The study area is located in Merrick County, Nebraska, where the observed nitrate
concentration level in groundwater on average was 18.7 parts per million (ppm), according to a survey
conducted by the Central Platte Natural Resources Digtrict (CPNRD) during the 1988-1990 period.
Economic and geohydrologic data for the study area presented in Table 1 are from a previous study by
Kim, Schaible, and Daberkow (1999). These authors obtained the hydrologic data from Bentdl
(1975a; 1975b); Exner and Spading; Peckenpaugh and Dugan; and Signor et a. The irrigation
efficiency coefficients data were obtained from Williams et d. Data on groundwater qudlity,
groundwater pumping codts, the amounts of nitrogen fertilizer and irrigation water applied during the
period between 1988 and 1990 were obtained from a survey conducted by the CPNRD. Data on

prices for corn and soybeans are from various volumes of Agricultura Statistics, USDA. Nitrogen



fertilizer price data are from Vroomen and Taylor.

The fertilization efficiency coefficient associated with the ith irrigation technology is assumed
to be identicd with its irrigation efficiency coefficient for two reasons.  Firdt, estimates of irrigation
water and nitrogen fertilizer losses through runoff and leaching from the Erosion Productivity Impact
Caculator (EPIC) smulation model were unreliable’. Second, since nitrates are highly soluble and
deep percolation into the aguifer generdly carries only soluble substances because the soil acts as a
filter for the percolating water (Porter, et d.), the rate of fertilization efficiency is assumed to be the
same astherate of irrigation efficiency.

Economic data presented in Table 1 are also from previous studies for the Nebraska Mid-State
area (KSL, 1999; Kim, Schaible, and Daberkow, 1999). Since most acreage in the CPNRD is allocated
to continuous corn production to meet local feed demand for livestock production, these studies
employed a multiple inputs - sngle output normaized profit function (Huffman and Evanson;
Shumway) to estimate the supply of corn, the demand for nitrogen fertilizers, and the demand for
irrigation groundwater. Pooled data for the period 1960-90 were grouped for Buffao, Hdl, and
Merrick counties which are located within the Nebraska Mid-State area. The normalized price
eladticity of gpplied nitrogen fertilizer demand is estimated to be -0.34. Egtimated inverse nitrogen

fertilizer demand functions associated with dternative irrigation technologies are presented in Table 1.

The Erosion Productivity Impact Calculator (EPIC) simulation model has been used recently to estimate the rate of nitrate leaching as well as the
fertilization efficiency coefficient (Chowdhury and Lacewell; Larson, Helfand, and House; Magleby, Selley, and Zara; Wu, Mapp, and Bernardo).
These authors conducted EPIC simulation runs at different fertilizer application levels for each combination of crop, soil type, and irrigation runoff and
percolation as well as the amounts of nitrogen fertilizer lost through runoff and leaching. Estimates of the amounts of nitrogen fertilizer lost through
runoff and leaching are then regressed with the amounts of irrigation water and nitrogen fertilizer applied, which are used to estimate the rates of
nitrate leaching and runoff.

The EPIC estimates for the amounts of irrigation water and fertilizer lost through runoff and leaching are somewhat variable. For instance,
the EPIC simulation results reved that more than 77 percent of irrigation water applied with a conventiona furrow irrigation system would be lost
through percolation on a Mid-Nebraska 15 county area with Crete silt loam soil (Magleby, Selley, and Zara). Furthermore, EPIC results show that a
large portion of irrigation water applied would be lost through runoff when using a conventiona furrow irrigation system on silt loam soil. Therefore,
the reliability of the EPIC estimates for the fertilization efficiency rate associated with the unreasonable rates of irrigation efficiency would be
questionable.
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The time paths of the stock of nitrates in groundwater and the present vaue of net economic
benefits resulting from nitrogen fertilizer use under two different scenarios are estimated and presented
in Table 2. Estimated economic benefits under the nutrient management practices do not include costs
asociated with soil testing. The gains in the present value of net economic benefits as a result of
adopting the nutrient management practices ranges from $186.60 per acre with a center-pivot irrigation
system to $235.94 per acre with a conventiond furrow irrigation system. At a5 percent discount rate,
these gains are equivaent to $9.33 per acre per year with a center-pivot irrigation system, $10.05 per
acre per year with a surge-flow irrigation system, and $11.78 per acre per year with a conventiona
furrow irrigation system. These results indicate that farmers would be economicaly better off by
adopting the nutrient management practices as long as the costs associated with soil testing are less
than $9.33 per acre per year with a center-pivot irrigation system, $10.05 per acre per year with a
surge-flow irrigation system, and $11.78 per acre per year with a conventiona furrow irrigation
system.

Resaults in Table 2 dso indicate that groundwater qudity under a conventiond furrow
irrigation system would deteriorate whether farmers adopt nutrient management practices or not.
However, deterioration of groundwater quaity under a conventional furrow irrigation system would be
accelerated without nutrient management practicess.  Under a surge-flow irrigation system,
groundwater quality would improve dightly with adoption of nutrient management practices, but it
would deteriorate without adoption of nutrient management practices. Findly, groundwater quality
would improve under a center-pivot irrigation system whether farmers adopt nutrient management
practices or not. However, adoption of nutrient management practices under a center-pivot irrigation

system would result in the improvement of groundwater quality from 18.7 ppm to 10.87 ppm.
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In summary, adoption of nutrient management practices would result in incressed net

economic benefits to farmers and reduction of the nitrate stock in groundwater.
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Table 1. Economic and hydrologic parameters pertaining to Merrick County, Nebraska.

Symbol Description Parameter value
ao Per acre inverse nitrogen fertilizer demand intercept. 0.67
bc The dope of consumptive N-fertilizer demand 0.00499
b1 The slope of N-fertilizer demand with afurrow irrig. system 0.00324
b2 The slope of N-fertilizer demand with a surge-flow irrig. system 0.00374
bs The slope of N-fertilizer demand with a center-pivot irrig. system 0.00424
w Saturated thickness (feet). 150
m Specific yield'. 0.25
No The stock of nitrates in the underlying aquifer at the base year (Ibs/ac.) 636.0
S Residual nitratesin soil (Ibs/a)’. 49
Py Unit price of corn ($/bushel). 2.30
n; The observed amounts of nitrogen fertilizer use (Ibs/acre). 142.5
Cn Unit cost of nitrogen fertilizer ($/nutrient Ib). 0.17
Si Fertilization efficiency.
i=1 for aconventional furrow irrigation system 0.65
i=2 for asurge-flow irrigation system 0.75
i=3 for a center pivot irrigation system 0.85
ti The rate of leaching.
i=1 for a conventional furrow irrigation system 0.23
i=2 for asurge flow irrigation system 0.15
i=3 for a center pivot irrigation system 0.09
ri The rate of artificial discharge (r;) or the ratio of theirrigation

or Wi water applied per acre to the amount of groundwater available
per acre from the underlying aquifer (w;).

i=1 for a conventional furrow irrigation system 0.0375
i=2 for asurge flow irrigation system 0.0325
i=3 for a center pivot irrigation system 0.0287

1. Specific yield is defined as the unitless ratio of the volume of water a saturated rock or soil will yield under the influence of gravity to its
own volume (Cleary, Miller and Pinder).

2. The residual nitrates in soil tested at 5 locations in Merrick County and reported by the 1993 Central Platte Natural Resources District
are as follows: 3-year average of 26 Ibs/a. at the Location 1 (T14,R7W), 8-year average of 35 Ibs/a. at the Location (T14N, R7W); 2-year
average of 85 Ibs/a. at the Location 3 (T13N, R6W); 7-year average of 59 Ibs/a. at the location 4 (T13N, R7W); and 5-year average of 44
Ibs/a. at the location 5 (T13N, R8W). Weighted average residual is estimated to be 49 Ibs/a.
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Table 2. Trajectories for the stock of nitrates in groundwater (Nj(t)) and net economic benefits resulting
from nitrogen fertilizer use with and without adopting nutrient management practices (NMP).

Irrigation technology NMP Ni(t) = u; + viexp[-wi]t PV
ppm
Ui Vi Wi

Conventional furrow yes 946.5 -310.5 .0375 582.46 27.83
no 1,619.5 983.5 .0366 346.52 47.62

Surge-flow yes 617.0 19.0 .0325 623.67 18.14
no 992.0 356.0 .0276 422.91 29.17

Center-pivot yes 369.8 266.2 .0287 660.10 10.87
no 575.2 60.8 .0261 473.50 16.91
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