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Panel Stratification in Meta-Analysis of

Environmental and Natural Resource Economic Studies

ABSTRACT

Meta-analyses of past research outcomes are becoming more popular, however, the issue

of the panel nature of data has not been empirically investigated.  We test various forms

of data stratifications into panels for outdoor recreation economic studies but do not find

any significant effects, possibly because of inherent data complexity.
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INTRODUCTION

Meta-analyses of past environmental and natural resource economic studies are

becoming more applicable and popular as these studies accumulate.  The first two meta-

analyses on environmental and natural resource economic studies were by Smith and

Kaoru (1990) on travel cost studies of recreation benefits and Walsh, Johnson and

McKean (1989) on outdoor recreation benefit studies.  These original meta-analyses were

designed for the purpose of understanding and modeling the influence of different

methodological and study specific factors on the outcomes of the studies.  More recently,

applications of meta-analysis for similar purposes include groundwater (Boyle, Poe and

Bergstrom 1994), air quality via the hedonic property method (Smith and Huang 1995),

endangered species (Loomis and White 1996), visibility (Smith and Osborne 1996),

demand elasticities for gasoline (Epsey 1996), price elasticities of water (Epsey, Epsey

and Shaw 1997), health effects (Desvousges, Johnson and Banzhaf 1998), recreational

fishing (Sturtevant, Johnson and Desvousges 1998), and an update on outdoor recreation

benefit estimates (Rosenberger, Loomis and Shrestha 1999).

Meta-analysis is the statistical summarizing or synthesizing of past research on

specific topics, as evidenced by the list above.  Although meta-analysis is fairly recent to

environmental and natural resource economics, it enjoys a long history in the fields of

psychology, education, and health sciences.  However, meta-analyses of environmental

and natural resource economic studies differ from these other fields in that they are not

conducted under controlled conditions, involve modeling judgments on the part of the
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researchers (both then and now), and the panel nature of the research results reported

(Smith and Kaoru 1990).

This paper is expressly concerned with the panel nature of the data and

empirically explores different panel data estimators using a database of outdoor

recreation benefit studies.  Although nearly all of the referenced meta-analyses refer to

the panel structure of their data, none of them explicitly test for panel effects in their

models.  The rest of the paper presents some of the econometric issues with panel data, a

brief description of the data, and econometric models tested.  Hypothesis tests and results

are presented and conclusions are drawn concerning the issue of panel data in meta-

analysis.

PANEL DATA ISSUES IN META-ANALYSIS

Many environmental and natural resource economic studies provide multiple

estimates of targeted outcomes, such as benefit estimates for a sample population or

subset of the population.  Multiple observations from the same source may be correlated

and the error process across several of these studies may be heteroskedastic.  In the

presence of panel effects, the classical ordinary least squares (OLS) and maximum

likelihood estimators may be inefficient and their estimated parameters biased.

Panel effects from multiple observations may be observable or unobservable.  In

the case of observable differences, multiple observations can arise because the original

studies test different functional forms, use different estimators, vary site definitions, use

different modeling assumptions for the same site, and/or provide multiple estimates for

multi-use sites.  These observable factors can be accounted for through the coding of the
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characteristics of the studies and fully specifying the model.  Unobservable or latent

factors must be discovered statistically.

While nearly all of the meta-analyses referred to above recognize the panel nature

of their data, none of them explicitly test for panel effects.  Smith and Kaoru (1990) used

OLS with a Newey-West version of the White consistent covariance estimator in the

presence of heteroskedasticity and generalized autocorrelation.  This procedure does not

affect the parameter estimates of the model, but does correct for heteroskedasticity in the

standard errors of these parameters.  However, Smith and Kaoru (1990) show that

hypotheses concerning their parameter estimates are largely unaffected by the corrected

standard errors of the parameters.

Boyle, Poe and Bergstrom (1994), Smith and Huang (1995), and Smith and

Osborne (1996) use a Huber-White correction for heteroskedasticity and intra-study

correlation while fitting OLS models.  Only in the Smith and Osborne (1996) study are

we told that the corrective measure used for the panel nature of the data had little impact

on the overall results of the analysis.  Additionally, Smith and Osborne (1996) estimate a

model by Box-Cox and feasible generalized least squares, finding no significant

difference from the OLS with Huber-White correction.  Sturtevant, Johnson and

Desvousges (1998) and Desvousges, Johnson and Banzhaf (1998) explicitly use panel

data estimators in part of their analyses, however, the significance of the presence of

panel effects is not reported.
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MODELING PANEL DATA

Stratification

Ex ante information in the estimation of panel data models requires the

stratification of the data into groups, with each group being assigned an index.  In some

panel data cases, this stratification seems obvious.  For example, when each respondent in

a survey provides multiple value responses, the group is the individual (Englin and

Cameron 1996; Loomis 1997; Rosenberger and Loomis 1999).  Or when import/export

information is collected from a sample of countries over time, the group is the country.

However, in meta-analysis, there may be several similarities among different studies and

multiple ways of grouping the data based on these similarities.  In the studies that use

panel data estimators, stratification is by study (Desvousges, Johnson and Banzhaf 1998;

Sturtevant, Johnson and Desvousges 1998), and in the latter case, by study by body of

water.  We expand on this issue and test three different stratifications of the data – by

Study, by Researcher, and by Data Structure.

Candidate Panel Models

Begin with the classical OLS (or equal effect) model:

yi = µ + β’xi + εi, (1)

where i indexes each observation, y is the dependent variable, x is a vector of explanatory

variables which account for differences across and within the studies, and ε is the

classical error term with mean zero and variance σ2
ε.

A generic panel model may be defined as:

yij = µj + β’xij + εi (2)
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where j is the stratification index and µj is the panel effect.  This panel effect can be

modeled as either having a unit-specific constant (fixed) effect or a unit-specific

disturbance (random) effect.1  In the fixed effect model, the group effect parameter, µj,

takes on the form:

yij = αj + β’xij + εi, (3)

where αj is the unit specific constant for each group identified through the stratification

indexing.

In the random effect model, the group effect parameter, µj, takes on the form:

yij = α + β’xij + εij + µj, (4)

where µj is the unit-specific disturbance effect and has a mean zero and variance 2
µσ .

Each study has an overall variance:

var[εij + µj] = σ2 = σ2
ε + σ2

µ. (5)

The random effect model is a generalized regression model with generalized least squares

being the efficient estimator.

Hypothesis Test Statistics

Two test statistics aid in choosing between classical OLS, fixed effect, and

random effect models – Lagrange multiplier statistic and chi-squared statistic.  Breusch

and Pagan’s Lagrange multiplier statistic tests whether a group effect specification is

significant (H0 : µj = 0).  Hausman’s chi-squared statistic tests the random effect model

                                                                
1 Other candidate panel models include a separate variances model (no common error term) and a mixed

effect model (both separate constants and separate variances) (Desvousges, Johnson and Banzhaf 1998,
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against the fixed effect model (H0 : µj as a random effect; H1 : µj as a fixed effect).  In the

event that we fail to reject the null hypothesis of no group effect, the chi-square test is not

applicable.

DATA

The data used in empirically testing for panel effects consists of studies on

outdoor recreation use value estimates collected from a literature review dating from

1967 through 1998.  For a detailed reporting of the data and optimized regression models

see Rosenberger, Loomis and Shrestha (1999).  The database for present purposes

consists of 131 studies providing 682 benefit estimates.  The number of estimates per

study ranged from 1 to 134, with a mean of 5 estimates and a median of 1 estimate per

study.  Therefore, any grouping of the data will consist of an unbalanced structure and

will require an unbalanced panel estimation technique.  Existing econometric methods are

capable of dealing with unbalanced datasets.  The database contains 126 fields coded

across six main coding categories:  1) complete citation to the study; 2) the benefit

measure (original value, adjusted to per person per day in 1996$, whether stated or

revealed preference method was used); 3) the nature of the benefit measure (e.g.,

willingness-to-pay vs. willingness-to-accept, mean vs. median); 4) details of a stated

preference application if used; 5) details of a revealed preference application if used; and

6) study location details (e.g., whether National Forest, Park, State Park, etc.),

environment type (e.g., forest, wetland), recreation activity, etc.  Table 1 provides

descriptions of the variables used in the model estimation and their mean values.

                                                                                                                                                                                                
Sturtevant, Johnson and Desvousges 1998).
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We also provide for three distinct ways of grouping the data, or ex ante

identification of similarities that may be a source of panel effects.  The first is by Study,

which results in 131 groups.  Second, we can stratify based on Researcher as determined

by lead author.  This stratification results in 91 groups.  And third, we can stratify the

data based on four different Data Structures which may produce panel effects: 1) single

estimate, single sample (56% of the studies); 2) multiple estimates, single sample (e.g.,

tests of functional form, revealed vs. stated preference tests using the same sample of

respondents) (15% of the studies); 3) multiple estimates, separate samples (e.g., same

activity, different sites or different activities, different sites using different samples of

respondents) (14% of the studies); and 4) multiple estimates, multiple samples (e.g., split

sample testing) (14% of the studies).

HYPOTHESIS TEST RESULTS

The model is fit by fully specifying the model using all of the variables identified

in table 1.2  By fully specifying the model, we can account for any observable similarities

across some of the studies or unique characteristics of individual studies.  As Smith and

Osborne (1996) note, unique characteristics of specific studies can be explicitly modeled

through variables in the model or by a fixed effect parameter, but not both.  Therefore,

any panel effects that may be discovered statistically will be the result of unobservable

sources defined by the different forms of stratification and/or random error processes.

                                                                
2 Some of the variables had to be dropped from the model due to a lack of variation across the studies (e.g.,

no horseback riding studies) or high correlation with the fixed effect parameters, including ONSITE,

PHONE, RECQUAL, OFFRD, SNOWMOB , WLVIEW, HORSE, and ROCKCL.
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Table 1.  Variables Tested in the Panel Models.

VARIABLE DESCRIPTION

Dependent variable
CS Consumer surplus per person day (1996 dollars).  [36.14]a

Method variables

METHOD Qualitative variable:  1 if stated preference valuation approach used; 0 if revealed preference
approach used.  [0.64]

DCCVM Qualitative variable:  1 if dichotomous choice elicitation technique in a stated preference
approach was used; 0 if otherwise.  [0.18]

ZONAL Qualitative variable:  1 if revealed preference approach was a zonal model; 0 if otherwise
(random utility model is omitted category). [0.20]

INDIVID Qualitative variable:  1 if revealed preference approach was an individual model; 0 if otherwise
(random utility model is omitted category). [0.14]

TTIME Qualitative variable:  1 if revealed preference demand model incorporated travel time; 0 if
otherwise. [0.31]

SUBS Qualitative variable:  1 if demand model incorporated substitute sites; 0 if otherwise. [0.26]

ONSITE Qualitative variable:  1 if sample frame was on-site; 0 if otherwise. [0.29]

MAIL Qualitative variable:  1 if survey type was mail; 0 if otherwise (in person is omitted category).
[0.25]

PHONE Qualitative variable:  1 if survey type was phone; 0 if otherwise (in person is omitted category).
[0.50]

LINLIN Qualitative variable:  1 if regression function was estimated as linear on both dependent (d.v.) and
independent variables (i.v.); 0 if otherwise (linear d.v. and log i.v. is omitted category). [0.10]

LOGLIN Qualitative variable:  1 if regression function was estimated as log d.v. and linear i.v.; 0 if
otherwise (linear d.v. and log i.v. is omitted category). [0.16]

LOGLOG Qualitative variable:  1 if regression function was estimated as log on both d.v. and i.v.; 0 if
otherwise (linear d.v. and log i.v. is omitted category). [0.06]

VALUNIT Qualitative variable:  1 if consumer surplus was originally estimated as per day; 0 if otherwise
(e.g., trip, season, or year). [0.39]

TREND Qualitative variable:  year when CS estimate was recorded, coded as 1967=1, 1968=2, . .,
1996=30. [19.04]

Site variables
RECQUAL Qualitative variable:  site quality variable coded as 1 if the author stated site was of high quality

or the site was either a National Park, National Recreation Area, or Wilderness Area; 0 if
otherwise. [0.11]

SPECACT Qualitative variable:  1 if recreation activity requires specialized skill or equipment, including off-
road driving, float and motor boating, biking, skiing, snowmobiling, hunting, fishing, wildlife
viewing, horseback riding, or rock climbing; 0 if otherwise. [0.74]

FSADMIN Qualitative variable:  1 if the study sites were National Forests (i.e., administered by the U.S.
Forest Service); 0 if otherwise. [0.14]

R1 . . . R9 Qualitative variables:  1 if study sites were in the respective USFS Region; 0 if otherwise (R10 is
the omitted category; there is no USFS Region 7).
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Table 1.  Continued.

VARIABLE DESCRIPTION

LAKE Qualitative variable:  1 if the recreation site was a lake; 0 if otherwise (ocean or bay is the omitted
category). [0.05]

RIVER Qualitative variable:  1 if the recreation site was a river; 0 if otherwise (ocean or bay is the
omitted category). [0.04]

FOREST Qualitative variable:  1 if the recreation site was a forest; 0 if otherwise (non-forested is the
omitted category). [0.30]

PUBLIC Qualitative variable;  1 if ownership of the recreation site was public; 0 if otherwise. [0.96]

DEVELOP Qualitative variable:  1 if the recreation site had developed facilities, such as picnic tables,
campgrounds, restrooms, boat ramps, ski lifts, etc.; 0 if otherwise. [0.19]

NUMACT Quantitative variable:  the number of different recreation activities the site offers. [4.64]

Recreation activity
variables
CAMP . . . GENREC Qualitative variables:  1 if the relevant recreation activity was studied,; 0 if otherwise (Other

Recreation is the omitted category).  Where CAMP is camping, PICNIC is picnicking, SWIM is
swimming, SISEE is sightseeing, OFFRD is off-road driving, NOMTRBT is float boating,
MTRBOAT is motor boating, HIKE is hiking/backpacking, BIKE is biking, DHSKI is downhill
skiing, XSKI is cross county skiing, SNOWMOB is snowmobiling, BGHUNT is big game
hunting, SMHUNT is small game hunting, WATFOWL is waterfowl hunting, FISH is fishing,
WLVIEW is wildlife viewing, HORSE is horseback riding, ROCKCL is rock climbing, and
GENREC is general recreation.

Demographic proxy
variables

INCOME Quantitative variable:  average state per capita income in $1,000’s. [22.94]

AGE Quantitative variable:  percent of state older than 65. [0.12]

EDUC Quantitative variable:  percent of state with at least a bachelor’s degree in education. [0.20]

POPUL Quantitative variable:  state population in 100,000s. [56.16]

BLACK Quantitative variable:  percent of state population that is of African American descent. [0.08]

HISPAN Quantitative variable:  percent of state population that is of Hispanic descent. [0.08]
a Sample average values reported in square brackets.

The baseline OLS model had an adjusted-R2 of 0.26, which is lower but consistent with

the performance of the Walsh, Johnson and McKean (1989) and Smith and Kaoru (1990)

meta-analyses.  The model may not be the most efficient if it is overspecified, however,

our interest here is in testing for panel effects.  Optimized models are reported elsewhere

as noted above.  The residuals from the baseline OLS model are used to estimate the

variance components for computing the random effect model.  
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Table 2 provides the results of the hypothesis tests.  When stratified by Study, the

Lagrange multiplier test rejects the OLS specification in favor of a group effect model.

The Chi-square test rejects the random effect model in favor of the fixed effect model.

However, a significant problem with the fixed effect model is the potentially inordinate

number of study-specific constants; in this case, 131 constants.  Large numbers of

constants is a problem when applying the model, for example in calculating welfare

estimates from a linear demand model (Englin and Cameron 1996) or predicting benefit

estimates for benefit transfer purposes (Rosenberger, Loomis and Shrestha 1999).  An ad

hoc procedure to deal with this issue of multiple constants is by calculating a weighted

average constant, where the weights may be based on the frequency of estimates per

study (Desvousges, Johnson and Banzhaf 1998; Sturtevant, Johnson and Desvousges

1998).

Another way to deal with the fixed effect constants is to explicitly enter them in

the model through dummy variable specification.  This is possible because the fixed

effect model is simply an OLS with group-specific constants.  Some of these constants

may not be statistically significant.  In our analysis, we found six of the constants to be

statistically significant at the 0.05 level based on t-statistics.  However, contrary to our

expectations, these constants were not associated with studies providing multiple

estimates, but studies providing primarily single estimates (5 studies provided one

estimate each, the other study provided 2 estimates).  Upon further investigation, it was

determined that these seven estimates were outliers; they were greater than 2 standard

deviations from the activity mean estimate.  If these outliers are culled from the dataset,



12

Table 2.  Hypothesis test results.

BY STUDY (all observations)
Test Hypothesis Statistic Result
Lagrange multiplier H0: no group effect

H1: group effect
3.93 Reject OLS

(p-value=0.05)
Chi-square H0: random effect

H1: fixed effect
64.05 Reject random effect

(p-value=0.09)

BY STUDY (outliers removed)
Test Hypothesis Statistic Result
Lagrange multiplier H0: no group effect

H1: group effect
0.49 Fail to reject OLS

(p-value=0.48)
Chi-square H0: random effect

H1: fixed effect
0.00 Not applicable

BY RESEARCHER
Test Hypothesis Statistic Result
Lagrange multiplier H0: no group effect

H1: group effect
0.47 Fail to reject OLS

(p-value=0.49)
Chi-square H0: random effect

H1: fixed effect
0.00 Not applicable

BY DATA STRUCURE
Test Hypothesis Statistic Result
Lagrange multiplier H0: no group effect

H1: group effect
0.53 Fail to reject OLS

(p-value=0.47)
Chi-square H0: random effect

H1: fixed effect
0.00 Not applicable

the by Study with outliers removed Lagrange multiplier statistic in table 2 shows that we

fail to reject the OLS specification.

The by Researcher and by Data Structure Lagrange multiplier statistics fail to

reject the OLS specification as reported in table 2.  In each of the latter three cases, an

OLS specification is favored, suggesting that at least with these different stratifications of

the data, no panel effects were discernible.  There is still the possibility of

heteroskedasticity that needs to be accounted for, but there are no discernible systematic

unequal variances in the form of the random panel effect.
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CONCLUSIONS

As environmental and natural resource economic empirical studies continue to

accumulate, we can expect more meta-analyses of these studies for the purposes of

investigating methodological and site factors across the studies and for benefit transfer

purposes.  An important issue that has been noted since the first meta-analysis of these

types of studies is the panel nature of the data collected.  However, the majority of these

studies did not explicitly tested for panel effects nor investigate stratifying the data

beyond the study level.  If panel effects are not accounted for in meta-analysis databases

then the estimated models may be biased and inefficient due to correlation of multiple

values from the same source or through heteroskedastic error processes across the groups.

We tested for panel effects by stratifying the data by three different structures –

by Study (the seemingly most obvious source of panel effects), by Researcher, and by

Data Structure.  In each case we fail to reject an OLS without group effects specification.

What this implies is that either there are no panel effects in our dataset or there are many

ways to stratify the data.  Not all ways of stratifying the data are obvious.  Panel effects in

meta-analysis databases should always be considered.  However, our results show that,

possibly because of the inherent complexity of research conducted, the source of panel

effects may not be easily discernible.
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