%‘““‘“\N Ag Econ sxes
/‘ RESEARCH IN AGRICUITURAL & APPLIED ECONOMICS

The World’s Largest Open Access Agricultural & Applied Economics Digital Library

This document is discoverable and free to researchers across the
globe due to the work of AgEcon Search.

Help ensure our sustainability.

Give to AgEcon Search

AgEcon Search
http://ageconsearch.umn.edu

aesearch@umn.edu

Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only.
No other use, including posting to another Internet site, is permitted without permission from the copyright
owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C.

No endorsement of AgEcon Search or its fundraising activities by the author(s) of the following work or their
employer(s) is intended or implied.


https://shorturl.at/nIvhR
mailto:aesearch@umn.edu
http://ageconsearch.umn.edu/

Algorithm Aversion in Farmers’ Intention to Use Decision Support Tools in Crop
Management

Anna Massfeller*!, Daniel Hermann?!, Alexa Leyens?, Hugo Storm?

YInstitute for Food and Resource Economics, University of Bonn, Germany
Contributed Paper prepared for presentation at the 99" Annual Conference of the
Agricultural Economics Society, Bordeaux School of Economics, University of
Bordeaux, France
14 — 16 April 2025
Copyright 2025 by [author(s)]. All rights reserved. Readers may make verbatim copies of this

document for non-commercial purposes by any means, provided that this copyright notice

appears on all such copies.

*anna.massfeller@ilr.uni-bonn.de, Meckenheimer Allee 174, 53115 Bonn, Germany

This work has been funded by the Deutsche Forschungsgemeinschaft (DFG, German
Research Foundation) under Germany's Excellence Strategy — EXC 2070 — 390732324.

Abstract

Novel artificial intelligence (Al)-based decision support tools (DSTs) promise to make
pesticide application more efficient. However, the adoption of existing, non-Al, DST by
farmers is low, and farmers seem to prefer recommendations from human advisors.
Additionally, for medical applications, there is evidence of users’ reluctance against
(potentially superior) Al-based recommendations - a phenomenon known as Algorithm
Aversion. This study is the first to investigate Algorithm Aversion in the farming context
specifically with respect to farmers' intention to use an Al-DST for wheat fungicide application.
We conducted a preregistered online survey with a representative sample of German farmers
in autumn 2024. The analysis is based on a novel Bayesian probabilistic programming
workflow for experimental studies. The approach allows jointly analysing an extended version
of the Unified Theory of Acceptance and Use of Technology (UTAUT) with a willingness-to-
pay-experiment. We find that Algorithm Aversion plays an important role in farmers’ decision-
making. Our results emphasize the importance of user-friendly tech design, inform extension
services on resource allocation, and stress the need for policy to support AI-DST adoption.
This is the first study quantifying Algorithm Aversion in farmers’ decision-making. It forms
the foundation for future research on the underlying causes of Algorithm Aversion.
Additionally, we show how probabilistic programming can improve experimental research.
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1. Introduction

Reducing pesticide use in intensive agricultural production is among the main goals of the
current Common Agricultural Policy of the EU (European Commission, 2020), as their usage
is closely related to damage to the ecosystem (Brihl et al., 2022; Geiger et al., 2010; Sharma
etal., 2019). At the same time, pesticide use allows farmers to produce high yields and product
quality (Oerke, 2006), contributing to food security (Schneider et al., 2023).

To improve pesticide application efficiency and effectiveness, farmers can use decision
support tools (DST) (Lazaro et al., 2021). These tools help to optimize decisions under complex
and uncertain conditions (Rose et al., 2016; Shtienberg, 2013). Novel artificial intelligence
(Al)-based DST exhibit enhanced data gathering and prediction abilities by considering real-
time conditions (e.g. infestation pressures), thereby promising to deliver improved
recommendations for efficient pesticide application (Gautron et al., 2022; Khanna et al., 2024;
Léazaro et al., 2021).

Realizing these potential positive economic and environmental effects hinges on farmers’
willingness to adopt such tools. Previous research revealed that most farmers prefer
recommendations from advisory services and other farmers over those from smartphone
applications (Gabriel and Gandorfer, 2022; Genius et al., 2014; Kiraly et al., 2023; Skaalsveen
et al., 2020). Thus, adoption of DST is often lower than expected (Heidrich, 2020; McCown,
2002; Rojo-Gimeno et al., 2019; Rose et al., 2016).

Such reluctance against (potentially superior) recommendations from algorithmic decision
support is known as Algorithm Aversion (Dietvorst et al., 2015): the phenomenon of individuals
preferring advice from humans over advice from an algorithm, even if the algorithm
outperforms the human. While this phenomenon is well-studied in other contexts like medicine
(Longoni et al., 2019) or finance (Cohen et al., 2021), it is not studied in context of agricultural
decision-making (Mahmud et al., 2022). However, with the ongoing development of Al-based
DST in crop production (Gautron et al., 2022) and their potential for improving efficient
pesticide usage to decrease environmental degradation (Geiger et al., 2010), there is a crucial
need for understanding farmers’ decision to use such advanced technologies. Therefore, we
aim to explore and quantify the role of Algorithm Aversion in farmers’ intention to adopt Al-
based DST for pesticide application, adding to the literature on the adoption of digital

technologies.



We focus on the specific case of fungicide application in wheat. Fungi in wheat are
responsible for 15-20% vyield loss per year (Figueroa et al., 2018) and impacts increase with
intensification of crop productivity (Oerke, 2006). In Germany, a country known for highly
intensive crop production, fungicides account for 24% of pesticide sales (in t) in 2022. As a
result, German wheat yields are among the highest worldwide (Gianessi and Williams, 2011;
Oerke, 2006). Nevertheless, fungicide usage is closely linked to environmental degradation,
e.g., biodiversity loss (Fritsch et al., 2024; Geiger et al., 2010; McMahon et al., 2012). As part
of Directive 2009/128/EC on the sustainable use of pesticides (European Commission, 2009),
EU farmers are obliged to follow the guidelines of integrated pest management (IPM)
(European Commission, 2024; Smith and Van den Bosch, 1967). Within these guidelines,
pesticide usage is recommended only after curative measures have been applied and if a certain
infestation threshold is reached.

DSTs for fungicide application show the potential to halve fungicide use without
increasing the disease risk, compared to calendar-based strategies (Lazaro et al., 2021). This
effect can be mainly traced back to the DSTs' ability to predict spray timing based on observed
or predicted risk of disease, leading farmers to apply the fungicides when they are most
effective during the growing season. In recent years, Al-based DST relying on reinforcement
learning and using real-time data from in-field sensors or drones evolved (Gautron et al., 2022)
and a meta-study by Rossi et al. (2019) shows that out of 217 DST for fungicide application,
the majority is for wheat. Additionally, newest developments show the combination of AI-DST
for fungi in wheat with novel insurance systems ensuring farmers’ compensation if the

followed recommendation fails (BASF, 2024).

In order to answer our research question, we conducted a pre-registered online survey?
with German arable farmers in autumn 2024 consisting of 1) a theory-based part extending the
Unified Theory of Acceptance and Usage of Technology (UTAUT) (Venkatesh et al., 2003)
and 2) an experiment aiming at eliciting the farmers’ Willingness-To-Pay (WTP) for
hypothetical recommendations coming from an Al-based DST versus one coming from a
human advisor. In the preparation and analysis of the study, we follow a probabilistic
programming (PP) workflow (Gelman et al., 2020; McElreath, 2020; Storm et al., 2024) which

offers advantages for survey design and analysis. Specifically, it allows us to jointly analyze

! Please find the public, anonymous pre-registration here:
https://osf.io/hkwn4/?view_only=8b49f507a39a40e881483d194a6bb445
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the UTAUT and WTP part of the survey in one combined analysis. It improves the transparency
of the underlying theoretical assumption and allows for code testing, model inference, and the
illustration of the results using synthetic data before actual data collection (see pre-registration).
Lastly, it provides the advantages of the Bayesian approach to interpret uncertainty compared
to frequentist approaches (Storm et al. (2024). To our knowledge, we are among the first to
present an application of the Bayesian workflow covering all stages of the experimental study
(see Stranieri et al. (2022) or Varacca (2024) for other applications of the Bayesian approach

in experimental settings).

Our results indicate that Algorithm Aversion plays an important role in farmers’ intention
to use and willingness to pay for AI-DST. With this study, we contribute to the existing
literature in three ways. First, we are the first to examine and quantify the role of Algorithm
Aversion in farmers’ decision-making. Second, we show how the probabilistic workflow can
be used to develop and analyze experimental surveys. Third, we provide valuable insights for
tech developers, policymakers, and agricultural extension services on how to bring together

farmers and Al-based DST that have the potential to improve pesticide application efficiency.
2. Conceptual Framework

In order to test our hypothesis and to answer our research question, we first need to
conceptualize Algorithm Aversion to make it measurable. To this end, we follow the PP
workflow (Storm et al., 2024) and in the first step, define the quantity to estimate as the extent
of Algorithm Aversion.

The role of novel technologies’ performance as important vehicle for its adoption has
already been studied in similar contexts. For example, recent studies based on the UTAUT
found that, among others, Performance Expectancy and attitude towards the technology are
positively related to the farmers’ behavioral intention to adopt (Giua et al., 2022; Michels et
al., 2020; Ribcke von Veltheim et al., 2022) and trust in robots and Al is mainly explained by

their performance, transparency, and reliability (Hancock et al., 2011; Kaplan et al., 2023).

Thus, as performance seems to play a major role in trust in Al and hence for adoption
decisions and in line with the definition by Dietvorst et al. (2015), within our study, we focus
on performance as a major vehicle to elicit farmers' intention to use DSTs. This focus is also
reflected in the choice of the UTAUT by Venkatesh et al. (2003) as a theoretical basis, as this



framework allows us to specifically consider Performance Expectancy as a construct

explaining the intention to use a technology.

In the second step of the workflow, we proceed by defining a causal model, depicted in a
directed acyclic graph (DAG), Figure 1. Our study consists of two parts: the extended UTAUT-
based approach (upper part Figure 1) and the WTP experiment (lower part Figure 1). In the
following, we explain the conceptualization of Algorithm Aversion for each of these parts.

Figure 1: Directed Acyclic Graph
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2.1.  Conceptualization of Algorithm Aversion within UTAUT

To reflect the role of Algorithm Aversion within the UTAUT and, in contrast to Cao et al.
(2021), who pursued a similar approach, we extend the traditional setup by adding “Al-
Anxiety” as a novel construct, as shown in the DAG in Figure 1. This construct is formed based
on a validated Al-Anxiety scale from Wang and Wang (2022). We use 16 of their statements
to capture each individual's Al-Anxiety (i.e. AlA1 — AlAsg). Following Kaplan et al. (2023),
who found that ability- and characteristic-based factors explain trust in Al, and Mahmud et al.
(2022), who identified personal factors to explain Algorithm Aversion, we assume that Al-
Anxiety is, similar to the other constructs, a function of the personal characteristics. For more
details on the choice of personal characteristics and the relation between the constructs and

respective UTAUT-based hypotheses, please see the pre-registration.

We graphically depict the effect of ﬂAIA_Bl in Figure 2. Algorithm Aversion would occur

if farmers exhibit a low behavioral intention to use an Al-based DST although the performance



expectancy is high, resulting in a negative value for 8, , .., respectively. This means that for

a certain level of performance expectancy on the 7-point Likert scale, a neutral person (blue
line in Figure 2) would exhibit a certain level of behavioral intention on the same scale. In the
case of an algorithm averse person (orange line), the “translation” from performance
expectancy into behavioral intention would be distorted by Algorithm Aversion. Hence, for the
same level of performance expectancy the behavioral intention would be lower compared to a

neutral person. This means that a negative g, , .. materializes as a downward shift of the line

for individuals with high Al-Anxiety.
Figure 2: UTAUT-based conceptualization of Algorithm Aversion
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2.2.  Conceptualization of Algorithm Aversion in the Experiment

In the second part of the survey, we conduct a willingness-to-pay (WTP) experiment
(lower part Figure 1). More specifically, we elicit the difference in the WTP for human and Al-
based DST advice (AWTP) given information on the difference in the performance
(4Performance) of each (for a detailed description of “performance” see section 3.1). As
depicted in Figure 3, we assume that if the human and the AI-DST perform equally well (i.e.
APerformance = 0), for an algorithm-neutral person (blue line), there would be no difference
in the WTP, i.e., AWTP = 0. Consequently, if the human performs better, the WTP for the
human is higher, and vice versa. In contrast, an algorithm averse person (orange line) would
exhibit a higher WTP for the human, even if the AI-DST performs equally well or even better.
From this setup, it follows that, similar to the UUTAUT setup we assume Algorithm Aversion

to materialize as the negative effect of Al-Anxiety on AWTP, called B4, (lower red arrow in



Figure 1) which translates into a downward shift of the lines in Figure 3 for individuals with
high Al-Anxiety.
Figure 3: Conceptualization of Algorithm Aversion on the Experiment
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3. Method and Data

3.1.  Survey Design, Sampling and Data

We conducted a three-step online survey in cooperation with a market research company.
The survey was carried out by German arable farmers and collected quantitative primary data
in autumn 2024. We obtained ethical clearance before the survey started, pretested it with
experts and farmers, and preregistered it on the open science framework?. Before participating,
farmers had to accept the data protection rules and meet the criteria of being engaged in arable
farming. Participating farmers were informed upon the survey that they could voluntarily
participate in a lottery at the end. In this lottery, about 2% of farmers were randomly drawn
and received either a voucher or a non-cash price. To establish a baseline definition of Al-
based DST among participants, the questionnaire began with a short neutral information text
about DST and what we understand as Al-based tools. Then the order of the two parts

(UTAUT-based statements and experiment) was randomly assigned between participants.

In the UTAUT-based part, participants had to evaluate statements for each of the latent
constructs on a 7-point Likert-Scale (1= Totally disagree, 3 = Neutral, 7 = Totally agree). We

formulated the statements following 1) the original formulation as proposed by Venkatesh et

2 https://osf.io/hkwn4/?view _only=8b49f507a39a40e881483d194a6bb445
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al. (2003) and 2) modifications from similar studies with German farmers (Michels et al., 2020;
Otter and Deutsch, 2023; Riibcke von Veltheim et al., 2022). A novelty compared to existing
studies was the evaluation of statements on Al-Anxiety based on the validated Al-Anxiety
scale from Wang and Wang (2022).3

The experimental part of the survey is an adaptation from a study from the medical context
done by Longoni et al. (2019). We transferred this study to the agricultural decision-making
context and adjusted it to fit our purpose. As a first step, we showed all participants a short text
about fungicide applications, reminded farmers of the threshold principle of Integrated Weed
Management (IWM), and informed them about the two options for advice. We clearly stated
that except for the subject analyzing the data and making the recommendation (human advisor
or AI-DST), everything else was the same (input data needed, time to receive the
recommendation, etc.). Each farmer was then shown the actual WTP choice (Figure 4) three
times, with varying values for past performance. We define performance as the probability of
an improvement in the economic result compared to the status quo, i.e. without this additional
advice.* Out of nine possible combinations (85%,90%, and 95% for each), three combinations
were chosen, whereby the human advisor values were drawn without replacement (i.e., each
performance value was shown once) while the ones for the AI-DST were randomly drawn with
replacement. The slider to choose the monetary value willing to spend was, by default, set at
0.

3 Traditionally, such theory-based approaches are analyzed using a Partial Least Squares Structural Equation Model (PLS-
SEM). In the final paper we will compare our results from Bayesian statistics to the results obtained from the traditional PLS-
SEM approach and examine the relation between constructs (outer model) and within statements (inner model), but this aspect
is not within the scope of the present conference contribution.

4 In the survey this read as follows (translated from German): “We will [also] show you how successful the recommendations
have been in the past. This means you will see how often the recommended strategy led to reduced yield losses when the
recommendation was followed exactly. Example: In the past, advice X has recommended the correct fungicide strategy 90%
of the time. This means that in 9 out of 10 cases, advice X recommended a fungicide strategy that led to an improvement in the

economic result compared to the status quo (vour previous management), i.e. without this additional advice.”



Figure 4: WTP Choice Design
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3.2.  Statistical Framework

In the third step of the PP workflow, we use the DAG to define the statistical model and
the Data Generating Process (DGP) by describing theory-based distributional and relational
assumptions on the model parameters. While details can be found in the pre-registration, one
important aspect is the Bayesian modeling of Likert-Scale items to measure latent constructs.
Based on Item-Rating-Theory (Andersen, 1997; Andrich, 2016), we follow seminal works
from Fox (2010), Stranieri (2022), and Varacca (2024) in the modeling of cut points for the
Likert-scale-type responses and the choice of priors. Another important aspect of the approach
is that it allows estimating the parameter of the UTAUT and the WTP experiment in one step,

while also estimating the latent Al-Anxiety (AlA in Figure 1) from both parts of the survey.

In the next step of the PP workflow, we create synthetic data based on the DGP and use
this data to test if our statistical model can recover the deliberately set values for Algorithm
Aversion. This procedure allows us to test our model’s functionality and simulate how farmers
might complete the survey, which enables improving survey design before data collection. The

results of this step can be found in the pre-registration. As last step, we analyze the real data



obtained from the survey using the DGP. Note that the model is allowed to learn from the data

and update the prior beliefs.

4. Results

In our preliminary results, we find that within our representative sample of 250 German
arable farmers, Algorithm Aversion plays an important role in the intention to use and the WTP
for AI-DST. We find that both coefficients of interest (Baia_si and Baa) are clearly negative,
with a mean of -0.56 for Baia_gi (Credibility Interval 5%-95% [-1.03; 0.00]) and a mean of -
0.35 for Baa (Credibility Interval 5%-95% [-0.40; -0.31]). Following our conceptualization of
Algorithm Aversion (Figures 2 and 3 in Section 2), we present the results of the UTAUT part
and the experiment. As shown in Figure 5, farmers in our sample are quite clearly algorithm
anxious (i.e. Latent Al-Anxiety > 0). We depict Al-neutral individuals in blue and Al-anxious
ones in yellow.

Figure 5: Distribution of latent Al-Anxiety within sample
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In Figure 6, we now turn to the relationship between Performance Expectancy and
Behavioral Intention (UTAUT part, left side) and between Performance and WTP (experiment,

right side) for different levels of Al-Anxiety.



Figure 6: Regression lines for UTAUT-part (left) and experiment (right)
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For both parts, a downward shift of the lines for individuals with higher Al-Anxiety
(yellowish lines) indicates the presence of Algorithm Aversion. The left plot shows the relation
between Performance Expectancy and Behavioral Intention. It can be seen that in general, the
Behavioral Intention to adopt an Al-based DST is rather low. With increasing levels of
Performance Expectancy, Behavioral Intention increases, indicating a positive relationship
between these two constructs. Related studies relying on the UTAUT as a theoretical
framework found a similar positive relationship between Performance Expectancy and
Behavioral Intention (Giua et al., 2022; Michels et al., 2020; Otter and Deutsch, 2023; Riibcke
von Veltheim et al., 2022). With increasing Al-Anxiety, the lines are shifting downwards,
indicating that Al-anxious individuals (yellowish lines) have a lower Behavioral Intention at

the same Performance Expectancy level as algorithm-neutral individuals (blue).

The right plot shows a similar pattern for the experiment. At a given performance
difference level, algorithm-anxious individuals exhibit a lower WTP for AI-DST. More
concretely, even if the AI-DST performs better than the individual, Al-anxious individuals

prefer the human advisor.

When comparing our results to the ones from Longoni et al. (2019) in the medical context,
similar observations were made: participants preferred the human healthcare provider over the
Al-automated one, even if it performed worse. Similarly, participants were willing to pay more

for a human provider than for an Al-automated one.

To summarize, we find that the overall Behavioral Intention to adopt, as well as the WTP

for AI-DST, is rather low within our sample. While even algorithm-neutral individuals seem



to be rather skeptical towards such tools, there is a clear trend of algorithm-anxious people
exhibiting an even lower Intention/ WTP at a given Performance (Expectancy) level, indicating

that Algorithm Aversion plays an important role.

5. Discussion

In the following, we discuss potential factors explaining Algorithm Aversion for our
sample of German arable farmers, grouped into 1) algorithm-related, 2) individual-related, and
3) task-related factors, based on the framework by Mahmud et al. (2022).

5.1. Algorithm-related factors explaining Algorithm Aversion

The first group of factors, algorithm-related ones, consists of design, decision, and delivery
factors. One main reason for Algorithm Aversion is the black-box nature of the tool, indicating
a lack of transparency (Dzindolet et al., 2002). Accessibility and understandability of the
recommendation are important to reduce Algorithm Aversion (Chander et al., 2018). The
missing access to the algorithms’ reasoning leads to reduced trust in the recommendation
(Onkal et al., 2009), especially if the recommendation contradicts one’s own decision
(Festinger, 1957). This is in line with findings on farmers’ non-Al DST adoption, where
transparency about the algorithm and reasoning of recommendations explains trust in the tool
and hence adoption by farmers (Akaka et al., 2024; Kerebel et al., 2013; Rose et al., 2016). We
assume this black box character and lack of transparency and trust leads to doubting the
accuracy of the recommendation resulting in several fears among farmers inducing Algorithm

Aversion.

First, individuals might fear the AI-DST to overlook their unique characteristics and
provide generic recommendations, a phenomenon termed “uniqueness neglect” (Longoni et al.,
2019). In the agricultural context, farmers seem to be more influenced by peers who face the
same local production conditions (e.g., soil quality, topography) as those unique conditions
matter for farm management decisions (Massfeller and Storm, 2024).

A second fear is not only related to the algorithm but also the outlook, that is, the gain or
loss prospect of the decision. The reliance on the algorithmic recommendation seems to depend
on whether a gain or a loss is forecasted (Mahmud et al., 2022) but is also closely related to the
risk tolerance of the individual (Swinney, 1999). Within our sample, most farmers perceive
themselves as neither extremely risk-averse nor extremely risk-loving. However, in the case of
pesticide application, farmers seem to (over-)emphasize the risk of yield loss due to a fungal

infection or weed infestation (Gent et al., 2011; McRoberts et al., 2011; M6hring and Finger,



2017; Skevas et al., 2014). Known as loss aversion and rooted in Prospect Theory (Kahneman
and Tversky, 2013), this phenomenon can result in risk-mitigating behavior. Farmers might
fear, that an AI-DST does not take the long-term risks into account, leading to distrust in the
recommendation (Macé et al., 2007).

5.2. Individual-related factors explaining Algorithm Aversion

Concerning the second group of individual-related factors, research in other contexts found
that some individuals habitually exhibit a general aversion to algorithms, coming along with a
general distrust and negative perceptions about the algorithmic decision (Mahmud et al., 2022).
Related research on DST adoption decisions found farmers to be rather skeptical about the
technologies (Akaka et al., 2024; Heidrich, 2020; McCown, 2002; Rojo-Gimeno et al., 2019;
Rose et al., 2016). This is mirrored in our sample, where we find that most farmers exhibit a
rather low technological interest. Similarly, other studies found that low technological interest
(Rubcke von Veltheim et al., 2022) and a negative attitude towards the technology (Otter and
Deutsch, 2023) explain a low intention to adopt. Hence, we conclude that a general, habitual

aversion towards algorithms could explain our findings.

Another important personality trait related to Algorithm Aversion is the concern about the
relationship with the human expert (Mahmud et al., 2022). Farm advisors are among the
preferred sources of recommendation (Skaalsveen et al., 2020) and the relationship is often
quite familiar and long-lasting (Kuehne et al., 2020). In our sample, the majority of farmers
indicated they have had good to excellent experiences with their human advisor over the past
5 years. Farmers might fear jeopardizing this relationship when switching to AI-DST tools.
For example, it was found that farmers wish to not replace but rather complement human advice
with algorithmic advice (McCown, 2002; Rose et al., 2016). This finding is supported by
results from Longoni et al. (2019) in the context of medical Al tools, where patients prefer a

combination of human and Al healthcare providers.

When turning to prior experience with algorithms, in our case DST, this can influence
Algorithm Aversion in both directions (Li et al., 2020; Liu et al., 2019). Within our sample,
most farmers had rather bad experiences with (non-Al) DST, potentially resulting in
reservations about the technology (Mahmud et al., 2022). Experience with algorithms also
comes along with the ability to use and familiarity with algorithms, which plays an important
role in their adoption (Khanna et al., 2024). While most farmers in our sample use some digital
technology (e.g., digital accounting, section control, or variable rate application), the use of Al
tools among a subsample of German farmers was found to be below 10% (Rohleder and



Meinel, 2024). Additionally, digital and Al training are closely related to age. Typically, the
farming population is rather old; in our sample, the mean age is 50 years. Older farmers tend
to feel less competent in using digital tools (Rubcke von Veltheim et al., 2022) and with
increasing age, Algorithm Aversion increases in other decision-making contexts (Araujo et al.,
2020; Lourenco et al., 2020), supporting our findings.

5.3. Task-related factors explaining Algorithm Aversion

The last group of factors considers the contextual setting of the task. From a social and
cultural perspective, other peoples’ views and experience of algorithms play a crucial role in
Algorithm Aversion (Alexander et al., 2018; Workman, 2005). Within our sample, most
farmers believe that neither their colleagues nor other farmer friends think one should use an
AI-DST for fungicide application. Such injunctive norms have been found to be of critical
importance in farmers’ decision-making (see, e.g., overview by Déssart et al. (2019)).
Similarly, descriptive norms, i.e., “Do I know or observe peers (successfully) using the new
tool?” influence farmers’ adoption decisions (Massfeller and Storm, 2024) but seem to play a
minor role at the moment as AI-DST usage among farmers is low. In the context of pesticide
application, social factors are closely related to the notion of what is considered a “good
farmer” (Burton et al., 2020; Lavoie and Wardropper, 2021; Sutherland, 2013; Sutherland and
Darnhofer, 2012; Westerink et al., 2021). As it has been found that individuals perceive those
who use an algorithm as less capable and intelligent (Arkes et al., 1986; Diab et al., 2011;
Eastwood et al., 2012), the same might apply to the agricultural context. Farmers want to signal
their success in being a good farmer, for example by having tidy wheat fields without fungal
diseases (Burton, 2012; Burton and Wilson, 2006; Davis and Carter, 2014; Dentzman and
Jussaume, 2017; Lavoie and Wardropper, 2021; Marr and Howley, 2019). As discussed in
Sections 4.2. and 4.3. the (perceived) risk of the algorithm not giving an accurate
recommendation, taking (long-term) crop management effects into account, might not only
trigger farmers’ risk of yield loss but also their wish to be perceived as good farmers. As we
assume farmers are not purely profit-maximizers but rather utility-maximizers, peer perception
and social recognition might be equally important as high yield and healthy fields (Weersink
and Fulton, 2020).

6. Conclusion
With this study, we are the first to explore and quantify the role of Algorithm Aversion in
the agricultural decision-making context. Our result that Algorithm Aversion plays an

important role is supported in both the UTAUT-based and the experimental part of the survey.



We present a novel approach of how following a probabilistic programming workflow can

complement survey design and analysis.

For the final version of this paper, we aim to provide more details on the descriptive results.
We further plan to compare our probabilistic programming UTAUT results to the traditional
approach of partial least squares-structural equation modelling (PLS-SEM) and to dig deeper
into the interpretation of the coefficients by testing the UTAUT-related hypotheses on the

relation between the constructs.

One limitation of our study is the hypothetical character of the scenario. In line with the
literature, we elicited farmers’ stated preferences and not the incentivized WTP or on-farm
adaptation decision. We believe that our work can serve as a basis for future studies on

Algorithm Aversion focusing on real-world decisions and revealed preferences.

Given the increasing potential of Al-based DST for efficiency improvements in crop
production, based on our findings, future research needs to consider the role of Algorithm
Aversion in adoption studies and should investigate the reasons for it to identify paths for

overcoming these challenges as well as potential policy support mechanisms.

We conclude that technology development needs to carefully design AI-DST by
considering farmers’ AA. It should probably not be the AI-DSTs’ goal to replace humans but
rather complement either advisors’ recommendations or farmers’ own reasoning (Evans et al.,

2017; Hochman and Carberry, 2011; Rose et al., 2016).

Given the overall low intention and WTP for AI-DST, financial support from the policy
side might be needed to convince farmers to use such novel tools. Further, given the strong
preference for human advice, agricultural advisory services should carefully decide which tasks

to outsource to Al and which to continue executing by human advisors.
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