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Abstract 

Novel artificial intelligence (AI)-based decision support tools (DSTs) promise to make 

pesticide application more efficient. However, the adoption of existing, non-AI, DST by 

farmers is low, and farmers seem to prefer recommendations from human advisors. 

Additionally, for medical applications, there is evidence of users’ reluctance against 

(potentially superior) AI-based recommendations - a phenomenon known as Algorithm 

Aversion. This study is the first to investigate Algorithm Aversion in the farming context 

specifically with respect to farmers' intention to use an AI-DST for wheat fungicide application. 

We conducted a preregistered online survey with a representative sample of German farmers 

in autumn 2024. The analysis is based on a novel Bayesian probabilistic programming 

workflow for experimental studies. The approach allows jointly analysing an extended version 

of the Unified Theory of Acceptance and Use of Technology (UTAUT) with a willingness-to-

pay-experiment. We find that Algorithm Aversion plays an important role in farmers’ decision-

making. Our results emphasize the importance of user-friendly tech design, inform extension 

services on resource allocation, and stress the need for policy to support AI-DST adoption. 

This is the first study quantifying Algorithm Aversion in farmers’ decision-making. It forms 

the foundation for future research on the underlying causes of Algorithm Aversion. 

Additionally, we show how probabilistic programming can improve experimental research.  
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1. Introduction 

Reducing pesticide use in intensive agricultural production is among the main goals of the 

current Common Agricultural Policy of the EU (European Commission, 2020), as their usage 

is closely related to damage to the ecosystem (Brühl et al., 2022; Geiger et al., 2010; Sharma 

et al., 2019). At the same time, pesticide use allows farmers to produce high yields and product 

quality (Oerke, 2006), contributing to food security (Schneider et al., 2023).  

To improve pesticide application efficiency and effectiveness, farmers can use decision 

support tools (DST) (Lázaro et al., 2021). These tools help to optimize decisions under complex 

and uncertain conditions (Rose et al., 2016; Shtienberg, 2013). Novel artificial intelligence 

(AI)-based DST exhibit enhanced data gathering and prediction abilities by considering real-

time conditions (e.g. infestation pressures), thereby promising to deliver improved 

recommendations for efficient pesticide application (Gautron et al., 2022; Khanna et al., 2024; 

Lázaro et al., 2021). 

Realizing these potential positive economic and environmental effects hinges on farmers’ 

willingness to adopt such tools. Previous research revealed that most farmers prefer 

recommendations from advisory services and other farmers over those from smartphone 

applications (Gabriel and Gandorfer, 2022; Genius et al., 2014; Kiraly et al., 2023; Skaalsveen 

et al., 2020). Thus, adoption of DST is often lower than expected (Heidrich, 2020; McCown, 

2002; Rojo-Gimeno et al., 2019; Rose et al., 2016).  

Such reluctance against (potentially superior) recommendations from algorithmic decision 

support is known as Algorithm Aversion (Dietvorst et al., 2015): the phenomenon of individuals 

preferring advice from humans over advice from an algorithm, even if the algorithm 

outperforms the human. While this phenomenon is well-studied in other contexts like medicine 

(Longoni et al., 2019) or finance (Cohen et al., 2021), it is not studied in context of agricultural 

decision-making (Mahmud et al., 2022). However, with the ongoing development of AI-based 

DST in crop production (Gautron et al., 2022) and their potential for improving efficient 

pesticide usage to decrease environmental degradation (Geiger et al., 2010), there is a crucial 

need for understanding farmers’ decision to use such advanced technologies. Therefore, we 

aim to explore and quantify the role of Algorithm Aversion in farmers’ intention to adopt AI-

based DST for pesticide application, adding to the literature on the adoption of digital 

technologies. 



We focus on the specific case of fungicide application in wheat. Fungi in wheat are 

responsible for 15-20% yield loss per year (Figueroa et al., 2018) and impacts increase with 

intensification of crop productivity (Oerke, 2006). In Germany, a country known for highly 

intensive crop production, fungicides account for 24% of pesticide sales (in t) in 2022. As a 

result, German wheat yields are among the highest worldwide (Gianessi and Williams, 2011; 

Oerke, 2006). Nevertheless, fungicide usage is closely linked to environmental degradation, 

e.g., biodiversity loss (Fritsch et al., 2024; Geiger et al., 2010; McMahon et al., 2012). As part 

of Directive 2009/128/EC  on the sustainable use of pesticides (European Commission, 2009), 

EU farmers are obliged to follow the guidelines of integrated pest management (IPM) 

(European Commission, 2024; Smith and Van den Bosch, 1967). Within these guidelines, 

pesticide usage is recommended only after curative measures have been applied and if a certain 

infestation threshold is reached.  

DSTs for fungicide application show the potential to halve fungicide use without 

increasing the disease risk, compared to calendar-based strategies (Lázaro et al., 2021). This 

effect can be mainly traced back to the DSTs' ability to predict spray timing based on observed 

or predicted risk of disease, leading farmers to apply the fungicides when they are most 

effective during the growing season. In recent years, AI-based DST relying on reinforcement 

learning and using real-time data from in-field sensors or drones evolved (Gautron et al., 2022) 

and a meta-study by Rossi et al. (2019) shows that out of 217 DST for fungicide application, 

the majority is for wheat. Additionally, newest developments show the combination of AI-DST 

for fungi in wheat with novel insurance systems ensuring farmers’ compensation if the 

followed recommendation fails (BASF, 2024). 

In order to answer our research question, we conducted a pre-registered online survey1 

with German arable farmers in autumn 2024 consisting of 1) a theory-based part extending the 

Unified Theory of Acceptance and Usage of Technology (UTAUT) (Venkatesh et al., 2003) 

and 2) an experiment aiming at eliciting the farmers’ Willingness-To-Pay (WTP) for 

hypothetical recommendations coming from an AI-based DST versus one coming from a 

human advisor. In the preparation and analysis of the study, we follow a probabilistic 

programming (PP) workflow (Gelman et al., 2020; McElreath, 2020; Storm et al., 2024) which 

offers advantages for survey design and analysis. Specifically, it allows us to jointly analyze 

                                                 
1 Please find the public, anonymous pre-registration here: 

https://osf.io/hkwn4/?view_only=8b49f507a39a40e881483d194a6bb445 

https://eur-lex.europa.eu/eli/dir/2009/128/2009-11-25
https://osf.io/hkwn4/?view_only=8b49f507a39a40e881483d194a6bb445


the UTAUT and WTP part of the survey in one combined analysis. It improves the transparency 

of the underlying theoretical assumption and allows for code testing, model inference, and the 

illustration of the results using synthetic data before actual data collection (see pre-registration). 

Lastly, it provides the advantages of the Bayesian approach to interpret uncertainty compared 

to frequentist approaches (Storm et al. (2024). To our knowledge, we are among the first to 

present an application of the Bayesian workflow covering all stages of the experimental study 

(see Stranieri et al. (2022) or Varacca (2024) for other applications of the Bayesian approach 

in experimental settings). 

Our results indicate that Algorithm Aversion plays an important role in farmers’ intention 

to use and willingness to pay for AI-DST. With this study, we contribute to the existing 

literature in three ways. First, we are the first to examine and quantify the role of Algorithm 

Aversion in farmers’ decision-making. Second, we show how the probabilistic workflow can 

be used to develop and analyze experimental surveys. Third, we provide valuable insights for 

tech developers, policymakers, and agricultural extension services on how to bring together 

farmers and AI-based DST that have the potential to improve pesticide application efficiency.   

2. Conceptual Framework 
 

In order to test our hypothesis and to answer our research question, we first need to 

conceptualize Algorithm Aversion to make it measurable. To this end, we follow the PP 

workflow (Storm et al., 2024) and in the first step, define the quantity to estimate as the extent 

of Algorithm Aversion.  

The role of novel technologies’ performance as important vehicle for its adoption has 

already been studied in similar contexts. For example, recent studies based on the UTAUT 

found that, among others, Performance Expectancy and attitude towards the technology are 

positively related to the farmers’ behavioral intention to adopt (Giua et al., 2022; Michels et 

al., 2020; Rübcke von Veltheim et al., 2022) and trust in robots and AI is mainly explained by 

their performance, transparency, and reliability (Hancock et al., 2011; Kaplan et al., 2023).  

Thus, as performance seems to play a major role in trust in AI and hence for adoption 

decisions and in line with the definition by Dietvorst et al. (2015), within our study, we focus 

on performance as a major vehicle to elicit farmers' intention to use DSTs. This focus is also 

reflected in the choice of the UTAUT by Venkatesh et al. (2003) as a theoretical basis, as this 



framework allows us to specifically consider Performance Expectancy as a construct 

explaining the intention to use a technology.  

In the second step of the workflow, we proceed by defining a causal model, depicted in a 

directed acyclic graph (DAG), Figure 1. Our study consists of two parts: the extended UTAUT-

based approach (upper part Figure 1) and the WTP experiment (lower part Figure 1). In the 

following, we explain the conceptualization of Algorithm Aversion for each of these parts. 

Figure 1: Directed Acyclic Graph 

 

2.1. Conceptualization of Algorithm Aversion within UTAUT 

To reflect the role of Algorithm Aversion within the UTAUT and, in contrast to Cao et al. 

(2021), who pursued a similar approach, we extend the traditional setup by adding “AI-

Anxiety” as a novel construct, as shown in the DAG in Figure 1. This construct is formed based 

on a validated AI-Anxiety scale from Wang and Wang (2022). We use 16 of their statements 

to capture each individual's AI-Anxiety (i.e. AIA1 – AIA16). Following Kaplan et al. (2023), 

who found that ability- and characteristic-based factors explain trust in AI, and Mahmud et al. 

(2022), who identified personal factors to explain Algorithm Aversion, we assume that AI-

Anxiety is, similar to the other constructs, a function of the personal characteristics. For more 

details on the choice of personal characteristics and the relation between the constructs and 

respective UTAUT-based hypotheses, please see the pre-registration.  

 We graphically depict the effect of β
𝐴𝐼𝐴_𝐵𝐼

 in Figure 2. Algorithm Aversion would occur 

if farmers exhibit a low behavioral intention to use an AI-based DST although the performance 



expectancy is high, resulting in a negative value for β
𝐴𝐼𝐴_𝐵𝐼

, respectively. This means that for 

a certain level of performance expectancy on the 7-point Likert scale, a neutral person (blue 

line in Figure 2) would exhibit a certain level of behavioral intention on the same scale. In the 

case of an algorithm averse person (orange line), the “translation” from performance 

expectancy into behavioral intention would be distorted by Algorithm Aversion. Hence, for the 

same level of performance expectancy the behavioral intention would be lower compared to a 

neutral person. This means that a negative β
𝐴𝐼𝐴_𝐵𝐼

 materializes as a downward shift of the line 

for individuals with high AI-Anxiety.  

Figure 2: UTAUT-based conceptualization of Algorithm Aversion 

 

2.2. Conceptualization of Algorithm Aversion in the Experiment 

In the second part of the survey, we conduct a willingness-to-pay (WTP) experiment 

(lower part Figure 1). More specifically, we elicit the difference in the WTP for human and AI-

based DST advice (ΔWTP) given information on the difference in the performance 

(ΔPerformance) of each (for a detailed description of “performance” see section 3.1). As 

depicted in Figure 3, we assume that if the human and the AI-DST perform equally well (i.e. 

ΔPerformance = 0 ), for an algorithm-neutral person (blue line), there would be no difference 

in the WTP, i.e., ΔWTP = 0. Consequently, if the human performs better, the WTP for the 

human is higher, and vice versa. In contrast, an algorithm averse person (orange line) would 

exhibit a higher WTP for the human, even if the AI-DST performs equally well or even better. 

From this setup, it follows that, similar to the UUTAUT setup we assume Algorithm Aversion 

to materialize as the negative effect of AI-Anxiety on ΔWTP, called β𝐴𝐴 (lower red arrow in 



Figure 1) which translates into a downward shift of the lines in Figure 3 for individuals with 

high AI-Anxiety. 

Figure 3: Conceptualization of Algorithm Aversion on the Experiment 

 

3. Method and Data 
 

3.1. Survey Design, Sampling and Data 

We conducted a three-step online survey in cooperation with a market research company. 

The survey was carried out by German arable farmers and collected quantitative primary data 

in autumn 2024. We obtained ethical clearance before the survey started, pretested it with 

experts and farmers, and preregistered it on the open science framework2. Before participating, 

farmers had to accept the data protection rules and meet the criteria of being engaged in arable 

farming. Participating farmers were informed upon the survey that they could voluntarily 

participate in a lottery at the end. In this lottery, about 2% of farmers were randomly drawn 

and received either a voucher or a non-cash price. To establish a baseline definition of AI-

based DST among participants, the questionnaire began with a short neutral information text 

about DST and what we understand as AI-based tools. Then the order of the two parts 

(UTAUT-based statements and experiment) was randomly assigned between participants. 

In the UTAUT-based part, participants had to evaluate statements for each of the latent 

constructs on a 7-point Likert-Scale (1= Totally disagree, 3 = Neutral, 7 = Totally agree). We 

formulated the statements following 1) the original formulation as proposed by Venkatesh et 

                                                 
2 https://osf.io/hkwn4/?view_only=8b49f507a39a40e881483d194a6bb445 

https://osf.io/hkwn4/?view_only=8b49f507a39a40e881483d194a6bb445


al. (2003) and 2) modifications from similar studies with German farmers (Michels et al., 2020; 

Otter and Deutsch, 2023; Rübcke von Veltheim et al., 2022). A novelty compared to existing 

studies was the evaluation of statements on AI-Anxiety based on the validated AI-Anxiety 

scale from Wang and Wang (2022).3  

The experimental part of the survey is an adaptation from a study from the medical context 

done by Longoni et al. (2019). We transferred this study to the agricultural decision-making 

context and adjusted it to fit our purpose. As a first step, we showed all participants a short text 

about fungicide applications, reminded farmers of the threshold principle of Integrated Weed 

Management (IWM), and informed them about the two options for advice. We clearly stated 

that except for the subject analyzing the data and making the recommendation (human advisor 

or AI-DST), everything else was the same (input data needed, time to receive the 

recommendation, etc.). Each farmer was then shown the actual WTP choice (Figure 4) three 

times, with varying values for past performance. We define performance as the probability of 

an improvement in the economic result compared to the status quo, i.e. without this additional 

advice.4 Out of nine possible combinations (85%,90%, and 95% for each), three combinations 

were chosen, whereby the human advisor values were drawn without replacement (i.e., each 

performance value was shown once) while the ones for the AI-DST were randomly drawn with 

replacement. The slider to choose the monetary value willing to spend was, by default, set at 

0.  

                                                 
3 Traditionally, such theory-based approaches are analyzed using a Partial Least Squares Structural Equation Model (PLS-

SEM). In the final paper we will compare our results from Bayesian statistics to the results obtained from the traditional PLS-

SEM approach and examine the relation between constructs (outer model) and within statements (inner model), but this aspect 

is not within the scope of the present conference contribution. 

4 In the survey this read as follows (translated from German): “We will [also] show you how successful the recommendations 

have been in the past. This means you will see how often the recommended strategy led to reduced yield losses when the 

recommendation was followed exactly. Example: In the past, advice X has recommended the correct fungicide strategy 90% 

of the time. This means that in 9 out of 10 cases, advice X recommended a fungicide strategy that led to an improvement in the 

economic result compared to the status quo (your previous management), i.e. without this additional advice.” 



Figure 4: WTP Choice Design 

 

 

3.2. Statistical Framework 

In the third step of the PP workflow, we use the DAG to define the statistical model and 

the Data Generating Process (DGP) by describing theory-based distributional and relational 

assumptions on the model parameters. While details can be found in the pre-registration, one 

important aspect is the Bayesian modeling of Likert-Scale items to measure latent constructs. 

Based on Item-Rating-Theory (Andersen, 1997; Andrich, 2016), we follow seminal works 

from Fox (2010), Stranieri (2022), and Varacca (2024) in the modeling of cut points for the 

Likert-scale-type responses and the choice of priors. Another important aspect of the approach 

is that it allows estimating the parameter of the UTAUT and the WTP experiment in one step, 

while also estimating the latent AI-Anxiety (AIA in Figure 1) from both parts of the survey.  

In the next step of the PP workflow, we create synthetic data based on the DGP and use 

this data to test if our statistical model can recover the deliberately set values for Algorithm 

Aversion. This procedure allows us to test our model’s functionality and simulate how farmers 

might complete the survey, which enables improving survey design before data collection. The 

results of this step can be found in the pre-registration. As last step, we analyze the real data 



obtained from the survey using the DGP. Note that the model is allowed to learn from the data 

and update the prior beliefs.  

4. Results 

In our preliminary results, we find that within our representative sample of 250 German 

arable farmers, Algorithm Aversion plays an important role in the intention to use and the WTP 

for AI-DST. We find that both coefficients of interest (βAIA_BI and βAA) are clearly negative, 

with a mean of -0.56 for βAIA_BI (Credibility Interval 5%-95% [-1.03; 0.00]) and a mean of -

0.35 for βAA (Credibility Interval 5%-95% [-0.40; -0.31]). Following our conceptualization of 

Algorithm Aversion (Figures 2 and 3 in Section 2), we present the results of the UTAUT part 

and the experiment. As shown in Figure 5, farmers in our sample are quite clearly algorithm 

anxious (i.e. Latent AI-Anxiety > 0). We depict AI-neutral individuals in blue and AI-anxious 

ones in yellow.  

Figure 5: Distribution of latent AI-Anxiety within sample 

 

In Figure 6, we now turn to the relationship between Performance Expectancy and 

Behavioral Intention (UTAUT part, left side) and between Performance and WTP (experiment, 

right side) for different levels of AI-Anxiety. 

 

Algorithm loving Algorithm averse Neutral 



Figure 6: Regression lines for UTAUT-part (left) and experiment (right) 

  

Note: Effort Expectancy and Social Influence are 

kept at their means. The black line depicts an 

algorithm-neutral individual. 

Note: Positive Delta-Performance indicates that the 

AI-DST performs better, negative that the human 

performs better. Similarly, positive values for Delta-

WTP indicate a higher WTP for the AI-DST and 

negative values a higher WTP for the human. The 

black line depicts an algorithm-neutral individual. 

For both parts, a downward shift of the lines for individuals with higher AI-Anxiety 

(yellowish lines) indicates the presence of Algorithm Aversion. The left plot shows the relation 

between Performance Expectancy and Behavioral Intention. It can be seen that in general, the 

Behavioral Intention to adopt an AI-based DST is rather low. With increasing levels of 

Performance Expectancy, Behavioral Intention increases, indicating a positive relationship 

between these two constructs. Related studies relying on the UTAUT as a theoretical 

framework found a similar positive relationship between Performance Expectancy and 

Behavioral Intention (Giua et al., 2022; Michels et al., 2020; Otter and Deutsch, 2023; Rübcke 

von Veltheim et al., 2022). With increasing AI-Anxiety, the lines are shifting downwards, 

indicating that AI-anxious individuals (yellowish lines) have a lower Behavioral Intention at 

the same Performance Expectancy level as algorithm-neutral individuals (blue).   

The right plot shows a similar pattern for the experiment. At a given performance 

difference level, algorithm-anxious individuals exhibit a lower WTP for AI-DST. More 

concretely, even if the AI-DST performs better than the individual, AI-anxious individuals 

prefer the human advisor.  

When comparing our results to the ones from Longoni et al. (2019) in the medical context, 

similar observations were made: participants preferred the human healthcare provider over the 

AI-automated one, even if it performed worse. Similarly, participants were willing to pay more 

for a human provider than for an AI-automated one. 

To summarize, we find that the overall Behavioral Intention to adopt, as well as the WTP 

for AI-DST, is rather low within our sample. While even algorithm-neutral individuals seem 

DST better Human better 

DST preferred 

Human preferred 



to be rather skeptical towards such tools, there is a clear trend of algorithm-anxious people 

exhibiting an even lower Intention/ WTP at a given Performance (Expectancy) level, indicating 

that Algorithm Aversion plays an important role. 

5. Discussion 

In the following, we discuss potential factors explaining Algorithm Aversion for our 

sample of German arable farmers, grouped into 1) algorithm-related, 2) individual-related, and 

3) task-related factors, based on the framework by Mahmud et al. (2022). 

5.1. Algorithm-related factors explaining Algorithm Aversion 

The first group of factors, algorithm-related ones, consists of design, decision, and delivery 

factors. One main reason for Algorithm Aversion is the black-box nature of the tool, indicating 

a lack of transparency (Dzindolet et al., 2002). Accessibility and understandability of the 

recommendation are important to reduce Algorithm Aversion (Chander et al., 2018). The 

missing access to the algorithms’ reasoning leads to reduced trust in the recommendation 

(Önkal et al., 2009), especially if the recommendation contradicts one’s own decision 

(Festinger, 1957). This is in line with findings on farmers’ non-AI DST adoption, where 

transparency about the algorithm and reasoning of recommendations explains trust in the tool 

and hence adoption by farmers (Akaka et al., 2024; Kerebel et al., 2013; Rose et al., 2016). We 

assume this black box character and lack of transparency and trust leads to doubting the 

accuracy of the recommendation resulting in several fears among farmers inducing Algorithm 

Aversion.  

First, individuals might fear the AI-DST to overlook their unique characteristics and 

provide generic recommendations, a phenomenon termed “uniqueness neglect” (Longoni et al., 

2019). In the agricultural context,  farmers seem to be more influenced by peers who face the 

same local production conditions (e.g., soil quality, topography) as those unique conditions 

matter for farm management decisions (Massfeller and Storm, 2024).  

A second fear is not only related to the algorithm but also the outlook, that is, the gain or 

loss prospect of the decision. The reliance on the algorithmic recommendation seems to depend 

on whether a gain or a loss is forecasted (Mahmud et al., 2022) but is also closely related to the 

risk tolerance of the individual (Swinney, 1999). Within our sample, most farmers perceive 

themselves as neither extremely risk-averse nor extremely risk-loving. However, in the case of 

pesticide application, farmers seem to (over-)emphasize the risk of yield loss due to a fungal 

infection or weed infestation (Gent et al., 2011; McRoberts et al., 2011; Möhring and Finger, 



2017; Skevas et al., 2014). Known as loss aversion and rooted in Prospect Theory (Kahneman 

and Tversky, 2013), this phenomenon can result in risk-mitigating behavior. Farmers might 

fear, that an AI-DST does not take the long-term risks into account, leading to distrust in the 

recommendation (Macé et al., 2007). 

5.2. Individual-related factors explaining Algorithm Aversion 

Concerning the second group of individual-related factors, research in other contexts found 

that some individuals habitually exhibit a general aversion to algorithms, coming along with a 

general distrust and negative perceptions about the algorithmic decision (Mahmud et al., 2022). 

Related research on DST adoption decisions found farmers to be rather skeptical about the 

technologies (Akaka et al., 2024; Heidrich, 2020; McCown, 2002; Rojo-Gimeno et al., 2019; 

Rose et al., 2016). This is mirrored in our sample, where we find that most farmers exhibit a 

rather low technological interest. Similarly, other studies found that low technological interest 

(Rübcke von Veltheim et al., 2022) and a negative attitude towards the technology (Otter and 

Deutsch, 2023) explain a low intention to adopt. Hence, we conclude that a general, habitual 

aversion towards algorithms could explain our findings. 

Another important personality trait related to Algorithm Aversion is the concern about the 

relationship with the human expert (Mahmud et al., 2022). Farm advisors are among the 

preferred sources of recommendation (Skaalsveen et al., 2020) and the relationship is often 

quite familiar and long-lasting (Kuehne et al., 2020). In our sample, the majority of farmers 

indicated they have had good to excellent experiences with their human advisor over the past 

5 years.  Farmers might fear jeopardizing this relationship when switching to AI-DST tools. 

For example, it was found that farmers wish to not replace but rather complement human advice 

with algorithmic advice (McCown, 2002; Rose et al., 2016). This finding is supported by 

results from Longoni et al. (2019) in the context of medical AI tools, where patients prefer a 

combination of human and AI healthcare providers.  

When turning to prior experience with algorithms, in our case DST, this can influence 

Algorithm Aversion in both directions (Li et al., 2020; Liu et al., 2019). Within our sample, 

most farmers had rather bad experiences with (non-AI) DST, potentially resulting in 

reservations about the technology (Mahmud et al., 2022). Experience with algorithms also 

comes along with the ability to use and familiarity with algorithms, which plays an important 

role in their adoption (Khanna et al., 2024). While most farmers in our sample use some digital 

technology (e.g., digital accounting, section control, or variable rate application), the use of AI 

tools among a subsample of German farmers was found to be below 10% (Rohleder and 



Meinel, 2024). Additionally, digital and AI training are closely related to age. Typically, the 

farming population is rather old; in our sample, the mean age is 50 years. Older farmers tend 

to feel less competent in using digital tools (Rübcke von Veltheim et al., 2022) and with 

increasing age, Algorithm Aversion increases in other decision-making contexts (Araujo et al., 

2020; Lourenço et al., 2020), supporting our findings. 

5.3. Task-related factors explaining Algorithm Aversion 

The last group of factors considers the contextual setting of the task. From a social and 

cultural perspective, other peoples’ views and experience of algorithms play a crucial role in 

Algorithm Aversion (Alexander et al., 2018; Workman, 2005). Within our sample, most 

farmers believe that neither their colleagues nor other farmer friends think one should use an 

AI-DST for fungicide application. Such injunctive norms have been found to be of critical 

importance in farmers’ decision-making (see, e.g., overview by Déssart et al. (2019)). 

Similarly, descriptive norms, i.e., “Do I know or observe peers (successfully) using the new 

tool?” influence farmers’ adoption decisions (Massfeller and Storm, 2024) but seem to play a 

minor role at the moment as AI-DST usage among farmers is low. In the context of pesticide 

application, social factors are closely related to the notion of what is considered a “good 

farmer” (Burton et al., 2020; Lavoie and Wardropper, 2021; Sutherland, 2013; Sutherland and 

Darnhofer, 2012; Westerink et al., 2021). As it has been found that individuals perceive those 

who use an algorithm as less capable and intelligent (Arkes et al., 1986; Diab et al., 2011; 

Eastwood et al., 2012), the same might apply to the agricultural context. Farmers want to signal 

their success in being a good farmer, for example by having tidy wheat fields without fungal 

diseases (Burton, 2012; Burton and Wilson, 2006; Davis and Carter, 2014; Dentzman and 

Jussaume, 2017; Lavoie and Wardropper, 2021; Marr and Howley, 2019). As discussed in 

Sections 4.2. and 4.3. the (perceived) risk of the algorithm not giving an accurate 

recommendation, taking (long-term) crop management effects into account, might not only 

trigger farmers’ risk of yield loss but also their wish to be perceived as good farmers. As we 

assume farmers are not purely profit-maximizers but rather utility-maximizers, peer perception 

and social recognition might be equally important as high yield and healthy fields (Weersink 

and Fulton, 2020). 

6. Conclusion 

With this study, we are the first to explore and quantify the role of Algorithm Aversion in 

the agricultural decision-making context. Our result that Algorithm Aversion plays an 

important role is supported in both the UTAUT-based and the experimental part of the survey. 



We present a novel approach of how following a probabilistic programming workflow can 

complement survey design and analysis.  

For the final version of this paper, we aim to provide more details on the descriptive results. 

We further plan to compare our probabilistic programming UTAUT results to the traditional 

approach of partial least squares-structural equation modelling (PLS-SEM) and to dig deeper 

into the interpretation of the coefficients by testing the UTAUT-related hypotheses on the 

relation between the constructs.  

One limitation of our study is the hypothetical character of the scenario. In line with the 

literature, we elicited farmers’ stated preferences and not the incentivized WTP or on-farm 

adaptation decision. We believe that our work can serve as a basis for future studies on 

Algorithm Aversion focusing on real-world decisions and revealed preferences. 

Given the increasing potential of AI-based DST for efficiency improvements in crop 

production, based on our findings, future research needs to consider the role of Algorithm 

Aversion in adoption studies and should investigate the reasons for it to identify paths for 

overcoming these challenges as well as potential policy support mechanisms. 

We conclude that technology development needs to carefully design AI-DST by 

considering farmers’ AA. It should probably not be the AI-DSTs’ goal to replace humans but 

rather complement either advisors’ recommendations or farmers’ own reasoning (Evans et al., 

2017; Hochman and Carberry, 2011; Rose et al., 2016).  

Given the overall low intention and WTP for AI-DST, financial support from the policy 

side might be needed to convince farmers to use such novel tools. Further, given the strong 

preference for human advice, agricultural advisory services should carefully decide which tasks 

to outsource to AI and which to continue executing by human advisors. 
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