
 
 

Give to AgEcon Search 

 
 

 

The World’s Largest Open Access Agricultural & Applied Economics Digital Library 
 

 
 

This document is discoverable and free to researchers across the 
globe due to the work of AgEcon Search. 

 
 
 

Help ensure our sustainability. 
 

 
 
 
 
 
 
 

AgEcon Search 
http://ageconsearch.umn.edu 

aesearch@umn.edu 
 
 
 

 
 
 
 
 
 
Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only. 
No other use, including posting to another Internet site, is permitted without permission from the copyright 
owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C. 

https://makingagift.umn.edu/give/yourgift.html?&cart=2313
https://makingagift.umn.edu/give/yourgift.html?&cart=2313
https://makingagift.umn.edu/give/yourgift.html?&cart=2313
http://ageconsearch.umn.edu/
mailto:aesearch@umn.edu


 1

 
Using the AIR Weather Index to Estimate the 
Contribution of Climate to Corn and Soybean 

Yields in the U.S.  
 

 
Gerhard Zuba1 

gzuba@air-worldwide.com 
 

 Oscar Vergara 
overgara@air-worldwide.com 

 
Tim Doggett 

tdoggett@air-worldwide.com 
 
 
 

 
 

Selected paper prepared for presentation at the 
Southern Agricultural Economics Association Annual Meetings 

Little Rock, Arkansas, February 5-9, 2005 
 
  

Keywords: corn yield, soybean yield, technology trend, climate variability 
 
 
 
Copyright © 2005 by AIR Worldwide Corporation. All rights reserved. 
Readers may make verbatim copies of this document for non-commercial 
purpose by any means, provided that this copyright notice appears on all 
such copies. 
 
 

Research in progress. Do not quote without authors’ permission. 

                                                 
1 Corresponding Author. 
AIR Worldwide Corporation. 131 Dartmouth Street. Boston, MA 02116 



 2

Using the AIR Weather Index to Estimate the Contribution of 
Climate to Corn and Soybean Yields in the U.S. 

 

Abstract 

Using historical production data at the county level and statistical analysis, we investigate 

climate contributions to corn and soybean yields between 1974-2003. Crop yield trends 

are decomposed into two components: the technology-derived trend and the trend 

resulting from climate variability. Implications for agricultural risk management and farm 

policy are discussed.  

1. Introduction 

Climate is by far the most important source of uncertainty in the outcome of 

agricultural production, and weather-related perils remain the most important triggers of 

nationwide crop losses. Therefore, to perform any meaningful agricultural risk 

assessment, risk managers must be able to quantify the effect of climate on crop yields. 

This is often done by examining historical crop yield information. 

However, there are several problems with using historical crop yield information, 

as follows: 

• Technological advances produce a trend in crop yield histories that needs 

to be removed in order to develop appropriate yield distributions 

• Variability in weather (especially the occurrence of extreme weather 

events) can produce significant crop yield variability that masks the 

technology trend 
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• Differences in farming practice, as well as geographical differences in soil, 

impact how much weather influences overall crop yield 

• Time series of weather data and crop yield information can be incomplete 

or of inadequate duration. 

Thus, de-trending historical crop yield information is very challenging. 

This paper presents the AIR Weather Index (AWI) yield model, which offers a 

methodology for isolating climate contribution to yields from other factors. Specifically, 

we use historical production statistics at the county level and statistical analysis to 

investigate climate contributions to corn and soybean yields between 1974-2003. We 

decompose the yield trend into two components: the technology-derived trend and the 

trend resulting from climate variability.  

Preliminary analysis indicates that yield distributions obtained from this method 

are more realistic since the true yield risk due to adverse weather effects is being 

objectively separated from the technology trend. These yield distributions provide risk 

assessments that better reflect the true changes in technology that have affected the most 

important crop producing regions of the United States during the last 30 years. 

 

2. Background 
 

As farmers have known through the ages, climate variability and corresponding 

favorable or adverse weather patterns affect the growing conditions of crops. Farming 

technology and management try to mitigate the negative impacts of adverse climate 

conditions, such as drought or excessive rainfall, on crop yields. Also, various researchers 

have attempted to develop risk assessment tools (e.g., Wu et al., 2004) that quantify the 
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weather risk associated with growing a specific crop in a specific region. It is not only the 

extreme weather events such as droughts or floods that are of interest to scientists. Recent 

studies by Lobell and Asner (2003), Hu and Buyanovsky (2003) and Eitzinger et al. 

(2002) discuss gradual changes in temperature and amount of rainfall, as well as the 

gradual change in the frequency of severe events due to global climate changes. Gradual 

changes in climate may have contributed in a positive or negative way to corn and 

soybean yields observed in different regions of the United States during the last decades. 

Improved farming practices and advances in technology are often credited for 

steady increases in crop productivity over time. On the other hand, the impacts of adverse 

climate conditions are reflected in yield histories. For example, Figure 1 shows the corn 

yield history of Nemaha County, Nebraska between 1974 and 2003. The negative impacts 

to corn yields due to droughts in the 1970s, 1980s, and 2002, as well as the flood in 1993 

are evident. Nevertheless, an overall steady increase in corn yields is also observed.  
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Figure 1: Observed corn yield in Nemaha County, Nebraska (Source: NASS) 
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A closer look at this increase reveals the following. A linear trend analysis for Nemaha 

County, Nebraska, results in a corn yield trend of 2.19 bushels/acre/year for the period 

1974-2001. Yet a similar trend analysis results in a corn yield trend of 0.63 

bushels/acre/year for the period 1982-2003. The difference in the two results is due to the 

fact that the occurrences of low yields are not equally distributed within the time series. 

In fact, if not for the very low yields in 2002 and 2003, the difference would not be as 

significant. From the yield history it can be seen that except for these two years the 

frequency of very low yields has declined starting in the early 1990s. Therefore we 

conclude that neither of these two values accurately reflects the true corn yield trend due 

to technology improvements for Nemaha County. Most importantly, this example 

demonstrates a general problem associated with any crop yield time series. Namely, there 

are two yield trends that interact simultaneously: the yield trend caused by technological 

improvements over time, and the yield trend that is due to changes in climate variability 

over time. 

Agricultural economists have long recognized the problems posed by the effect of 

trends on yield time series, thus limiting their usefulness for modeling, simulation, or 

agricultural risk assessment. Because direct use of observed yields is inappropriate 

(Goodwin and Ker, 1998), a previous de-trending step is always involved when utilizing 

crop yield time series information (Challinor et al., 2004, Hao et al., 2004, Chen and 

Miranda, 2004, Clark et al., 2003 and Norwood et al. 2004).  

The goal of the de-trending process is to eliminate the trend in yields due to 

technological improvements while preserving information about risk due to adverse 

climate conditions.   



 6

De-trending is a two-step process. First the technology trend is estimated and then this 

trend is removed from the crop yield time series so they can be used for risk analysis. The 

brief exercise above utilizing the yields in Nemaha County showed that estimating the 

technology trend cannot be accomplished by a simple linear trend analysis. This method 

is too dependent on the time period used. That means the pattern in time of climate 

variability has an influence on the trend estimation. Also, more complex methods such as 

log-linear de-trending or the LOESS procedure (Cleveland et al. 1988) are likely to 

remove both technology and trends in climate variability at the same time. The issue of 

correctly de-trending a yield time series when climate effects are intertwined with 

technology effects is important in order to accurately estimate yield anomalies or to 

construct a realistic crop yield distribution that can be used for risk analysis. 

The example of yield histories in Figure 1 is only one of numerous examples 

where it is evident that changes in climate variability over time has an influence on yield 

trends and therefore has to be taken into account when de-trending yields. The objective 

of this paper is to describe an innovative method that is suitable to separate the climate 

contribution to yields from the technology contribution by using a novel de-trending 

procedure.  

3. Data used 
 

In order to model the climate contribution to corn and soybean yields, daily 

precipitation and temperature data between 1974-2003 were obtained from the National 

Center for Environmental Prediction (NCEP).  The data are derived from daily 

observations of approximately 5,000 reporting weather stations within the U.S. and 

interpolated to a data grid. The grid has a spatial resolution of approximately 25 km for 
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precipitation and 50 km for maximum and minimum temperature. These raw data were 

re-processed to form a county-level climate time series of daily maximum and minimum 

temperature and daily precipitation. 

The base weather information was then used to compute growing degree-days and 

evapotranspiration datasets.  Soil-related parameters (e.g., plant available water capacity, 

surface moisture, sub-surface moisture and runoff) were computed by integrating weather 

related data with the high-resolution USDA State Soil Geographic Database, 

administered by Penn State University.  

County-level yield time series for corn and soybeans were obtained from the 

National Agricultural Statistics Service (NASS) database. A database of crop specific 

parameters (e.g., water requirements, crop phenological stages, planting date) was created 

using information from various academic sources, including Iowa State University, 

Purdue University, University of Minnesota, and Ohio State University. 

For the following analyses, it is critical that the time series of weather data be 

homogeneous, i.e., there are no gaps in the data set. For example, missing a short period 

of rainfall data within a longer time span of dry conditions can have a significant impact 

on the resulting yield estimates. Furthermore, the data sets have to be processed so that 

the spatial coverage and resolution of all the data sets match each other. It is obvious, and 

our research confirmed, that the weather time series and the corresponding yield data 

have to be of comparable resolution in order to produce accurate results. To accomplish 

this, spatial interpolation of the time series of weather data has been performed utilizing 

standard meteorological interpolation techniques. 
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4. The AWI Yield Model 

The proposed de-trending methodology separates the technology trend from the 

climate effects that are intertwined in a crop yield time series. This is done by regressing 

yields against a linear technology trend and a weather indicator that explains yield 

deviations from this trend, as follows: 

Yield(t) = c0 + m*t + c1*AWI(t) + ε     (1) 

where c0, m and c1 are regression coefficients, t is time (year), m measures the technology 

trend, AWI (the AIR Weather Index) is the weather indicator and measures the weather 

effect on yields, and ε is the residual error. By including a weather component in the de-

trending process, the combined effects of technology and weather on yields is accounted 

for under the assumption that the AWI is capable of modeling the deviations of yields 

from the mean technology trend. 

The AWI model is constructed using time series of weather variables (e.g., 

temperature, precipitation), weather derived parameters (e.g., growing degree days, 

evapotranspiration), soil-related parameters (e.g., plant available water capacity, surface 

moisture, sub-surface moisture, runoff) and crop-specific parameters (e.g., water 

requirements, crop phenological stages, planting date). Compared to other crop growth 

models, the underlying methodology for the AWI favors simpler parameterization of 

yield-related crop growth and crop damage. Calibration of the model is done by adjusting 

a small number (3 to 4) coefficients used to optimally scale the effect of different weather 

perils on crop stand.  
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5. De-Trending Crop Yields Using the AWI Yield Model 

 
The AWI is calculated from daily climate data by integrating observed crop 

conditions between planting and harvest and provides an estimate of potential yield at 

harvest.  

For demonstration purposes, the yield history of corn yields in Nemaha County, 

Nebraska (Figure 1) is reanalyzed. Table 1 shows the results from de-trending for 

different time windows using the AWI yield model as compared to a simple linear de-

trending method such as the one described by: 

Yield(t) = c0 + m*t + ε      (2) 

 
Large differences are expected between these two different de-trending methods 

because the simple linear de-trending is heavily affected by the low yield of 2002 due to 

drought, thus significantly decreasing the slope of the technology trend. On the other 

hand, the proposed method using Equation 1 (the AWI Yield Model equation) should be 

able to capture the low yield of 2002 in the AWI term of the equation. By modeling the 

deviation of observed yield from the mean technology trend for this year using climate 

variables, the effect on the technology trend (m) should be minimized. The results for the 

analysis are summarized in Table 1 below. 
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Time Window 

m 
linear 

de-trending 

r2 
linear 

de-trending 

m 
AWI 

de-trending 

r2 
AWI 

De-trending 
1974-1990 2.59 0.22 1.87 0.79 
1974-2001 2.19 0.41 1.77 0.80 
1974-2003 1.49 0.21 1.38 0.78 
1982-2003 0.63 0.03 1.30 0.70 

Table 1: Estimation of the technology trend (m) in bushels/acre/year for different time 
windows using a simple linear de-trending (Equation 2) versus AWI de-trending 
(Equation1) on corn yield time series for Nemaha County, Nebraska 

 
According to Table 1, the technology trend is clearly dependent on the time 

window used for the analysis. For the linear de-trending method, the technology trend 

variability exceeds 50% of its mean value (1.75 bushels/acre/year) between 1974-2003. 

On the other hand, the AWI de-trending method captures most of the yield variation due 

to weather effects for different time periods, as reflected by correlation coefficients in 

between 0.70 to 0.80. Also, the difference in the estimated technology trend for different 

time periods is smaller than 18% of the mean value (1.58 bushels/acre/year) between 

1974-2003.  

One could expect the same m value for all different time windows using the AWI 

de-trending methodology. The AWI is constructed to capture the deviations of yields 

from a linear trend caused by weather effects and therefore no dependency on the time 

window is expected. The different values can be explained as follows: Although the 

correlation coefficient is high, most but not all of the deviations from the assumed linear 

technology trend could be explained by the AWI method. Furthermore it seems that the 

decrease in technology trend for more recent time periods, represented by lower values 

for m, is due to the “stagnation” of corn yields in Nemaha County since the early nineties 

(see Figure 1). Therefore the assumption of a constant linear trend for the entire time 
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period is only partly valid. In fact, this is one of the reasons why de-trending is not done 

on much longer time periods. Apart from the availability of long and accurate observed 

yield time series, the increase in yields due to technology is in general not linear over 

very long time periods. 

A major advantage of using the AWI de-trending method is that it is less 

susceptible to variation of the time period chosen for the analysis. This is due to the fact 

that both the technology trend and the trend of climate variability are taken into 

consideration at the same time when de-trending the raw yield observations. Therefore, 

large deviations from the expected yield caused by adverse weather are captured by the 

AWI term in Equation 1, rather than affect the technology trend m. 

Figure 2 and Figure 3 show additional examples of modeling the weather 

contribution for two different crop and county yield time series, as described by the AWI 

Yield Model. The high correlation coefficients between observed and modeled yields 

imply that the AWI model explains a significant amount of the weather effects on yields. 

More results on the skill measured by the correlation coefficient r2 are provided in the 

next section. 
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Figure 2: Observed (black diamonds) and modeled (blue squares) soybean yield for 
Macoupin County, Illinois. The correlation coefficient between observed and modeled 
yield is 0.70 
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Figure 3: Observed (black diamonds) and modeled (blue squares) corn yield for Benton 
County, Iowa. The correlation coefficient between observed and modeled yield is 0.86 

 

6. Application of AWI de-trending 
 

Similar to the proposed AWI de-trending methodology, Lobell and Asner (2003) 

studied the technology component and the climate contribution to yield trends. Their 

starting point is the quality of the correlation between yield anomalies and the June to 

August average temperature anomalies on a county level for the specific time period 

1982-1989. Only counties that have a significant negative correlation (P <0.01, see 

Lobell and Asner, 2003) are used for the actual trend analysis that splits the total trend 

into separate technology and climate components. 

In Section 5 we have shown that results from a linear trend analysis using 

Equation 2 and therefore yield anomalies calculated via this procedure depend on the 

chosen time period. We assume that this will affect the study of Lobell and Asner (2003) 

as well. To quantify this effect, we reproduced their correlation of June-August average 

temperature anomalies and corn yield anomalies for the period 1982-1998, and compared 

it to similar conditions for the period 1987-2003. As can be seen in Figure 4, the 



 13

temperature-yield correlation differs when the time period is modified. Even though the 

overall pattern of the correlation coefficients is similar, there are significant localized 

differences (e.g., Iowa and Illinois). These differences can best be seen in Figure 5, which 

isolates counties with a temperature-yield correlation of P<0.01.  

 

Figure 4: County-level comparison of correlation coefficients between June-August 
average temperature anomalies and corn yield anomalies for two different time periods. 

 

Figure 5: County-level comparison of correlation coefficients (P<0.01) between June-
August average temperature anomalies and corn yield anomalies for two different time 
periods.   

 
 

1982-1998 1987-2003 

1982-1998 1987-2003 
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As Figure 5 clearly shows, by applying the P<0.01 criteria on the yield-

temperature correlation different counties are selected for different time periods. This will 

have a clear affect on the result of any further analysis, especially given that almost all of 

Iowa—an important corn and soybean producing state—is spared from the analysis when 

using the period 1987-2003. We followed Lobell and Asner (2003) and calculated the 

non-climatic soybean trend for these two periods to 0.34 and 0.17 bushels/acre/year, 

respectively. Once again, these values are based on using Equation 2 for de-trending to 

calculate crop yield anomalies and June to August average temperature as a climate 

indicator. 

Figure 5 and the just mentioned soybean example demonstrate once more the 

importance of separating yield trends due to technology improvements from yield time 

series in an objective and accurate way. A chosen time period will affect any de-trending 

methodology that does not take changes in frequency of adverse climate conditions into 

account.  

The AWI de-trending method for estimating the technology-derived yield trend 

and the climate-derived yield trend eliminates the dependence of the results on the chosen 

time period of analysis. This can be accomplished because the AWI captures the yield 

variability due to adverse/favorable climate conditions and because the de-trending 

methodology according to AWI Yield Model (Equation 1) accounts for a technology 

trend and a contribution from climate variability at the same time. As shown in Table 1, 

this results in a more stable approximation of the value of the technology trend. The AWI 

de-trending method does this regardless of the time period used for analysis.   
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Application of the AWI de-trending method is shown in Figure 6. This figure 

visualizes the correlation coefficient of the regression when calculating the coefficient co, 

m and c1 according to Equation 1 utilizing observed corn and soybean yields of counties 

in Illinois, Indiana, Iowa, Kansas, Minnesota, Missouri, Nebraska, Ohio, South Dakota 

and Wisconsin between 1974-2003 and corresponding values of the AWI. 

 
 Corn           Soybean 

Figure 6: Correlation coefficient (observed versus modeled yield for corn and soybean 
yields using the AWI de-trending method (Equation 1) for a time window between 1974-
2003. 
 

The AWI explains approximately 70% of the yield variability due to climate 

variability in the Midwest within the last 30 years. The high r2 values of correlations 

between modeled and observed yields shows the explanatory value of the AWI de-

trending method and leads to excellent out-of-sample tests. This is due to the fact that the 

method only has 3 to 4 adjustable2 parameters that are used to calibrate the AWI itself on 

a county-by-county basis. Furthermore this fulfills the requirement of predictability 

(Sinclair and Seligman, 2000) necessary to validate crop yield models.  

                                                 
2 During the calibration process parameters used for constructing the AWI are limited to their natural 
physical constraints.  
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For example, the AWI de-trending method calibrated to the data of Figure 1 but 

only using the period from 1974-2001 and then using the calibrated model and the 

weather input for the years 2002 produces a county yield of 51 bushels/acre, which is 

apparently a very low yield. In fact, due to the severe drought that affected the county, 

the observed corn yield in 2002 was 46 bushels/acre. Extensive out-of-sample tests 

performed on the AWI de-trending methodology have proven its validity as an innovative 

climate and technology de-trending tool, as well as its skill in capturing the effect that 

climate variability has on crop yields.  

The AWI de-trending procedure superimposes the effect of weather (AWI term in 

Equation1) on a linear technology-derived trend (term m*t in Equation 1). Therefore, the 

resulting AWI term of the equation can be used for analysis whether or not there is a 

trend in climate variability. The calibrated AWI’s on a county-by-county basis were 

subjected to a linear fit over time according to Equation 3 to estimate a change in climate 

variability.  

 AWI(t)fit = a + b*t + ε      (3) 

 

 Figure 7 shows the results obtained from applying the AWI de-trending method 

to estimate the technological-derived trend (m) and applying Equation 3 on the resulting 

AWI’s for estimating a trend in climate variability (b). It has to be mentioned that this 

trend can change from year to year depending on whether the added data corresponds to 

very good yields corresponding to favorable weather conditions or very low yields 

corresponding to the impacts of adverse weather. It is the technology-derived trend that 

stays more or less constant. For Figure 7, corn producing counties in Illinois, Indiana, 

Iowa, Kansas, Minnesota, Missouri, Nebraska, Ohio, South Dakota and Wisconsin 
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between 1974-2003 were selected in the sample with a climate-yield correlation 

coefficient > 0.55 (see Figure 6). 

 

Figure 7: Technology and climate contributions (in bushels/acre/year) to corn yields 
derived from the AWI model for a time window between 1974-2003. 

 
By isolating the effect of climate variations on yields, the AWI de-trending 

method allows for the quantification of the pure technology contribution to yields. As 

shown in Figure 7, in some areas of the Midwest, technology has increased yields by up 

to 3 bushels/acre/year. On the other hand, other areas seem to have reached a plateau with 

respect to marginal increases to yield potential derived from technology.  

Figure 7 also shows the contribution to yields derived from climate effects 

observed between 1974-2003. Historically important corn producing regions have 

benefited from a production boost of approximately 1 bushel/acre/year due to favorable 

changes of climate variability. On the other hand, those same changes have been 

detrimental to corn productivity for other areas of the Corn Belt.  

Technology Trend Trend in Climate Variability 
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Besides de-trending yield time series the AWI Yield Model has further potential 

applications: 

• By integrating crop conditions between planting and any date within a 

growing season, the AWI can be used as a real time monitoring tool to 

assess current crop conditions. 

• For the current season the AWI can be used as an estimate of potential 

yield at harvest, which is available long before official NASS county 

yields are published. 

• Because the AWI separates technology-derived from climate-derived 

effects on the yield time series it can be utilized to objectively determine 

APH yields for individual farms and therefore can be included in a 

procedure to mitigate declining yields due to successive low yields.  

 

7. Conclusions 
 

In order to assess crop risk, agricultural risk managers require an estimation of the 

contributions made by climate variability and weather-related perils to crop yields. 

However, developing an appropriate yield distribution for analyzing agricultural portfolio 

risk is a challenging task. Historical yield information needs to be de-trended because 

changes in technology have affected the most important crop producing regions of the 

United States during the last 30 years. The challenge lays in the fact that intra-year yield 

variability due to weather masks the contributions of technology improvements and farm 

management to the yield trend. Therefore, to de-trend the yield data correctly, the climate 

contribution to yield must be quantified.  
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The AWI de-trending me thod allows for the quantification of the climate 

contribution to yields, therefore allowing the true technology trend to be calculated and 

the risk due to climate variability to be isolated. Preliminary analysis indicates that yield 

distributions obtained from this method are more realistic since the true yield risk due to 

weather is objectively separated from the technology trend. The resulting distributions 

provide risk assessments that better reflect the true weather risk. 

Implications of this method are many: By quantifying the effects that climate 

variability has on crop productivity, policymakers can develop the safety nets necessary 

to allow producers to remain farming when struck by disasters. Additionally, extension 

educators may find it useful to identify regions in which crop productivity still lags 

behind—despite favorable weather conditions—and adjust training and technology 

transfers accordingly. Other uses include the ability to monitor current crop conditions 

and estimate potential yields at harvest. 
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