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Abstract 

Due to the multiple negative environmental effects of the overuse of chemical pesticides, the 

European Union (EU) aims to reduce pesticide use – including herbicides – by 50%, by 2030. 

Preventive weed management (PWM), using among others in-version tillage and diverse crop 

rotations, is considered perhaps the most suitable strategy to reduce on-farm herbicide use. 

Whether and how these practices relate to herbicide reduction potential and crop yields is, 

however, not well understood. This paper addresses this gap by investigating the impact of 

PWM on maize yields and herbicide use. Using field-level data for 530 maize fields in eastern 

Germany, we apply a directional distance function approach in a data envelopment framework 

and estimate directional and simultaneous improvement potentials for herbicide use and maize 

yields. Our preliminary results indicate a similar performance with holistic PWM and without 

PWM in terms of both yields and herbicide use, whereas a partial implementation of PWM 

seems to increase herbicide use. We also find herbicide reduction potentials of 36-37% 

irrespective of the PWM suggesting notable improvement potentials by implementing best 

practices. 

Keywords: Herbicide use efficiency, field-level, maize yields, data envelopment analysis 
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1. Introduction 

Weed control with synthetic herbicides constitutes the main component of weed management 

in conventional crop rotations in arable farming (CHAUHAN, 2020). Though, overreliance on 

herbicide application has multiple negative effects, e.g. the reduction of plant diversity 

(GUERRA et al., 2022), damaging aquatic and soil organisms (OJEMAYE et al., 2020) and the 

expansion of herbicide resistant weeds (DAVIS and FRISVOLD, 2017). With the Farm-to-Fork 

strategy, the Commission of the European Union (EU), therefore, aims at reducing pesticide 

use – including herbicides – by 50%, by 2030 (TRIANTAFYLLIDIS et al., 2023). 

Preventive weed management (PWM) is considered key to reducing herbicide input in arable 

farming (RIEMENS et al., 2022; TRIANTAFYLLIDIS et al., 2023). PWM strategies entail, among 

others, inversion tillage and wider crop rotations, and can thus be considered as a traditional 

management system for maize in Germany (BENSCH et al., 2023). Despite comprehensive 

policy efforts to reduce pesticide use in arable farming (EUROPEAN COMMISSION, 2009), the 

rate of preventive weed management adoption remains heterogeneous across European farming 

(TRAON et al., 2018). To increase adoption of PWM, preventive weed control needs to be 

perceived as beneficial in order to be regarded as profitable alternatives to conventional input-

intensive cropping. Hence, the economic benefits of re-establishing PWM need to be clearly 

demonstrated before farmers adopt and implement such practices. So far, studies have 

demonstrated the potential of PWM in field experiments and on-farm mainly for cereal crops 

(ANDERT and ZIESEMER, 2022; ADEUX et al., 2019). However, whether and how these practices 

relate to herbicide reduction and crop yield remains not well understood.  

We aim at closing this gap and investigate the impact of PWM practices on maize yields and 

herbicide application. We rely on data from 530 maize fields between 2011 and 2014 in eastern 

Germany with field-specific information on maize yields, herbicide application (Treatment 

Frequency Index, TFI) and other land management decisions (N and P fertilization, crop 

rotation, tillage), and soil quality.  

We investigate the effects of PWM using two classifications: First, based on the applied tillage, 

we compare the performance of fields with and without inversion tillage. Second, based on the 

crop alteration and the host crop principles (ANDERT et al., 2016), we compare the performance 

of three levels of PWM practices, reflecting different risks of weed infestation. We define the 

three levels using pre-crop and the applied tillage and differentiate no PWM (PWM0), some 

PWM (PWM1), and multiple PWM (PWM2). We compare the fields’ performance with and 

without inversion tillage as well as by PWM level using field-specific efficiency measures. We 

consider improvement potentials relative to the best practice frontier with respect to maize 

yields and herbicide application while accounting for other farming inputs and soil quality. To 

model the best practice frontier, we rely on a metafrontier framework. That is, we assess 

efficiency relative to the group frontier determined by fields using the same PWM practices 

(group frontier), and relative to a metafrontier determined by all fields in the sample irrespective 

of the PWM (BATTESE et al., 2004; HAYAMI and RUTTAN, 1970). Empirical estimates are 

obtained through directional distance functions in a non-parametric data envelopment analysis 

framework (CHAMBERS et al., 1996; BANKER et al., 1984). 

Our results indicate efficiency advantages of fields under inversion tillage compared to fields 

without inversion tillage, i.e., lower improvement potentials under inversion tillage. Further, 

we find higher herbicide use efficiency under inversion tillage without sacrificing maize yields 

where herbicide reduction potentials are partly only available under tillage. Second, comparing 

different levels of preventive weed management, our results suggest that in comparison to 

implementing only some PWM practices (PWM1), applying none (PWM0) or multiple 

(PWM2) practices achieves a higher herbicide efficiency without losses in terms of maize 

yields. Herbicide reduction potentials are partly available only by implementing none or 

multiple PWM practices. That is, even when implementing best practices, herbicide reduction 
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potentials under PWM1 are partly only available by switching to PWM0 or PWM2. Therefore, 

our results suggest that the application of multiple preventive weed management practices can 

offer reduced herbicide application without yield losses. Rather, our results indicate that 

applying multiple practices outperforms the selective use of single practices, for which we find 

negative yield effects but no reduction in herbicide application. 

The remainder of the paper is structured as follows: Section 2 explains our data set, Section 3 

introduces our empirical framework and our empirical approach. Section 4 shows our results. 

Section 5 discusses our results and draws preliminary conclusions.  

 

2. Data  

We rely on a dataset of maize fields in the counties of Teltow-Fläming and Oder-Spree located 

in the southern part of the Federal State of Brandenburg, Germany. Our observation period 

spans from 2011 to 2014. The initial sample consists of 575 observations. We eliminate 45 

observations with unobserved pre-crop or P fertilization leading to a final sample of 530 

observations. We observe 140 fields in 2011 and 2012, 139 in 2013, and 111 in 2014, 

respectively. The fields are operated by 14 farms, including 2 arable farms (average farm size: 

1,350 ha) and 12 mixed farms (1,688 ha).  

For each field, we observe (i) field-specific characteristics including the fields’ size and soil 

quality1, (ii) maize yields, (iii) a farm identifier, and (iv) farmers’ land management decisions. 

Land management decisions include the crop rotation (class of pre-crop), applied tillage, 

fertilizer application (N use and P use in kg/ha), and field-specific herbicide application. 

Herbicide application is measured as a treatment frequency index (TFI) calculated as TFI =
𝑎𝑝𝑝𝑙𝑖𝑒𝑑 𝐻𝑒𝑟𝑏𝑖𝑐𝑖𝑑𝑒𝑠

𝑚𝑎𝑥. 𝑎𝑙𝑙𝑜𝑤𝑒𝑑 𝐻𝑒𝑟𝑏𝑖𝑐𝑖𝑑𝑒𝑠
×

𝑡𝑟𝑒𝑎𝑡𝑒𝑑 ℎ𝑎

𝑡𝑜𝑡𝑎𝑙 ℎ𝑎
. The TFI represents the frequency and intensity of herbicide 

applications and includes all herbicide applications related exclusively to the maize. The TFI is 

unbounded and takes values above 1 if herbicides are applied multiple times within the year.  

Based on the observed practices, we create two classifications related to potential differences 

in the risk of weed infestations, as shown in Table 1. First, to test the hypothesis of a non-

negative effect of inversion tillage on herbicide use and maize yield, we differentiate fields 

operated with (214 obs.) and without inversion tillage (316 obs.).  

Second, we define three levels of PWM with decreasing risk of weed infestation based on the 

crop alteration and the host crop principles (ANDERT et al., 2016). The alteration principle 

concerns the general sowing period (autumn, spring) which is connected to the timing of the 

last soil movement before sowing. Alteration of the sowing periods between crops decreases 

the susceptibility of maize crop for adapted weeds. The number of host crops principle states 

that the higher the number of potential host crops present as pre-crop, the higher is the 

susceptibility for weeds. This leads to three groups of PWM with decreasing risk of weed 

infestation: PWM0 (112 obs.) uses no inversion tillage and self-rotations of maize or summer 

crops as pre-crops; i.e., no preventive weed management measures are applied. PWM1 (220 

obs.) consists of fields where some preventive measures are applied, i.e., non-inversion tillage 

and winter crops as pre-crop, or maize self-rotations with inversion tillage. PWM2 (198 obs.) 

uses preventive weed management measures with respect to both pre-crop and tillage by 

applying inversion tillage and no maize self-rotation. 

 

 

 
1 1 The German soil quality index captures the natural yield capacity of arable farmland. The index considers soil 

structure, terrain, climatic conditions, water availability, and other natural conditions (Schmitz and Müller, 

2020) 
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Table 1: Classification by risks of weed infestation (number of observations) 

Pre-crop Inversion tillage = Yes Inversion tillage = No  

Maize PWM 1 (16) PWM 0 (78) 94 

Summer crop PWM 2 (26) PWM 0 (34) 60 

Winter crop PWM 2 (172) PWM 1 (204) 376 

  214 316 
 

 

Descriptive statistics for the different classifications and corresponding sample sizes by year 

are shown in Table 2. The classification by inversion tillage (columns 1 and 2) shows on 

average higher soil quality, higher yields and lower herbicide use (except for 2014) for the non-

inversion group. All considered variables are, however, overlapping. The classification by 

PWM levels (columns 3 to 5) suggests that some PWM measures (PWM1) are applied on fields 

with higher soil quality, whereas fields with multiple PWM practices (PWM2) show the lowest 

soil quality rating on average. We note particularly low N and P fertilization on PWM0 fields 

in 2012, whereas fertilizer quantities are somewhat similar across all groups in the other years. 

 

Table 2: Descriptive statistics by tillage and PWM classification and by year 

   By tillage  By PWM group 

   Inversion till.  Non-Inversion till  PWM0  PWM1  PWM0 

 Year Var.  Obs Med. SD   Obs Med. SD 
 

Obs Med. SD   Obs Med. SD   Obs Med. SD 

2011 N  52 188.25 62.99 
 

88 174.56 154.55 
 

22 211.0 237.8 
 

67 173.9 111.2 
 

51 188.3 60.9 

 P   47.5 25.21 
 

 78 65.44 
 

 74 87.9 
 

 82 55.5 
 

 47.5 23.3 

 SQ   24.5 5.48 
 

 32 7.16 
 

 30 7.2 
 

 32 7 
 

 24 5.5 

 TFI   1.37 0.34   1.73 0.65 
 

 1.6 0.4   1.8 0.7 
 

 1.4 0.3 

 Yield   35.5 10.5 
 

 37.6 6.2 
 

 38.7 6.1 
 

 37.2 6.3 
 

 35 10.5 

2012 N  47 207 60.32   93 183.4 107.82 
 

33 21.8 106.6   70 207 80.5   37 231.6 61.8 

 P   57 39.09 
 

 106.0 43.66 
 

 55.7 41.8 
 

 109.8 40.3 
 

 66.6 41.9 

 SQ   24 6.42 
 

 30 6.71 
 

 29 4.7 
 

 30 7.3 
 

 22 6.7 

 TFI   1.47 0.48   1.98 0.79 
 

 1.8 0.5   2 0.9 
 

 1.5 0.5 

 Yield   36.6 7.3 
 

 34.0 10.5 
 

 34.0 7.8 
 

 34.5 11.8 
 

 36.6 5.7 

2013 N  62 205.75 59.73   77 168 121.59 
 

43 168.8 149.1   38 168 73.4   58 207 60.1 

 P   57 26.59 
 

 79.47 55.78 
 

 78.3 62.3 
 

 75.4 46.2 
 

 57 26.8 

 SQ   26 4.24 
 

 31 8.85 
 

 30 10.1 
 

 31 7.3 
 

 26 4.3 

 TFI   1.25 0.57   1.37 0.57 
 

 1.3 0.5   1.5 0.6 
 

 1.3 0.6 

 Yield   27 6.6 
 

 33.5 5.2 
 

 32 6 
 

 33.5 4.1 
 

 27.0 6.8 

2014 N  53 201.22 57.55   58 178.5 74.48 
 

14 187.5 50.7   45 178.5 79.4   52 200.9 58.1 

 P   57 30.42 
 

 98.43 41.88 
 

 104.2 24.6 
 

 89.6 45.8 
 

 56.2 30.7 

 SQ   20 4.71 
 

 32.5 9.85 
 

 30.5 6.7 
 

 34 10.3 
 

 20 4.6 

 TFI   1.75 0.68   1.47 0.42 
 

 1 0.5   1.5 0.4 
 

 1.8 0.7 

  Yield   36.1 9.3   
 36.9 7.9 

 
 33.8 6.1   

 39.0 7.6   
 36.0 9.1 
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3. Methods  

3.1 The metafrontier framework 

To assess field-specific efficiency with respect to maize yields and herbicide application, we 

rely on a metafrontier framework (BATTESE et al., 2004; HAYAMI and RUTTAN, 1970). That is, 

for each field, we assess its improvement potential both relative to a best-practice frontier using 

the same land management practices (group frontier) and relative to the overall best-practice 

frontier, irrespective of the land management practices (metafrontier). 

We consider a maize production technology that transforms inputs 𝑥 (𝑥 ∈ 𝑅𝑚), including 

herbicides, into yields 𝑦 (𝑦 ∈ 𝑅𝑛). We denote a technology set containing all feasible 

combinations of inputs and outputs by Ψ, such that  

(1a) Ψ = (𝑥, 𝑦|𝑦 𝑐𝑎𝑛 𝑏𝑒 𝑝𝑟𝑜𝑑𝑢𝑐𝑒𝑑 𝑤𝑖𝑡ℎ 𝑥). 

The upper boundary of Ψ defines the metafrontier production function containing all 

combinations providing the maximum maize yield for a given level of input. Deviations from 

this frontier are deemed as inefficiency and may result from suboptimal land management 

decisions, e.g., a non-optimal timing of fertilizer or herbicide application. 

Different land management practices may, however, lead to different feasible combinations of 

inputs and outputs. For instance, a lower weed pressure under preventive weed management 

might allow higher yields for a given level of herbicide application compared to a field without 

preventive weed management. In this case, the sets of feasible input/output combinations would 

differ between different land management decisions.  

We address this using the classifications by inversion tillage and PWM to define 𝐶 (𝑐 =
1, … , 𝐶) subtechnologies. For each subtechnology, we denote the set containing all feasible 

combinations of inputs and outputs as Ψ𝑐 such that 

(1b) Ψc = (𝑥, 𝑦|𝑦 𝑐𝑎𝑛 𝑏𝑒 𝑝𝑟𝑜𝑑𝑢𝑐𝑒𝑑 𝑤𝑖𝑡ℎ 𝑥 𝑢𝑛𝑑𝑒𝑟 𝑐). 

The upper boundary of Ψ𝑐 denotes the best-practice group frontier under 𝑐, i.e., all 

combinations providing the maximum maize yield for a given level of input under c. By 

construction, the group frontiers are enveloped by the metafrontier (Ψ𝑐 ⊆ Ψ ∀𝑐). 

To identify herbicide and yield improvement potentials, we consider the distance of observed 

input/output levels to the best-practice combinations defined by the metafrontier and the group 

frontier, respectively. For some observation 𝑖 using 𝑐, we indicate the distance to the 

metafrontier and the group through directional distance functions 𝛽𝑖 and 𝛽𝑖
𝑐 (, such that 

(2a) 𝛽𝑖(𝑥𝑖, yi|𝑑) = sup{𝛽𝑖 ≥ 0|(𝑥𝑖 − 𝛽𝑖𝑑𝑥, 𝑦𝑖 + 𝛽𝑖𝑑𝑦) ∈ Ψ}, 

(2b) 𝛽𝑖
𝑐(𝑥𝑖

𝑐, yi
c|𝑑, 𝑐) = sup{𝛽𝑖 ≥ 0|(𝑥𝑖

𝑐 − 𝛽𝑖𝑑𝑥, 𝑦𝑖
𝑐 + 𝛽𝑖𝑑𝑦) ∈ Ψc}. 

Therein, 𝛽𝑖 and 𝛽𝑖
𝑐 are distance functions that indicate the maximum inputs reduction in the 

direction 𝑑𝑥 (𝑑𝑥 ∈ 𝑅𝑚) and the maximum output expansion in the direction 𝑑𝑦 (𝑑𝑦 ∈ 𝑅𝑛) 

while staying in the respective technology sets Ψ and Ψ𝑐 (CHAMBERS et al., 1996).  

Therefore, if subtechnology 𝑐 coincides with the metatechnology, then 𝛽𝑖 = 𝛽𝑖
𝑐. If the 

technologies are not identical, i.e., the metatechnology allows a higher output/input ratio, 𝛽𝑖 >
𝛽𝑖

𝑐. The ratio of the distance functions, 𝜃𝑖 = 𝛽𝑖
𝑐/𝛽𝑖 ≤ 1, describes the share of improvement 

potential that is available using 𝑐, whereas  1 − 𝛽𝑖
𝑐/𝛽𝑖 describes a potential improvement in 

terms of inputs and outputs that is only available through switching from subtechnology 𝑐 to 

the technology shaping the metafrontier. 
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Figure 1 illustrates the metafrontier framework for a field (circle) using subtechnology 𝐶1 and 

a second field (triangle) using subtechnology 𝐶2. The common metafrontier Ψ provides the 

best available input/output combinations, where technology Ψ𝐶1 partly coincides with the 

metafrontier. Arrows with solid (dotted) lines indicate the distance functions 𝛽𝑖
𝑐 (𝛽𝑖) relative to 

the corresponding subtechnologies (metafrontier); horizontal improvements correspond to pure 

input reductions (𝑑𝑥 > 0 ∧ 𝑑𝑦 = 0), whereas vertical improvements relate to an output 

expansion (𝑑𝑥 = 0 ∧ 𝑑𝑦 > 0). Joint input-output improvements (𝑑𝑥 > 0 ∧ 𝑑𝑦 > 0) are omitted 

for clarity. In this example, output improvement potentials for observation 1 are identical when 

measured against metafrontier and subtechnology, leading to a metatechnology ratio equal to 

one. In contrast, input reduction potentials for observation 2 indicate notably higher input 

savings potentials against the metafrontier compared to the group frontier. These input savings 

potentials are only available through a switch to a technology defining the metatechnology, 

which would be indicated by a metatechnology ratio smaller than one. 

 

 

Figure 1: Exemplary illustration of the metafrontier framework (Source: Own illustration) 

 

3.2 Group frontier and metafrontier estimations 

To simultaneously estimate the best practice frontiers and the directional distance functions, we 

rely on data envelopment analysis (DEA, BANKER et al., 1984). DEA is a non-parametric linear 

programming technique that estimates the best-practice frontier by enveloping the relevant 

observations with a piecewise linear frontier under assumptions about the shape of the 

technology. The corresponding distance functions are obtained through contracting and 

expanding the observed inputs and outputs, respectively, while remaining within the technology 

set specified by the data and the shape assumptions.  

For observation 𝑖 using c, we solve the following linear programming (LP) problems to obtain 

estimates 𝛽𝑖 (eq. 5a) and 𝛽𝑖
𝑐 (eq. 5b)  

(3a) max
𝛽𝑖,𝜆1,…,𝜆𝐾

𝛽𝑖  𝑠. 𝑡.  𝑥𝑖 − 𝛽𝑖𝑑𝑥 ≥ ∑ 𝜆𝑘𝑥𝑘

𝑘

;  𝑦𝑖 + 𝛽𝑖𝑑𝑦 ≤ ∑ 𝜆𝑘𝑦𝑘

𝑘

;  ∑ 𝜆𝑘

𝑘

= 1 

(3b) max
𝛽𝑖,𝜆1

𝑐 ,…,𝜆𝐾
𝑐

𝛽𝑖
𝑐  𝑠. 𝑡.  𝑥𝑖

𝑐 − 𝛽𝑖
𝑐𝑑𝑥 ≥ ∑ 𝜆𝑘

𝑐 𝑥𝑘
𝑐

𝑘

;  𝑦𝑖
𝑐 + 𝛽𝑖

𝑐𝑑𝑦 ≤ ∑ 𝜆𝑘
𝑐 𝑦𝑘

𝑐

𝑘

;  ∑ 𝜆𝑘
𝑐

𝑘

= 1 
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Both LPs contract inputs 𝑥 and expand outputs 𝑦 along the directional vectors 𝑑𝑥 and 𝑑𝑦 while 

staying in the (sub)technology determined by observations on the frontier. That is, 𝛽𝑖 (𝛽𝑖
𝑐) is 

the improvement potentials in terms of the step lengths 𝑑𝑥, 𝑑𝑦 to the metafrontier (group 

frontier). The resulting 𝛽-value equals zero for an observation on the frontier, but is greater 

than one if improvement potentials are present. Because all group technologies are subsets of 

the metatechnology, distances measured against the metafrontier exceed distances against the 

group frontiers (𝛽𝑖 ≥ 𝛽𝑖
𝑐) by construction.  

The LPs provide weighting factors 𝜆𝑘 (𝜆𝑘
𝑐 ) that determine the point on the frontier against which 

the distance functions are measured (reference point). We restrict these weights to add up to 

one (∑ 𝜆𝑘𝑘 = 1). This induces convexity of the production set such that the frontier is shaped 

by observed points without further improvement potentials and their linear combinations. As 

we impose no further assumptions about the underlying returns-to-scale (RTS), the shape of the 

frontier is purely data-driven and may simultaneously reflect non-decreasing as well as non-

increasing RTS.  

3.3 Model specification 

In our empirical analysis, we consider four inputs: N and P fertilizer use measured in kg/ha, the 

field’s soil quality indicated by the German soil quality index, and the treatment frequency 

index. On the output side, we use the plot-specific maize yield in dt/ha as the single output.  

We estimate separate annual frontiers to mitigate biases from variable agroclimatic conditions. 

The metafrontier therefore contains all observations from the year of interest. Group frontiers 

are determined using our classifications by inversion tillage and PWM level.  

We consider three different types of  improvement potentials: First, we consider a joint 

improvement of herbicide use and yields. We set the directional vectors to the respective 

observed sample values and measure simultaneous improvement potentials in herbicide and 

yield direction using 𝑑𝑥 = (𝑥𝑇𝐹𝐼 , 0, 0, 0) and 𝑑𝑦 = 𝑦. Second, we consider directional 

improvement potentials with respect to herbicides. We set 𝑑𝑥 = (𝑥𝑇𝐹𝐼 , 0, 0, 0) and 𝑑𝑦 = 0 to 

obtain herbicide reduction potentials, keeping all other inputs and the yield constant. Third, we 

set 𝑑𝑥 = 0 and 𝑑𝑦 = 𝑦 to obtain directional improvement potentials with respect to yields 

keeping all other inputs constant. Using the observed vector eases interpretation because 

resulting 𝛽 values indicate improvement potentials in percentage values for each observation. 

To evaluate between-group differences, we calculate meta-technology ratios (MTRs) 𝜃𝑖
𝑐 =

𝛽𝑖
𝑐/𝛽𝑖. For 𝜃𝑖

𝑐 = 1, observation i’s distances to the group and the metafrontier are identical. 

This indicates that it is feasible to produce on the frontier using technology c. For 𝜃𝑖
𝑐 < 1, 

metafrontier and group frontier are not identical. Additional improvement potentials are thus 

available through switching technologies, e.g., from no inversion tillage to inversion tillage. 

Our empirical strategy using the non-parametric DEA approach offers us several advantages. 

Yield improvement potentials and herbicide reduction potentials can be evaluated jointly and 

separately. The technology is estimated with only mild assumptions on its shape, namely free 

disposability of inputs and outputs, and convexity. In contrast to parametric approaches, such 

as stochastic frontier analysis (MEEUSEN and VAN DEN BROECK, 1977; AIGNER et al., 1977), no 

a priori specification of a functional relationship of inputs and outputs is required. We note, 

however, that the deterministic nature of the DEA induces a high sensitivity of the frontier and, 

thus, efficiency estimates against noise and outliers in the data. Data integrity is therefore 

carefully checked. Frontier estimates obtained through DEA are determined by the most 

efficient observations in the sample. This can lead to a potential downward-bias of the frontier 

estimate, resulting in an underestimation of improvement potentials (SIMAR and WILSON, 

2000). We address this issue through robustness checks using bootstrapping (SIMAR and 
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WILSON, 2007). Results reveal nearly identical and highly correlated efficiency scores with and 

without bootstrapping (ρ>0.99); we therefore refrained from an additional bootstrapping. 

 

4. Results 

We investigate differences in improvement potentials between fields using (i) inversion and 

non-inversion tillage, and fields (ii) using none (PWM0), some (PWM1) and multiple (PWM2) 

preventive weed management practices. We evaluate joint and directional efficiency with 

respect to yields and TFI. We use Shephard efficiency scores by transforming β values to obtain 

efficiency scores in percentage terms (BOGETOFT and OTTO, 2011). Therefore, an efficiency 

score of 1 indicates no further improvement potential; a value below 1 indicates the degree to 

which an observation achieves the frontier in percentage terms. 

 

4.1 Inversion tillage and non-inversion tillage 

Table 1 summarizes the joint and directional efficiency scores (top) and the corresponding 

metatechnology ratios by tillage (bottom). For the joint analysis measuring simultaneous yield 

expansion and TFI reduction, results indicate that fields under inversion tillage are on average 

more efficient (mean: 0.80) than those under non-inversion tillage (mean: 0.74). Maximum 

efficiency scores of 1 in both groups indicate that production on the frontier is possible with 

and without inversion tillage. Metatechnology ratios above 0.9 for more than 75% of the 

observations likewise suggest that there are some improvement potentials regarding both yields 

and TFI from switching between inversion and non-inversion tillage. 

Directional scores in the TFI direction indicate higher average efficiency scores for the 

inversion group (mean: 0.64) compared to the non-inversion group (mean: 0.52). The results 

therefore suggest that the TFI can be reduced by around 36% on average in the inversion group, 

and by nearly 50% in the non-inversion group, while keeping all other factors constant. In 

contrast, directional efficiency scores in the yield direction show small differences between the 

groups (mean: 0.78 for inversion tillage, 0.75 for non-inversion tillage). 

Median MTRs close to one indicate that for most fields only minor yield increases and TFI 

reductions are available through switches between inversion and non-inversion. The MTR 

distribution indicates, however, some advantages for the non-inversion group at the lower 

quantiles, suggesting that TFI reduction potentials are available through a switch from non-

inversion to inversion on some fields. 
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Table 3: Efficiency scores (top) and MTRs (MTR, bottom) by tillage  

 Min. 1st Qu. Median Mean 3rd Qu. Max. 

Joint metafrontier TFI/yield efficiency 

Inversion  0.20 0.65 0.80 0.80 0.99 1 

Non-inversion 0.10 0.59 0.74 0.74 0.93 1 

Directional metafrontier efficiency: TFI  

Inversion  0.19 0.40 0.62 0.64 0.90 1 

Non-inversion 0.10 0.26 0.47 0.52 0.75 1 

Directional metafrontier efficiency: Yield  

Inversion  0.21 0.67 0.77 0.78 0.95 1 

Non-inversion 0.22 0.68 0.77 0.75 0.92 1 

MTR: Joint TFI/yield  

Inversion  0.50 0.89 1 0.93 1 1 

Non-inversion 0.30 0.89 1 0.92 1 1 

MTR: TFI  

Inversion  0.28 0.88 0.98 0.90 1 1 

Non-inversion 0.20 0.77 0.99 0.88 1 1 

MTR: Yield  

Inversion  0.31 0.89 1 0.95 1 1 

Non-inversion 0.45 0.91 1 0.95 1 1 

Notes: Efficiency scores are based on annual frontiers including all observations. Metatechnology 

ratios are calculated using group specific-frontiers and the meta frontier 

 

Disentangling the efficiency scores by year shows substantial variation across the observation 

period (Figure 2). Considering joint yield and TFI improvements, efficiency scores by group 

and year show higher average efficiency scores and smaller efficiency variances for 2011, 2012, 

and 2014  for the inversion group, and higher scores for the non-inversion group for 2013. One-

sided Kolmogorov-Smirnoff tests comparing the annual scores show p-values close to zero in 

each case, i.e., statistically significant different distributions of the annual efficiency scores.  

Directional efficiency scores show similar patterns, with the inversion group having efficiency 

advantages in 2011, 2012, and 2014, while the non-inversion group scores higher in 2013.We 

note substantially higher efficiency scores in the TFI direction for the inversion group in 2011 

and 2012, which partly vanish in the remaining two years. 

 

 

Figure 2: Radial and directional meta-frontier efficiency scores by year and tillage  
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4.2 Efficiency by PWM 

Table 3 summarizes the joint and directional efficiency scores and the corresponding 

metatechnology ratios by PWM group. Average joint efficiency scores at similar levels for 

PWM2 (0.79) and PWM0 (0.78) exceed results for PWM1 (0.70). This suggests that in the 

PWM1 group, a simultaneous improvement of yields and TFI is possible by around 30% on 

average, keeping all other factors constant, whereas improvement potentials are at around 21-

22% on average for PWM0 and PWM2. Comparing the efficiency score distributions by group 

using the Kolmogorov-Smirnov test statistic indicates statistically significant differences at the 

1% level for PWM0 and PWM2 against PWM1, but no differences between PWM0 and PWM2.  

Directional efficiency scores show a similar picture with respect to the TFI. Whereas average 

efficiency scores with respect to yields are similar across all PWM groups, ranging from 0.74 

to 0.79, PWM0 and PWM2 outperform PWM1 in terms of TFI with average efficiency scores 

of 0.63 (PWM0) and 0.64 (PWM2) compared to 0.47 (PWM1).  

For all PWM groups, production on the frontier is possible, as indicated by MTRs equal to one 

in some observations. The distributions of the MTRs indicate, however, that the frontier is 

mainly shaped by fields under PWM0 and PWM2. Thus, under PWM1, improvement potentials 

are to some extent only available through switches to PWM0 or PWM2, respectively. 

We also note the wide range of directional efficiency scores under all PWM groups with minima 

of 0.22 and 0.10, respectively. These inefficiencies are only partly explained by technological 

differences indicated by the MTRs. Thus, notable potentials to improve yields and reduce 

herbicide dependence exist through reducing inefficiency, without the need for switching 

production technologies but through the implementation of best practices. 

Table 4: Efficiency scores (top) and metatechnology ratios (MTR, bottom) by PWM  

 Min. 1st Qu. Median Mean 3rd Qu. Max. 

Joint metafrontier TFI/yield efficiency 

PWM 0   0.24 0.66 0.79 0.78 0.98 1 

PWM 1   0.10 0.57 0.72 0.70 0.91 1 

PWM 2  0.20 0.65 0.80 0.79 0.99 1 

Directional metafrontier efficiency: TFI  

PWM 0   0.13 0.36 0.64 0.63 0.88 1 

PWM 1 0.10 0.24 0.37 0.47 0.61 1 

PWM 2 0.19 0.40 0.63 0.64 0.93 1 

Directional metafrontier efficiency: Yield 

PWM 0 0.22 0.71 0.79 0.79 0.97 1 

PWM 1 0.22 0.67 0.76 0.74 0.89 1 

PWM 2 0.21 0.67 0.78 0.78 0.93 1 

MTR: joint TFI/yield  

PWM 0   0.38 0.79 0.97 0.88 1 1 

PWM 1   0.32 0.80 0.92 0.87 1 1 

PWM 2  0.50 0.88 0.99 0.93 1 1 

MTR: TFI  

PWM 0   0.20 0.68 0.96 0.82 1 1 

PWM 1 0.26 0.57 0.76 0.75 1 1 

PWM 2 0.28 0.84 0.98 0.88 1 1 

MTR: Yield 

PWM 0 0.65 0.80 0.96 1 1 1 

PWM 1 0.50 0.90 0.96 1 1 1 

PWM 2 0.32 0.88 1 1 1 1 

Notes: Efficiency scores are based on annual frontiers including all observations. 

Metatechnology ratios are calculated using group specific-frontiers and the meta frontier 
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Differentiating efficiency scores by year and PWM group (Figure 3) shows substantial variation 

across years without pronounced patterns. The joint analysis of yield and TFI improvements 

(Figure 3, left) shows the highest median efficiency scores for PWM0 and PWM2 in two out 

of the four years of the observation period. However, PWM1 median efficiency is the lowest 

only in 2012. 

The directional analysis with respect to yields (Figure 3, centre) likewise indicates notable 

variation of median efficiency scores by group over time without obvious patterns. As for the 

joint analysis, median efficiency differences are particularly pronounced in 2012, where PWM1 

lags behind PWM0 and PWM2. Directional efficiency scores with respect to the TFI (Figure 3, 

right) indicate the largest heterogeneity between groups and over the observation period. In all 

years, directional efficiency scores range from below 0.3 to 1 for each group. Median efficiency 

is lowest for the PWM1 group in all years, whereas the PWM2 group has the highest median 

efficiency in 2011, 2012, and 2014. The directional analysis thus suggests substantially larger 

inefficiency in terms of herbicide application compared to the achieved yields. 

  
Figure 3: Efficiency scores by year and PWM practices 

 

5. Summary and outlook 

Our results indicate that while production with and without inversion tillage can perform 

similarly in terms of yields, we find notable differences in terms of herbicide application. Fields 

with inversion tillage show herbicide reduction potentials of 35% on average compared to 50% 

for fields without inversion tillage. Metatechnology ratios further suggest that some of these 

improvement potentials are only available through switches from non-inversion to inversion 

tillage. As optimal yield levels indicated by the frontiers are similar under inversion tillage and 

without inversion tillage, our results suggest that herbicide reduction does not necessarily come 

at the cost of yields. 

Comparing different levels of PWM, our results suggest that preventive weed management 

practices can help to reduce herbicide application without sacrificing yields. In particular, we 

find the lowest herbicide reduction potentials if multiple PWM strategies are implemented. 

Additionally, metatechnology ratios are highest under multiple PWM strategies suggesting that 

those fields shape the production frontier providing the highest yields for a given level of input, 

including herbicides. Therefore, keeping all other factors constant, optimal yield levels and the 

lowest herbicide application can be achieved if multiple PWM strategies are applied. Consistent 

with the literature (e.g., RIEMENS et al., 2022), our results thus indicate that PWM necessitates 
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a holistic strategy comprising multiple practices to reduce herbicide dependence without 

compromising yields. 

Our analysis also indicates that fields operated without PWM practices considered in our study 

(crop alteration, tillage) show similar improvement potentials in terms of yields and TFI as 

fields with multiple PWM practices. In contrast,  we find fields under only some PWM practices 

to perform worse with respect to both yields and herbicide application than fields with none or 

multiple PWM practices. Therefore, our results suggest that a selective application of PWM 

practices may have negative effects on yields and on required herbicide application. To realize 

herbicide reduction potentials, implementing either no PWM practices or adopting additional 

ones is required.  

Our results suggest a strong heterogeneity in herbicide reduction and yield improvement 

potentials. First, we find substantial variation over time – also within PWM groups – in 

particular concerning herbicide reduction potentials. Although our results are based on 

comparing only field-level data from the same year in close geographical proximity, an impact 

of heterogeneous agroclimatic conditions cannot be ruled out. Second, all analyses indicate 

substantial improvement potentials in terms of herbicide application. Irrespective of the PWM 

strategy, implementation of best practices can reduce herbicide use substantially by 36-37%. 

At first glance, the minor difference in herbicide use efficiency between no PWM and multiple 

PWM strategies is surprising. The use of pre-crop glyphosate in conventional (PWM0) 

strategies, which decreases follow-up herbicide use, offers one possible explanation (ANDERT 

et al., 2018). Under a potential ban of glyphosate, this would suggest that the implementation 

of multiple PWM practices could provide an alternative delivering similar yields without 

increasing herbicide use. Plot-specific information on the applied herbicides is currently added 

to the dataset to further investigate this issue. 

We further note the following limitations of our study that we plan to address: While the TFI 

provides a reasonable measure of the treatment frequency with respect to herbicides, this 

measure disregards the actual pesticide load by aggregating pesticides irrespective of their 

active ingredients (KUDSK and JENSEN, 2014). We therefore consider measures that better 

reflect the actual environmental burden of herbicide application, such as the pesticide load 

index. Second, our results are based on the assumption that variations in weed pressure are 

directly linked to the PWM levels, whereas the actual level of weed pressure is unobserved. 

Other unobserved (or uncontrolled) characteristics such as agro-climatic conditions impacting 

the weed pressure may thus introduce biases. We therefore plan to investigate in more detail 

the actual weed pressure accounting for the interplay of local soil conditions and agroclimatic 

conditions. Third, a potential bias in our results may arise due to the estimation of a convex 

technology set with ratio measures, as these may introduce non-convexities in the technology 

(OLESEN et al., 2015). Further robustness checks with the non-convex robust order-m estimator, 

however, indicate similar efficiency rankings of the observations suggesting only small impacts 

of the convexity assumption. 
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