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Abstract

Due to the multiple negative environmental effects of the overuse of chemical pesticides, the
European Union (EU) aims to reduce pesticide use — including herbicides — by 50%, by 2030.
Preventive weed management (PWM), using among others in-version tillage and diverse crop
rotations, is considered perhaps the most suitable strategy to reduce on-farm herbicide use.
Whether and how these practices relate to herbicide reduction potential and crop yields is,
however, not well understood. This paper addresses this gap by investigating the impact of
PWM on maize yields and herbicide use. Using field-level data for 530 maize fields in eastern
Germany, we apply a directional distance function approach in a data envelopment framework
and estimate directional and simultaneous improvement potentials for herbicide use and maize
yields. Our preliminary results indicate a similar performance with holistic PWM and without
PWM in terms of both yields and herbicide use, whereas a partial implementation of PWM
seems to increase herbicide use. We also find herbicide reduction potentials of 36-37%
irrespective of the PWM suggesting notable improvement potentials by implementing best
practices.
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1. Introduction

Weed control with synthetic herbicides constitutes the main component of weed management
in conventional crop rotations in arable farming (CHAUHAN, 2020). Though, overreliance on
herbicide application has multiple negative effects, e.g. the reduction of plant diversity
(GUERRA et al., 2022), damaging aquatic and soil organisms (OJEMAYE et al., 2020) and the
expansion of herbicide resistant weeds (DAvis and FRiSvoLD, 2017). With the Farm-to-Fork
strategy, the Commission of the European Union (EU), therefore, aims at reducing pesticide
use — including herbicides — by 50%, by 2030 (TRIANTAFYLLIDIS et al., 2023).

Preventive weed management (PWM) is considered key to reducing herbicide input in arable
farming (RIEMENS et al., 2022; TRIANTAFYLLIDIS et al., 2023). PWM strategies entail, among
others, inversion tillage and wider crop rotations, and can thus be considered as a traditional
management system for maize in Germany (BENSCH et al., 2023). Despite comprehensive
policy efforts to reduce pesticide use in arable farming (EUROPEAN COMMISSION, 2009), the
rate of preventive weed management adoption remains heterogeneous across European farming
(TRAON et al., 2018). To increase adoption of PWM, preventive weed control needs to be
perceived as beneficial in order to be regarded as profitable alternatives to conventional input-
intensive cropping. Hence, the economic benefits of re-establishing PWM need to be clearly
demonstrated before farmers adopt and implement such practices. So far, studies have
demonstrated the potential of PWM in field experiments and on-farm mainly for cereal crops
(ANDERT and ZIESEMER, 2022; ADEUX et al., 2019). However, whether and how these practices
relate to herbicide reduction and crop yield remains not well understood.

We aim at closing this gap and investigate the impact of PWM practices on maize yields and
herbicide application. We rely on data from 530 maize fields between 2011 and 2014 in eastern
Germany with field-specific information on maize yields, herbicide application (Treatment
Frequency Index, TFI) and other land management decisions (N and P fertilization, crop
rotation, tillage), and soil quality.

We investigate the effects of PWM using two classifications: First, based on the applied tillage,
we compare the performance of fields with and without inversion tillage. Second, based on the
crop alteration and the host crop principles (ANDERT et al., 2016), we compare the performance
of three levels of PWM practices, reflecting different risks of weed infestation. We define the
three levels using pre-crop and the applied tillage and differentiate no PWM (PWMO), some
PWM (PWML1), and multiple PWM (PWM2). We compare the fields’ performance with and
without inversion tillage as well as by PWM level using field-specific efficiency measures. We
consider improvement potentials relative to the best practice frontier with respect to maize
yields and herbicide application while accounting for other farming inputs and soil quality. To
model the best practice frontier, we rely on a metafrontier framework. That is, we assess
efficiency relative to the group frontier determined by fields using the same PWM practices
(group frontier), and relative to a metafrontier determined by all fields in the sample irrespective
of the PWM (BATTESE et al., 2004; HAYAMI and RUTTAN, 1970). Empirical estimates are
obtained through directional distance functions in a non-parametric data envelopment analysis
framework (CHAMBERS et al., 1996; BANKER et al., 1984).

Our results indicate efficiency advantages of fields under inversion tillage compared to fields
without inversion tillage, i.e., lower improvement potentials under inversion tillage. Further,
we find higher herbicide use efficiency under inversion tillage without sacrificing maize yields
where herbicide reduction potentials are partly only available under tillage. Second, comparing
different levels of preventive weed management, our results suggest that in comparison to
implementing only some PWM practices (PWML1), applying none (PWMO) or multiple
(PWM2) practices achieves a higher herbicide efficiency without losses in terms of maize
yields. Herbicide reduction potentials are partly available only by implementing none or
multiple PWM practices. That is, even when implementing best practices, herbicide reduction



potentials under PWM1 are partly only available by switching to PWMO or PWM2. Therefore,
our results suggest that the application of multiple preventive weed management practices can
offer reduced herbicide application without yield losses. Rather, our results indicate that
applying multiple practices outperforms the selective use of single practices, for which we find
negative yield effects but no reduction in herbicide application.

The remainder of the paper is structured as follows: Section 2 explains our data set, Section 3
introduces our empirical framework and our empirical approach. Section 4 shows our results.
Section 5 discusses our results and draws preliminary conclusions.

2. Data

We rely on a dataset of maize fields in the counties of Teltow-Flaming and Oder-Spree located
in the southern part of the Federal State of Brandenburg, Germany. Our observation period
spans from 2011 to 2014. The initial sample consists of 575 observations. We eliminate 45
observations with unobserved pre-crop or P fertilization leading to a final sample of 530
observations. We observe 140 fields in 2011 and 2012, 139 in 2013, and 111 in 2014,
respectively. The fields are operated by 14 farms, including 2 arable farms (average farm size:
1,350 ha) and 12 mixed farms (1,688 ha).

For each field, we observe (i) field-specific characteristics including the fields’ size and soil
quality?, (ii) maize yields, (iii) a farm identifier, and (iv) farmers’ land management decisions.
Land management decisions include the crop rotation (class of pre-crop), applied tillage,
fertilizer application (N use and P use in kg/ha), and field-specific herbicide application.
Herbicide application is measured as a treatment frequency index (TFI) calculated as TFI =

applied Hevbicides _  treatedha o TE| rgpresents the frequency and intensity of herbicide
max. allowed Herbicides totalha . . . ] )
applications and includes all herbicide applications related exclusively to the maize. The TFI is
unbounded and takes values above 1 if herbicides are applied multiple times within the year.

Based on the observed practices, we create two classifications related to potential differences
in the risk of weed infestations, as shown in Table 1. First, to test the hypothesis of a non-
negative effect of inversion tillage on herbicide use and maize yield, we differentiate fields
operated with (214 obs.) and without inversion tillage (316 obs.).

Second, we define three levels of PWM with decreasing risk of weed infestation based on the
crop alteration and the host crop principles (ANDERT et al., 2016). The alteration principle
concerns the general sowing period (autumn, spring) which is connected to the timing of the
last soil movement before sowing. Alteration of the sowing periods between crops decreases
the susceptibility of maize crop for adapted weeds. The number of host crops principle states
that the higher the number of potential host crops present as pre-crop, the higher is the
susceptibility for weeds. This leads to three groups of PWM with decreasing risk of weed
infestation: PWMO (112 obs.) uses no inversion tillage and self-rotations of maize or summer
crops as pre-crops; i.e., no preventive weed management measures are applied. PWM1 (220
obs.) consists of fields where some preventive measures are applied, i.e., non-inversion tillage
and winter crops as pre-crop, or maize self-rotations with inversion tillage. PWM2 (198 obs.)
uses preventive weed management measures with respect to both pre-crop and tillage by
applying inversion tillage and no maize self-rotation.

11 The German soil quality index captures the natural yield capacity of arable farmland. The index considers soil
structure, terrain, climatic conditions, water availability, and other natural conditions (Schmitz and Mdller,
2020)



Table 1: Classification by risks of weed infestation (number of observations)

Pre-crop Inversion tillage = Yes Inversion tillage = No

Maize PWM 1 (16) PWM 0 (78) 94

Summer crop PWM 2 (26) PWM 0 (34) 60

Winter crop PWM 2 (172) PWM 1 (204) 376
214 316

Descriptive statistics for the different classifications and corresponding sample sizes by year
are shown in Table 2. The classification by inversion tillage (columns 1 and 2) shows on
average higher soil quality, higher yields and lower herbicide use (except for 2014) for the non-
inversion group. All considered variables are, however, overlapping. The classification by
PWM levels (columns 3 to 5) suggests that some PWM measures (PWML) are applied on fields
with higher soil quality, whereas fields with multiple PWM practices (PWM2) show the lowest
soil quality rating on average. We note particularly low N and P fertilization on PWMO fields
in 2012, whereas fertilizer quantities are somewhat similar across all groups in the other years.

Table 2: Descriptive statistics by tillage and PWM classification and by year

By tillage By PWM group
Inversion till. Non-Inversion till PWMO PWM1 PWMO

Year Var. Obs Med. SD Obs Med. SD Obs Med. SD Obs Med. SD Obs Med. SD
2011 N 52 188.2562.99 88 1745615455 22 2110 2378 67 1739 1112 51 188.3 609
P 475 25.21 78 65.44 74 879 82 555 475 233

SQ 245 548 32 7.16 30 7.2 32 7 24 55

TFI 137 034 1.73 0.65 16 04 18 07 14 03

Yield 355 105 376 6.2 387 6.1 372 6.3 35 105

2012 N 47 207 6032 93 183410782 33 218 1066 70 207 805 37 2316 618
P 57 39.09 106.0 43.66 55.7 418 109.8 40.3 66.6 41.9

SQ 24 6.42 30 6.71 29 47 30 7.3 22 6.7

TFI 147 0.48 198 0.79 18 05 2 0.9 15 05

Yield 36.6 7.3 340 105 340 738 345 118 36.6 5.7

2013 N 62 205.7559.73 77 168 12159 43 168.8 149.1 38 168 734 58 207 60.1
P 57 26.59 79.47 55.78 783 623 754 46.2 57 268

SQ 26 4.24 31 8.85 30 101 31 73 26 43

TFI 125 057 137 0.57 13 05 15 06 13 06

Yield 27 6.6 335 5.2 32 6 335 41 270 6.8

2014 N 53 201.22 5755 58 1785 74.48 14 1875 50.7 45 1785 794 52 200.9 58.1
P 57 3042 98.43 41.88 104.2 24.6 89.6 4538 56.2 30.7

SQ 20 471 325 9.85 305 6.7 34 103 20 46

TFI 1.75 0.68 147 0.42 1 0.5 15 04 18 07

Yield 36.1 93 369 79 338 6.1 39.0 7.6 36.0 91




3. Methods

3.1 The metafrontier framework

To assess field-specific efficiency with respect to maize yields and herbicide application, we
rely on a metafrontier framework (BATTESE et al., 2004; HAYAMI and RUTTAN, 1970). That is,
for each field, we assess its improvement potential both relative to a best-practice frontier using
the same land management practices (group frontier) and relative to the overall best-practice
frontier, irrespective of the land management practices (metafrontier).

We consider a maize production technology that transforms inputs x (x € R™), including
herbicides, into yields y (y € R™). We denote a technology set containing all feasible
combinations of inputs and outputs by W, such that

(1a) Y = (x,y|y can be produced with x).

The upper boundary of W defines the metafrontier production function containing all
combinations providing the maximum maize yield for a given level of input. Deviations from
this frontier are deemed as inefficiency and may result from suboptimal land management
decisions, e.g., a non-optimal timing of fertilizer or herbicide application.

Different land management practices may, however, lead to different feasible combinations of
inputs and outputs. For instance, a lower weed pressure under preventive weed management
might allow higher yields for a given level of herbicide application compared to a field without
preventive weed management. In this case, the sets of feasible input/output combinations would
differ between different land management decisions.

We address this using the classifications by inversion tillage and PWM to define C (¢ =

1, ..., C) subtechnologies. For each subtechnology, we denote the set containing all feasible
combinations of inputs and outputs as W€ such that

(1b) Y€ = (x,y|y can be produced with x under c).

The upper boundary of W¢ denotes the best-practice group frontier under c, i.e., all
combinations providing the maximum maize yield for a given level of input under c. By
construction, the group frontiers are enveloped by the metafrontier (¢ € W Vc¢).

To identify herbicide and yield improvement potentials, we consider the distance of observed
input/output levels to the best-practice combinations defined by the metafrontier and the group
frontier, respectively. For some observation i using c, we indicate the distance to the
metafrontier and the group through directional distance functions f3; and 5 (, such that

(29) Bi(xi,yild) = sup{B; = 0|(x; — Bidyr, yi + Bidy) € ¥},

(2b) Bf(xf, yfld, ©) = sup{B; = 0| (xf — idy, yf + Bidy) € W<},

Therein, B; and Bf are distance functions that indicate the maximum inputs reduction in the
direction d, (d, € R™) and the maximum output expansion in the direction d, (d, € R™)
while staying in the respective technology sets W and W¢ (CHAMBERS et al., 1996).

Therefore, if subtechnology c¢ coincides with the metatechnology, then B; = Bf. If the
technologies are not identical, i.e., the metatechnology allows a higher output/input ratio, g; >
B . The ratio of the distance functions, 8; = 8{/B; < 1, describes the share of improvement
potential that is available using ¢, whereas 1 — B /f; describes a potential improvement in
terms of inputs and outputs that is only available through switching from subtechnology c to
the technology shaping the metafrontier.



Figure 1 illustrates the metafrontier framework for a field (circle) using subtechnology €1 and
a second field (triangle) using subtechnology €2. The common metafrontier W provides the
best available input/output combinations, where technology W¢! partly coincides with the
metafrontier. Arrows with solid (dotted) lines indicate the distance functions Bf (B;) relative to
the corresponding subtechnologies (metafrontier); horizontal improvements correspond to pure
input reductions (d, > 0 Ad, = 0), whereas vertical improvements relate to an output
expansion (d,, = 0 A d,, > 0). Jointinput-output improvements (d, > 0 A d,, > 0) are omitted
for clarity. In this example, output improvement potentials for observation 1 are identical when
measured against metafrontier and subtechnology, leading to a metatechnology ratio equal to
one. In contrast, input reduction potentials for observation 2 indicate notably higher input
savings potentials against the metafrontier compared to the group frontier. These input savings
potentials are only available through a switch to a technology defining the metatechnology,
which would be indicated by a metatechnology ratio smaller than one.

Figure 1: Exemplary illustration of the metafrontier framework (Source: Own illustration)

3.2 Group frontier and metafrontier estimations

To simultaneously estimate the best practice frontiers and the directional distance functions, we
rely on data envelopment analysis (DEA, BANKER et al., 1984). DEA is a non-parametric linear
programming technique that estimates the best-practice frontier by enveloping the relevant
observations with a piecewise linear frontier under assumptions about the shape of the
technology. The corresponding distance functions are obtained through contracting and
expanding the observed inputs and outputs, respectively, while remaining within the technology
set specified by the data and the shape assumptions.

For observation i using c, we solve the following linear programming (LP) problems to obtain
estimates B; (eg. 5a) and By (eq. 5b)

(3a) 5 ax, Bi s.t. x; — Bidy 2 E Aixe; yi + Bidy < E R E Ae=1
1,0 AK k k k

(3b) 5 Jax Bi st xi —Bidy = E X yi +Bidy, < E A5y5; E =1
| 4AS TRIDT4S ¢ = - -



Both LPs contract inputs x and expand outputs y along the directional vectors d,, and d,, while
staying in the (sub)technology determined by observations on the frontier. That is, 8; (8f) is
the improvement potentials in terms of the step lengths d,,d, to the metafrontier (group
frontier). The resulting S-value equals zero for an observation on the frontier, but is greater
than one if improvement potentials are present. Because all group technologies are subsets of
the metatechnology, distances measured against the metafrontier exceed distances against the
group frontiers (B; = Bf) by construction.

The LPs provide weighting factors A, (1%) that determine the point on the frontier against which
the distance functions are measured (reference point). We restrict these weights to add up to
one (X x A, = 1). This induces convexity of the production set such that the frontier is shaped
by observed points without further improvement potentials and their linear combinations. As
we impose no further assumptions about the underlying returns-to-scale (RTS), the shape of the
frontier is purely data-driven and may simultaneously reflect non-decreasing as well as non-
increasing RTS.

3.3 Model specification

In our empirical analysis, we consider four inputs: N and P fertilizer use measured in kg/ha, the
field’s soil quality indicated by the German soil quality index, and the treatment frequency
index. On the output side, we use the plot-specific maize yield in dt/ha as the single output.

We estimate separate annual frontiers to mitigate biases from variable agroclimatic conditions.
The metafrontier therefore contains all observations from the year of interest. Group frontiers
are determined using our classifications by inversion tillage and PWM level.

We consider three different types of improvement potentials: First, we consider a joint
improvement of herbicide use and yields. We set the directional vectors to the respective
observed sample values and measure simultaneous improvement potentials in herbicide and
yield direction using d, = (x7r;,0,0,0) and d, =y. Second, we consider directional
improvement potentials with respect to herbicides. We set d,, = (x7f;,0,0,0) and d,, = 0 to
obtain herbicide reduction potentials, keeping all other inputs and the yield constant. Third, we
set d, = 0 and d,, =y to obtain directional improvement potentials with respect to yields
keeping all other inputs constant. Using the observed vector eases interpretation because
resulting S values indicate improvement potentials in percentage values for each observation.

To evaluate between-group differences, we calculate meta-technology ratios (MTRS) 6 =
Bi/B;. For 8 = 1, observation i’s distances to the group and the metafrontier are identical.
This indicates that it is feasible to produce on the frontier using technology c. For 67 < 1,
metafrontier and group frontier are not identical. Additional improvement potentials are thus
available through switching technologies, e.g., from no inversion tillage to inversion tillage.

Our empirical strategy using the non-parametric DEA approach offers us several advantages.
Yield improvement potentials and herbicide reduction potentials can be evaluated jointly and
separately. The technology is estimated with only mild assumptions on its shape, namely free
disposability of inputs and outputs, and convexity. In contrast to parametric approaches, such
as stochastic frontier analysis (MEEUSEN and VAN DEN BROECK, 1977; AIGNER et al., 1977), no
a priori specification of a functional relationship of inputs and outputs is required. We note,
however, that the deterministic nature of the DEA induces a high sensitivity of the frontier and,
thus, efficiency estimates against noise and outliers in the data. Data integrity is therefore
carefully checked. Frontier estimates obtained through DEA are determined by the most
efficient observations in the sample. This can lead to a potential downward-bias of the frontier
estimate, resulting in an underestimation of improvement potentials (SIMAR and WILSON,
2000). We address this issue through robustness checks using bootstrapping (SIMAR and



WILSON, 2007). Results reveal nearly identical and highly correlated efficiency scores with and
without bootstrapping (p>0.99); we therefore refrained from an additional bootstrapping.

4. Results

We investigate differences in improvement potentials between fields using (i) inversion and
non-inversion tillage, and fields (ii) using none (PWMQO), some (PWM1) and multiple (PWM2)
preventive weed management practices. We evaluate joint and directional efficiency with
respect to yields and TFI. We use Shephard efficiency scores by transforming p values to obtain
efficiency scores in percentage terms (BOGETOFT and OTTO, 2011). Therefore, an efficiency
score of 1 indicates no further improvement potential; a value below 1 indicates the degree to
which an observation achieves the frontier in percentage terms.

4.1 Inversion tillage and non-inversion tillage

Table 1 summarizes the joint and directional efficiency scores (top) and the corresponding
metatechnology ratios by tillage (bottom). For the joint analysis measuring simultaneous yield
expansion and TFI reduction, results indicate that fields under inversion tillage are on average
more efficient (mean: 0.80) than those under non-inversion tillage (mean: 0.74). Maximum
efficiency scores of 1 in both groups indicate that production on the frontier is possible with
and without inversion tillage. Metatechnology ratios above 0.9 for more than 75% of the
observations likewise suggest that there are some improvement potentials regarding both yields
and TFI from switching between inversion and non-inversion tillage.

Directional scores in the TFI direction indicate higher average efficiency scores for the
inversion group (mean: 0.64) compared to the non-inversion group (mean: 0.52). The results
therefore suggest that the TFI can be reduced by around 36% on average in the inversion group,
and by nearly 50% in the non-inversion group, while keeping all other factors constant. In
contrast, directional efficiency scores in the yield direction show small differences between the
groups (mean: 0.78 for inversion tillage, 0.75 for non-inversion tillage).

Median MTRs close to one indicate that for most fields only minor yield increases and TFI
reductions are available through switches between inversion and non-inversion. The MTR
distribution indicates, however, some advantages for the non-inversion group at the lower
quantiles, suggesting that TFI reduction potentials are available through a switch from non-
inversion to inversion on some fields.



Table 3: Efficiency scores (top) and MTRs (MTR, bottom) by tillage

Min. 1Qu.  Median Mean 3 Qu. Max.

Joint metafrontier TFI/yield efficiency

Inversion 0.20 0.65 0.80 0.80 0.99 1

Non-inversion 0.10 0.59 0.74 0.74 0.93 1
Directional metafrontier efficiency: TFI

Inversion 0.19 0.40 0.62 0.64 0.90 1

Non-inversion 0.10 0.26 0.47 0.52 0.75 1
Directional metafrontier efficiency: Yield

Inversion 0.21 0.67 0.77 0.78 0.95 1

Non-inversion 0.22 0.68 0.77 0.75 0.92 1
MTR: Joint TFl/yield

Inversion 0.50 0.89 1 0.93 1 1

Non-inversion 0.30 0.89 1 0.92 1 1
MTR: TFI

Inversion 0.28 0.88 0.98 0.90 1 1

Non-inversion 0.20 0.77 0.99 0.88 1 1
MTR: Yield

Inversion 0.31 0.89 1 0.95 1 1

Non-inversion 0.45 0.91 1 0.95 1 1

Notes: Efficiency scores are based on annual frontiers including all observations. Metatechnology

ratios are calculated using group specific-frontiers and the meta frontier

Disentangling the efficiency scores by year shows substantial variation across the observation
period (Figure 2). Considering joint yield and TFI improvements, efficiency scores by group
and year show higher average efficiency scores and smaller efficiency variances for 2011, 2012,
and 2014 for the inversion group, and higher scores for the non-inversion group for 2013. One-
sided Kolmogorov-Smirnoff tests comparing the annual scores show p-values close to zero in
each case, i.e., statistically significant different distributions of the annual efficiency scores.

Directional efficiency scores show similar patterns, with the inversion group having efficiency
advantages in 2011, 2012, and 2014, while the non-inversion group scores higher in 2013.We
note substantially higher efficiency scores in the TFI direction for the inversion group in 2011
and 2012, which partly vanish in the remaining two years.

Joint: Yield/TFI

1.00-

Direction: Yield

1.0-

=
=
|

1.00-

Direction: TFI

0.25-

201 2012 2013 2014

0.25-

2011 2z 213 2014 201 2012 2013 2014

E Inversion - Non-inversion

Figure 2: Radial and directional meta-frontier efficiency scores by year and tillage



4.2 Efficiency by PWM

Table 3 summarizes the joint and directional efficiency scores and the corresponding
metatechnology ratios by PWM group. Average joint efficiency scores at similar levels for
PWM2 (0.79) and PWMO (0.78) exceed results for PWM1 (0.70). This suggests that in the
PWML1 group, a simultaneous improvement of yields and TFI is possible by around 30% on
average, keeping all other factors constant, whereas improvement potentials are at around 21-
22% on average for PWMO0 and PWM2. Comparing the efficiency score distributions by group
using the Kolmogorov-Smirnov test statistic indicates statistically significant differences at the
1% level for PWMO and PWM2 against PWM1, but no differences between PWMO0 and PWM2.

Directional efficiency scores show a similar picture with respect to the TFI. Whereas average
efficiency scores with respect to yields are similar across all PWM groups, ranging from 0.74
to 0.79, PWMO and PWM2 outperform PWML in terms of TFI with average efficiency scores
of 0.63 (PWMO) and 0.64 (PWM2) compared to 0.47 (PWML1).

For all PWM groups, production on the frontier is possible, as indicated by MTRs equal to one
in some observations. The distributions of the MTRs indicate, however, that the frontier is
mainly shaped by fields under PWMO and PWMZ2. Thus, under PWM1, improvement potentials
are to some extent only available through switches to PWMO or PWM2, respectively.

We also note the wide range of directional efficiency scores under all PWM groups with minima
of 0.22 and 0.10, respectively. These inefficiencies are only partly explained by technological
differences indicated by the MTRs. Thus, notable potentials to improve yields and reduce
herbicide dependence exist through reducing inefficiency, without the need for switching
production technologies but through the implementation of best practices.

Table 4: Efficiency scores (top) and metatechnology ratios (MTR, bottom) by PWM

Min. 1% Qu. Median Mean 3 Qu. Max.
Joint metafrontier TFI/yield efficiency

PWM 0 0.24 0.66 0.79 0.78 0.98 1

PWM 1 0.10 0.57 0.72 0.70 0.91 1

PWM 2 0.20 0.65 0.80 0.79 0.99 1
Directional metafrontier efficiency: TFI

PWM 0 0.13 0.36 0.64 0.63 0.88 1

PWM 1 0.10 0.24 0.37 0.47 0.61 1

PWM 2 0.19 0.40 0.63 0.64 0.93 1
Directional metafrontier efficiency: Yield

PWM 0 0.22 0.71 0.79 0.79 0.97 1

PWM 1 0.22 0.67 0.76 0.74 0.89 1

PWM 2 0.21 0.67 0.78 0.78 0.93 1
MTR: joint TFl/yield

PWM 0 0.38 0.79 0.97 0.88 1 1

PWM 1 0.32 0.80 0.92 0.87 1 1

PWM 2 0.50 0.88 0.99 0.93 1 1
MTR: TFI

PWM 0 0.20 0.68 0.96 0.82 1 1

PWM 1 0.26 0.57 0.76 0.75 1 1

PWM 2 0.28 0.84 0.98 0.88 1 1
MTR: Yield

PWM 0 0.65 0.80 0.96 1 1 1

PWM 1 0.50 0.90 0.96 1 1 1

PWM 2 0.32 0.88 1 1 1 1

Notes: Efficiency scores are based on annual frontiers including all observations.
Metatechnology ratios are calculated using group specific-frontiers and the meta frontier
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Differentiating efficiency scores by year and PWM group (Figure 3) shows substantial variation
across years without pronounced patterns. The joint analysis of yield and TFI improvements
(Figure 3, left) shows the highest median efficiency scores for PWMO and PWM2 in two out
of the four years of the observation period. However, PWM1 median efficiency is the lowest
only in 2012.

The directional analysis with respect to yields (Figure 3, centre) likewise indicates notable
variation of median efficiency scores by group over time without obvious patterns. As for the
joint analysis, median efficiency differences are particularly pronounced in 2012, where PWM1
lags behind PWMO0 and PWM2. Directional efficiency scores with respect to the TFI (Figure 3,
right) indicate the largest heterogeneity between groups and over the observation period. In all
years, directional efficiency scores range from below 0.3 to 1 for each group. Median efficiency
is lowest for the PWML1 group in all years, whereas the PWM2 group has the highest median
efficiency in 2011, 2012, and 2014. The directional analysis thus suggests substantially larger
inefficiency in terms of herbicide application compared to the achieved yields.

Joint: Yield & TFI Direction: Yield Direction: TFI

1.00- 1.00- 1.00- W J_l *
-
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Figure 3: Efficiency scores by year and PWM practices

5. Summary and outlook

Our results indicate that while production with and without inversion tillage can perform
similarly in terms of yields, we find notable differences in terms of herbicide application. Fields
with inversion tillage show herbicide reduction potentials of 35% on average compared to 50%
for fields without inversion tillage. Metatechnology ratios further suggest that some of these
improvement potentials are only available through switches from non-inversion to inversion
tillage. As optimal yield levels indicated by the frontiers are similar under inversion tillage and
without inversion tillage, our results suggest that herbicide reduction does not necessarily come
at the cost of yields.

Comparing different levels of PWM, our results suggest that preventive weed management
practices can help to reduce herbicide application without sacrificing yields. In particular, we
find the lowest herbicide reduction potentials if multiple PWM strategies are implemented.
Additionally, metatechnology ratios are highest under multiple PWM strategies suggesting that
those fields shape the production frontier providing the highest yields for a given level of input,
including herbicides. Therefore, keeping all other factors constant, optimal yield levels and the
lowest herbicide application can be achieved if multiple PWM strategies are applied. Consistent
with the literature (e.g., RIEMENS et al., 2022), our results thus indicate that PWM necessitates
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a holistic strategy comprising multiple practices to reduce herbicide dependence without
compromising yields.

Our analysis also indicates that fields operated without PWM practices considered in our study
(crop alteration, tillage) show similar improvement potentials in terms of yields and TFI as
fields with multiple PWM practices. In contrast, we find fields under only some PWM practices
to perform worse with respect to both yields and herbicide application than fields with none or
multiple PWM practices. Therefore, our results suggest that a selective application of PWM
practices may have negative effects on yields and on required herbicide application. To realize
herbicide reduction potentials, implementing either no PWM practices or adopting additional
ones is required.

Our results suggest a strong heterogeneity in herbicide reduction and yield improvement
potentials. First, we find substantial variation over time — also within PWM groups — in
particular concerning herbicide reduction potentials. Although our results are based on
comparing only field-level data from the same year in close geographical proximity, an impact
of heterogeneous agroclimatic conditions cannot be ruled out. Second, all analyses indicate
substantial improvement potentials in terms of herbicide application. Irrespective of the PWM
strategy, implementation of best practices can reduce herbicide use substantially by 36-37%.

At first glance, the minor difference in herbicide use efficiency between no PWM and multiple
PWM strategies is surprising. The use of pre-crop glyphosate in conventional (PWMO)
strategies, which decreases follow-up herbicide use, offers one possible explanation (ANDERT
et al., 2018). Under a potential ban of glyphosate, this would suggest that the implementation
of multiple PWM practices could provide an alternative delivering similar yields without
increasing herbicide use. Plot-specific information on the applied herbicides is currently added
to the dataset to further investigate this issue.

We further note the following limitations of our study that we plan to address: While the TFI
provides a reasonable measure of the treatment frequency with respect to herbicides, this
measure disregards the actual pesticide load by aggregating pesticides irrespective of their
active ingredients (Kubsk and JENSEN, 2014). We therefore consider measures that better
reflect the actual environmental burden of herbicide application, such as the pesticide load
index. Second, our results are based on the assumption that variations in weed pressure are
directly linked to the PWM levels, whereas the actual level of weed pressure is unobserved.
Other unobserved (or uncontrolled) characteristics such as agro-climatic conditions impacting
the weed pressure may thus introduce biases. We therefore plan to investigate in more detail
the actual weed pressure accounting for the interplay of local soil conditions and agroclimatic
conditions. Third, a potential bias in our results may arise due to the estimation of a convex
technology set with ratio measures, as these may introduce non-convexities in the technology
(OLESEN et al., 2015). Further robustness checks with the non-convex robust order-m estimator,
however, indicate similar efficiency rankings of the observations suggesting only small impacts
of the convexity assumption.
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