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Estimating the Economic Value of Temporary and 
Permanent Carbon Sequestration Activities on 

Agricultural Land 
 

Abstract 
 

This paper estimates the value of carbon from soil sequestration and emission 
reductions from setting aside highly erodible land.  Increases in soil carbon are 
estimated using the Intergovernmental Panel on Climate Change soil organic carbon 
inventory method and NRI data.  Emission reductions are estimated using fuel use data 
from USDA-ERS. 
 
Introduction 

Greenhouse gas (GHG) emissions may be reduced by carbon (C) sequestration, in 

terrestrial systems for example, or through direct emission reductions from decreased 

fossil fuel use.  The GHG mitigation effect of an emissions reduction and C sequestration 

may be different because of the time the C remains out of the atmosphere. While C 

sequestered in the soil may be released back to the atmosphere when the soil is disturbed, 

an emission reduction represents permanent removal of C from the atmosphere 

(Lewandrowski, et al., 2004).  GHG mitigation is enhanced through both soil C 

sequestration and emission reductions when land is removed from crop production. 

Research suggests that C sequestration in agricultural soils could play a 

meaningful, though not predominant, role in helping mitigate greenhouse gas increases 

(Bruce et al., 1999; Flach et al., 1997; Lal et al, 1998; Paustian et al., 1997a, 1997b; 

Sperow et al., 2003).  Many facets of agricultural land management and land use change 

have been examined for their potential to increase soil C stocks (Bruce et al., 1999; Lal et 

al., 1998; Lal et al. 1999; Paustian et al., 1997a; Paustian et al., 1997b). Soil C 

sequestration may be increased through adoption of activities such as setting aside highly 

erodible land (HEL) (plant to grass and/or legumes), reduce tillage intensity, include 
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winter cover crops, and decrease summer fallow.  Lal et al. (1998, 1999) estimated that 

potential soil C sequestration from improved management on U.S. cropland was 75 to 

208 Tg C (Teragram = 1012 g = million metric tonnes) per year for several decades.  

Bruce et al. (1999) estimated that U.S. agricultural soils have the potential of sequestering 

75 Tg C per year over the next 20 years.  Analyses that account for climate and soil 

management estimate that the biophysical potential C sink from widespread adoption of 

activities that increase soil C at 35 – 83 Tg C yr-1 (Sperow et al., 2003). This soil C sink 

represents about 15% of the estimated reduction required to satisfy the Kyoto Treaty (7% 

below the 1990 emission levels), or nearly twice the CO2 emissions from agricultural 

production in the form of fossil energy use, manufacture and distribution of fertilizer and 

pesticide, and soil erosion.    

Switching from annual crops to perennial vegetation increases residue production, 

plant roots, and reduces soil disturbance, thus enhancing soil C sequestration (Paustian et 

al., 1997b). Setting aside highly erodible land and planting perennial vegetation has the 

same effect on soil C as the Conservation Reserve Program (CRP).  The CRP is a 

voluntary cropland retirement program in the U.S. designed to change land use from 

annual to perennial vegetation, in particularly erodible land (HEL).  Areas enrolled in 

CRP are removed from crop production for ten years and planted to native or introduced 

grass species or trees.  Follett et al. (2001a; 2001b) estimated annual soil C sequestration 

(0-20 cm depth) of 9.5 Tg C yr-1 from 10.6 Mha of CRP land based on paired sampling of 

14 sites in the Great Plains and western Corn Belt.  Gebhart et al. (1994) estimated a 

similar total of 11 Tg C yr-1 for a deeper (0-300 cm) depth increment, based on sampling 

at five sites in the southern and central Great Plains. Paustian et al. (2001) estimated soil 
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C sequestration of 6 Tg C yr-1 on 10 Mha of CRP land using a regional application of the 

Century model (Metherell et al., 1993; Parton et al., 1994).  Sperow et al., (2003) 

estimated soil C sequestration of 4.5 Tg C yr-1 on 13.2 Mha of CRP lands using a 

modified version of the IPCC calculation method. 

 Converting 25.7 Mha (million hectares) of HEL from crop production to set-aside 

increases soil C 10.5 Tg C yr-1
 (million metric tons of carbon per year) over the baseline 

U.S. agricultural soil C sequestration rate of 17.1 Tg C yr-1 (Sperow, 2003).  The 

predominant crops in 1997 produced on HEL included 9 Mha of small grains, 4.5 Mha of 

corn, 3.6 Mha of soybean and 3.7 Mha of summer fallow.   

 In addition to the soil C gains derived from setting aside HEL, fossil fuel use for 

activities such as planting, harvesting, and grain drying is eliminated.  The C embodied in 

the fossil energy that is no longer used needs to be included in the carbon sequestration 

accounting to capture all of the benefits of a set-aside program.  While this emission 

reduction may have a different value than the C sequestered in soils, because of the 

“permanence” issue, both are assumed to have the same GHG mitigation effect for this 

analysis, and therefore may be combined to derive a C value. 

 While the biophysical potential of agricultural soils to sequester soil carbon has 

been characterized relatively well, the economic impact of changes in agricultural 

production to enhance carbon sequestration has not been fully analyzed.  A limited 

number of regional and national analyses have estimated carbon prices by assessing the 

incentive required to encourage landowners to adopt carbon sequestering activities (Antle 

et al., 2001; McDowell et al., 1999; Peters et al., 2001).  Peters et al. (2001) reviewed 

twelve studies that estimate carbon prices with and without international trading.  Carbon 
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prices without international trading range from $48 to $407 per ton with an average value 

of $199 per ton (Peters et al., 2001). 

Previous studies exogenously apply various carbon prices and analyze the change 

in production activities and producer income to determine how much soil C could be 

sequestered under different scenarios.  For the most part, these simulation models depend 

upon assumptions about the ease of transition from one management system to another 

and how quickly agricultural producers change in response to exogenous shocks.  The 

objective of this analysis is to estimate the change in U.S. crop production and to derive a 

carbon value from setting aside HEL that is in crop production.  This analysis does not 

consider whether landowners would be willing to enroll in a set-aside program, but rather 

only estimates compensation for enrollment in a land set-aside program that would 

provide similar income to historic production activities.  Profit maximizing landowners 

may be indifferent between earning an annual rental rate from set-aside and the same 

income from producing crops.  These estimates of the market value of soil and emission 

reduction C will aid policymakers and industries that may be required to reduce 

emissions.   

The change in soil C sequestration, effect on U.S. crop production, C from 

emission reductions, and value of C from setting aside HEL are assessed for the major 

U.S. crops (corn, soybean, wheat, sorghum, and cotton) that account for nearly 80% of 

the C losses from cropland soils.  Barley is not considered because rental rates for land 

planted to barley are not available.  The study provides the spatial distribution of HEL in 

crop production and the change in soil C, crop production, and fossil fuel use that results 

from conversion to a soil C enhancing activity.  The analysis also assesses whether 
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targeting specific regions of the country for set-aside enhances soil C sequestration and 

minimizes the impact on producer income.  The results of this analysis will be useful for 

identifying alternative income streams for landowners and to inform policymakers of the 

environmental and economic consequences of some greenhouse gas mitigating activities. 

Methods 

 The carbon content of fuels used during crop production were derived for 

gasoline, diesel, natural gas, and LP gas, which varied by crop and state (USDA-ERS, 

2003b).  When data were not available for a state included in the analysis, national 

average fuel use data were used.  These data allowed calculations of the average, 

minimum and maximum carbon content for each fuel for all crops included in the 

analysis. 

Soil C accumulation rates on set-aside land are estimated using a modified version 

of the Intergovernmental Panel on Climate Change (IPCC) soil organic C inventory 

method together with the National Resources Inventory (NRI) and other data.  Baseline 

and potential soil C stock changes are calculated using the IPCC inventory factors in 

conjunction with land use, management and soil information derived from 1997 National 

Resources Inventory (NRI) data (Nusser and Goebel, 1997) and ancillary data sets.  The 

NRI consists of about 1.3 million actual and imputed sample locations across the U.S. in 

which land use, land management, and other resource information has been collected 

every five years since 1982.  For this analysis the IPCC method is used to estimate soil 

organic C stocks and flows that result from land use and land management changes in the 

conterminous U.S. for the period 1982 to 1997 and projections to 2017.  The standard 

inventory period used in the IPCC method is twenty years.  Organic soils (i.e. peat and 
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muck soils) used for agricultural production are not included in this analysis, although 

their contribution to net CO2 emissions from agricultural activities is significant (Ogle et 

al., 2003). 

Default values for baseline soil C stocks are provided along with a series of 

coefficients that determine carbon stock changes as a function of climate, soil type, 

disturbance history, tillage intensity, productivity, and residue management (IPCC, 

1997b).   Documentation of the inventory methods for land use and management change 

are in the IPCC Workbook Module 5 (Land-Use Change and Forestry; IPCC, 1997b) and 

Reference Manual, Chapter 5 (Land-Use Change and Forestry; IPCC, 1997c).  

Six climate regions are delineated for the conterminous US cold temperate, dry 

(CTD), cold temperate, moist (CTM), warm temperate, dry (WTD), warm temperate, 

moist (WTM), sub-tropical dry (STD), and sub-tropical moist (STM) based on the IPCC 

broad climatic region criteria (Eve et al., 2001).  Average daily temperature and 

precipitation are computed using the PRISM (Parameter-elevation Regressions on 

Independent Slopes) climate mapping system (Daly et al., 1994; Daly et al., 1998) and 

then used to assign land units to one of the six IPCC climate regions.  

Each NRI point is categorized by climate and soil type.  State, county and MLRA 

(Major Land Resource Area (NRCS, 1981)) membership accompanying each point serve 

to locate the point within a climate region.  The dominant taxonomic soil order for each 

point is derived by referencing the soil map unit identifier, which is linked to each NRI 

point (Eve et al., 2001; NRCS, 1994).   

The baseline analysis considers the change in soil C from crop system and 

management changes between 1982 and 1997.  Agricultural areas producing corn, cotton, 
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sorghum, wheat, or fallow in 1997 on HEL are then removed from production.  Pasture, 

range, hay, vegetable crops, and other crop activities are included in the baseline 

estimates, but are not included in the analysis of set-aside. Crop rotations that include 

hay, whether rotated with small grains or row crops, are removed from the analysis 

because these rotations already provide high rates of carbon sequestration.    Irrigated 

land, continuous rice and rice in rotation, which are generally produced on flooded soils 

under anaerobic conditions, are not included in the analyses. 

 Soil C stocks changes between 1982 and 1997 (the period of record for NRI) are 

computed to provide an estimate of C changes that have already occurred, as a baseline 

from which potential soil C increases can be compared.  Baseline soil C change using the 

twenty-year IPCC inventory default factors (IPCC, 1997b), adjusted for our shorter 15-

year inventory period (i.e., multiplied by 0.75) are estimated first.  We estimated the 

change in soil C for each of the 1.3 million observed and imputed NRI points (Nusser and 

Goebel, 1997), to derive estimates of soil C stock change within each MLRA and for all 

US cropland.   The average change in soil C stock for each climate-soil-land 

use/management category is computed with the following equations 

 
SC1997 =  (Ha1997 × SCR × BF × TF1997 × IF1997)                          (2) 

SC1982 =   (Ha1982 × SCR × BF × TF1982 × IF1982)                          (3) 

where δC = the change in C stocks for that land use scenario over the 15 year 
period (expressed as Tg),  

 N = the NRI points, 
 T = conventional tillage, reduced tillage, and no-till (in the baseline, 

each NRI point contained a proportion of each tillage system based 
upon CTIC derived data), 

)1(75.0*)]SCSC([     C 1982

T

1t
1997

N

1 NRI
−=δ ∑∑

==
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 Ha1997 = the number of hectares in that land use (crop rotation, CRP, etc.) in 
1997, 

 SC1997 = soil carbon stock in 1997, 
 SC1982 = soil carbon stock in 1982, 

SCR = the IPCC default estimate of soil C under native vegetation - 
reference level (varies by climatic zone and soil type), 

0.75 = factor to adjust 20 year inventory to the 15 years of data used, 
BF = the IPCC base factor (in this analysis of soil C potentials, the base 

factor is the same for 1982 and 1997), 
TF1997 = the IPCC tillage factor based upon the tillage system in 1997, 
IF1997 = the IPCC input factor based upon residue inputs from cropping 

activities in 1997, 
Ha1982 = the number of hectares in that land use (crop rotation, CRP, etc.) in 

1982, 
TF1982 = the IPCC tillage factor based upon the tillage system in 1982, 
IF1982 = the IPCC input factor based upon residue inputs from cropping 

activities in 1982. 

The total change in soil C stocks for the climatic region is the sum of soil C stock 

changes for each land use category within the region.  Baseline changes in soil C stocks 

were then converted to annual average rates of change (Tg C yr-1) for the fifteen-year 

inventory period.  When land is set-aside for twenty years, soil C accumulations are 

estimated with the same equations, but the starting period is 1997 and the ending period 

is 2017.  It is not necessary to adjust the calculation to fifteen years. 

The opportunity cost of land, the land rental rate, is derived from the USDA-ERS 

Costs and Returns by the USDA-ERS designated Farm Resource Regions (USDA-ERS, 

2003).  Farm Resource Regions are used in the analysis to account for the variability in 

land prices, which are dependent upon local or regional markets, land quality, and 

climatic characteristics. The economic value of sequestered carbon is estimated using the 

1995-2003 average annual rental rates for land (table 3).  In general, rental rates are based 

upon the value of the crop that can be produced on the land, so should reflect all costs 

and returns adequately.  Land rental rates are adjusted to 2003 dollars using the Producer 

Price Index (PPI) to allow direct comparison between land units and years and to 
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calculate an average land rental rate.  The carbon price estimate uses the combined effect 

of the C from an emission reduction, and soil C sequestered. 

The impact on total production of removing land from crop production is 

estimated using county crop yield data derived from USDA-NASS and the NRI to 

identify the crop grown on each of the 1.3 million NRI sample locations (actual and 

imputed points combined) by year (1979-1997, the years available from 1997 NRI data).   

County average yield data from 1995-1997 are used to account for weather variability 

and technological changes that have enhanced crop yields.  When county level yield data 

are not available, average yield from adjacent counties are used as a proxy for actual 

county yield.   

Results and Discussion 

The U.S. counties and area of crop production on HEL are shown in figure 1.  

Crop production on HEL occurs intensively in the Great Plains region and in the Corn 

Belt, but is also present in most regions of the country.  The five crops considered in this 

analysis and fallow activities account for a total of 107 Mha with baseline soil C 

sequestration of -9.5 Tg C yr-1.  As shown in table 1, corn production accounts for the 

largest area (34 Mha) and highest soil C emissions (-4.3 Tg C yr-1) followed by wheat 

(28.4 Mha) with soil C emissions of -2.1 Tg C yr-1.  Under the baseline scenario, except 

for a small number of counties, agricultural production on HEL results in soil C losses, as 

shown in figure 2. In 1997, 20.6 Mha of HEL were used for crop production that resulted 

in soil C losses of -2.6 Tg C yr-1, or nearly 30% of all emissions from agricultural land 

planted to the crops analyzed.  Corn and wheat represent the largest area of HEL with 
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average soil C losses of -1.0 Tg C yr-1 and - 0.60 Tg C yr-1 respectively during the 

baseline period of 1982-1997. 

Setting aside HEL eliminates soil C emissions from all regions.  Estimated soil C 

sequestration from setting aside 20.6 Mha for twenty years is over 8.2 Tg C yr-1 and 

nearly 9.3 Tg C yr-1 when emission reductions are included (table 2). The net increase 

over the baseline conditions is 11.9 Tg C yr-1.  Reduction in wheat production contributes 

the most to increases in soil C (3.9 Tg C yr-1) followed by corn (2.9 Tg C yr-1). 

Based on land rental rates and C sequestration estimated using the IPCC method, 

carbon prices range from $51 to $1912 per metric ton with a U.S. average of $286 

(weighted by area and C sequestration).  This is higher than carbon prices when emission 

reductions are not considered ($61 - $576 per metric ton and average of $320).  While the 

lower value is similar to previous analyses, the upper range is substantially higher than 

values derived from previous research.  One possible reason for this is that previous 

analyses have assessed management changes that have little effect on producer income, 

while this analysis completely removes the land from production.  The sole source of 

farm income in the analysis is based upon the amount of soil C that can be stored over 20 

years.  Since the land rental rate was used to establish the C price, highly valued lands, 

which should be an indicator of productivity, with small increases in soil C, because 

sequestration is already high on highly productive land, result in high carbon prices. 

The USDA-ERS designated Farm Resource Regions that are grouped by crop 

production specialization are used to gain an understanding of the spatial distribution of 

soil C and where costs are the highest.  The highest average carbon price occurs in the 

Heartland ($223 per metric ton).  This should be expected because the Heartland includes 
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the Corn Belt region of the U.S. with productive soils that produce high valued crops, 

thus having higher land rental rates.  The increase in soil C from setting aside HEL in the 

Heartland is over 2.5 Tg C yr-1, which represents nearly 27% of the total soil C 

sequestration on set-aside lands.  The Prairie Gateway, which encompasses the southern 

plains region, provides the least expensive soil carbon cost at $73 per metric ton.  It also 

provides substantial soil C at 3.3 Tg C yr-1, or over 36% of the soil C gains possible on 

set-aside land.  The most HEL of any region is also removed from production, resulting 

in over 6.3 Mha less production in this Farm Resource Region. 

The area removed from crop production and soil carbon gain that may be 

achieved under various price scenarios are included in table 3.  When the price is not 

above $50 per metric ton, no land will be set-aside.  This is not a surprising result since 

the lowest land rental rate in the U.S. is just over $70 ha-1 ($37 ac-1) in the Prairie 

Gateway resource region.  When the carbon price is $200 per metric ton, nearly 6.5 Mha 

are removed from crop production and contribute nearly 3.8 Tg C yr-1 (Figure 3) or 40% 

of carbon sequestration when all HEL is set-aside.  At a price of $400 per metric ton, 

over 73% of the total possible soil C sequestration from set-aside may be attained. 

 To get a sense of the impact of the reduced production as it relates to total 

production, estimated production from each site is compared to average ending stocks in 

2002 and 2003 (projected).  When all HEL in the analysis is considered, the reduction in 

crop production is less than average ending stocks (table 4).  Decreased sorghum 

production represents the greatest proportion of ending stocks (81%) while reduced 

cotton production would have the smallest effect (17%).  While it may not be desirable to 
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reduce ending stocks, these data indicate that setting aside HEL to increase soil carbon 

would not have large impacts on total crop production. 

 

Conclusions 

  The soil carbon gains from setting aside highly erodible land are substantial.  

Overall, reduced fuel consumption increases C sequestration by over 1 TgC yr-1 and 

reduces the overall costs of C sequestration as a GHG mitigation activity by shifting out 

the supply curve.  However, the data indicate that using the land rental rate as a proxy for 

the value of lost production income results in a high per unit cost for the sequestered soil 

carbon.  The least costly Land Resource Region, Prairie Gateway, provides over 35% of 

the total soil C gains possible on HEL.  Regions such as the Prairie Gateway that 

contribute significantly to the total soil C sequestered at lower costs should be the first 

targeted by any programs implemented to increase soil carbon. 

The IPCC calculations provide estimates of soil C accumulations or emissions 

that result from management changes over twenty years.  Therefore, a key assumption in 

this analysis is that HEL is set aside for at least twenty years.  Converting the land from 

set-aside to crop production would negate much of the gain in soil C, depending upon 

how many years the land was set-aside.  Soil C sequestration is noted with positive and C 

emissions with negative annual accumulation rates. 
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Table 1.  Total area of study crops produced in the U.S., annual rate of soil C 
sequestration from these crop activities, area of HEL by study crop and annual rate of soil 
C sequestration from cropping activities on HEL.  

 
 
 

1997 Crop 

 
 

Total Area 
(Mha)a 

 
 

Total Soil C 
(Tg yr-1) 

 
 

HEL Area 
(Mha) 

Soil C from 
HEL in 

production 
(Tg yr-1) 

Corn 34.0 -4.3 4.3 -1.00
Cotton 6.9 -0.7 1.2 -0.12
Sorghum 4.4 -0.5 0.7 -0.10
Soybean 27.3 -1.5 3.6 -0.55
Wheat 28.4 -2.1 7.4 -0.60
Fallow 3.6 -0.3 3.5 -0.24
Total 107.0 -9.5 20.2 -2.60

a Baseline and HEL areas and soil C sequestration rates do not include rotations with hay 
or irrigated land that is defined as HEL. 

 
 
 
 
 
 
 
 
Table 2.  Baseline soil C sequestration rate from production on HEL, soil C from setting 

aside HEL, reduced CO2 emissions from not using fuels, and total C 
sequestration and emission reduction potential from setting aside HEL. 

 
1997 Crop 

Baseline 
C from HEL a 

Total C from HEL 
after Set-Aside 

CO2 Emission 
Reduction 

C Sequestration and 
Emission Reduction 

 ------------------------------ TgC yr-1 -------------------------------- 
Corn -1.00 1.54 1.88 2.88
Cotton -0.12 0.65 0.84 0.96
Sorghum -0.10 0.29 0.35 0.45
Soybean -0.55 1.28 1.43 1.98
Wheat -0.60 2.98 3.25 3.85
Fallow -0.24 1.51 1.51 1.75
Total -2.60 8.25 9.26 11.86

a Soil C sequestration rates for baseline and set-aside do not include soil C rate for 
irrigated crops or rotations that include hay or the CO2 emissions from fossil fuel use. 
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Table 3.  Farm Resource Region 1995-2003 average land rental rate by crop ($ ha-1) 

adjusted to 2003 dollars with the Producer Price Index (PPI). 
Crop 

($ ha-1) 
 
 

Farm Resource Region Corn Cotton Sorghum Soybean  Wheat
Basin and Range n/aa n/a n/a n/a 123.87
Eastern Uplands 109.19 n/a 84.93 101.13 n/a
Fruitful Rim n/a 318.91 n/a n/a n/a
Heartland 225.56 168.70 138.85 231.19 158.34
Mississippi Portal n/a 126.44 n/a 151.67 114.09
Northern Crescent 150.63 n/a 79.47 170.75 164.49
Northern Great Plains 125.78 n/a n/a 101.61 87.92
Prairie Gateway 179.00 55.52 57.13 130.15 70.38
Southern Seaboard 88.78 101.56 85.10 91.75 n/a
a Data are not available. 
 
 
Table 4.  Hectares that may be enrolled in a set-aside program when the price per metric 

ton of carbon is varied, the soil C that may be attained from those acres, and the 
percentage of total soil C sequestration from set-aside. 

 
Price 

($ per metric ton) 

Area with soil C  
(,000 ha) 

Area with soil C + 
Emission Reduction  

(,000 ha) 
50 0 0 
100 990 1,318 
200 4,597 5,153 
300 4,289 4,363 
400 2,764 3,120 
500 1,476 2,608 
600 1,979 1,417 
>1000 3,888 1,934 

 
 
 
Table 5.  Crop Production impacts of removing HEL from production activities. 

 
1997 Crop 

Total Production 
Lossa 

2002-2003 Ending 
Stocks 

Corn (Mil. Bu) 512.0 1339 
Cotton (Mil. 480 Lb Bales) 1.1 6.5 
Sorghum (Mil. Bu) 42.1 52 
Soybean (Mil. Bu) 133.2 193 
Wheat (Mil. Bu) 259.9 631 

a Based on average county yields.  Source: USDA-NASS. 2003. Crops County Data 
Files. http://www.nass.usda.gov/indexcounty.htm 
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Figure 1.  Area of HEL under crop production by U.S. county. 

Figure 2.  Annual rate of soil C sequestration from crop production on HEL by 
U.S. county. 
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Figure 3.  Supply curves for soil C (dark line) and combined soil C and C from 
emission reduction (grey line). 

 


