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Effect of Water Price on the Multicrop Production Decision:  Appling Fixed Allocatable Input 

Model in Georgia 

 

 

 

Abstract: 

This study applies the fixed allocatable input model to test the effect of water price on the 

multiple production decision in Georgia, U.S. The limited dependent variable models are applied 

and intensive data are analyzed in this study to estimate the decision for crop choice, land 

allocation, product supply, and water demand functions at crop-level. In order to investigate the 

effect of water price on crop-level demand, the total water price effect on farm water demand is 

decomposed the intensive margin and extensive margin. 

 

Key words: Multioutput production, Water price, Water demand, Limited dependent model 
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Introduction: 

The agricultural sector accounts for about 16 percent of Georgia’s $350 billion annual economic 

output (Georgia Farm Bureau, 1998).  It is also often cited as the primary consumptive water 

user in Georgia. There is, however, considerable uncertainty about how water consumption is 

distributed across space, time, and crops.  Crop choice decisions, affected by economic variables 

and available input (land, labor, technology, etc.) often influence water use in agricultural 

production.  As the pressure on Georgia’s water resources increases, a greater understanding of 

how water use decisions are made within the agricultural community will facilitate the 

development of water policy that can protect and enhance the economic integrity of the state’s 

agricultural sector. 

One strategy for realizing efficiency gains in water use is through improved irrigation 

technology and water management at the farm-level.  This involves consideration of crop water 

requirements, irrigation technology, economic factors, and weather variables. These factors 

simultaneously influence the timing and amount of water applied to agricultural fields and 

consumed by the agricultural sector.  

The econometric evidence on the role of input-use adjustments to higher water prices was 

formed in the last decade. Previous research in this area studied the price elasticity of demand for 

irrigation water; quantified the effect of water price to choice of irrigation technique; estimated 

the effect of a reduced water entitlement on cropland allocation decisions of Reclamation-served 

irrigators (Moore, etc.). Their findings indicated that the producer will adjust irrigation rationally 

responding to the signal of water scarcity.  However, models of the influence of (implicit) water 

prices on land allocation, crop choice and water use in the Southeast are missing from the water 

demand literature. 
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Data  

Multicrop producers in the analysis are those growing at least two crops among corn, cotton, 

soybean, and peanuts in Georgia.  We use five types of data: Farm and Ranch Irrigation Survey 

(FRIS) production data, input prices paid and output prices received by farmers, climate and 

weather information, and soil quality characteristics.  

FRIS data 

The primary data in this analysis are from FRIS. The survey was conducted in 1984, 1988, 

1994, 1998, and 2003. The survey provides the dependent variables (output ( iy ), farm land ( in ), 

irrigation water use ( iw ), and the decision of type of crops grown ( id ) by crops) for the analysis.  

Some independent variables from the FRIS include irrigation technology, water sources and total 

amount, farm land restriction, and water management practices.  The detailed description about 

the FRIS variables are given in the appendix and Table 1 also gives the full view of the statistics 

about all variables.  

Price data1 

Input price  

The cost of irrigation water is the main components of the input costs. But since the implicit 

water price is not available, the energy cost of irrigation applied by farmers is served as the 

proxy of water price assuming the groundwater is the marginal source. For a farmer from the 

FRIS sample to be included in the analysis they must irrigate with groundwater only or with both 

groundwater and surface water; groundwater is assumed to be the marginal water source when 

both sources are used. Energy costs for different fuel sources are computed from farm-level 

                                                 
1 All price data applied in the model are normalized and the price of service station unleaded gasoline served as the 
numeraire.   
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FRIS data on groundwater pumping depth and pumping pressure using the formula (Gilley and 

Supalla, 1983, pp. 1785). 

)31.2)(/3716.1( PSILEPC kkk +=  

Where kC ($/acre-feet) is groundwater pumping cost for fuel type k. kP is the fuel price for 

fuel type k. kE is the fuel efficiency for fuel type k. The fuel types are composed of electricity, 

natural gas, LP gas, Diesel, and Gasoline. L (feet) is the farm-level average depth to bowls or 

impellers. PSI (poundes/inch2 ) is the farm-level average operating pressure. The fuel price data  

kP are collected from State Energy Data 2001 Price and Expenditure Data (U.S. Energy 

Information Administration, 2001), state-level natural gas city gate price (U.S. Energy 

Information Administration, 1984-2004), and  region fuel price paid from USDA in Agricultural 

Prices Summary (USDA, 1985; USDA, 1989; USDA, 1995; USDA, 2003). The fuel efficiency  

kE is from the Irrigation-Handbooks and manuals-National Engineering Handbook Part (NRCS: 

National Resources Conservation Service, 1997). The fuel efficiency of diesel, natural gas, LP 

gas, electricity, and gasoline is 0.23, 0.17, 0.18, 0.66, and 0.17, respectively. In the computation, 

the overall energy cost can be calculated as the weighted average energy cost by different fuel 

sources. The irrigated acreages powered by the different types of energy serve as the weight. 

 Farmer’s wage is another important source of input price. Five year’s field wages ($/hour) 

are collected (Georgia Ag Facts, 1985-2004).  

 Output price 

 Crop price variables are constructed as expected prices in each year. For corn, cotton, and 

soybeans, three forecast models are constructed by regressing the planting date’s future’s price 

for the harvesting date on the lag of the real price for each crop. All results show the future’s 

market can serve as very good expected price for each of crops. Since there is no future’s market 
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for peanuts, the question about how to get the expected price for peanut is arising. If all future’s 

market scheme (accuracy) to reveal the expected price are all the same, the same scheme could 

apply to peanuts too although there is no real future’s market. Now the remained task is to test if 

all crops’ future’s market schemes are the same. In order to do that, Chow test need to be applied 

to test the difference among the different crop’s future market. Except for peanut, the result from 

the Chow test shows that our hypothesis that all crops’ future’s market schemes are the same is 

true in 0.01 significant level. So the overall forecasting model is applied to peanut to get the 

expected price. The real 35 year’s time series crop prices data are collected from Georgia Ag 

Facts (1970-2004). The planting date’s future’s price for the harvesting date are collected and 

calculated from the daily CBOT data. 

   Climate and Weather data 

          Cumulative Cooling Degree Days (CDD) and Cumulative amount of precipitation served 

as the variables measuring the variation of the climate and weather change. Two climate 

variables represent the long run expected weather conditions. They are calculated based on the 

county level 35 year’s daily weather records (NOAA 1970-2004). Two weather variables 

represent the real weather conditions for the corresponding years during the different crop’s 

growing season. They are calculated based on the county level 5 year’s daily weather records 

during the growing seasons (NOAA, 1984, 1988, 1994, 1998, 2003). CDD measures the hot 

season. The higher CDD means the hotter season. It is calculated as following: 

)0,
2

max( minmax
baseTTTCDD −

+
= ∑  

Where maxT is the daily maximum temperature, minT  is the daily minimum temperature, 

072FTbase = in our study. 

Soil quality data  
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Soil quality variables are average county values from the 1988 Natural Resources 

Inventory conducted by the Soil Conservation Service, USDA. Dummy variables to indicate the 

good quality of soil and bad quality of soil are calculated from the average county-level soil class. 

County-level soil class is calculated by weighted average. The corresponding acreage for each 

soil class serves as the weight. 

The detailed explanations of all variables are provided in the appendix. And the statistical 

descriptions of the corresponding main variables are listed in Table 1. 

Model 

In this study, a multioutput profit function with land and surface water as fixed inputs will be 

developed. This problem can be expressed as the following constrained optimization problem 

}:);,,,({);,(
1 1...1

max ∑ ∑ ==
= =

∏
m

i

m

i
iiii

mnn
NnnbpNb xrxr,p, π                        (1) 

        Where i=1,...,m  number of crops grew; P is the crop price vector; ip is the price of crop i; r 

is the input price vector expect for water price; b is water price; ∑ =
=

m

i
i Nn

1
 land constraint; x is the 

vector of other variables exogenous to the farm or crop( climate, weather, soil quality, and 

irrigation technology), ∏ );,( xr,p, Nb is the multioutput profit function; );,,,( xr iii nbpπ is the 

crop-level restricted profit function for crop i. The notations in the following equations are 

consistent.  

         Given the normalized quadratic profit function used in the study, the );,(* xr,p, Nbni solved 

from (1) are linear in the exogenous variables expressed as equation (2). Applying Hotelling’s 

lemma and Envelope theorem to 

}));;,(,,,();,(
1

*∑=
=

∏
m

i iii NbnbpNb xxr,p,rxr,p, π , the product supply 
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function );,( xr,p, Nbyi  and water demand function );,( xr,, iii nbpw will be solved as equation (3) 

and (4) respectively. The crop choice function can be simply expressed as discrete-choice 

decision equation as equation (5)  
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= = =
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Water demand:  ∑ ∑
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       Crop growing decision: ),,,( xrP, Nbfd ii =                                                           (5) 

        Where id in equation (5) is binary variable, which equals to 1 if crop i is grown and 0 if not 

grown.  

        After the equation (2), (3), and (4) are obtained, the farm-level water use equation (6) can 

be easily decomposed in to an intensive margin and an extensive margin as form (6) following.  

Farm-level water demand:  ∑=
=

m

i iii NbnbpwW
1

* ]);;,(,,,[ xxr,p,r                           (6) 

Decomposing the total effect:  ∑
=









∂
∂

∂
∂

+
∂
∂

=
m

i

i

i

ii

b
n

n
w

b
w

db
dW

1

*

*
                                          (7) 

       The first part of the right-hand side of equation (7) is the intensive margin, which can be 

estimated by iϕ  in equation (4). The second part of the right-hand side of equation (7) is the 

extensive margin. And 
*
i

i

n
w
∂
∂ can be estimated by iϑ in equation (4); 

b
ni

∂
∂ *

can be estimated by iδ in 

equation (2).   
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        So the main tasks are reduced to estimate the equations (2) to (5) now. Equation (5) can be 

estimated with Probit model. Equation (2) and (3) can be estimated with Tobit model. Equation 

(4) will be estimated with Heckman model.    

Results 

Table 2 lists the coefficients of the probit model to estimate the crop selection for multicrop 

planting farmers. According to Table 2, water price does not play the key role to affect the crop’s 

selection. This result is consistent with the survey conducted by University of Georgia in 

Georgia, where over 80% farmers identified rotational considerations as the first two most 

important factor in their decision of which crops to plant but only 23% farmers ranked the input 

costs as the first most important factors (Mullen et.al). In this study, water price is even more 

neglectable for crop choice compared with the wage, another component of input price. 

Although they are not significant, three of four crops’ coefficients of water price are negative, 

which means the higher water price decrease the probability to plant the crop. This makes sense.  

In the meanwhile, the long run temperature measured by the cumulative cooling degree days is 

the significant factor to affect the crop-choice for each crop.  

 Table 3 is the Tobit model result for land allocation. Land allocation result shows the 

substitute effect among different crops with water price. Higher water price induces the 

substitution of corn and peanuts acreage for cotton and soybeans. However this substitute effect 

is not significant in our study. The change of the wage can also induce the substitution effect 

among the crops due to the different labor requirement for different crops. This substitution 

effect is more significant compared with the water price. Besides, total available acreage is very 

significant to affect the land allocation decision and all total acres’ coefficients are positive.  
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 Table 4 is the Tobit model result for crop production. Crop production result reveals the 

similar facts as the land allocation. 

 Table 5 reports the result of Heckman model to estimate the short-run water demand 

function. Table 5 shows that water price will significantly affect the short-ran water demand for 

corn and peanuts. At the same time, except for soybeans, all water price coefficients’ sign are 

negative, which means the higher water price will decrease the demand of the water. This result 

is strictly consistent the classical micro-economics theory. As for the positive sign in water 

price’s coefficient for soybeans, the water price’s effect is closed to 0 and this effect is not 

significant. So this little violation does not impair the acceptance of the conclusion. As expected, 

the result shows that the irrigated acreage for each crop plays the significant roles to determine 

the demand of water irrigated. The more acreage planted, the more water is applied. 

 Based on the results from Table2 to Table 5, the elasticities with respect to water price 

can be calculated at the point of means of the corresponding respondent variables and water price. 

Table 6 reveals that Farm-level responses are highly inelastic in every multicrop strategy 

decision. Except for the elasticity of short-run water demand for crop corn and peanuts are 

significant, any other elasticities are not significant at 0.1 significant level. Another important 

result is that all short-run water demand elasticities are negative2. The last important find is that 

all absolute values of elasticities are very small, implying they are all inelasticity respect to water 

price in Georgia. The elasticity of crop supply respect to water price for corn even drop to 0. This 

result is also consistent with the result from UGA survey, where only around 10% respondents 

will consider the crop water needs when they make the decision to maximize the profit for multi-

                                                 
2 Although the direct Heckman model’s coefficient for soybean’s short-run water demand is positive, adjusted 
elasticity based on the adjusted coefficient calculated as in Bockstael et al. is negative. 
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crops. The similar result is also detected by Moore, Gollehon, and Carey, Nieswiadomy, Ogg 

and Gollehon, Howitt, Watson, and Adams.  

 Table 7 shows the step to decompose Farm-level water demand to Crop-level extensive 

and intensive margins. Firstly, according to the results in Table 7, all responses at the intensive 

margin outweigh the extensive margin in absolute value. Second, the water price effect on land 

allocation contributes comparatively less to the extensive margin. Third, all crop-level intensive 

margins are negative. Fourth, all crop-level total effects on water demand respect to water price 

are negative. The last one is that the total farm-level water demand respect to water price is 

negative too. All those findings are reasonable. 



 12

Table 1. Statistical Description for Selected Variables  

Variable Mean Std       
FARM-LEVEL 
VARIABLES  

Number of Farms 784        
Depth 152.25 87.02       

PSI 59.63 23.11       
Wtrprc 24.06 12.79       

Wtrnprc 20.34 10.71       
Nwage 5.19 1       
Totacr 768.84 785.36       
Totwtr 491.62 647.26       
Clmcdd 1057.94 89.74       
Clmpcp 51.14 3.87       

 
Binary Variable Percentage(%)       

Dmpres 98.72       
Dmnowt 16.44       
Dmlwmg 11.73       
Dmhgmg 21.81       

 
CROP-LEVEL 
VARIABLES         

  Corn Cotton Peanuts Soybeans 
Number of Farms 544 547 678 219 

  Mean Std Mean Std Mean Std Mean Std 
Ownacr 257.81 311.15 421.05 435.43 270.36 358.34 223.31 247.9 
Crpwtr 197.55 301.31 259.62 366.91 159 245.99 128.51 221.95 
Crppdt 37259.48 46401.61 388930.3 418129.6 1010933 1258624 9035.32 9826.94

Crpwtr_acre 0.72 0.48 0.58 0.38 0.58 0.39 0.48 0.32 
Crnprc 2.23 0.4 0.57 0.17 0.24 0.08 5.42 1.19 

Owncdd 950.5 201.28 1074.69 245.6 1064.68 246.36 1002.58 230.07 
Ownpcp 28.59 7.67 30.68 8.41 28.88 7.69 28.66 8.44 
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Table 2. Probit model for crop selection 

Independent 
variable Corn Cotton Peanuts Soybeans 

crnprc 0.462* -1.395** 0.871 0.197** 
wtrnprc -0.003 -0.003 0.010 -0.005 
nwage -0.316** 0.513** -0.018 -0.567** 
totacr 0.000 0.000** 0.000* 0.000* 
clmcdd -0.002** 0.001* 0.001* -0.002* 
clmpcp 0.012 -0.046* 0.055* -0.011 
goodsl 0.149 -0.015 0.276 -0.232 
badsl 0.330* -0.576** 0.222 0.309* 
dmsrwt 0.005 0.341** 0.137 -0.393** 
dmnowt 0.059 -0.414** 0.110 0.178 
dmlwmg -0.083 0.128 -0.012 -0.080 
dmhgmg 0.015 0.161 -0.332* 0.229* 
_cons 2.940* -0.094 -3.581* 4.141** 

 

Note: * and ** denote significance at the 0.1 and 0.01 levels respectively in all tables. 
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Table 3. Tobit model for land allocation 

Independent 
variable Corn Cotton Peanuts Soybeans 

crnprc 77.192* -204.493** 12.530 5.707 
wtrnprc 0.347 -0.957 0.103 -0.514 
nwage -17.559 55.951** -20.121* -43.355** 
totacr 0.238** 0.435** 0.385** 0.171** 
clmcdd -0.096 0.073 0.117 -0.051 
clmpcp -0.594 -5.441 3.547 -3.280 
goodsl 21.949 -0.427 -6.173 3.384 
badsl 1.139 -43.359 27.203 22.382 
dmsrwt -52.136* -2.973 27.650* -3.657 
dmnowt 42.593 0.625 -20.168 30.376 
dmlwmg -7.678 21.800 -23.331 3.146 
dmhgmg -32.994 12.956 4.718 22.192 
_cons 117.681 80.531 -242.134 433.350* 
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Table 4. Tobit model for crop production 

Independent 
variable Corn Cotton Peanuts Soybeans 

crnprc 4996.09 -344468** -459048* -288.387 
wtrnprc 4.98144 -928.105 421.8303 -29.2114 
nwage -1150.94 42113.34** -48805.2* -1849.14** 
totacr 36.0727** 418.0054** 1356.849** 7.432051** 
clmcdd -17.5281 116.9865 595.813* -1.28305 
clmpcp -129.703 -5403.02 16788.18* -206.681 
goodsl 4204.38 19197.64 41040.64 1386.801 
badsl -1163.83 -29635.5 145385.9* 1397.733 
dmsrwt -8726.96* 10714.82 89901.94* 570.2537 
dmnowt 4248.72 -32386 -75841.7 661.6652 
dmlwmg 1546.28 21227.84 -74908.9 -209.979 
dmhgmg -2198.52 32215.44 53200.09 1480.677 
_cons 28578.3 150148 -1248273* 23098.88* 

 



 16

Table 5. Heckman model for short-run water demand 

Independent 
variable Corn Cotton Peanuts Soybeans 

crnprc 11.535 115.630 192.458* 2.622 
wtrnprc -1.403* -0.811 -0.990* 0.002 
nwage 25.630 30.525 20.959* 18.458 
ownacr 0.755** 0.692** 0.570** 0.753** 
dmsrwt -14.768 -16.753 -26.205* 4.639 
dmnowt 13.372 1.588 -7.386 -19.732 
dmlwmg 51.430* 6.318 8.021 -20.126 
dmhgmg 0.073 3.573 6.202 -22.657* 
dmowntc -8.271 130.677* 121.509** 36.155 
owncdd 0.080 0.145** 0.054* 0.045 
ownpcp -5.333** -0.942 -1.945* -0.368 
_cons -28.465 -512.496** -228.116** -158.132* 
     
rho -0.265 0.221 -0.784 -0.514 
sigma 160.771 207.053 138.512 77.520 
lambda -42.683 45.668 -108.534 -39.828 
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Table 6. Elasticities with Respect to Water Price 
 

Elasticities with Respect to Water Price 
Crop Crop Choice Land Allocation Crop Supply Short-Run 

Water Demand 
Corn -0.03 0.03 0    -0.15* 
Cotton -0.02 -0.05 -0.05 -0.06 
Peanuts 0.03 0.01 0.01    -0.10* 
Soybeans -0.11 -0.05 -0.07  -0.02 
 
Note: 
(1)*denotes significance at the 0.10 level and ** at the 0.01 level on the estimated water price 
coefficients used in calculating the elasticity values from the respective equations 
(2) All elasticities are calculated at the means of the respondent variables and independent 
variable, Water price. 
(3) Short water demand elasticity respect to water price adjusted by the estimated probability the 
crop is grown and the change in probability of growing the crop given the estimated coefficient 
(as in Bockstael et al.).  
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Table 7. Decomposing Farm-level Water Demand: Marginal Adjustments to Water-Price at the 
Crop-Specific Extensive and Intensive Margins 

 

Crop ii nw ∂∂  bni ∂∂  ixF )(  Extensive 
Margin 

Intensive 
Margin 

bwi ∂∂  
Total 
Effect 

Corn 0.76 0.35 0.69 0.18 -1.47 -1.29 
Cotton 0.69 -0.96 0.7 -0.46 -0.76 -1.22 
Peanuts 0.57 0.1 0.86 0.05 -0.76 -0.71 

Soybeans 0.75 -0.51 0.28 -0.11 -0.15 -0.26 
Farm total           -3.48 

 
Note:  
(1) ixF )( is the share of the sample growing crop i. It is used here as in McDonald and Moffitt to 
reflect that each crop is grown by only a share of producers in the sample. 
(2) Extensive Margin is calculated by iiii xFbnnw )(*)(*)( ∂∂∂∂  
(3) Intensive Margin is the estimated coefficient on water price in the short-ran water demand 
equations adjusted by the estimated probability the crop is grown and the change in probability 
of growing the crop given the estimated coefficient (as in Bockstael et al.).  
(4) Farm total effect bW ∂∂ is the sum of the crop total effects.  
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Appendix 

Variable description 

FRIS data 

Ownacr: Area devoted to crop i (acres) 

Totacr: Total farm level area in crop production (acres) 

Crpwtr: Water applied to crop i (acre-feet)  

Crpwtr_acre: Average water applied to crop i per acre (acre-feet/acre)  

Totwtr: Total water use on farm (acre-feet) 

Crppdt: Producing amount for crop i  

Di: Binary variable indicating availability of crop i on the farm (1 if present and 0 otherwise) 

Dmsrwt: Binary variable indicating availability of surface water on the farm (1 if present and 0  

                otherwise) 

Dmpres: Binary variable indicating availability of pressurized irrigation technology (sprinkler or  

                drip) on the farm (1 if present and 0 otherwise) 

Dmowntc: Binary variable indicating availability of pressurized irrigation technology (sprinkler  

                   or drip) on crop i (1 if present and 0 otherwise) 

Dmnowt: Binary variable indicating the farm discontinued irrigation water use long enough to    

                 affect crop yields during the growing season (1 if present and 0 otherwise) 

Dmlwmg: Binary variable indicating relied on fixed-time water management practices, eg.,water  

                  application according to calendar schedule or a water delivery schedule (1 if present  

                  and 0 otherwise) 

Dmhgmg: Binary variable indicating relied on advanced water management practices,  

                  e.g.,commercial scheduling services, media reports on water use, and/or soil  
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                 moisture sensing devices (1 if present and 0 otherwise) 

Price data 

Wtrprc: Unnormalized farm-level energy cost of ground water pumping served as water 

                price ($/acre-foot) 

Wtrnprc: Normalized farm-level energy cost of ground water pumping served as water   

                price ($/acre-foot) 

Nwage: Normalized farm labor wage rate($/hour) 

Crnprc: Normalized price of crop i 

Cornprc: Normalized corn price ($/Bu) 

Cotnprc: Normalized cotton price ($/Lb) 

Peanprc: Normalized peanuts price ($/Lb) 

Soynprc: Normalized soybeans price ($/Bu) 

Climate and Weather data 

Clmcdd: Long-run (1970-2004) average base 72 cooling degree-days (degree-days) 

Clmpcp: Long-run (1970-2004) average precipitation (inches) 

Owncdd: Actual base 72 degree cooling degree-days over the growing season of crop i     

                (degree-days) 

Ownpcp: Actual precipitation over the growing season of crop i (inches) 

Soil quality data 

Goodsl: Binary variable representing soil with relatively less restrictions to use (1 if land  

              class is 2.74 or less and 0 otherwise) 

Badsl: Binary variable representing soil with relatively more restrictions to use (1 if land  

            class is 3.5 or greater and 0 otherwise) 


