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Introduction 

Timing of nitrogen (N) fertilization in wheat production is an important management 

decision (Boman et al.).  N fertilization increases wheat yields and can affect production risk 

(Just and Pope, 1979) measured by yield variability (risk).  Yield and risk also can be affected by 

interactions among N timing, N source and disease severity (Alcoz, Hons, and Haby; Eilrich and 

Hageman).  If N fertilization is not timed for accelerated N uptake by the plant, optimal yields 

are not obtained.  By adjusting the date of N fertilization to optimize N uptake, farmers can 

achieve greater economic returns.  

Previous research found that applying N at Feekes’ Growth Stages 4 to 6 (Figure 1) 

significantly increased yields (Alcoz, Hons, and Haby).  However, Boman et al. found that N can 

be delayed until later in the season without significantly affecting yield.  Because disease stress 

can reduce N uptake (Dilz et al.), N timing and fungicide applications should be based on the 

characteristics of each wheat crop and environment (Roth and Marshell).  These studies 

evaluated the effects of N timing and disease severity on yield; however, they did not evaluate 

the risk effects of N timing in the presence of disease.  

Glume-Blotch is a late-season head infection (Ditsch and Grove).  Although  N 

fertilization is an important determinant of wheat yield (Beuerlein, Oplinger, and Reicosky), it 

can interact with Glume-Blotch to limit yield (Boquet and Johnson).  The lush vegetative growth 

that accompanies high N fertilization reduces air movement through the canopy, producing an 

environment more suited for Glume-Blotch development (Ditsch and Grove; Wiese).  Without 
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fungicide application in the presence of Glume-Blotch, higher N levels significantly reduced 

wheat yield (Kelley; Howard, Chambers, and Logan; Cox et al.; Roth and Marshell; Ditsch and 

Grove).  Although these studies found that N timing affects Glume-Blotch severity and yield, 

they did not evaluate the risk effects of N timing and Glume-Blotch severity on the N-timing 

decision. 

Take-All infections in autumn or early spring are most likely to affect wheat yield 

(Wiese), while later infections are less likely to affect yield.  The severity of this root disease in 

wheat production was influenced by the N source, with more severe root damage in plots 

fertilized with nitrate (NO3
-) compared with ammonium (NH4

+) forms of N (Colbach, Lucas, and 

Meynard; Wiese; MacNish; Brennan, 1992a; Brennan, 1992b).  Ammonium fertilizers may 

reduce Take-All severity because of a decrease in rhizosphere pH that promotes more vigorous 

root growth, allowing roots to escape severe disease damage (Brennan, 1989).  However, where 

Take-All is at high levels, ammonium forms of N are ineffective in reducing Take-All severity 

(MacNish).  These studies showed that N source and N rate affect Take-All severity and yield, 

but they did not evaluate the risk effects of N timing, N source and Take-All severity. 

A comprehensive evaluation of the interactions among N timing, N source, Glume-

Blotch and Take-All severity, and their effects on expected yield and risk has not been found 

(Walters).  Our objective was to evaluate the effects of N source, N timing, and disease severity 

on expected yield and risk in winter wheat production and to evaluate the risk-and-return trade-

offs between N sources for farmers with different risk preferences. 

Analytical Framework 

Farmers can use measures of expected yield and risk to make decisions about wheat 

production (Barry).  A Just-Pope econometric analysis is one method for evaluating risk.  It 
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isolates the impacts of changes in input use on expected yield and risk.  This method has been 

used to evaluate the risk effects of genetic improvement of wheat yields during the green 

revolution (Traxler et al.); winter cover crop, tillage, and N fertilization systems in cotton 

production (Larson et al.); the relationship between genetic resources and diversity variables in 

wheat production (Smale et al.); and N as a non-point pollution problem with alternative policies 

and farmer response to those policies (Lambert).  

 The Just-Pope econometric model takes the form: 

(1) Yt = ƒ(Xt,β)+h(Zt,α)εt, 

where Y is wheat yield; X and Z are matrices of explanatory variables; t is a subscript for year; β 

and α are parameter vectors; and ε is a random error term with a zero mean.  The production 

function, ƒ(Xt,β), relates Xt to mean wheat yield.  The variance function, h(Zt,α), associates Zt 

with risk.  

Data and Empirical Methods 

Yield Data 

Wheat yields for 1998 through 2000 were obtained from a wheat fertilization experiment 

at the West Tennessee Experiment Station, Jackson, Tennessee (Howard et al.).  Planting dates 

were 22 Oct. 1997, 9 Oct. 1998, and 15 Oct. 1999.  The experimental design was a split plot with 

treatments replicated five times.  Main plot treatments were fertilized on 15 February, 1 March, 

15 March, 1 April, and 15 April.  These dates corresponded to Feekes’ Growth Stages (GS) 5, 6, 

8, 9, and 10 (Large).  The N sources and fertilization rate were Ammonium Nitrate (AN) and 

Urea-Ammonium Nitrate (UAN), both applied at 90 lb N/acre.  Individual plots were 40 feet 

long and 12 feet wide.  Glume-Blotch affected the 1998 crop and Take-All affected the 2000 

crop.  Both diseases occurred naturally.  In 1998, Propiconazole was applied at 0.030624 gallons 
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per acre at GS 9 with a second application at GS 10 before heading to control Glume-Blotch 

severity.  In 1999 and 2000, a single application of Quadris was applied at 0.0616704 gallons per 

acre at GS 9 to control Glume-Blotch severity (Bailey).  No chemicals were applied to control 

Take-All because no effective chemical control exists to limit Take-All severity (Colbach, Lucas, 

and Meynard).  Disease ratings were recorded each year at GS 10.1 when the sheath of the last 

leaf was completely grown out.  Disease ratings were recorded on a scale of zero to ten, with ten 

being the most severe disease rating and zero being no disease present.  Plots were harvested 

mid-June. 

Empirical Model  

A Just-Pope model was used to evaluate the risk effects of two N sources and two 

diseases at five N fertilization dates.  The mean yield production function, ƒ(Xt,β), for each N 

source was first estimated with Ordinary Least Squares (OLS) as a quadratic function of the 

fertilization-date management variable; 

(2) Yt = β0+β1Tt+β2Tt
2+et, 

where Y was wheat yield (bu/acre), T was the day of the year when N was applied; t was a 

subscript indicating year; β0, β1 and β2  were parameters to be estimated; and e was a random error 

term with a zero mean.  The mean yield function was hypothesized to be concave (β1 > 0, β2 < 0). 

The variance of yield function, h(Zt,α)εt, was estimated using the residuals obtained from 

the mean yield production function.  Because Glume-Blotch and Take-All severity affect wheat 

yield differently (Boquet and Johnson; Colbach, Lucas, and Meynard), variance of yield was 

specified as a function of T, Glume-Blotch rating, Take-All rating, two dummy variables for 

disease presence, an interaction between T and Glume-Blotch rating, and an interaction between 

T and Take-All rating.  The Just-Pope approach allowed direct statistical testing of hypotheses 
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about how T, Glume-Blotch severity, and Take-All severity interact to influence risk in wheat 

production for the two N sources.  The variance of yield function for each N source was 

specified as: 

(3) lnêt
2 = α0+α1Tt+ α2Gt+α3DGt+α4TGt+α5At+α6DAt+α7TAt+ut, 

where lnêt
2 was the natural log of the squared residuals from equation 2; T was the day of the 

year when N was applied; G was Glume-Blotch rating, with 10 being the most severe disease 

rating and zero indicating no disease; DG was equal to one when Glume-Blotch was present and 

zero otherwise; TG was an interaction term between N timing and Glume-Blotch rating; A was 

the Take-All rating, with 10 being the most severe disease rating and zero indicating no disease; 

DA was equal to one when Take-All was present and zero otherwise; TA was an interaction term 

between N timing and Take-All rating; αі (і = 0,1,…, 7) were parameters to be estimated; and u 

was a random error term with a zero mean. 

Efficiency gains in parameter estimates are possible with weighted least squares (WLS) 

when multiplicative heteroscedasticity is found.  Multiplicative heteroscedasticity in the mean 

yield functions (2) was tested using the model F-statistic from the individual N source variance 

functions (Judge et al.).  If the F-statistic was significant, the null hypothesis of homoscedasticity 

was rejected and multiplicative heteroscedasticity was assumed.  Predicted values from equation 

3 were used as weights for producing WLS estimates for the mean yield function (equation 2) for 

each N source.  

Net returns were calculated using an average wheat price of $3.43/bu for 1991-2000 

(Tennessee Department of Agriculture).  Wheat prices were inflated to 2002 dollars by the Gross 

Domestic Product Implicit Price Deflator (U.S. Department of Commerce: Bureau of Economic 

Analysis) before averaging.  Tennessee average retail prices paid by farmers in 2002 for pure N 
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were: AN, $0.26/lb and UAN, $0.23/lb (J. Duke, Personal Communication, Tennessee Farmers 

Cooperative).  Other production costs were held constant between the two N sources.  

The estimated mean yield response and variance functions for each N source were used to 

predict certainty-equivalent-optimizing N fertilization dates, yields, and net returns above N 

costs.  Certainty equivalent of per-acre profit was approximated as (Robison and Barry): 

(4) CE = E(NR) - λ/2 Var(NR), 

where E(NR) was expected net return; λ was the value of the Pratt-Arrow absolute risk aversion 

coefficient; and Var(NR) was the variance of net return.  E(NR) was calculated using:  

(5) E(NR) = ( Y * PW )-(N*NP), 

where Y  was wheat yield predicted from the mean yield function (bu/acre); PW was average 

wheat price from 1991-2000 in 2002 dollars ($/bu); N was the N rate (lb/acre); and NP was the 

2002 price of pure N ($/lb).  Var(NR) was calculated using (Bohrnstedt and Goldberger): 

(6) Var(NR) = ( 2Y ) 2
WPσ + 2PW ( 2

Yσ )+ 2
WPσ ( 2

Yσ ), 

where 2
WPσ  was the wheat price variance from 1991-2000 in 2002 dollars ($/bu); 2

Yσ  was the 

variance of wheat yield obtained from the yield variance function (bu/acre), and other variables 

were defined in equation 5.  

  The certainty-equivalent-maximizing N fertilization date for each N source was found by 

solving: 

(7) Max CE = E(NR) - λ/2 Var(NR),  

s.t.  46 ≤ T ≤ 105. 

Maximum CE was constrained by the range of N fertilization dates in the experimental data.  

Equation 7 was solved for risk neutrality (λ = 0) and two levels of risk aversion (λ = 0.01 and λ 

= 0.02), consistent with the range of risk aversion evaluated by Lambert and Larson et al.  The 
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value to a farmer of the information about wheat yield and risk developed in this research was 

estimated for each level of risk aversion as the difference between the maximum CEs for the two 

N sources. 

Results and Discussion 

Mean Yields  

The mean yield response functions were estimated with WLS (Table 1) after the F-

statistics for the variance of yield functions indicated multiplicative heteroscedasticity.  The 

WLS coefficients for T and T2 had the hypothesized signs.  Results indicate that little difference 

existed in optimal fertilization dates between the N sources.  Maximum yields were obtained for 

AN and UAN on March 8 and 9, respectively. 

Variance of Yields                 

The low R2 coefficients for the WLS regressions indicate that the management variable T 

explained little of the variation in wheat yield (Table 1).  Error sums of squares from the OLS 

regressions for the mean yield functions indicate that AN and UAN did not produce significantly 

different variation in wheat yields (F = 0.10, df 72/72), suggesting that variation in wheat yield 

was the same for both N sources at average disease levels. 

The variance of yield functions, which quantify the effects of disease on yield variance 

by N source, are presented in Table 2 and joint F-statistics for the fertilization date and disease 

coefficients are presented in Table 3.  The fertilization date (T, TG, TA) and Glume-Blotch (G, 

DG, TG) coefficients were not significantly different from zero for either N source (Table 2).  

However, the Take-All rating coefficient (A) and the Take-All presence coefficient (DA) were 

significantly different from zero for AN; Take-All rating positively affected risk and DA 

negatively affected risk.  The joint F-statistics (Table 3) indicate that Take-All significantly 
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reduced risk (Table 4) when AN was applied.  Take-All reduced risk possibly because the 

ammonium form of AN may have reduced Take-All severity when yields were high compared 

with lower yield situations when yields were less responsive to N fertilization, tending to 

equalize yields.  No other coefficients were significantly different from zero.  Pair-wise F-

statistics indicated that fertilization date, Glume-Blotch and Take-All did not affect risk 

differently between N sources (Table 5). 

Risk-Return Trade-offs 

Because the fertilization date had little effect on yield variance, no change was found in 

the optimal fertilization date for increased levels of risk aversion.  Optimal fertilization dates 

were March 8 for AN and March 9 for UAN.  Given that optimal fertilization dates did not 

change and N was applied at a constant rate of 90 lb N/acre, optimal yields and net returns above 

N costs also did not change with increased risk aversion.  Optimal wheat yields were 67 and 62 

bu/acre and optimal net returns were $206.32 and $190.54/acre for AN and UAN, respectively.  

A combination of a higher net return for AN and the lack of an effect of fertilization-date on risk 

resulted in maximum CE for AN being higher than maximum CE for UAN for all levels of risk 

aversion evaluated.  Certainty equivalents for AN were $206.32, $192.07, and $177.82/acre for λ 

= 0 (risk neutral), 0.01, and 0.02, respectively, and for UAN they were $190.54, $178.33, and 

$166.12/acre.  The value of the above information to wheat farmers who adjust their N 

fertilization source from UAN to AN is $15.78, $13.74, and $11.70/acre ($177.82 - 

$166.12/acre) for farmers with risk aversion levels of λ = 0, 0.01, and 0.02, respectively.  

Although AN costs slightly more, $0.26/lb compared with $0.23/lb for UAN, the five bushel per 

acre increase in yield more than covers the added cost.  Results indicate that winter wheat 
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farmers will maximize utility if they apply AN on March 8, regardless of their risk aversion 

level. 

Summary 

 This study evaluated risk efficiency of two N sources and five fertilizations dates in 

winter wheat production in the presence of two diseases (Glume-Blotch and Take-All).  A Just-

Pope econometric model was developed to analyze the risk effects of the N sources and to 

evaluate risk and return tradeoffs between these N sources.    

 The results indicated that fertilization date had no affect on risk and that AN was the 

optimal N source.  The risk-return trade-offs suggested that fertilization date had no effect on 

utility maximizing N source for increased levels of risk aversion.  At mean values of the disease 

variables, AN fertilization on March 8 was the utility maximizing N source and date regardless 

of risk preferences.  The information provided by this research would be worth at least 

$11.70/acre to winter wheat farmers who adjust their N fertilization source from UAN to AN. 
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 Table 1. Estimated Weighted Least Squares Nitrogen-Fertilization-Date Wheat Yield Response 
Functions for Alternative Nitrogen Sources. 
 Nitrogen Source 
Variablea AN UAN 
Intercept 5.11 -12.65 

 (39.62)b (36.36) 
   

T 1.85* 2.17* 
 (1.18) (1.02) 
   

T2 -0.014* -0.016* 
 (0.007) (0.007) 

   
Error Sums of Squaresc 26,982 25,424 
   
R2 0.10 0.12 

   
N 75 75 
a Wheat yield (bu/acre) is the dependent variable and T is the N-fertilization day of the year. 
b Numbers in parenthesis are standard errors. 
c From Ordinary Least Squares estimates. 
* Significantly different from zero at the 10-percent level.
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Table 2. Estimated Nitrogen-Fertilization-Date Wheat Variance Functions for Alternative 
Nitrogen Sources. 

  Nitrogen Source 
Variablea  AN UAN 
Intercept       4.83***       5.75*** 

  (1.20)b (0.98) 
    

T  0.02 0.003 
  (0.02) (0.013) 
    

G  -0.02 -0.08 
  (0.45) (0.37) 
    

DG  -3.30 -2.64 
  (3.07) (1.79) 
    

TG  -0.00006 -0.0005 
  (0.003) (0.003) 
    

A     0.80* 0.02 
  (0.46) (0.38) 
    

DA      -3.38*** -1.03 
  (0.005) (0.81) 
    

TA  -0.003 -0.0005 
  (0.005) (0.004) 
    

F-statistic  10.10*** 13.54*** 
    

R2  0.51 0.59 
    

N  75 75 
a Wheat yield (bu/acre) is the dependent variable; T is N-fertilization day of the year; G is 

Glume-Blotch rating, with 10 being the most severe disease rating and zero when no disease 
was present; DG equals one when Glume-Blotch was present and zero otherwise; TG is an 
interaction term between N timing and Glume-Blotch rating; A is the Take-All rating, with 10 
being the most severe disease rating and zero when no disease was present; DA equals one 
when Take-All was present and zero otherwise; and TA is an interaction term between N 
timing and Take-All rating. 

b  Numbers in parenthesis are standard errors. 
***, * Significantly different from zero at the 1- and 10-percent levels, respectively. 
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Table 3. Joint F-tests for the Nitrogen-Fertilization-Date, Glume-Blotch, and Take-All 
Coefficients within the Variance Equation for Each Nitrogen Source. 
Comparison  F-statistic 
Fertilization Datea   
AN  0.51 
UAN  0.02 

  
Glume-Blotchb  
AN  0.04 
UAN  2.62 

  
Take-Allc  
AN   3.24* 
UAN  1.21 
a The F-statistic tests the null hypothesis that the coefficients for T, TG, and TA (definitions in 

Table 2) are jointly equal to zero for a given N source.  
b The F-statistic tests the null hypothesis that the coefficients for G, DG, and TG (definitions in 

Table 2) are jointly equal to zero for a given N source. 
c The F-statistic tests the null hypothesis that the coefficients for A, DA, and TA (definitions in 

Table 2) are jointly equal to zero for a given N source. 
* Significantly different from zero at the 10-percent level. 
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Table 4. Estimated Effects of Take-All on Risk for AN. 
Variable No Take-Alla Mean Take-Allb 
T 75 75 
G 2.41 2.41 
DG 0.33 0.33 
TG 180.75 180.75 
A 0 4.58 
DA 0 1 
TA 0 343.5 

   
Wheat Yield Std. Dev. 11.09 7.95 
a Variables other than A, DA, and TA (definitions in Table 2) are held constant at their three-year 

means. 
b Take-All variables, A, DA, and TA (definitions in Table 2), are at their 2000 means, while 

other variables are held constant at their three-year means. 
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Table 5. Pair-Wise F-tests between Nitrogen Sources for Nitrogen-Fertilization-Date, Glume-
Blotch and Take-All Coefficients. 
Comparison F-statistic 
Fertilization Datea  
AN-UAN 0.15 
  
Glume-Blotchb  
AN-UAN 0.26 
  
Take-Allc  
AN-UAN 0.37 
  
Equationd  
AN-UAN 0.06 
a The F-statistic tests the null hypothesis that the coefficients for T, TG, and TA (definitions in 

Table 2) are equal between N sources. 
b The F-statistic tests the null hypothesis that the coefficients for G, DG, and TG (definitions in 

Table 2) are equal between N sources. 
c The F-statistic tests the null hypothesis that the coefficients for A, DA, and TA (definitions in 

Table 2) are equal between N sources. 
d The F-statistic tests the null hypothesis that the yield variance equations are equal between N 

sources. 
 


