

The World's Largest Open Access Agricultural & Applied Economics Digital Library

This document is discoverable and free to researchers across the globe due to the work of AgEcon Search.

Help ensure our sustainability.

Give to AgEcon Search

AgEcon Search
http://ageconsearch.umn.edu
aesearch@umn.edu

Papers downloaded from **AgEcon Search** may be used for non-commercial purposes and personal study only. No other use, including posting to another Internet site, is permitted without permission from the copyright owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C.

No endorsement of AgEcon Search or its fundraising activities by the author(s) of the following work or their employer(s) is intended or implied.

ISSN 1810-3030 (Print) 2408-8684 (Online)

Journal of Bangladesh Agricultural University

Journal home page: http://baures.bau.edu.bd/jbau, www.banglajol.info/index.php/JBAU

Status of atmospheric particulate matter and black carbon concentration at Ashuganj in Brahmanbaria

Sumaya Baitun¹, Bilkis Ara Begum² and Md. Badiuzzaman Khan¹

¹Department of Environmental Science, Faculty of Agriculture, Bangladesh Agricultural University, Mymensingh-2202, Bangladesh

²Chemistry Division, Atomic Energy Centre, Dhaka, Bangladesh

ARTICLE INFO

Article history: Received: 06 June 2018 Accepted: 11 August 2018

Keywords: Atmospheric particulate matter, PM_{2.5}, PM₁₀, Black Carbon

Correspondence: Md. Badiuzzaman Khan (mbkhan@bau.edu.bd)

Abstract

Atmospheric particulate matter (PM) samples (both PM $_{10}$ and PM $_{2.5}$) were collected simultaneously from Midland Power Company Limited at Ashuganj, in Brahmanbaria to monitor the seasonal fluctuations of particulate matter and black carbon (BC) concentrations from air samples. Total eight samples were collected from January 2016 to December 2017 using two Air Metrics MiniVol samplers and the quantity of PM $_{2.5}$ and PM $_{10}$ was detected by weighing the filters before and after exposure. The concentration of PM (PM $_{2.5}$ and PM $_{10}$) and BC were analyzed at the laboratory of Chemistry Division, Atomic Energy Centre, Dhaka. The black carbon concentration from both PM $_{2.5}$ and PM $_{10}$ samples were also determined by reflectance measurement. The concentrations of PM $_{2.5}$ varied from 12.2–145 µgm $^{-3}$ where mean value was 67.09 µgm $^{-3}$. The mean concentration of PM $_{10}$ was 103.64 µgm $^{-3}$ whereas the concentration ranged from 20.5–220 µgm $^{-3}$. The ratios of PM $_{2.5}$ /PM $_{10}$ fluctuated during different seasons, winter showed higher concentration and summer showed relatively lower concentration for both PM $_{2.5}$ and PM $_{10}$. Atmospheric dispersion due to increased wind speeds and wider mixing layer heights are recognized to be responsible for the lower PM concentrations in warmer months. The concentrations of BC in PM $_{2.5}$ also varied from 2.44–33.4 µgm $^{-3}$ and BC in PM $_{10}$ varied from 4.51–57.2 µgm $^{-3}$, respectively. The concentrations of particulate matter exceeded the Bangladesh National Ambient Air Quality Standard.

Introduction

Air pollution has become a public health concern in Bangladesh and regarded as one of the major environmental hazards in Bangladesh as well as worldwide. Globally, ambient air pollution caused by industries, cars and trucks and other sources caused 4.2 million deaths. Over 37,000 Bangladeshi peoples die annually from diseases related to air pollution, according to World Health Organization (WHO, 2016). Dhaka's air quality has been ranked as third most polluted in the world according to an air quality data compiled by the World Health Organization for mega cities with a population of 14 million or more (WHO, 2016). Atmospheric PM is of great concern to the public and to government agencies because of its significant impact on human health, visibility reduction, agriculture and atmospheric chemistry. Atmospheric PM is generally defined as a mixture of solid and/or liquid particles that remains individually dispersed in the air (Begum et al. 2012). Atmospheric PM ranges in size from a few nanometers to tens of micrometers (µm) in diameter (Seinfeld and Pandis, 2006). Commonly used indicators describing PM that are relevant to health refer to the mass concentration of particles with a diameter of less than 10 µm (PM₁₀) and of particles with a diameter of less than 2.5 μ m (PM_{2.5}).

These particles are dominated by sulfates, nitrates, organic carbon (OC) and elemental carbon (EC). BC is a sooty black material and also product of incomplete combustion of fuels, emitted from traffic, industry and the burning of fossil fuels and biomass. BC is one of the constituents of fine PM (PM_{2.5}) which scatters and absorbs solar radiation entering the Earth's atmosphere. It is the component of airborne PM which mostly absorbs light and is viewed as a major contributor to climate change (Bond *et al.*, 2013).

PM₁₀ and PM₂₅ include inhalable particles that are small enough to penetrate the thoracic region of the respiratory system. PM_{2.5} can travel deep into the lungs and become lodged there. Several epidemiological studies have shown that long-term exposure to PM for years is directly associated with mortality, mainly due to cardiovascular and respiratory diseases (Habre et al., 2014; Madrigano et al., 2013). Previous studies have indicated that the severe PM_{2.5} pollution resulted in more than 3 million premature deaths around the world in the year of 2010 (Lim et al., 2012). From the above discussion, it was observed that although particulate matter has significant impact on human health, very limited work have been conducted upon it. Considering PM, most of the researches focused only in urban background (Hasan et al., 2016; Begum et al., 2015) and traffic areas (Jahida et al., 2014 and Begum et al., 2012, 2008) whereas research related to PM focusing on Power Company limited has not been well reported so far. Therefore, this study was carried out to i) observe the PM concentration in midland power company Ltd. at Ashuganj, in Brahmanbaria and to ii) determine BC concentration within the atmospheric PM.

Materials and Methods

Sampling Location and Duration

Midland Power Company Limited is a 50 MW heavy fuel based Power Plant Company situated at Ashugani, Brahmanbaria. Two PM samplers (One for PM₁₀ and other for PM25) were set up in the north-corner of the plant 24°1'42.26"N; (latitude and longitude 90°59'17.22"E). In Bangladesh, the climate is characterized by high temperature, high humidity most of the year and distinctly marked seasonal variation of precipitation. According to meteorological condition, the year can be divided into four seasons, pre-monsoon (March-May), monsoon (June-September), postmonsoon (October-November) and winter (December-February) (Salam et al., 2003). Therefore, collected data considering the four seasons (Table 1).

Table 1. Sampling date of the atmospheric PM

Season	Year			
	2016	2017		
Pre-monsoon	7 May	26 March		
Monsoon	3 September	15 July		
Post-Monsoon	not available	6 October		
Winter	11 January	17 December		
	25 December			

Sampling and measurement of PM_{2.5} and PM₁₀

The Air Metrics MiniVol sampler developed jointly by the U.S. Environmental Protection Agency (EPA) and the Lane Regional Air Pollution Authority was used for PM₁₀ and PM_{2.5} sampling. For sampling with MiniVol sampler the flow rate was maintained 5 liter per minute

(lpm) at ambient conditions for proper size fractionation. The samplers were set up in the conventional manner with filters. Two samplers were placed at shared position in the north site for PM₁₀ and PM_{2.5} sampling for 24h. Both fractions of PM samples were collected on Teflon (2.0 μm pore size) filters.

PM Masses were measured at the laboratory of Chemistry Division, Atomic Energy Centre, Dhaka (AECD). The aerosol samples having PM were determined by weighing the filters before and after exposure using a micro-balance (METTLER Model MT5) maintaining room temperature approximately at 22 °C and relative humidity at 50%. The air filters were equilibrated at constant humidity and temperature of the balance room before every weighing. A U-shaped electrode charge eliminator (STATICMASTER) was used to eliminate the static charge accumulated on the filters before each weighing.

Black Carbon (BC) Measurement

The concentration of BC in both fine and coarse fraction of PM samples was determined by reflectance measurement by an Evans Electro Selenium Limited (EEL) type Smoke Stain Reflect meter.

Results and Discussion

Concentration of PM₁₀ and PM_{2.5}

The statistics of PM and BC concentrations during the sampling periods is given in Table 2. At the power plant site, PM₁₀ concentration in December is higher than the concentration of other months between the two sampling years 2016–2017 whereas PM_{2.5} concentrations found higher in January as compared to other months (Fig. 1).

Table 2. Summary statistics of PM₁₀, PM_{2.5}, BC concentrations during the sampling periods

-						
Parameter	PM_{10}	PM _{2.5}	BC_PM _{2.5}	BC_PM ₁₀	PM _{2.5} /PM ₁₀	BC_PM _{2.5} /PM _{2.5}
	(μgm^{-3})	(μgm^{-3})	(μgm^{-3})	(μgm^{-3})	(μgm^{-3})	(μgm^{-3})
Maximum	220	145	33.4	57.2	0.88	0.26
Minimum	20.5	12.2	2.44	4.51	0.35	0.20
Mean	103.64	67.09	16.4	24.95	0.62	0.23

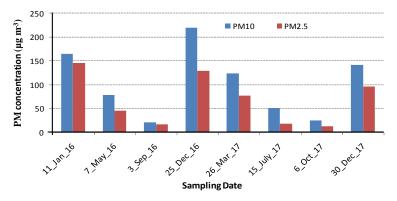


Fig. 1. Variation of the daily average value of PM₁₀ and PM_{2.5} from January 11, 2016 to December 30, 2017

During winter, the daily $PM_{2.5}$ and PM_{10} concentrations were higher than the 24-h average Bangladesh National Ambient Air Quality Standard (BNAAQS), which were set at 65 and 150 (μgm^{-3}), respectively (Table 3). Haque *et al.* (2015) conducted an experiment in Dhaka and found that the concentration of PM_{10} and $PM_{2.5}$ was 428.49 μgm^{-3} and 246.5 μgm^{-3} , respectively. Twenty four hour mean $PM_{2.5}$ concentration during the winter in Dhaka was $322 \pm 69 \ \mu gm^{-3}$ in the traffic hotspot site and $254 \pm 57 \ \mu gm^{-3}$ in the residential site whereas during the monsoon, 24-hr mean $PM_{2.5}$ mass in the Dhaka residential area was $57 \pm 15 \ \mu gm^{-3}$ (Jacqueline, 2012). During monsoon the PM levels were found lowest at sampling site ($PM_{2.5}$ - 45 μgm^{-3} and PM_{10} - 78 μgm^{-3}).

Observed lower PM concentrations are due to washout of particles by rainfall. The winter season is characterized by dry soil conditions, low relative humidity, scanty rainfall and low northwesterly winds. The low wind speed and temperature in winter favors the accumulation of pollutants, while the high temperature in summer favors air convection and the dispersion of pollutants. Atmospheric dispersion due to increased wind speeds and wider mixing layer heights are recognized to be responsible for the lower PM concentrations in warmer months (Pecorari *et al.*, 2013; Khan *et al.*, 2016).

Table 3. Air quality standards for PM_{2.5} and PM₁₀ set by the Bangladesh National Ambient Air Quality Standard, European Union (EU), EPA and the WHO Air Quality Guidelines (AQG)

Pollutant	Average time	Bangladesh	WHO standard	EU standard	U.S. EPA
		Standard (µgm ⁻³)	(μgm^{-3})	(μgm^{-3})	$NAAQS (\mu gm^{-3})$
PM _{2.5}	24 hr	65	25	25	35
μgm^{-3}	Annual	15	10	-	15
PM_{10}	24 hr	150	50	50	150
μgm^{-3}	Annual	50	20	40	-
Black carbon	24 hr		20		

Actually, the Air Quality Guidelines (AQGs) set by the World Health Organization are stricter than the EU air quality standards (Table. 3). The AQGs set the limit value for $PM_{2.5}$ at $10~\mu gm^{-3}$ annual mean and $25~\mu gm^{-3}$ 24-h mean, while the limit values for PM_{10} is $20~\mu gm^{-3}$ annual mean and $50~\mu gm^{-3}$ 24-h mean. These values are considered acceptable and achievable objectives to minimize adverse effects on human health.

Concentration of Black Carbon

BC is produced during incomplete burning. Fig. 2 shows the concentrations of BC in PM₁₀ and PM_{2.5} fractions. The BC concentration is determined both in the fine and coarse fraction of the collected PM.

Between the years 2016 and 2017, the maximum concentration of BC in PM₁₀ found in December 2016 and minimum concentration found in September 2016.

The highest concentration of BC in PM_{2.5} was 33.4 μgm⁻³ in January and the lowest was 2.44 μgm⁻³ in October. From the Figure it can be clearly said that PM concentration is predominantly higher in winter season and it gradually reduced in rainy season. The ratio of BC in PM_{2.5}/PM_{2.5} also showed higher concentration in winter (0.26 μgm⁻³ in December, 2017) may be due to lower relative humidity and lower wind speed in winter. This result is comparable to the work conducted by Jahida *et al.* (2014).

Ratio of PM_{2.5}/PM₁₀

The calculated ratio of $PM_{2.5}/PM_{10}$ gives an idea about the sources of the particulate pollution in the atmospheric air. The calculated ratio of $PM_{2.5}/PM_{10}$ has been shown in Fig. 3.

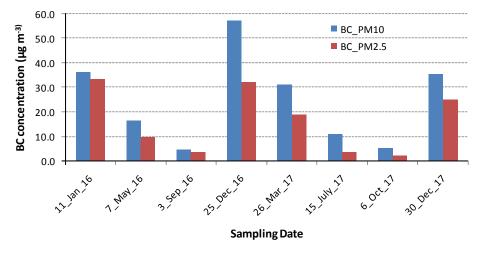


Fig. 2. The variation of daily average value of BC in PM₁₀ and PM_{2.5} respectively, from January 11, 2016 to December 30, 2017

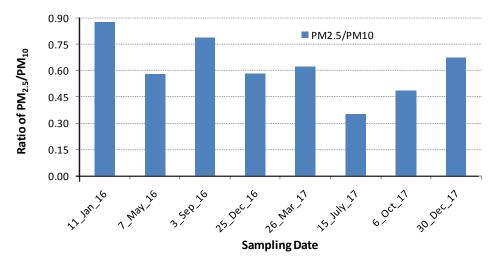


Fig. 3. The variation of ratios between PM_{2.5} and PM₁₀ concentration

The ratio of PM_{2.5}/PM₁₀ ranged between 0.35 to 0.89 μgm⁻³ with a mean value of 0.62 μgm⁻³. From the ratio, it examined that about 62% of PM₁₀ is PM_{2.5}. It was also observed that about 61% of PM_{2.5} is black carbon. From the Figure, it is obvious that the ratio is higher in winter compared to summer indicate that fine particles comprise a large fraction in PM₁₀ The reasons for the high peak in PM_{2.5} concentration during the winter are not only influenced by seasonal fluctuation of emissions but also by meteorological effects (Islam et al., 2014). Higher ratios (>0.48) are generally associated with the emissions from combustion processes (such as 0.95 for vehicle exhausts) whereas smaller ratios (0.28<) indicating that a higher proportion of the emitted PM mass in the coarse mode and are associated with the emissions from more mechanical, non-combustion sources such as mining, quarrying and agriculture (Munir, 2017; AQEG, 2012).

Conclusion

In this paper the seasonal variation of atmospheric PM_{2.5} and PM₁₀ and the concentration of black carbon during the recent two years (2016-2017) were analyzed from Midland Power Company Ltd. using Air Metrics MiniVol sampler. The quantity of PM_{2.5} and PM₁₀ was detected by weighing the filters before and after exposure whereas, the black carbon concentration was determined by reflectance measurement using an EELtype Smoke Stain Reflect meter. Result showed that the concentration of PM₁₀ ranged between 20.5-220 μgm⁻³ where mean value was 103.64 μgm^{-3} and for PM_{2.5}, the ranges vary between 12.2–145 µgm⁻³ whereas, mean value was 67.09 µgm⁻³. Considering the concentration of particulate matter, it could be concluded that these values exceeded the Bangladesh National Ambient Air Quality Standard. Result also showed that the ratio of PM_{2.5}/PM₁₀ ranged between 0.32-0.88 whereas, the mean value was 0.62 μgm⁻³ which indicates that the most of the particles are form the fine fractions and are generally associated with the emissions from combustion processes. The ratio of BC in PM_{2.5}/PM_{2.5}

fluctuated between $0.20~\mu gm^{-3}$ to $0.26~\mu gm^{-3}$ whereas, mean value was $0.23~\mu gm^{-3}$ that indicated BC highly contribute to increasing PM concentration in these sampling site. It can also be seen that there is a change in BC concentration in the ambient air over the period.

References

AQEG (Air Quality Expert Group) 2012. Fine Particulate Matter (PM_{2.5}) in the UK. Available: http://uk-air.defra.gov.uk/assets/documents/reports/cat11/121214150_AQEG_Fine_P articulate_Matter_in_the_UK.pdf. (Accessed on August 8, 2016).

Begum, B.A., Ahmed, S. Sarkar, M. Islam, J.B. and Rahman, A. K. M. L., 2015. Status of ambient particulate matter and black carbon concentrations in Rajshahi air, Bangladesh. Bangladesh Academy of Sciences., 39: 147–155.

Begum, B.A., Hossain, A. Nahar, N. Markwitz, M. and Hopke, P.K., 2012. Organic and black carbon in PM_{2.5} at an urban site at Dhaka, Bangladesh. Aerosol and Air Quality Research., 12: 1062–1072.

Begum, B.A., Biswas, S.K. and Hopke P.K., 2008. Assessment of trends and present ambient concentrations of PM₂₂ and PM₁₀ in Dhaka, Bangladesh. Air Quality Atmosphere and Health.. 1: 125–133.

Bond, T. Doherty, S. Fahey, D. Forster, P. Berntsen, T. De Angelo, B. Flanner, M. Ghan, S. Karcher, B. Koch, D. Kinne, S. Kondo, Y. Quinn, P. Sarofim, M. Schultz, M. Venkataraman, C. Zhang, H. Zhang, S. Bellouin, N. Guttikunda, S. Hopke, P. Jacobson, M. Kaiser, J. Klimont, Z. Lohmann, U. Schwarz, J. Shindell, D. Storelvmo, T. Warren, S. and Zender, C., 2013. Bounding the role of black carbon in the climate system: A scientific assessment. *Geophysics Research-Atmosphere.*, 118: 5380–5552.

Habre, R. Moshier, E. Castro, W. Nath, A. Grunin, A. Rohr, A. Godbold, J. Schachter, N. Kattan, M. and Coull, B., 2014. The effects of PM_{2.5} and its components from indoor and outdoor sources on cough and wheeze symptoms in asthmatic children. Science Environ Epidemiol., 24: 380–387.

Hasan, M.R., Hossain, M.A. and Sarjana, U., 2016. Status of air quality and survey of particulate matter pollution in Pabna city, Bangladesh. *American Journal of Engineering* Research., 5(11): 18–22.

Hoque, M. M., Begum, B. A. Shawan, A. M. and Ahmed, S. J., 2015.

Particulate matter concentrations in the air of Dhaka and
Gazipur city during winter. A comparative study.

International conference on physics sustainable development & technology. pp. 93.

- Islam, Md. F., Majumder, S.S. Mamun, A. Khan, Md. B. Rahman, M.A. and Salam, A., 2014. Trace metals concentrations at the atmosphere particulate matters in the Southeast Asian Mega City (Dhaka, Bangladesh). Journal of *Air Pollution.*, 4: 86–98.
- Jacqueline, S. D. 2012. Chemical characterization of PM_{2.5} air pollution in Dhaka and Noakhali, Bangladesh. Thesis, Master of Public Health, San Diego State University.
- Jahida, B. I., Rahman, A. K. M. L. Sarkar, M. Ahmed, K. S. and Begum, B. A., 2014. Particulate matter and black carbon concentration in ambient air of an urban-traffic influenced site at Farmgate, Dhaka, Bangladesh. *Journal of Science.*, 3:1.
- Khan, Md. B., Masiol, M. Formenton, G. Gilio, A. Dd Gennaro, G. Agostinelli, C. and Pavoni, B., 2016. Carbonaceous PM_{2.5} and secondary organic aerosol across the Venetoregion (NE Italy). Science of the Total Environment., 542: 172–181.
- Lim, S.S., Vos, T. Flaxman, A.D. Danaei, G. Shibuya, K. Adair-Rohani, H. Al Mazroa, M.A. Amann, M. Anderson, H.R. and Andrews, K.G., 2012. A systematic analysis for the Global Burden of Disease Study 2010. The Lancet, 380 pp. 2224–2260.

- Madrigano, M. Minguillon, M.C. Campos, A.A. Cardenas, B. Blanco, S. Molina, L.T. and Querol, X., 2013. Mass concentration, composition and sources of fine and coarse particulate matter in Tijuana, Mexico, during Cal-Mex campaign. Atmospheric Environment., 88: 320–329.
- Munir, S. 2017. Analysing temporal trends in the ratios of PM_{2.5}/PM₁₀ in the UK. *Aerosol and Air Quality Research.*, 17: 34–48.
- Pecorari, E. Squizzato, S. Masiol, M. Radice, P. Pavoni, B. and Rampazzo, G., 2013. Relationships between the regional and local sources and the meteorological conditions. *Science Total Environ.*, 443: 681–691.
- Salam, A. Bauer, H. Kassin, K. Ullah, S.M. and Puxbaum, H., 2003. Aerosol Chemical Characteristics of a Mega-city in Southeast Asia (Dhaka, Bangladesh). *Atmospheric Environment.*, 37: 2517–2528.
- Seinfeld, J.H., and Pandis, S.N. 2006. From Air Pollution to Climate Change. *Atmospheric Chemistry and Physics:* John Wiley & Sons Inc, New York.
- WHO (World Health Organization) 2016. WHO's urban ambient air pollution database— Update 2016. Available: http://www.who .int/airpollution/data/APP-database_summary_results _2016_v02.pdf. (accessed on May 20, 2018.