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Factors Influencing Adoption of Remotely Sensed Imagery 
for Site-Specific Management in Cotton Production 

 
Introduction 
 
Site-specific management (also known as precision farming or precision agriculture) is the 

application of spatial management technologies to the monitoring and control of crop production 

(National Research Council).  The suite of technologies includes electronic applications such as 

global positioning systems (GPS), yield monitors, geographic information systems (GIS), and 

variable rate technologies (VRT) that use controllers on application equipment to vary input 

amounts across a farm field.  Farmers can use these technologies to exploit information about 

spatial variability in farm field characteristics to improve profitability by varying inputs to meet 

crop needs in different areas of the field. 

One site-specific management technology that is showing considerable potential in 

agriculture is aerial or satellite (remotely sensed) imagery (Lowenberg-DeBoer, Pinter, Jr. et al.).  

Our study evaluated the factors that influenced the adoption decision for cotton farmers using 

remotely sensed imagery for variable rate application of inputs.  The sunlight reflected off the 

surfaces of crops and soils can be measured using aerial or satellite imagery and used to identify 

different characteristics of the vegetation or soil.  The reflectance data obtained with remotely 

sensed imagery can be used in crop management when it is related to a measure of the growing 

plant canopy such as leaf area index or percent ground cover (Barnes et al., Hong et al.).  One 

commonly used vegetative index is the normalized difference vegetation index (NDVI).  Thus, 

remote sensing can be used to obtain spatially distributed reflectance data on plant growth 

development at different stages of the growing season (Maas, Plant et al., Zarco-Tejada, Ustin, and 

Whiting).  Remotely sensed imagery of bare soil also can be used to identify soil characteristics in 

farm fields (Dalal and Henry, Shonk et al., Leone et al.).  Potential uses of remotely sensed 
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imagery in site-specific management include management of nutrients, water, and pests (Barnes et 

al., Pinter, Jr., et al., Tenkorang and Lowenberg-DeBoer).  Remote sensing also has been used to 

predict crop yields (Doraiswamy et al.) and farm income (Nivins, Kastens, and Dhuyvetter), to 

facilitate compliance monitoring with government and crop insurance program provisions (Hall), 

to identify management zones in fields (Larson et al., Overstreet et al.), and to apply plant growth 

regulators and harvest aids in cotton production (Pinter Jr. et al.). 

The ability to do in-season monitoring and control is particularly important in cotton 

production.  Cotton farmers often time the application of inputs such as irrigation water, plant 

growth regulators, pesticides, and harvest aids based on the stage of plant growth and development 

(Bourland Oosterhuis, and Tugwell).  The use of crop consultants that provide knowledge-based 

field scouting and input recommendation services during the growing season is important in cotton 

production.  For example, Edens et al. reported that 46% of Tennessee cotton farmers used crop 

consultants.  Thus, remote sensing may have great potential in cotton production because imagery 

can be obtained at regular intervals during the growing season and can be related to current crop 

status. 

Cotton farmer interest in remote sensing has been growing with the introduction of new 

remote sensing services targeting in-season management of the crop.  For example, InTime, Inc. 

started offering aerial remote sensing services specifically for cotton in 2003.  InTime, Inc. 

reported that 65,000 acres of cotton were remotely sensed in the mid-south region of the United 

States in 2003 (GoinTime.com). They estimated that about 250,000 acres of cotton were remotely 

sensed using their service in 2004 (Gointime.com).  The company currently offers its services in 

12 states and has expanded to include other crops such as peanuts, rice, orchard crops, and 

vegetables.  InTime, Inc. provides digitally processed maps at the field level at frequent intervals 

during the growing season to subscribers via their internet web site.  Subscribers also have the 
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ability to make prescription maps for VRT application on the InTime web site.  The farmer or the 

crop consultant can create and download the prescription maps for input into the VRT controller 

on the applicator.  John Deere Agri Services in 2005 introduced an aerial imagery service similar 

to InTime to provide remotely sensed images, prescription maps, and other consulting services to 

cotton farmers (Brown and Wesch). 

Numerous studies have analyzed the effects of farm and farmer characteristics on adoption 

of site-specific farm management technologies (e.g., Arnholt, Batte, and Prochaska, Batte and 

Arnholt, Daberkow, Fernandez-Cornejo, and Padgitt, Daberkow and McBride, Khanna, Khanna, 

Epouhe, and Hornbacker, Napier, Robinson, and Tucker, Norton and Swinton,  Plant, Popp and 

Griffin, Roberts et al., (2002, 2004), Swinton and Lowenberg-DeBoer).  However, information on 

the adoption of remotely sensed imagery by farmers is sparse.  Results from the 1999 Agricultural 

Resource Management Survey (ARMS) survey by the U.S. Department of Agriculture indicated 

that farmers used remotely sensed imagery on 12.7% of U.S. corn area (Griffin et al.).  By 2001, 

however, farmers used remote sensing on only 3.4% of U.S. corn area.  Data from the ARMS 

survey indicated that the U.S. crop area on which remotely sensed imagery was used also was 

declining for soybeans and wheat.  The factors that may have influenced the drop in the use of 

remotely sensed imagery in grain and oilseed production include a lack of perceived usefulness, a 

paucity of reliable analysis or consulting services, and the need to only purchase maps of bare soil 

once because the basic soil characteristics do not change over time (Griffin et al.). 

While the ARMS survey provides data on crop acreage under remote sensing, it does not 

provide estimates on adoption for high value crops such as cotton, sugar beets, fruits, and 

vegetables.  However, Roberts et al. (2002) in a summary of a 2001 mail survey of cotton 

producers in six southern U.S. states indicated that 2% of 1,373 survey respondents used aerial or 

satellite imagery.  In addition, Lowenberg-DeBorer reported that satellite imagery was used to 
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manage nitrogen on 100,000 acres of sugar beets in Minnesota and North Dakota in 2002.  

Daberlow, McBride, and Ali identified several farm decision maker and farm operation 

characteristics that influenced sugar beet growers in Minnesota and North Dakota to adopt 

remotely sensed imagery for nitrogen management.  They found that operator age, farm size, 

percent of sugar beet acreage owned, use of computerized records, and having contracted 

production with the American Crystal Sugar Company positively influenced the adoption of 

remote sensing for nitrogen management.  The American Crystal Sugar Company was supporting 

the use of remotely sensed imagery to manage nitrogen among its contract growers.  Excess 

nitrogen reduces the harvestable sugar content in beets.  Finally, Griffin et al. indicated that 

anecdotal reports suggest that remotely sensed imagery is being widely used in fruit, vegetable, 

and vineyard production.  

Currently, some information exists on the adoption rates of remote sensing for some crops, 

but little information on adoption of specific remote sensing technologies, especially for specific 

high valued crops such as cotton.  This study attempts to fill that void by focusing on remote 

sensing technology adoption for cotton.  Our objective was to determine the farm and farmer 

characteristics that influence cotton producers to adopt remotely sensed imagery for VRT 

application of inputs. 

Analytical Framework 

The random utility model was used to analyze the adopt-not adopt decision for remote sensing 

technology (Ben-Akiva and Lerman, Louviere, Hensher, and Swait).  Utility is an index that 

measures the relative satisfaction gained from different bundles of goods and services.  The index 

embodies trade-offs among the different attributes of the choices being made by the decision 

maker.  Utility is treated as a random variable in the model because the utility function of a farmer 

cannot be directly observed.  Thus, the utility function for decision maker n is given by: 

 4



(1)   Uyn  = Vyn +  εyn  =  β`xyn +  εyn, 

where U is the utility from adopting remote sensing technology, Vy is the deterministic portion of 

utility, ε is the random error term, β is a vector of parameters to be estimated, x is a vector of 

explanatory variables that are hypothesized to affect a farmer's decision to adopt remote sensing 

technology, and y is a discrete variable that equals 1 if the technology is adopted by farmer n and 0 

if it is not adopted.  A farmer would choose to adopt remote technology if Un(y = 1) > Un(y = 0), 

that is, 

(2)   Vn(y = 1) − Vn(y = 0) > εn(y = 1) − εn(y = 0), 

for y=0, 1.  Thus, the probability of an individual adopting remote sensing is given by:  

(3)   Pn(y) = Pr(Un|y = 1 ≥  Un|y = 0) 

         = Pr(Vn  +  εn ≥  Vn  + εn) 

                                             = Pr(Vn − Vn  >  εn  − εn).  

Assuming the random errors are independently and identically distributed across the not adopt- 

adopt alternatives (y = 0, 1) and N (n = 1, …, N) decision makers as a Type I extreme value 

distribution, i.e., εn = εn(y = 1) − εn(y = 0), Equation (3) has a standard logistic distribution that can 

be modeled using: 

(4)   
)exp(1

)exp()(1
n

n
n x

xxF
β′+

β′
=β′−− .  

A likelihood function can be defined in terms of the individual probabilities associated with each 

farmer’s decision to adopt remote sensing as: 

(5)   ( ) ∏∏ ==−= ),0()1(1(,| ypypxyβ nnnl  

where y= 1 if the technology is adopted by farmer n and y = 0 if it is not adopted.  The parameters 

are incorporated into the likelihood equation by using the relationship in Equation (3): 
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(6)   ( ) ∏ ∏ =β′−−=β′−=β )]0,|(1[)1,|(,| yxxFyxxFxyl . 

Taking logs, the log likelihood equation is specified as: 

(7)   ( ) ( ) ( )∑∑ =β′−−+=β′−=β ]0,|1ln[1,|ln,|ln ji yxxFyxxFxyl . 

 Coefficient estimates are found by maximizing the value of the log likelihood equation 

using the method of maximum likelihood.  Once coefficient estimates are found, the probability 

that a specific farmer and/or farm would be observed to have adopted remote sensing technology 

can be predicted.  The significance and magnitude of the parameter estimates also help to identify 

factors that may influence a farmer’s decision to adopt remote sensing. 

Data 

A mail survey of cotton producers in Alabama, Arkansas, Florida, Georgia, Louisiana, 

Mississippi, Missouri, North Carolina, South Carolina, Tennessee, and Virginia was conducted in 

2005 to ascertain information about their attitudes toward and use of precision farming 

technologies (Roberts et al., 2006).  The U.S. Cotton Board provided a list of potential cotton 

producers for the 2003-2004 cotton marketing year (Skorupa).  Following Dillman’s general mail 

survey procedures, the questionnaire, a postage-paid return envelope, and a cover letter explaining 

the purpose of the survey were sent to each producer on January 28, 2005.  A reminder post-card 

was sent one week later on February 4, 2005, and a follow-up mailing to non-respondents was sent 

three weeks later on February 23, 2005.  The second mailing included a letter indicating the 

importance of the survey, the questionnaire, and a postage-paid return envelope.  Of the 12,243 

questionnaires mailed, 18 were returned undeliverable and 182 indicated they were not cotton 

farmers or had retired, leaving a total of 12,043 cotton producers.  Of those cotton producers, 

1,215 individuals provided data, giving a usable response rate of 10% (Roberts et al., 2006). 
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Data describing the characteristics of the farm decision maker and farm operation were 

collected from each survey respondent.  Specifically, producers were asked to identify whether 

they used aerial photography or satellite imagery for each of eight VRT decisions. The alternative 

VRT input decisions were for fertility and lime, seed, plant growth regulators, harvest aids, 

fungicides, herbicides, insecticides, and irrigation.  In addition, farmers were asked whether they 

used remote sensing for identifying management zones and mitigating drainage problems.  Data 

on the use of other precision farm technologies and related services and sources of information 

also were collected from survey respondents.  The data were used to specify the binomial logit 

model to analyze what farmer and farm characteristics influenced the decision to adopt.  The 

number of usable responses was reduced from 1,215 down to 941 because of missing data for the 

logit model analysis (81 remote sensing adopters and 860 non-adopters).  

Empirical Model 

The dependent variable for the binomial logit model was use of aerial or satellite imagery for VRT 

decision making (REMOTE).  The farm decision maker and farm operation characteristics utilized 

as explanatory variables in the logit model and their hypothesized signs are presented in Table 1. 

The characteristics of the farm operation that were hypothesized to influence the decision 

to adopt remote sensing included farm size, household income, presence of irrigated production, 

and location.  A larger farm size has been associated with increase adoption rates for precision 

technologies for some crops (Cowan, 2000).  Also, a larger farm operation may be a proxy for the 

ability of a producer to bear the risk of adopting a new technology (Roberts et al., 2004).  Farmers 

with larger farms and more fields may have more opportunities to observe spatial variability in 

farm fields (Larkin et al.).  Remote sensing also may be a labor saving technology for larger farms 

by facilitating the identification of problem areas to be scouted rather than walking the whole field 

on the ground.  Acres planted (ACRE) was the total acres planted in irrigated cotton, dryland 
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cotton, and other crops in 2004 (1,000s acres).  The proxy for farm size (ACRE) is expected to 

have a positive impact on the adoption of remote sensing. 

A high income level could indicate the financial ability to make investments in site-

specific technology and services (Larkin et al.).  Thus, a positive sign is expected for the INCOME 

variable.  The variable intended to capture the effects of high income (INCOME) was pre-tax 

household income for 2004. 

Yields for irrigated cotton are generally higher than for dryland cotton and may be 

associated with higher input usage.  Thus, more opportunities may exist for varying inputs with 

crop needs in different areas of farm fields under irrigation.  In addition, remotely sensed imagery 

also can be used for non-VRT related crop decisions.  For example, the reflectance data could be 

used to assess crop water status for the purpose of timing irrigations (Ritchie et al.).  Irrigated 

cotton production has become much more common in the states covered by this survey and may 

be a factor in the adoption of remote sensing (USDA, NASS).  The presence of irrigated cotton 

(IRRIGATE) was expected to positively impact the probability of adoption of remotely sensed 

imagery.   

Location was modeled using a dummy variable (LOCATION) to test whether farmers in 

Alabama, Arkansas, Louisiana, Mississippi, Missouri, and Tennessee had a higher probability of 

remote sensing adoption relative to Florida, Georgia, North Carolina, South Carolina, and 

Virginia.  The potential difference among these two regions is expected to be related to the 

availability of remote sensing and other precision technologies and services from agribusiness 

providers (Khanna).  The mid-south states represented by LOCATION = 1 encompass the initial 

area where remote sensing services were offered by InTime, Inc.  At the time of the survey, the 

base of InTime, Inc.’s remote sensing operation was Cleveland, MS, located south of Memphis, 
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TN, with a branch office in Courtland, AL, located in northern Alabama south of Nashville, TN 

(Robinson, 2004). 

The farm decision maker characteristics hypothesized to influence the remote sensing 

decision were age, education, computer use, and the individual who generated the map-based crop 

prescriptions for VRT application of inputs.  A younger farmer may have a longer planning 

horizon, more exposure to new technologies, and may be more motivated to try new technologies 

compared to an older farmer (Roberts et al., 2004).  These characteristics suggest that younger 

farmers are less risk averse (Dimara and Skuras), which would have a positive impact on farmers’ 

perceptions of remote sensing technology.  Thus, a farmer under age 40 (AGE) was expected to be 

more likely to adopt remote sensing technology than a farmer 40 years or more old.   

Implementation of site-specific management on farm fields requires substantial analytical 

skills, which suggests that farmers with more years of formal education (EDUCATION) may be 

more likely to have the human capital needed to successfully evaluate and implement site-specific 

management (Roberts et al., 2004). 

The use of computers is another important aspect of site-specific management (Arnholt, 

Batte, and Prochaska, Batte and Arnholt, Roberts et al., 2004).  Farmers who use computers in 

farm management and more specifically, farmers who use computers in farm fields were expected 

to be more likely to adopt remote sensing than those who do not.  An important element of 

successfully utilizing remotely sensed imagery for VRT decision making is the process of “ground 

truthing” the data to verify problems and identify treatment areas (Robinson, 2006).  One method 

used for ground truthing is to scout the potential problem areas identified on the remotely sensed 

map and record the information into a portable computing devise.  The question asking farmers 

whether they use a laptop or handheld computer in the field (COMPUTER) was used to capture 
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this potential management characteristic of adopters.  The use of computers in farm fields was 

expected to be positively associated with the adoption of remote sensing technology. 

Another aspect of site-specific management is the analysis of spatial field data and the 

creation of prescription maps for VRT application.  Who makes the maps could have an important 

influence on the decision to adopt remote sensing technology.  A crop consultant or input dealer 

promoting precision services such as VRT map-making or VRT application may influence a 

farmer to purchase a subscription for remotely sensed imagery.  In addition, the recent availability 

of user-friendly web-based tools for making prescription maps such as those offered by InTime, 

Inc., facilitate prescription map creation for independent consultants or farmers themselves.  The 

explanatory variables for farmers who created their own map-based crop prescriptions (SELF), 

used a crop consultant to generate map-based crop prescriptions (CONSULTANT), or used an 

input dealer to generate map-based crop prescriptions (DEALER) were used to assess farmer 

preferences.   

Perceptions of precision farming educational programs of the Extension Service and their 

impact on remote sensing adoption were captured using the EXTENSION variable.  This variable 

represents the yes-no responses to a question asking farmers whether the Extension Service needs 

to provide more educational outreach about precision farming.  Farmers who look to Extension as 

a source of information may be unwilling to invest in precision technology if they believe they 

have received insufficient information from Extension about potential costs and benefits. It was 

hypothesized that farmers who believed the Extension Service should provide more information 

were less likely to adopt remote sensing.   

The unknown parameters were estimated using LIMDEP (Greene, 2002).  Diagnostics for 

multicollinearity were performed (Belsley, Kuh, and Welsch).  Marginal effects were calculated 

for each variable and represent changes in the variables on Pr(y = 1)(Greene, 2003). Marginal 
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effects of the continuous variables were calculated by differentiating the probabilities with respect 

to the explanatory variables.  Marginal effects of the dummy variables were computed as Pr(y = 

1|d = 1) − Pr(y = 1|d = 0), where d is the dummy variable.   

Results and Discussion 

The logit model estimated using 941 observations (81 remote sensing adopters and 860 

non-adopters) is presented in Table 2.  The likelihood ratio statistic of 121.2 was statistically 

significant at the 99% level (11 d.f.), which indicates that the model explained a significant 

proportion of the variance in the adoption of remote sensing by cotton farmers.  The percentage of 

concordant and discordant pairs of observations with different responses in the model was 8.03% 

and 19.0%, respectively, with 0.7% ties.  The concordant rate indicates an acceptable prediction 

rate.  The model correctly predicted 92.4% of farmer’s responses overall (83.3% for adopters and 

92.8% for non-adopters).  

The reliability of the test statistics used to determine significance of the coefficients in 

Table 2 could be questioned if the standard errors were seriously degraded by multicollinearity. 

Diagnostic tests for multicollinearity indicate potential problems with the intercept (CONSTANT) 

and farmer education (EDUCATION) variables.  However, CONSTANT and EDUCATION were 

statistically significant at the 1% and 5% probability levels, respectively, indicating that the 

standard errors for the variables were not seriously degraded by multicollinearity (Belsley, Kuh, 

and Welsch).   

The only independent variables that did not significantly explain the adoption of remote 

sensing were high household income, farmer use of a dealer to generate map-based crop 

prescriptions (DEALER), and farmer perceptions of the need for more precision farming 

educational programs by the Extension Service (EXTENSION).  Even though about 70% of survey 

respondents believed that the Extension Service needed to provide more precision farming 
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educational programs, this perception did not have a significant influence on the adoption 

decision.   

All other variables describing the characteristics of farmers and their operations were 

statistically significant and had their hypothesized signs (Table 2).  Farmers who were younger, 

more highly educated, or had larger farm operations were more likely to have used aerial or 

satellite imagery to make VRT management decisions on their farms.  Marginal effects reported in 

Table 2 indicate that farmers under 40 years old were 3.5% more likely to use remote sensing, 

holding other variables at their means.  For each additional year of formal education, the 

probability of a farmer adopting remote sensing increased by 0.7%, holding all other variables at 

their means.  The probability of adoption rose by 0.9% for each 1,000-acre increase in crops 

planted in 2004. 

Two other characteristics of the farm operation, the location of the farm and the presence 

of irrigated cotton, had positive impacts on the decision to adopt remote sensing technology.  

Holding other variables at their means, a farm located in Alabama, Arkansas, Louisiana, 

Mississippi, Missouri, or Tennessee was 3.1% more likely to have used remote sensing than a 

farm located in Florida, Georgia, North Carolina, South Carolina, and Virginia.  Results indicated 

that the probability of adoption was higher in the mid-south area where the remote sensing service 

provider, InTime, Inc., started operating in 2003.  Farmers who had irrigated cotton area had a 

2.8% higher probability of adopting aerial or satellite imagery. 

Adopters of remote sensing technology appeared to be much more technologically savvy 

than non-adopters, which had a large impact on the probability of adoption.  Producers who used 

personal digital assistants or laptop computers in farm fields to make management decisions were 

4.1% more likely to have used remotely sensed imagery.  Farmers who made their own map-based 

prescriptions were 47.2% more likely to have used aerial or satellite imagery to make VRT 
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decisions.  Crop consultants also appeared to play an important role in the decision to adopt aerial 

or satellite imagery.  Farmers who used consultants for map-based prescriptions had a 12.5% 

higher probability of using remote sensing to make VRT decisions.  

Summary and Conclusions 

This research evaluated the farm and farmer characteristics that influenced cotton 

producers to adopt remotely sensed imagery for variable rate application of inputs.  Data from a 

2005 mail survey of cotton producers in Alabama, Arkansas, Florida, Georgia, Louisiana, 

Mississippi, Missouri, North Carolina, South Carolina, Tennessee, and Virginia was used to 

specify a logit model for the adoption analysis.  Farmers who were younger, more highly 

educated, had larger farm operations, or were more technologically savvy were more likely to 

have used aerial or satellite imagery to make VRT management decisions on their farm.  

Agribusiness input dealers were not an important (i.e., statistically significant) source for 

generating map-based prescription using the imagery data for remote sensing adopters.  By 

contrast, crop consultants were a significant source for generating prescription maps for variable 

rate decision making using remote sensing.  The results suggest that consultants may have been an 

important factor in the adoption of remote sensing technology by cotton farmers.  However, the 

most important farmer characteristic influencing the probability of adoption of remote sensing was 

farmers who indicated that they generated their own map-based prescriptions for variable rate 

application of inputs using remote sensing imagery.  One of the services of a major remote sensing 

provider in the area covered by the survey was the ability for clients to generate prescription maps 

via an internet site.  Thus, it appears that the availability of value-added services by consultants 

and remote sensing providers may have a very important influence on farmers’ decision to adopt 

remote sensing. 
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Results from this remote sensing adoption analysis broach some socioeconomic issues.  

Variable rate decision making using remote sensing was not as prevalent among farms with 

smaller crop areas.  Non-adopters also were less technologically savvy because they were less 

likely to use computers and related applications for crop decision making when compared with 

adopters.  Thus, a potential barrier to adoption may be related to the technical skills needed to use 

computer applications necessary to make remotely sensed imagery useful for crop management.   

Although the belief by respondents that Extension Service should provide more 

educational programs about precision farming was not found to affect adoption of remote sensing 

technologies, the fact that seven in ten respondents have this belief is notable for the remaining 

suite of technologies.  Extension may have a role in providing computer training to farmers and 

crop consultants on how to use computers for collecting site-specific information and how to use 

computers for making prescription maps.  There may also be a role for Extension in making and 

analyzing maps for smaller limited resource farmers. 
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Table 1.  Definition of  variables and hypothesized impacts for the remote sensing 
adoption analysis 
Variable Mean Sign Definition 
Dependent Variable    
    REMOTE 0.08 NA Used remotely sensed imagery to make at 

lease one variable rate technology (VRT) 
decision (1 if yes, 0 if no)a

Explanatory Variables    
   Farm Characteristics    
         ACRE 1.16 + Total crop area (1,000s acres) 
        INCOME 0.35 + Pre-tax household income (1 for income > 

$150,000, 0 if no) 
        IRRIGATE 0.34 + Has irrigated cotton area (1 if yes, 0 if no) 
        LOCATION 0.54 + Farm located in either Alabama, Arkansas, 

Louisiana, Mississippi, Missouri, or 
Tennessee (1 if yes, 0 if no) 

    Farmer Characteristics    
         AGE 0.20 + Younger than 40 years old (1 if yes, 0 if no) 
        EDUCATION 14 + Formal education excluding kindergarten 

(years) 
        COMPUTER 0.14 + Used a laptop or handheld computer in farm 

fields (1 if yes, 0 if no) 
        SELF 0.03 + Generated own map-based input 

prescriptions (1 if yes, 0 if no) 
        CONSULT 0.05 + Used a crop consultant to generate map-

based input prescriptions (1 if yes, 0 if no) 
        DEALER 0.08 + Used a dealer to generate map-based input 

prescriptions (1 if yes, 0 if no) 
        EXTENSION 0.70 − Believes Extension needs to provide more 

information about precision farming (1 if 
yes, 0 if no) 

a The VRT decisions were for fertility and lime, seed, plant growth regulators, harvest aids, 
fungicides, herbicides, insecticides, irrigation, identifying management zones, and 
mitigating drainage problems. 
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Table 2.  Estimated logit model for adoption of remotely sensed imagery for site-
specific management in cotton production 
Explanatory Variable/ 
Statistica

Coefficient Marginal 
Effectb

CONSTANT    −6.288*** NA 
 (0.976)  
 ACRE    0.170**     0.009** 
 (0.074)  (0.381) 
INCOME 0.287 0.015 
  (0.274)  (0.149) 
IRRIGATE   0.521*   0.028* 
 (0.272)  (0.016) 
LOCATION     0.629**     0.031** 
 (0.299) (0.015) 
AGE   0.583*   0.035* 
 (0.299) (0.21) 
EDUCATION    0.148**      0.007** 
 (0.062)   (0.003) 
COMPUTER    0.651**    0.041* 
 (0.313)   (0.024) 
 SELF       3.047***        0.472*** 
 (0.512)  (0.121) 
CONSULT      1.397***     0.125** 
 (0.383)  (0.054) 
DEALER 0.161  0.009 
 (0.434)  (0.025) 
EXTENSION 0.154  0.008 
 (0.313)   (0.015) 
N               941   NA 
Concordant                 80.3% NA 
Discordant                 19.0% NA 
Tied                   0.7% NA 
Correctly Predicted                 92.4% NA 
Likelihood Ratio               121.2*** NA 
a Variables are defined in Table 2. 
b Marginal effects of the continuous variables were calculated by differentiating the 
probabilities with respect to the explanatory variables.  Marginal effects of the dummy 
variables were computed as Pr(y = 1|d = 1) − Pr(y = 1|d = 0), where y=1 if remote sensing 
technology is adopted by farmer and d is the dummy variable.   
Note: Standard errors for the estimated coefficients are in parentheses.  ***,**, and * 
indicate significance at the 1%, 5%, and 10% levels, respectively.  NA=Not applicable. 
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