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IMPACTS OF LAND USE CHANGE 

Gandhi Raj Bhattarai1, Diane Hite2, Puneet Srivastava2, Upton Hatch3 and Luke Marzen2 

1Auburn University Montgomery, 2Auburn University, 3North Carolina State University 

ABSTRACT 

Changes in water quality and agricultural and forest revenues due to land use changes are 

compared. A biophysical model estimates the effect in nitrogen and phosphorus runoff and 

sediment deposition. The results are combined with farm enterprise budgets to estimate the 

economic returns resulting from land use changes. 

INTRODUCTION 

Point source pollution has been substantially reduced since the implementation of the 

Clean Water Act-1972. However, non-point source pollution (NPP) that threatens majority of the 

water bodies in the United States remains the major environmental concern. NPP is caused by 

the movement of water, over and through the ground, generally after a precipitation event 

(rainfall and/or snow). The runoff picks up and carries away natural and manmade pollutants, 

eventually depositing them in lakes, rivers and coastal waters. Thus the pollutants left on the 

surface from various sources accumulate in receiving water bodies.  

The agricultural sector is alleged to be the largest contributor to NPP through runoff of 

nutrients, sediment, pesticides, and other contaminants (USEPA 1998). Crop cultivation requires 

more use of chemicals and nutrients than natural vegetative cover such as forests and grasslands. 

Tillage operations affect the soil structure and often make the nutrient rich topsoil fragile and 

cause it to lose chemicals and soil particles during rainfall. Further, a study by the National 

Assessment Synthesis Team (2000) suggests that future climate change will require higher use of 
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nutrients, pesticides and other chemicals to maintain the current level of productivity for most 

crops. This will further accelerate the decline in water quality of receiving water bodies. 

In addition to agricultural land, land in residential and developed uses, such as lawns and 

gardens, are managed more intensively, resulting in generation of even more pollutants. Urban 

areas also have higher percentage of impervious surface that results in lower percolation and 

higher runoff. During precipitation, runoff carries nutrients and sediment from agricultural and 

residential land, resulting in higher chemical levels and turbidity in receiving waters. Thus, 

increasing urbanization coupled with increasing use of nutrients and chemicals in agricultural 

lands creates significant challenges for water quality protection and enhancement. 

Recent water quality studies have focused on developing and successfully applying 

various biophysical simulation methods to estimate levels of NPP and to identify critical 

locations from which these pollutants originate (Bhuyan et al. 2001; Marzen et al. 2000; Mankin 

et al. 1999). These models use various geospatial data and facilitate the spatial analysis of 

sources and effects of point and non-point pollutants with reference to their origin and 

geographical locations. Calibrated biophysical models have enabled researchers to simulate 

effects of different land use and best management practice (BMP) combinations on surface water 

quality. The findings of such models help environmental policy planners to understand both 

short-term and long-term effects of changes in land use and land management scenarios and 

ways to effectively reduce NPP through institutionalization of best management practices.  

This study aims to quantify the effect of land use change on water quality by simulating 

levels of nitrogen, phosphorus and sediment under two land use scenarios. Specifically, this 

study demonstrates the use of geospatial technologies to gather and organize reliable and current 
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data for inputs into the BASINS-SWAT model. In addition, the study also quantifies the 

economic impact of two land use scenarios through simple economic model. 

THE MODELING APPROACH 

The modeling framework is adapted from USEPA’s Better Assessment Science 

Integrating Point and Non-point Sources (BASINS) model which comprises a suite of 

interrelated components for performing the various aspects of environmental analysis including 

data extraction, assessment, watershed delineation, classifying digital elevation models (DEM), 

land use, soils and water quality observations, and watershed characterization reports. The 

BASINS framework provides a centralized platform for data extraction and analysis and helps in 

set up of individual watershed-based models and analysis at a variety of scales using different 

tools. BASINS can support implementation of TMDLs by state agencies using watershed-based 

point and non-point source analysis for a variety of pollutants under alternative assumptions 

about land management practices (USEPA, 1998; BASINS Users’ Manual). Soil and Water 

Assessment Tool (SWAT) is an integrated component in BASINS. SWAT is developed by the 

U.S. Department of Agriculture-Agricultural Research Service’s (USDA_ARS) Grassland, Soil 

and Water Research Laboratory in Temple, Texas. It is designed to assist resource managers in 

the long-term assessment of sediment and chemical yields in large watersheds and river basins. 

The model predicts the average impact of land use and management practices on water, 

sediment, and agricultural chemical yields in large, complex watersheds with varying soils, land 

uses, and management conditions over long periods of time (DiLuzio et al. 2002; Neitsch et al. 

2002). In comparative studies using hydrologic and NPP models, SWAT has been shown to be 

among the most promising ones for simulating long-term NPP in agricultural watersheds (Borah 

and Bera 2003).  



 

4 

BASINS-SWAT uses an ArcView Geographic Information System interface to derive the 

model input parameters. Within the interface, hydrological modeling is completed using U.S. 

Geological Survey’s (USGS) National Elevation Dataset (NED). The watershed drains at the 

lowest elevation point of the catchment’s area and contains several sequential subwatersheds 

with directional flow (raindrop flow) to the main channel based on the topography of land. 

Subwatersheds are grouped based on climate, hydrologic response units (HRU), ponds, ground 

water, and main channels (Borah and Bera 2003). Each subwatershed can be virtually divided 

into several hydrological response units (HRUs) which are uniquely lumped areas within the 

subwatershed based on weighted land cover, soil type, and management combinations at a 

certain threshold level (Saleh et al. 2000). SWAT model simulation requires weather inputs 

(daily records of precipitation, wind, minimum and maximum temperatures) and management 

inputs (irrigation, tillage, chemical and fertilizer application). These input variables are converted 

to standard SWAT input files within the model. A given model run simulates runoff levels of 

nutrients, sediment and chemicals under a particular combination of land use and land 

management scenarios. Outputs from SWAT are crop yields, stream flows, and sedimentation 

and nutrient runoff levels, which can be traced across the watersheds both for short and long 

period of times. 

LIMITATIONS OF THE STUDY 

The land use data used in this study come from 1992 and 2001 National Land Cover 

Datasets (NLCD). Although vegetative covers are broken down to different types of forestlands, 

pasture and rangeland, cropland, and different intensities of developed land, the datasets do not 

contain details regarding which row crops and forage crops are grown in the study area. Hence, 

simulations are based on a dominant type of row crop and a dominant forage crop grown in the 
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study area. Although forestland is included in the model as a major land cover, more effort is 

given to understanding the effects of cropland and pastureland management on water quality. 

Land cover is dominated by agricultural and forestland with relatively small share of developed 

land. The model selects the dominant land use in each subbasin, possibly leaving out unique land 

use with small land coverage and ignoring the effects of specific land use in a localized area.  

STUDY AREA 

The study area is Little Double Bridge Creek (HUC #03140201230), lying within the 

Choctawhatchee basin in southern Alabama (HUC#03140201), which is also called Wiregrass 

region in the state (Figure 1). The Little Double Bridge Creek (colored blue in Figure 1) has 21.4 

square miles of upstream drainage area and lies to the west of Enterprise city in Coffee and 

Geneva Counties of Alabama. The study area for simulation covers approximately one tenth of 

the Coffee County, and lies in a major corn belt.  

 

Figure 1 Map of the study area 
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The wiregrass region is characterized by agricultural and forestland, which are the 

dominant land use in the study area. Coffee County ranks 5th in broiler production, 7th in peanut 

production, 9th in corn production and 14th in cotton production within the state (Alabama 

Agricultural Statistics 2005). On one hand, production of corn and cotton crops require higher 

application of nitrogen fertilizer, while on the other hand, use of poultry litter in row crop 

production results in elevated phosphorus levels in the soil. The study area is selected based on 

the importance of agricultural pollution controls and availability of required input data to run the 

model described in the following sections. 

Table 1 Comparison of land use distribution in the study area 

 NLCD 1992  NLCD 2001 Change* Land use category 

 Area (ha)   Share (%)  Area (ha)   Share (%)  (%) 

Cropland         1,886 34.3%         1,396 25.4% -26.0% 

Pastureland            740 13.5%            843 15.3% 13.9% 

Forestland         2,341 42.6%         2,104 38.3% -10.1% 

Urbanland              14 0.3%            261 4.8% 1739.4% 

Wastelands            514 9.4%            891 16.2% 73.4% 

Total         5,495           5,495    

*Change weighted for area 

A comparison of two national land cover maps suggests that there has been significant 

change in land use between 1992 and 2001 in this watershed (Table 1). Between the years 1992 

and 2001 the share of developed land increased by more than 17 times, however, this share still 

remains less than 5.0% of the total land. Share of row crops decreased by 26.0% while that of 

pastureland increased by 13.9%.  Total forestland area decreased by 10.1% while other 
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wastelands such as range/brushland and wetlands increased by 73.4%.  The changes in land use 

distribution are expected to bring changes in water quality including surface flow, nutrient runoff 

and sedimentation levels. 

DATA 

The study uses data from various sources. Core set of data which include elevation, land 

use, state soil survey data and watershed boundaries are extracted from the BASINS website. 

Other sources of data are described below. 

Elevation and land cover data: The 1:24,000 scale 30x30m resolution Digital Elevation 

Model (DEM) data as well as two sets of NLCD (1992 and 2001) for the entire area are 

downloaded from Seamless Data Distribution System of USGS Web Server. Overall thematic 

accuracy level of NLCD 1992 land use data at the Anderson Level I is 82% (Stehman et al. 

2003). Although formal accuracy assessment reports are not available for NLCD 2001 land cover 

data for the region, a single-pixel accuracy assessment in three of the NLCD 2001 mapping 

zones elsewhere suggests that the accuracy range of 73 to 77 percent (Homer et al. 2004). The 

vertical positional accuracy for the elevation data is 2.70 RMSE (NED Press Release June 2003).  

All core basins data as well as elevation and land use grids are projected in the same projected 

coordinate system. 

Climate and streamflow data: Precipitation, temperature, wind speed, solar radiation and 

relative humidity data are standard input to SWAT model. Observed daily precipitation and 

minimum/maximum temperature data are obtained from the National Climate Data Center 

(NCDC) database for four nearby climate stations between January, 1965 and December, 2005 

(Source: SECC 2006).  Daily streamflow data, an important requirement for model calibration 

and validation, is collected from USGS station (ID# 02362240) located at the end of Little 
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Double Bridge Creek. Daily streamflow data are available for this station from September 1985 

to October 2003. 

Farm Management Practices: A single major row crop (corn) and a forage crop 

(bermudagrass) are selected and a table of operations for these crops is derived based on the 

recommended cultural practices published in Alabama Cooperative Extension System reports. 

Typical cultural practices such as fertilizer use, tillage operations, pesticide use, harvesting and 

killing operations are recorded for corn and bermudagrass. 

METHODS 

The BASINS process starts with automatic delineation of subbasins from the digital 

elevation data.  The NED is processed to remove any sinks in the data.  Sinks are the grids 

erroneously recorded as being lower than surrounding areas.  Automatic watershed delineation is 

processed aligned with the national hydrography stream network.  Digital stream networks are 

created with a 40-hectare headwater threshold area, which defines the minimum area required to 

begin a stream flowing out of the area in any part of the watershed.  The physical location of the 

USGS gage station is marked as the lowest outlet point of the stream network to define the 

watershed boundary.  Subbasins are created along with their physical characteristics including 

area, length, width, slope, and elevation.  Subbasins are physically bounded areas to which 

changes in management practices, yields and pollution levels can be traced during simulations.  

The delineated area of Little Double Bridge Creek sub-watershed is 55.37 km2. The mean 

elevation of the watershed is 97 meter above mean sea level (msl) with the range between 63 msl 

and 132 msl. The watershed is divided into 159 subbasins (ranging from 4.6 to 83.7 ha) with an 

average area of 34.8 ha. As a comparison, average farm size in Coffee County is 231 acres or 

93.4 ha (Alabama Agricultural Statistics Bulletin 2005). Thus, an average farm covers 2-3 
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subbasins in terms of area coverage. The mean subbasin slopes range from 2.9 to 8.6% with the 

mean slope of 5.4%. The average slope of digitized streams across flow length is 1.8%, and 

ranges from 0.1% to 5.7%.  

Table 2 shows relative number and area coverage of dominant HRUs under two 

alternative land use scenarios of NLCD 1992 and NLCD 2001. The number of HRUs with 

cropland decreased by 35%, a reduction from 81 to 53, in contrast, number of HRUs with 

pastureland increased by 72%, an increase from 18 to 31.  Composition of forestland slightly 

changed from 50 HRUs to 51 HRUs, a 2% increase in the two periods.  Other lands designated 

as range/brush and wetlands also changed by 130%.  

Table 2 Comparison of dominant hydrological response units 

Number of Sub-basins Major Land Use 

NLCD92 NLCD01 Change 

Croplands 81 53 -35% 

Pastureland 18 31 72% 

Forestland 50 51 2% 

Urbanland - 1 N/A 

Wastelands 10 23 130% 

Watershed 159 159 N/A 

 

Model calibration is done by comparing five years of average daily simulated versus 

observed streamflow between January 1991 and December 1995 using NLCD 1992 land cover 

map. Land cover condition affects the amount of surface flow, infiltration, evapotranspiration 

and underground recharge by exposing the rainwater to different surfaces. By choosing this 
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period, model estimation is also kept close to the land cover conditions in the current period.  

Calibration for nutrients and sediment is not done because observed data are not available for 

these water quality parameters.  

Adjustments are done in the curve number (CN2) of different land use by adjusting up to 

10% of the recommended number for different hydrological group and land cover conditions 

(Santhi et al. 2001). Once the average daily total streamflows are reasonable, adjustment are 

done in HRU soil (SOL) and groundwater (GW) input parameters to adjust the surface flow and 

baseflow so that the Nash-Sutcliffe Coefficient of Efficiency (COE) and goodness of fit (R2) are 

within the acceptable range of values. Simulated average daily streamflows on a monthly time 

steps are compared with observed daily streamflows (Figure 2) 

Comparison of Simulated and Observed Streamflows
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Figure 2 Observed Vs. simulated daily average streamflow, January 1991 - December 1995  

The Table 3 summarizes the statistical results of calibration. It is shown that the 

calibrations for total streamflow and surface runoff are very reliable. The mean of simulated 

average daily streamflow (mean = 46 cfs and std.dev.=48 cfs) lies within 3% of the observed 

streamflow (mean = 45 cfs and std.dev. = 37 cfs). However, the surface runoff is slightly over 
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predicted (18% higher) and baseflow is slightly under predicted (7% lower). Both goodness of fit 

(R2=0.88) and coefficient of efficiency (COE=0.75) are within the readily acceptable range of 

values for total streamflow. A quite similar result for surface runoff (R2=0.77 and COE=0.74) is 

also obtained; for baseflow calibration a high goodness of fit (R2=0.86) and very low coefficient 

of efficiency (COE=0.21) was obtained.  

Table 3 Model calibration results between January 1991 and December 1995 

Mean Average Daily Streamflow 

(cu.ft./sec.) Simulated Observed 
Difference R2 COE 

Total Streamflow 46.1 (48.4) 45.0 (37.0) 3% 0.88 0.75 

Surface Runoff 20.9 (21.9) 17.7 (23.4) 18% 0.77 0.74 

Baseflow 25.3 (26.5) 27.3 (15.4) -7% 0.86 0.21 

Note: Figures in parentheses indicate standard deviation from mean. 

These values are similar to the ones reported by Kirkch et al. (2002) in their study in 

Rock River Basin in Wisconsin (R2=0.74 and COE=0.61) and by Fohrer et al. (2005) in their 

study (R2=0.82 and COE=0.61) in the lower mountain range areas in Germany. Moon et al. 

(2004) report a R2 value of 0.86 and COE value of 0.78 using monthly time step comparison in 

Trinity River Basin in Texas. Thus, the calibration results obtained here are within a reasonable 

range of values in previously published studies.  

Once the calibration is complete, model is run for twenty years starting from January 

1986 to December 2005 run in monthly time steps. It was important to keep 20 years of 

simulation because of a 10-year rotation in bermudagrass cultivation in the management file. 

SWAT requires the number of years of simulation in the multiple of the number of years in the 

crop rotation in management input file. Two sets of simulations are done using the calibrated 
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input values, one for NLCD 1992 land cover condition and the other for NLCD 2001 land cover 

condition. 

RESULTS 

Effects on Water Quantity and Quality 

The area received 1448.9 mm of precipitation annually across the surface of watershed. 

This precipitation level results in different streamflow levels using two land use conditions. 

There is a total water yield of 536.35 mm with 1992 NLCD land cover as compared to 519.78 

mm with the 2001 NLCD land cover condition. Total water yield here is defined as the sum of 

surface, lateral, and groundwater flow minus transportation loss, which will eventually pass 

through the main channel. For NLCD 1992 land cover condition, the predicted surface runoff 

and baseflow contributions to the channel are 280.05 mm and 230.37 mm, respectively. In 

contrast, surface runoff and baseflow contributions to the channel with NLCD 2001 land cover 

conditions are 224.80 mm and 267.69 mm, respectively. Thus, the results show that total water 

yield decreases by 3.1%, whereas surface flow decreases by 19.7%, and baseflow contribution 

increases by 16.2%. This indicates that there is less surface runoff and higher infiltration and 

groundwater recharge with 2001 land cover as compared to 1992 land cover condition.  

The model output calculates average nitrogen and phosphorus applied in the watershed. 

This is more or less proportionate to the amount of agricultural land and crop management 

practices. On average, 127.73 kg of nitrogen and 16.92 kg of phosphorus are applied to one 

hectare of land with the NLCD 1992 land cover condition. With the 2001 land use distribution, 

the amount of nitrogen and phosphorus applied in the watershed reduces to 118.00 kg/ha and 

13.69 kg/ha, respectively. This average is based on the total watershed area.  
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Comparing land use conditions between NLCD 1992 and NLCD 2001 land cover shows 

that agricultural land decreases by 921 hectares (33%). The pastureland increases by 480 

hectares (92%) followed by 362 hectares (91%) and 79 hectares (4%) increases in other land and 

forestland.  Table 4 compares the aggregate annual nutrient runoff and sedimentation by land use 

type for two land cover scenarios. The aggregate results at watershed level show that total 

nitrogen runoff decreases by 23%, total phosphorus runoff by 22% and sedimentation by 40% 

when land use conditions change from those of 1992 to those of 2001. 

Effects on Agricultural Production and Returns 

A simple bioeconomic analysis is done to estimate effects of land use change on farm 

profits at the watershed level. The Table 5 compares the total agricultural and forest revenues 

and expenses with two land use scenarios. The average yield and cost of operation for corn are 

taken from Alabama Cooperative Extension System bulletin AEC BUD 1-1 (ACES 2006). The 

average yield and cost of operation under recommended practices for bermudagrass are taken 

from AEC BUD 1-2 (ACES 2005). Based on these publications, returns to corn production and 

bermudagrass cultivation are calculated in the absence of government payments. Similarly, 

returns to forest plantations ($63 per hectare) are taken from the online bulletin MTN 9C, a 

publication of Mississippi State University Extension Service. 

In the absence of government payments, farms are currently operating at a loss with both 

the corn and bermudagrass productions, losing an average of $251 and $171 per hectares, 

respectively. These figures are derived based on production costs using recommended inputs 

according to the above mentioned extension bulletin and setting the exiting output prices of corn 

($2.50 per bushel) and bermudagrass ($70.00/ton).  
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Table 4 Comparison of total annual nutrient runoff and sedimentation across the watershed under different land use types for land 

cover conditions of 1992 and 2001 

Dominant Land Use (ha) Total Nitrogena (Kg) Total Phosphorusb (kg) Total Sediment (tons) 
Land use 

NLCD92 NLCD01 Change NLCD92 NLCD01 Change NLCD92 NLCD01 Change NLCD92 NLCD01 Change

Cropland 2,814 1,893 -33% 1,506 1,152 -24% 567 438 -23% 2,389 1,372 -43% 

Pastureland 520 1000 92% 136 98 -28% 19 12 -37% 45 23 -49% 

Forestland 1,807 1,886 4% 156 35 -78% 16 3 -81% 88 3 -97% 

Urban 0 29 n/a 0 137 n/a 0 22 n/a 0 137 n/a 

Wastelands 396 730 84% 73 14 -81% 8 1 -88% 45 3 -93% 

Watershed 5,537 5,538 0% 1,871 1,436 0% 610 476 0% 2,567 1,538 0% 

aTotal Nitrogen = Organic N + NO3 in Surface Runoff + NO3 in Lateral Flow + NO3 in Groundwater 

bTotal Phosphorus = Organic P + P in Sediment + Soluble P + P in Groundwater 
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Table 5 Effects of land use change in farm returns under different land use distribution in study area 

 NLCD 1992 NLCD 2001 Change 

 Area 

(ha) 

Yield Cost 

$/ha 

Revenue 

$/ha 

Total 

Profit 

Area 

(ha) 

Yield Cost 

$/ha 

Revenue

$/ha 

Total 

Profit 

Area 

(ha) 

*Revenue 

($) 

Corna (bushels) 2,814 208 770 519 -706,225 1,893 208 770 519 -475,101 -921 231,125 

Forestb 1,808 n/a n/a n/a 113,004 1,886 n/a n/a n/a 117,912 79 4,908 

Pasturec (tons) 520 15 1,209 1,038 -88,814 1,000 15 1,209 1,038 -170,929 481 -82,115 

Otherd 396 n/a n/a n/a n/a 758 n/a n/a n/a n/a 362 n/a 

Total 5,537       -682,035 5,537       -528,117    

 

*Change in revenue indicates loss reduction in corn whereas forest and pasture indicate their normal changes in revenue 

aCalculations are based on ACES Publication AEC BUD 1-1, January 2006 

bCalculations are based on ACES Publication AEC BUD 1-2, May 2005 

cCalculations are based on MSU CARES Publication MTN 9C 

dOther lands include wetlands, wastelands, rangebrush and urbanlands. 
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Five-year average crop yield in crop reporting district 60 is used for calculation of 

revenues. Based on these figures, changing land use from corn production to bermudagrass 

causes a large reduction in operating loss. For instance, the Table 5 shows a corresponding 

$231.1 thousand reduction in operating loss for 921 hectares decrease of corn acreage. If equal 

area is converted from corn to bermudagrass, net reduction in operating loss will be 73.6 

thousands dollars only. No economic returns have been inputed for wetlands and wastelands like 

range/brush lands. 

The Table 6 presents the summary of bioeconomic impacts of land use change in the 

study area. It shows that a large decline in corn acreage with simultaneous increase in 

pastureland acreage and some forest acreage causes a net reduction in operating loss of 153.8 

thousand dollars at the watershed level. At the same time, the impact on water quality is 

desirable for all kinds of land cover. Total nitrogen and phosphorus runoff reaching the channel 

decrease by 434 kg and 135 kg per year, respectively. Sedimentation decreases by 1030 metric 

tons  per year across the watershed. 

Table 6 Differences in the farm profit and water pollution for land cover changes 1992-2001 

Land use Area 

(ha.) 

Net Return 

Per Ha. 

Profit 

($) 

N Runoff 

(kg) 

P Runoff 

(kg) 

Sediment 

(tons) 

Row Crop -921 -251 231,031 -354 -129 -1,018 

Forest 79 63 4,908 -121 -14 -85 

Pasture 481 -171 -82,082 -38 -7 -22 

Other 362 n/a n/a 78 15 95 

Total   153,857 -434 -135 -1,030 

aLoss minimization 
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CONCLUSION 

The water quality in a watershed is affected directly by vegetative cover and agricultural 

and other land management practices. The pattern of land cover changed in the study area from 

1992 to 2001. There is decline in both agricultural land (26%) and overall forestland (10%). 

However, the structure of forestland changed with a 45% increase in evergreen forest. Developed 

land increased by seventeen times, however, the weighted share of developed land still remains 

less than 5% of total land. The share of rangeland increased by 392% followed by a 14% 

increase in pastureland. Wetlands decreased by 72%.  

Changes in agricultural crops such as switching from corn production to cotton 

production or other crop rotations remain unidentified at this level of study. However, 

comparison of sediment and nutrient runoff across subbasins that changed from one SWAT land 

cover class to another class shows a great variability in the results. Changing from forest to 

agricultural land or from wetlands to pasture land has great impacts on water quality, including 

the quantity of surface flow, nutrient runoff and sediment loadings at the main channel.  

The study indicates that decrease in the cropland has resulted in lower overall nutrient 

application in the watershed. The surface runoff reduces by 19.7% with more surface vegetation 

as derived from 2001 land cover maps. While farm management practices are held constant over 

two land use scenarios, changes in the land use have caused the decrease in the application of 

total nitrogen and phosphorus across the watershed. The aggregate nitrogen runoff at the channel 

decreases by 23%, total phosphorus runoff by 22% and sedimentation by 40% when land use 

condition changes from 1992 to 2001 conditions.  

In the absence of government payments, farms are currently operating under loss with 

both the corn and bermudagrass productions, losing an average of $251 and $171 per hectares 



 

18 

respectively. Taking away land from corn production to bermudagrass causes a large reduction in 

operating loss. For example, about $231.1 thousands reduction in operating loss is experienced 

when corn acreage in the watershed is decreased by 33%. A net reduction of $73.6 thousands in 

operating loss is experienced when converting the same land to pastureland. Hence, a large 

decline in corn acreage with simultaneous increase in pastureland causes a net reduction in 

operating loss of $165.2 thousand dollars at the watershed level. At the same time, the impact on 

water quality is positive for all kinds of land cover. Total nitrogen and phosphorus runoff 

reaching the channel decrease by 434 kg and 135 kg per year, respectively. Sedimentation 

decreases by 1030 metric tons per year across the watershed. 

The results presented in this paper are basic to the understanding of economic and water 

quality impacts on land use change. These results help regional planners and watershed 

management policy makers by providing estimates of changes in water quality when land use 

changes over time. The application of the model can be extended to include more detailed land 

use and soil distribution in the study area using recent satellite images to create maps depicting 

detailed cropping patterns which will help to understand the impact of alternative best 

management practices such as minimum or no-tillage practices and reduced use of fertilizers and 

pesticides. Using multiple hydrological response units to simulate best management practices 

will give more precise effects of those practices in water quality.  

These biophysical models are extremely valuable in assessing the physical impacts of 

BMPs on quantity and quality of water bodies in a given watershed. They can help policy 

planners to assess water quality and plan for intervention through TMDLs. However, it is 

imperative to account for the effects BMPs may have on farmers' profitability. Specifically, the 

impact that changes in yield or changes in input costs have on profitability has not been 
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examined in this study. Profitability can greatly impact the likelihood that farmers will 

voluntarily adopt BMPs, thereby improving water quality. Thus, watershed and farm level 

economic impacts must be evaluated to understand the magnitude of gains and losses to 

individual farmers through use of BMPs.  
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