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Abstract

Anthropogenic greenhouse gas emissions are driving changes in marine environments and affecting
marine fisheries. In the coming decades, ocean warming and acidification will cause changes in the
habitable range and stocks of commercially valuable shellfish species. This study estimates the monetary
impacts to shellfish consumers in the US and Canada using an inverse demand and consumer welfare
model. Taking harvest forecasts for 17 types of shellfish under two greenhouse gas emissions scenarios
through the end of this century, we model consumer substitution patterns, changes in expenditures,
and annual welfare impacts in shellfish markets. Finally, we use the welfare results to estimate a
reduced form damage function that can be used in existing integrated assessment models for climate
policy analysis. We find that US consumers experience damages far greater than Canadian consumers
due to the relative size of the markets in each country and differences in habitat suitability as waters off
the coasts of both countries become warmer and more acidic. The net present value of impacts through
2100 to US consumers is about $11.3 billion USD and $850 million USD for Canadian consumers. Our
model results also allow us to monetize the impacts of warming and acidification separately, showing
that most of the consumer welfare impacts are attributable to warming and a small fraction of total
damages can be attributed to acidification.
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Introduction

Anthropogenic greenhouse gas (GHG) emissions negatively impact marine species in two distinct ways.
The warming of the oceans caused by climate change is impacting the availability of suitable habitat for
some commercially valuable species (Pinsky et al. 2018). In addition to the temperature driven impacts
of climate change, carbon dioxide (CO,) emissions are acidifying ocean waters and affecting the ability of
marine calcifiers to build shells and skeletal structures (Doney et al. 2020). This understanding of the
biological and ecological impacts of ocean acidification (OA) and climate change has resulted from
focused experimental and observational research over the past two decades (e.g., Kroeker et al. 2013;
Bednarsek et al. 2021), and recent studies have begun to leverage this knowledge of taxon-specific
effects to forecast population-level impacts of future climate change over broad spatial scales (e.g., Tai,
Sumaila, and Cheung 2021; Doney et al. 2020 and references therein). In parallel, the societal and
economic impacts of OA have been characterized through vulnerability assessments (e.g., Ekstrom et al.
2015; Berger 2022) and economic forecasting studies (Moore and Fuller 2022 and references therein).
Projecting the societal impacts of climate change on fisheries has been a recent focus of study, including
the impacts of ocean acidification on US (Cooley and Doney 2009; Moore et al. 2021) and global
shellfisheries (Narita, Rehdanz, and Tol 2012).

The marine impacts of GHG emissions are not currently captured by national or global-scale
valuations of climate change impacts commonly used by policymakers, such as the social cost of carbon
dioxide and other GHGs (U.S. EPA 2022). The omission of marine impacts potentially underestimates the
economic damages of climate change and including them has been highlighted as a research priority by
policy analysts (Rennert et al. 2022). Addressing this omission requires an understanding of the
relationship between GHG emissions and the monetized social impacts on marine resources such as
stocks of fish and shellfish and the integrity of coral reefs. There is a growing number of studies that
estimate the monetary impacts of climate change and OA on marine resources, but none has estimated
the functional relationships necessary to forecast marginal economic impacts in a particular year under
any given GHG emissions scenario. Most of the studies that estimate the economic impacts of climate
change and OA on marine resources focus on shellfish (Moore 2015; Ekstrom et al. 2015; Narita and
Rehdanz 2017), while others forecast impacts to finfish markets (Speers et al. 2016; Moore et al. 2021),
and ecosystem services provided by coral reefs (Brander et al. 2012). While these studies make
important advances in integrated modeling by linking global circulation models, biophysical impacts, and
economic analyses, they do not provide the results required to estimate the general and reduced form
functional relationships used by policy makers.

This study provides such results for impacts to shellfisheries of US and Canada. We do so by
utilizing results from a recent study on climate change and OA impacts to global shellfish harvest (Tai,
Sumaila, and Cheung 2021) as inputs to a model of consumer demand and welfare. Our approach
considers the impacts of changing pH and ocean temperature on 17 shellfish species important to US
and Canadian wild capture fisheries under a stringent global mitigation scenario and a high emissions
scenario through 2100. Our focus on the United States and Canada demonstrates how climate change
and OA can create “winners” and “losers” between marine jurisdictions via spatial heterogeneity in the
impacts on marine resources. While our model does not take aquaculture and the implied mitigation
possibilities into consideration, that omission is unlikely to have a substantial impact on our results. In
the US, aquaculture accounted for about 10% of the value of shellfish harvest since 2011 and in Canada
it was less than 5%. Further, only a fraction of a cultured mollusk’s life is spent in a controlled



environment. Most of their lives are spent in the open water where they are subject to the same
ambient conditions as wild harvest that we model in this paper.

Data and Methods

This study takes a multidisciplinary approach to model the consumer welfare impacts of climate change
and OA on wild shellfish harvests. Outputs from a dynamic bioclimatic model (Tai, Sumaila, and Cheung
2021) provide forecasted changes in the maximum harvest potential for shellfish in each year through
2100. A consumer demand and welfare model provides annual economic impacts from the forecasted
changes in harvests. Finally, the annual impacts and global mean temperature serve as datapoints to
estimate a reduced form damage function that is consistent with current social cost of greenhouse gases
estimation approaches (U.S. EPA 2022).

Reduced Form
Estimation

Physical Model Economic Model

Data Climate Projections and Market Supply and Prices
Baseline Harvest

Models Dynamic Bioclimatic Inverse Demand and Linear Regression Model
Envelope Model Consumer Welfare Model

Outputs Changes in Maximum Annual Monetary Reduced Form Damage
Catch Potential Damages Function

Figure 1. A schematic flowchart of the modeling approach beginning with climate projections and baseline harvest
data used as inputs to the dynamic bioclimatic model, followed by the consumer demand and welfare model, and
finally, reduced form estimation of the damage function.

Dynamic Bioclimate Envelope Model

The dynamic bioclimate envelope model (DBEM) (Cheung, Lam, and Pauly 2008; Cheung et al. 2011) is a
spatially explicit model that projects changes in species’ populations using a combination of empirical
observations and structural equations. Changes in environmental conditions (e.g., temperature, salinity,
primary production) affect the habitat suitability for each species, and, in turn, the population
distribution and abundance, which can then be used to estimate and compare changes in future
fisheries catch across marine regions. The DBEM integrates a combination of growth, ecophysiological,
advection-diffusion, and surplus production population models to predict how changes in environmental

! While climate impacts are expected to last beyond 2100 under most scenarios, the damage function we estimate
in this paper is invariant with respect to time so extrapolation beyond 2100 is not constrained by the time horizon
of the DBEM.



conditions affect species populations. We summarize pertinent aspects of the model here, see Tai et al.
(2021) for details.

The model forecasts changes in species biomass, B, over time using a derived von Bertalanffy
model (Cheung et al. 2011; Pauly and Cheung 2018; Tai, Harley, and Cheung 2018) that is a function of
changes in ocean temperature, oxygen content, and pH. Additionally, we model physiological changes in
growth as a function of body weight W, such that:

& = Hy W — ki W, (1)

where H and k represent the coefficients for oxygen supply (anabolism) and oxygen demand for
maintenance metabolism (catabolism), respectively, for grid cell i at time t. H is a function of ocean
temperature and dissolved oxygen levels, and k is a function of ocean temperature and hydrogen ion
concentration such that (see Sl equations S.2 and S.3). The exponent d generally falls between 0.5 and
0.95 for invertebrates and we set it equal to 0.7 for this simulation. Anabolic processes scale linearly
with dissolved oxygen concentration, while catabolic processes scale linearly with hydrogen
concentration (lowering of pH). Both anabolic and catabolic processes scale to the root with
temperature following the Arhennius equation (equations S.2 and S.3 in the Supplementary Material).
The environmentally driven changes in H and k result in changes to maximum and mean body size of
individuals within the population, which subsequently affect population parameters such as mortality
(Pauly 1980, equations S6 to S9 in the Supplementary Material).

A logistic growth model captures population dynamics through species abundance, A,

4, —(F: )
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where A is species abundance, r is the intrinsic population growth rate of the species, C;; is the carrying
capacity for each cell j, L; ; ;and [; ; ; are the settled larvae and net migrated adults, respectively, into cell
i from surrounding cells j, F;: is the fishing mortality rate, and M is the natural mortality rate (estimated
from equation S10). Maximum sustainable yield (MSY) is the theoretical maximum biomass that can be
sustainably removed from the population indefinitely. Maximum sustainable yield and the fishing
mortality rate at MSY (Fusy) are calculated using a Gordon Schaefer population growth model (Walters

and Martell 2004), such that MSY = % and Fygy ;¢ = g, where B.. is the population carrying capacity.

The US Magnuson-Stevens Fishery Conservation and Management Act and several United Nations Food
and Agriculture Organization agreements and guidelines use the concept of MSY to set upper limits on
sustainable harvest (Mace 2001). As such, we use MSY as a proxy for the maximum catch potential
(MCP) for each of the fishery stocks analyzed in this model.

Initial Conditions and Climate Forecasts

Initial species distributions for 17 shellfish species were obtained using the approach of Palomares et al.
(2016), for which a rule-based algorithm was applied to include a series of geographical constraints:
latitudinal range, depth range, occurring ocean basins, and published or expert-provided bounding box
for distribution range. The distributions are mapped on a global 0.5° longitude by 0.5 latitude grid, and
matched to historical reconstructed catch data (www.seaaroundus.org) (Pauly and Zeller 2015) assumed
to be distributed accordingly with relative abundance (Cheung, Lam, and Pauly 2008). Input data of
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historical climatological data and species-specific parameters were used to generate the initial
conditions and environmental preferences of species populations (1971-2000 average).

The model uses ocean outputs of sea surface temperature, chemistry, and O, from three CMIP5
Earth system models? under two future projections, RCP 2.6 and RCP 8.5 (Bopp et al. 2013). The RCP 2.6
scenario corresponds to a low climate change scenario that assumes immediate mitigation of GHG
emissions where annual emissions peak by 2025. The RCP 8.5 scenario corresponds to a high climate
change scenario in which emissions continue to increase through the end of the century. The three
Earth system models provide sea surface and bottom layers and the full range of environmental
variables required by the DBEM for both RCP scenarios (Cheung, Reygondeau, and Frélicher 2016).

Consumer Demand and Welfare Model

The purpose of the economic model is to use the forecasted changes in shellfish harvests to estimate
consumer welfare impacts under the modeled climate change scenarios. To do so, a system of demand
equations is derived from a model of consumer utility. We then use historical price and quantity data to
estimate the parameters of the demand system. Next, we derive an expression for the monetary
compensation consumers would require to achieve a reference level of utility when facing different
supplies of shellfish. Finally, that expression is evaluated using estimated demand parameters and
forecasted changes in harvest to solve for annual consumer welfare impacts through the end of the
century.

A Two-Stage Inverse Demand System

Demand systems are usually estimated by holding either price or quantity fixed and solving for the free
variable that would clear the market. In the case of fish, shellfish, and many agricultural products, the
supplies of the commaodities are held fixed, and price adjusts to clear the market (Barten and Bettendorf
1989; Park, Thurman, and Easley 2004). This approach recognizes that production decisions are usually
made before producers can observe consumer demand and the perishability of the commodity prevents
producers from adjusting supply in the short run to respond to market conditions.

The number of shellfish types that we model here makes the estimation of a single system with
a demand equation for each type intractable. Instead, we take a two-stage budgeting approach to
circumvent this dimensionality problem (Edgerton 1997). Under a two-stage budgeting approach,
consumers first allocate their income among groups of commodities consisting of closely related goods.
In a second stage of budget allocation, consumers divide each subset of their income among the
individual commodities. This approach places some reasonable restrictions on the substitution patterns
between goods but simplifies estimation immensely.

The functional form we use to estimate the welfare parameters is known as the inverse almost
ideal demand system (Deaton and Muellbauer 1980) and can be represented using expenditure shares,

X¢P
S, where §¢ = %, where Xris the quantity of good f, Pris its price, and Y is total expenditures on goods

in the system. When estimating the first stage, X refers to aggregated quantities for goods in
commodity group f and Psis the average unit price in that group. When estimating the second stage, we
estimate a system for each group and X are the landings for shellfish f and Prare shellfish-specific prices.

2 NOAA’s Geophysical Fluid Dynamics Laboratory (GFDL-ESM), Institute Pierre Simon Laplace Climate Modelling
Centre (IPSL-ESM), and Max Planck Institute for Meteorology (MPI-ESM)



The parameters of the expenditure share equations in each stage are found using the following system
of estimating equations,

Sr = ar + Xrvrg In(Xg) — Bring, (3)

where a,y,and [ are estimated parameters and InQ is a quantity index equal to Y. s ay ln(Xf) +
1
321 2gVrg In(Xf) In (Xg).

Welfare Estimation

The concept of consumer welfare that we use in this application is compensating variation (CV) and
represents the amount of additional income needed to compensate consumers for a change in the
supply of a set of goods,

CV = Y;1[D(ug, X;1) — D(ug, Xo)] — (V1 — Yp). (4)

The term in the square brackets is the factor by which total expenditures in the climate change scenario
Y; would have to be inflated to return consumers to their original level of utility, ug, after the change in
supply from X, to X;. The function D (u, X) is called the distance function and represents how
consumption would have to change to provide the same level of utility up when the supply vector
changes from Xo to X1. D (u, X) is a function of the estimated demand system parameters and the supply
vectors forecasted under the climate change scenarios. Its functional form is derived from the inverse
almost ideal demand system and provided in the supplementary material. The last term in parentheses
is included to account for differences in expenditures between climate scenarios. If incomes are
expected to be higher or lower under the climate change scenario, expenditures on this set of
commodities would change accordingly, and that differential is accounted for when calculating CV.

Welfare estimation also proceeds in two stages (Moore and Griffiths 2018). In the first stage,
equation (2) is evaluated using the forecasted aggregated quantities for each commodity group to solve
for the first stage expenditure shares under each climate scenario. In the second stage, those
expenditure shares are used to find expenditures on each commodity group, Yo and Y;. The parameters
estimated in the second stage demand systems are then used to solve for CV in each commodity group.
Finally, CV is aggregated across groups to provide total consumer welfare impacts for each year of the
simulation.

Harvest Volume and Value Data

Shellfish landings and value data for the US were downloaded from the National Marine Fisheries
Service data portal for commercial landings. The models were estimated on annual data from 1950
through 2020 for most species. Some species had missing years in which commercial harvest was
negligible that were omitted from estimation. Canadian landings and value data were downloaded from
the Department of Fisheries and Oceans for the years 1990 through 2020. All value data were converted
to 2020 US dollars for the welfare analysis.

Estimating a Reduced Form Damage Function

Damage functions allow for rapid assessments of the economic impacts from climate change. The
relationship between temperature, ocean acidification (pH), and economic impacts in the US and



Canada can be applied to custom scenarios to efficiently estimate damages under different emissions or
policy pathways without modeling all intervening physical and behavioral outcomes for each scenario.
The inputs to the physical model and outputs from the economic model (figure 1) provide datapoints
from which a reduced form damage function can be estimated. The resulting function provides a direct
mapping from climate inputs, such as temperature, to annual economic impacts. Although we present
welfare estimates for RCP 8.5 and RCP 2.6, only RCP 8.5 impacts are processed for the damage function.
The selection of a higher emissions scenario ensures that we evaluate the broadest range of impacts.
The simplification embodied by a time-invariant damage function comes at the cost of assuming away
path-dependence of economic damages. If certain levels of temperature increases are realized
gradually, adaptation measures are likely to reduce the economic impacts relative to a scenario where
those changes are realized over a shorter amount of time.

We develop the reduced form damage function by estimating a statistical relationship between
the projected climate variables and the consumer welfare impacts in each year of the simulation.
Damage functions for the US and Canada are estimated separately. Ordinary least squares (OLS)
regression is sufficient to estimate the relationship since all variables of interest are continuous and the
estimating equation is linear. We average values from the three CMIP5 Earth system models to generate
a single set of potential independent variables. Finally, we compare model fit across several
specifications to select a single set of regressors.

Results

The relative changes in maximum catch potential for each type of shellfish forecasted with the DBEM
are the primary inputs to the consumer welfare model. Annual changes in consumer welfare are, in turn,
used to estimate the reduced form damage functions. We present the results of each modeling step, in
sequence, below.

Forecasted Changes in Maximum Catch Potential

Figure 2 shows the forecasted proportional change in harvest of the four most valuable shellfisheries in
the US and Canada through 2100 under RCP 2.6 and RCP 8.5. The projected impacts under RCP 2.6 in the
US are small and all four harvests are projected to return to within 6% of current levels by the end of the
century. Projections under RCP 8.5 are far more pronounced. The shellfish with the highest valued
annual harvest, American lobster, shows the largest relative decline with projected harvests falling by
62% by the end of the century. Shrimp and sea scallop harvests are also expected to decline
considerably under the severe climate change scenario. However, dungeness crab harvests are expected
to increase by more than 40% by 2100. While some of the dungeness crab harvest occurs off the coast
of the contiguous US, all of the projected increases occur in Alaskan waters.



US RCP 2.6 US RCP 8.5

04t A - “' B g

02 J

0.2 |

0.2 . 02+t .

0.4 1 American Lobster 04

—— Dungeness Crab
Shrimp
— Sea Scallop
L

Proportional Harvest Changes
o
Proportional Harvest Changes
o

06 -06

2020 2030 2040 2050 2060 2070 2080 2090 2100 2020 2030 2040 2050 2060 2070 2080 2090 2100

Canada RCP 2,§

0 € |

Canada RCP 8.5

02 1

D

— American Lobster
0.2+ —Snow Crab 4
Shrimp
—— Sea Scallop
L

Proportional Harvest Changes
(=]
Proportional Harvest Changes
o

2020 2030 2040 2050 2060 2070 2080 2090 2100 2020 2030 2040 2050 2060 2070 2080 2090 2100

Figure 2. Projected proportional changes in harvest from ocean warming and acidification for the four most
valuable shellfisheries in (A) the US under mitigation scenario RCP 2.6, (B) the US under RCP 8.5, (C) Canada under
RCP 2.6, and (D) Canada under RCP 8.5.

The projected impacts to Canadian harvests under RCP 2.6 are similarly small with the greatest
decline projected for snow crab at nearly 10%. Declines in Canadian harvest under the RCP 8.5 scenario
are remarkably similar for snow crab, lobster, and sea scallops - all falling by about 10%. Projections of
shrimp harvest, however, rise to 125% of current levels under the severe climate change scenario. Taken
together, the US and Canadian harvest projections tell a story of climate-induced range shifts creating
winners and losers across different fisheries.

Consumer Welfare Impacts

Demand system estimation results for the US and Canada are reported in the supplementary material.
The models perform well and the signs and magnitudes of the estimated coefficients are consistent with
prior expectations based on economic theory.
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Figure 3. Annual shellfish consumer welfare impacts in the US (left) and Canada (right). Red and blue lines
represent impacts under RCP 2.6 and 8.5 compared to current conditions. Green lines represent the impacts of
RCP 8.5 relative to an RCP 2.6 alternative. Solid lines indicate total impacts from greenhouse gasses and dashed
lines show impacts attributable to warming only.

The projections generated by the DBEM and used in the consumer welfare model allow us to
make several revealing comparisons. Figure 3 shows how the impacts compare between scenarios,
within each country. In the US, annual impacts exceed one billion dollars per year at the end of the
century under the RCP 8.5 scenario and briefly exceed $400 million under RCP 2.6 in the second half of
the century. In Canada, consumers experience much smaller welfare impacts, with damages under the
RCP 2.6 scenario exceeding those under RCP 8.5. This is primarily due to the favorable conditions for
shrimp in the warming Canadian waters under the high climate change scenario. While the current
value of the US harvest is about 1.5 times that of Canada’s, that 50% difference in baseline value
explains only a fraction of the difference in welfare impacts between the countries. The bulk of the
difference, which approaches a factor of ten by the end of the century in the RCP 8.5 scenario, is driven
instead by changes in habitat suitability. Each plot in Figure 3 contains a third set of results showing
welfare impacts of the RCP 8.5 scenario while treating RCP 2.6 as the baseline. Such a comparison could
be more useful to decision makers because it compares two alternative futures, rather than comparing
future and current conditions. The values of the scenario comparisons are similar, but not necessarily
equal to, the vertical distance between the RCP 2.6 and 8.5 welfare values. Notice the value of the
scenario comparison for Canadian consumers is above zero indicating that a high climate change future
would produce modest net gain in shellfish markets relative to the strict mitigation scenario.

An additional comparison we can perform using the results of the DBEM reveals how much of
the consumer welfare impacts are attributable to warming alone and how much are driven by ocean
acidification. The distance between the dashed and solid lines of the same color show that ocean
acidification in US waters accounts for less than 7% of the damages under RCP 8.5 and 4% under RCP 2.6
by the end of the century. Canadian impacts attributable to acidification account for somewhat larger
percentages of the total but are smaller in absolute terms.

2100
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Figure 4. Consumer welfare impacts under the high emissions scenario RCP 8.5 (A) in the US in the year 2100, (B)
the net present value of impacts from 2020 to 2100 discounted at 3% per year?, (C) in Canada in the year 2100, and
(D) the net present value of impacts to Canadian consumers through 2100 discounted at 3%.

The panels of Figure 4 combine similar species and aggregate the consumer welfare impacts for
each group. Annual impacts in the year 2100 and the net present value (NPV) of impacts projected
through the end of the century are presented side by side. The NPV of total impacts is about $11.3
billion in the US and $850 million in Canada. From these figures, it is clear that the modest positive
impacts in some US fisheries are far out paced by the negative impacts in others. The positive impacts to
Canadian shrimp harvests, however, compensate for the largest damages in the lobster market.

The change in global mean temperature is a sufficient explanatory variable for annual welfare
impacts and, as Figure 5 shows, a linear functional form captures the relationship between temperature
change and economic impacts well in the US and Canada. Our estimation supresses the constant term in
both regressions, forcing the damage function to pass through zero and implying no economic impacts
when temperature change is zero. The slope coefficient for Canadian damages indicates $20 million in
annual damages for every degree Celsius increase. The slope of the damage function for the US is much
greater, implying $318 million in annual damages for every degree of warming. Both damage function
slope coefficients are statistically significant at the 0.01 level.

3 Future changes in consumer welfare are often discounted at 3% per year to recognize the rate of time preference
for consumption and the historical growth of per capita consumption over time. See OMB Circular A-4 (p. 75) for a
discussion https://www.whitehouse.gov/wp-content/uploads/2023/11/CircularA-4.pdf.
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Figure 5. Annual consumer welfare impacts plotted against global mean temperature change and the estimated
linear damage functions for the US and Canada.

Discussion and Conclusion

Our simulations of shellfish population dynamics and market responses reveal several interesting
results. First, as one might expect, annual economic damages are far greater in the US than they are in
Canada. This is due to the size of the shellfish markets in each country and the colder seawater
temperatures in Canada that allow some types of shellfish, such as shrimp, to thrive in Canadian waters
under the severe climate change scenario. The US experiences a similar increase in the harvest of
dungeness crab in the colder Alaskan exclusive economic zone (EEZ), but the volume and value of that
fishery is not large enough to offset large losses in other fisheries. These spatial and population
dynamics result in Canada experiencing smaller shellfish consumer losses under the severe climate
change scenario than it would under the strict mitigation scenario. Finally, the results show that
warming will have a much larger impact on habitat suitability and population growth for this set of
commercially valuable shellfish than the impacts of ocean acidification. This attribution of thermal
versus acidification stress for marine organisms, and the relative importance of each, may be an
important consideration for climate mitigation strategies which involve marine geoengineering.

The integrated bioclimatic-economic model that we develop in this paper makes several
meaningful contributions to the literature on the marine impacts of climate change. First, very few
studies have combined a structural model of population dynamics and a utility theoretic model of social



12

welfare. It is more common for impact valuation studies to apply a proxy, such as changes in the rate of
shell growth (e.g., Cooley and Doney 2009; Moore 2015), rather than develop a spatially explicit model
of habitat suitability that is initialized with observational data. Likewise, economic impacts are more
often estimated using changes in revenue (e.g., Fernandes et al. 2017) as opposed to a valid concept of
social welfare that takes consumer substitution possibilities and real income growth into consideration.
Finally, our estimation of reduced form damage functions that will circumvent the need to repeat the
integrated assessment modeling for alternative scenarios is a substantial contribution. Given the high
confidence in our coefficient estimates and the remarkably linear nature of the damage functions, rapid
assessment of these impacts under alternative time paths for global mean temperature will generate
informative results.
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Tai, Sumaila, and Cheung (2021) report maximum catch potential (MCP) projections through

the year 2100 for 210 commercially harvested marine invertebrates. To estimate consumer
welfare impacts from those projections, the economic model requires consistently reported
historical data on the amount of each shellfish type harvested and the annual average

dockside price.

In the US, the NOAA Commercial Landings Database provides sufficient data for 18

types of shellfish:
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The Canadian Department of Fisheries and Oceans provides sufficient data for seven
types of shellfish, some of which are aggregate groups of multiple types:

1.

No ok own

Quahog

Soft clam
Geoduck

Surf clam

Blue crab

King crab
Dungeness crab
Tanner crab
American lobster

. Caribbean spiny lobster
. Eastern

. Pacific

. Bay scallop

. Sea scallop

. Weathervane scallop

. Brown shrimp

. Pink shrimp

. White shrimp

Dungeness crab
Snow crab
Lobster

Shrimp

Clam

Oyster

Scallop



16

2. Dynamic bioclimate envelope model

2.1 Modelling individual growth

The von Bertalanffy growth model (Equation 1) assumes body weight is scaled with the
exponent d < 1 while it is scaled linearly with catabolism. Values of d typically fall between 0.5
and 0.95 across invertebrate species, and we assume d = 0.7 for our model simulations. Other
values of d have been tested in previous studies; larger values resulted in much higher sensitivity
to environmental stressors, while smaller values resulted in a minimal decrease in sensitivity
(Pauly and Cheung, 2018; Tai et al., 2018).

We use parameter values from Seal.ifeBase (www.sealifebase.ca) (Palomares and Pauly,
2017) for maximum body length, I, and growth rate, K, from the von Bertalanffy growth
equation,l, = l,,(1 — e %(¢=%) ), where | is the length, t is the age in years, and to is the
hypothetical age at size zero (Table S.1) (von Bertalanffy, 1957). Maximum body weight, W, is
calculated using the length-weight conversion equation, W = a - I?, where a and b are
coefficients also taken from SealLifeBase (Table S.1). Growth rate, K, is related to catabolic
coefficient k:

K =k(1—d). (S.1)
Anabolic H and catabolic k coefficients are equal to:
Hip = gi - [05];¢ - e 771/t (8.2)
and
kio=hy-[H]; - e 2/Tie  (S.3)

where e~J/T represents the Arrhenius equation to model the change in chemical reactions as a
function of temperature T in degrees Kelvin. The parameters j are equal to Ea/R where Ea is the
activation energy and R is the Boltzmann constant, respectively; activation energies are
estimated to be 0.388 eV and 0.689 eV, based on Cheung et al. (2011), resulting in a j1 and j2 of
4500K and 8000K, respectively. Coefficients gi and hiare fixed parameters throughout the
simulation and estimated by rearranging Equations S.2 and S.3, and substituting rearranged
Equations 1 and S.1 and for H and k:

= oo B (S4)

gi = [02],-e~2/To
and

_ Ky/(1-a)
b= Gmgpenmy (9
given initial values of maximum body size W«,0 and von Bertalanffy growth parameter Ko, and
initial environmental conditions of temperature, oxygen concentration, and hydrogen
concentration.
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We measured impacts of changes in environmental conditions on growth by estimating new Hi
and ki coefficients using Equations S.2 and S.3. Equation 1 can be rearranged to solve for a new
maximum body size W using new values of Hit and kit, when the growth rate (dB/dt = 0):

(1-a) _ Hie
Wi =1t (S6)

while Equation S.1 can be used to calculate a new growth parameter K.

Changes in mean body size were simulated using a size transition matrix, X, to model the
probabilities of an individual growing from one length class to other size classes in one time-step
(year) and each grid cell a species was predicted to occur (Cheung et al., 2008b; Quinn Il and
Deriso, 1999):

(2
Kppuy = 22 (57)

i ! =
Lot Zley,i,t,l’,l
and
(l_[loo,i,t(l—e_Ki:f)+1’Ae—Ki,t])2

202

9y,i,t,l’,z =e (S.8)

where | and /” are the length of a particular size class and the adjacent length size classes, |- is
the asymptotic length, y is the age of an individual, and K is the von Bertlanffy growth
parameter. Variation in growth, 6, assumed to have a coefficient of variation of 20% and is
independent of length and age (Cheung et al., 2008b). Our model applies this general size
transition model and makes no assumptions of species-specific growth stages (e.g. moulting) or
Sex.

Mean body size (g), W, is calculated:

Ly XiWiX; ppSity-ire Mt

e (89)

Lt —

=

ZyX i X rSity-1r€

where S is a relative distribution length-age frequency matrix from age class t at size class I, and
initial relative distribution at age 0 (when y = 1) across length classes was assumed to be S; ;. o, =
[to0 - Olw'i't]. Parameter M is the population natural mortality, calculated from maximum

body size W, von Bertalanffy growth parameter K, and temperature Tceisius (in degrees Celsius)
using a model developed by (Pauly, 1980):

M;, = —0.4851 — 0.0824 log(We,; ;) + 0.6757 log(K; ;) + 0.4687 log(Teersius,ic)  (S.10)

Spawning biomass is estimated using the size transition matrix, X, and the mean weight
of each size class for size classes greater than the size at maturity, Imat (Pauly, 1984):

Inat,it = Lo e (0.714)1/1=4) (S.11)
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Length at maturity is determined for each cell based on the maximum body size l. as determined
by Equation 1 and the length-weight conversion equation.

2.2. Modelling population biomass

Biomass (B) can converted to relative abundance (A) using mean weight (W) with the formula
A;; = B /W .. Average mortality, M, for each cell was weighted by size class specific mortality
rates tested in this study. Grid cells are assumed to be at carrying capacity from the start of the
simulation, and carrying capacity changes as a function of habitat suitability, P, and primary
production, PP, from initial conditions (t = 0) to the current timestep, t, such that:
= . P PPic
Cie =Cip T (S.12)

Habitat suitability is dependent on five environmental factors in combination with species

specific traits, such that:

P; = P(T;, TPP) - P(Bathy;, MinD, MaxD) - P(Habitat;
P(Ice;, IceP) (S.13)

s HAssoc) - P(Salinity;, SAssoc) -

Habitat suitability is determined by: T is temperature (Kelvin) and TPP is the species’
temperature preference profile; Bathy is the bathymetry and MinD and MaxD is the minimum
and maximum depth of the species range; Habitati; is the proportion of total area of a cell with a
specific habitat j (e.g. inshore, offshore, coral, estuarine, etc.); Salinity is the salinity class of the
cell based on Thalassic series—metahaline (> 40 ppt), mixoeuhaline (> 29 ppt), polyhaline (> 18
ppt), mesophaline (> 5 ppt), oligohaline (> 0 ppt)}—and SAssoc is the association of the species
with each salinity class; and Icei is the sea ice % area coverage in a cell and IceP is the ice-
dependency of the species.

The TPP was estimated using the initial predicted relative abundance (described above)
overlaid with the inputs of earth system models of initial environmental conditions. The relative
weight for each temperature class z of the temperature preference profile was calculated as
TPP, = R,/ Y., R,, Where R; is the relative abundance in each temperature class.

A fuzzy logic model was used to model the movement between neighbouring cells based
on differences in habitat suitability (Cheung et al., 2008b). Emigration into a cell is favoured if
habitat suitability is higher than surrounding cells, and immigration out of a cell is favoured if
habitat suitability is lower than surrounding cells.

We estimated larval production as 30% of spawning population biomass for each cell i,
while larval mortality was 0.85 day* and settlement rate was 0.15 day'—these values were
chosen based on the sensitivity testing of these parameters (Cheung et al., 2008b).

Larval dispersal is modelled using an advection-diffusion (Sibert et al., 1999) and a larval
duration model based on temperature (O’Connor et al., 2007), such that abundance Ait in each
cell is numerically solved for using the equation:
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04t _ 0 (f Q4ir) 4 0 (p B4t _ 9 0 A Y_9 (,.4. )~ 1.4
Tot | ox (Dl't ox ) + oy (Dl't oy ) ox u Al't) oy (U Al't) A Al't (814)
while adult dispersal is similarly modelled,

Zut = 2 (p;, Z2it) + 2 (D, i) (S.15)

at  ax \ bt gx ay \Jit 5y

Advection was modelled for larval dispersal using parameters u and v for horizontal
(east-west) and vertical (north-south) directions for surface current velocity (m?-s?),
respectively, between neighbouring cells x and y in the east-west and north-south direction,
respectively. Instantaneous rate of larval mortality, M, and settlement, S. was integrated into
equation (16), where 1 = 1 — e~™.+51)_ The coefficient Diy is the diffusion parameter:

= Diom
D;; 1+e(T'Pi,t'pi,t)_ (S.16)
and
4 B
Pit = 1 (Ci,t/Wi,t) (817)

where Diy is the initial diffusion coefficient and a function of the spatial grid size (GR): D; o =
(1.1-10%) - GR - 1.33. Parameters m and T—both set at 2 in the model—determine the curvature
of the functional relationship between D, P, and p (Cheung et al., 2008b). Parameter p; ,
represents density-dependent factors and a function of population density @; . (number of
individuals), carrying capacity (C;,), and mean body weight (W, ) in each cell i.

2.3 Modelling effects on survival

OA effects can be modelled as relative changes in survival rate for all life stages in Table 2. In
other words, percent changes in acidity (i.e. hydrogen ion concentration) from baseline initial
conditions results in a percent change in baseline survival rate. We use a model structure similar
to that of previous work we have done (Tai et al., 2018):

Surv, = Surv; - [1 + <p . ( e _ 1)W)] (5.18).

[H*linit

Surv is the survival rate per year and used here as an example but can be applied to other life
histories affected by OA (e.g. growth, reproduction). Survival rate in year t is derived from the
initial (init) survival rate and the relative change in [H*] between year t and initial [H*]
conditions. Note that in our previous model, p represents the point value of the percent change
effect size with a doubling of [H*]. This model utilizes single point effect size estimates that
have no underlying assumed relationship between acidity and survival. In our model, we used an
exponent value, w, equal to 1, which assumes a linear relationship (Tai et al., 2018).

We used parameters derived from previous experimental studies, where they observed a
~15% increase in mortality (Kroeker et al., 2013) from a doubling of hydrogen ion
concentration.
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All statistical analyses and figures were generated using the programming software R v4.0.3
(R Core Team, 2020).

3. Consumer Demand and Welfare Model

3.1 Derivation of the distance function from the Inverse Almost Ideal Demand System

The logarithmic distance function analogous to Deaton and Muellbauer’s (1980) Almost Ideal
Demand System model as specified by Moschini and Vissa (1992) is

In[D(U,X)] = a(X) — U-b(X) (S.19)
where a(X) =ao + Yi ai In(Xi) + (%) 3.1 Y5 yii In(Xi) In(Xj) (S.20)
b(X) = fo II: X (S.21)

X is the quantity vector, X={Xa,...,Xi,...,Xn}, and U is utility. The distance function measures
how this quantity vector must be scaled in order to achieve the utility level, U. The following
restrictions ensure that D(U,X) is homogenous of degree one

Siai=1 Yivi=Y57i=0 YiPi=0 Yij = Vi

If we evaluate the quantity vector, X at its optimum, X" for utility level U, then
D(U,X")=1 and In[D(U,X")]=0. This implies that direct utility at the optimum is

U(X") = a(X)/b(X). (S.22)

One property of the distance function is that the differentiation with respect to the quantity for a
given sector, i, gives the compensated (Hicksian) inverse demand function of prices in that
sector, Pi, normalized by expenditure, Y, as a function of utility and quantity supplied (Deaton
1979),

DU.X) _ . x)=RU.X), (5.23)
X, ' Y

Substituting in direct utility, equation (A.4), gives the uncompensated (Marshallian) inverse
demand of prices for that sector normalized by expenditure as a function of quantity,

M(X):@. (S.24)
The compensated (Hicksian, denoted by the superscript h) inverse budget share in terms of utility
and quantities, W";, for sector i evaluated at X so that D(U,X")=1 is

oIn[DWU, X)] _aDWU,X) X, _RU.X)  _\ur (S.25)
aIn[X,] X,  D(U,X) Y P
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3.2 Demand system estimation results

First and second stages of the consumer demand systems are estimated via seemingly unrelated
regression using the nlsur command in Stata. The first stage groups and second stage
commodities are numbered below for convenience. Parameter estimates for the inverse almost
ideal demand model and resulting flexibility estimates will use this numbering convention. The
last group and commodities within each group are omitted from the demand system estimation
and parameter estimates are backed out to impose the adding up and homogeneity restrictions.
The matrix of y estimates is symmetric so only the lower triangle of that matrix is presented in
the tables below (see Moschini and Vissa (1992), Deaton and Muellbauer (1980), and Moore and
Griffiths (2018) for details).

The coefficient estimates themselves do not have intuitive interpretations that would
provide prior expectations on sign or magnitude based on economic theory. However, the
coefficients can be used to calculate the implied own-quantity and scale flexibilities. We use the
full estimated covariance matrix to perform a Krinsky-Robb simulation on the implied own-
quantity and scale flexibilities for the first stage only. All flexibilities are expected to be negative
with magnitudes not much greater than one in absolute value. Mean-to-variance ratios greater
than 2 typically reflect quantities that are precisely estimated, akin to t-statistics.

3.2.1 United States Demand System Results
First Stage Groups

1. Clam
Crab
Lobster
Oyster
Scallop
6. Shrimp

S

Second Stage Commodities
Clam

1. Quahog

2. Soft clam
3. Geoduck
4. Surfclam

1. Bluecrab

2. Kingcrab

3. Dungeness crab
4. Tanner crab



Lobster

1. American lobster
2. Caribbean spiny lobster

Oyster

1. Eastern
2. Pacific

Scallop

1. Bay scallop
2. Seascallop
3. Weathervane scallop

Shrimp

1. Brown
2. Pink
3. White

Table S.2 First stage inverse demand results
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o1 02 03 04 o5 B1 B2 B3 Ba Bs
Estimate 0240 |-0425 |-0763 | 0837 |-2101 |0012 |-0.030 |-0.057 | 0.034 | -0.135
Standard Error 0141 [ 0290 |0224 |0248 |[0123 |0008 |0016 |0013 |0014 | 0.007
Y11 [y12 |Y13 |Y14 |Y15 Y22 |Y23 [Y24 |Y25 |Y33 |Y34 |Y35 |Y44 |Y45 |Y55
Estimate 0.026 |-0.003]-0.0350.002 [-0.050[0.160 |0.056 |-0.086{0.101 |0.156 [-0.044]0.189 [0.103 |-0.108/0.526
Standard Error 0.007 {0.011 0.010 [0.007 [0.027 [0.026 [0.020 [0.017 {0.054 [0.035 [0.020 [0.041 [0.020 [0.046 [0.048
Table S.3 First stage flexibilities
Own-Quantity Mean/StDev Scale Mean/StDev
Clam -0.737 -10.98 -1.143 -11.20
Crab -0.352 -5.09 -0.862 -11.29
Lobster -0.427 -6.93 -0.612 -6.97
Oyster -0.342 -3.13 -1.326 -9.84
Scallop 0.063 0.86 0.273 4.44
Shrimp -0.395 -4.20 -1.506 -26.57
Table S.4 Second stage results
o1 o2 o3 B1 B2 B3 yi1 Y12 Y13 Y22 Y23 Y33
Clam
Estimate | 0.880 | 0.974 | 0.492 | 0.020 [0.049 [0.023 [0.051 |0.026 |-0.003 [0.068 | -0.008 | 0.038
StdEror | 0216 | 0.168 | 0.173 [ 0.014 |0.010 | 0.011 | 0.015 | 0.009 | 0.008 [ 0.013 | 0.006 | 0.008
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Crab

Estimate | 1.522 | -1.196 | 0.802 | 0.079 | -0.090 | 0.031 | 0.246 | -0.209 | 0.012 | 0.284 | -0.110 | 0.119
Std Error | 0.288 | 0.350 | 0.245 | 0.016 | 0.019 | 0.014 | 0.049 | 0.053 | 0.018 | 0.071 | 0.027 | 0.017
Lobster

Estimate 1.23 0.32 -0.28

Std Error | .19 0.04 0.04

Oyster

Estimate | 55g 0.67 -0.50

Std Error | .99 0.05 0.05

Scallop

Estimate | 951 | 0.14 -0.04 | 0.03 0.03 | -0.04 0.06

SWEror | 924 | 030 002 |o001 001 | 001 0.01

Shrimp

Estimate | 133 | 0.99 0.05 | 0.04 0.28 | -0.01 0.11

StdError | g4s | 0.49 0.03 | 0.03 0.05 | 0.02 0.03

3.2.2 Canada Demand System Results

Canada’s reporting of harvest and dockside price data is not as detailed as the United States’. As
a result, there are only two groups in the first stage demand system: crustaceans and mollusks.
The second stage numbering of the commaodities in each group are listed below.

Crustaceans

1. Dungeness crab

2. Snow crab

3. Lobster
4. Shrimp
Mollusks
1. Clam
2. Oyster
3. Scallop
Table S.5 Crustacean results
o1 02 03 B1 B2 B3 Y11 Y12 Y13 Y22 Y23 Y33
Estimate | 0.009 | -2.022 | 1.618 | -0.002 | -0.123 | 0.059 | 0.010 | 0.013 | -0.007 | 0.495 | -0.242 | 0.180
Std Error | 0.120 | 0.614 | 0.544 | 0.007 | 0.033 | 0.029 | 0.007 | 0.021 | 0.008 | 0.168 | 0.099 | 0.064
Table S.6 Mollusk results
o1 o2 B1 B2 Y Y12 Y22
Estimate 0.476 0.084 0.000 -0.002 0.155 -0.008 0.029
Std Error 1.177 0.276 0.065 0.015 0.027 0.007 0.005
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Table S.7 Second stage flexibilities

Mollusks Own-Quantity Mean/StDev Scale Mean/StDev
Dungeness -0.716 -2.873 -0.925 -4.308

Snow Crab -0.189 -0.891 -0.548 -4.600
Lobster -0.856 -13.286 -1.120 -19.172
Shrimp -0.510 -3.202 -1.332 -10.078
Crustaceans Own-Quantity Mean/StDev Scale Mean/StDev
Clam -0.780 -2.889 -0.996 -5.950
Oyster -0.196 -0.713 -0.936 -1.778
Scallop -0.856 -4.177 -1.006 -9.126
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