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1 Introduction

A growing body of economic research documents the widespread effects of weather shocks and
climate change on human well-being and economic activity (Carleton and Hsiang, 2016). While
early studies assessed the aggregate economic costs (Dell et al., 2009; Hsiang, 2010; Dell et al., 2012;
Park and Heal, 2013; Burke et al., 2015; Newell et al., 2021), subsequent work has increasingly
focused on the specific mechanisms behind these effects, highlighting that labor is the production
factor most affected by climate change (Cachon et al., 2012; Somanathan et al., 2021; Park, 2016).
In particular, extreme heat has been shown to impair firm productivity (Zhang et al., 2018; Chen
and Yang, 2019; Somanathan et al., 2021), alter labor supply decisions (Graff Zivin and Neidell,
2014; Neidell et al., 2021; Rode et al., 2022), increase absenteeism (Somanathan et al., 2021), reduce
workplace safety (Park et al., 2021; Behrer et al., 2024), and induce labor reallocation across sectors
(Colmer, 2021; Liu et al., 2023). Extreme temperatures also adversely affect health (White, 2017;
Gould et al., 2025; Aguilar-Gomez et al., 2025), including through mortality impacts (Deschénes
and Greenstone, 2011; Barreca et al., 2016; Agarwal et al., 2021; Carleton et al., 2022), and hamper
human capital accumulation (Graff Zivin et al., 2018; Park et al., 2020; Park, 2022). While recent
study focus on the quantification of the welfare costs of labor supply disruptions due to extreme
temperature shocks (Rode et al., 2022), there remains limited evidence on the extent to which such
shocks translate into measurable losses in worker well-being also through reductions in earnings.

This paper contributes to the literature on the labor market impacts of temperature extremes
by leveraging individual-level longitudinal data for 14 European countries spanning more than
six decades (1955-2018). In line with recent studies emphasizing the relevance of the duration of
extreme temperature exposure on human well-being (IPCC, 2023; Miller et al., 2021; Hoffmann
et al.,, 2022), we focus on heat waves— defined as a period of more than five consecutive days
during which the daily maximum temperature exceeds the 95th percentile of the local historical
temperature distribution. Our primary objective is to estimate the impact of heat waves on earn-
ings, the key measure of both labor productivity and workers” material well-being, and to examine
the distributional consequences of heat waves across workers with different socio-demographic
characteristics and preexisting vulnerabilities. We rely on retrospective data from the Survey of
Health, Ageing and Retirement in Europe (SHARE), which allows to reconstruct the complete
employment histories of a representative sample of individuals aged 50 and above. These data
provide rich information on job episodes, earnings, socio-demographic characteristics, health sta-
tus, parental background, and occupational and sectoral employment. We use the SHARE data
merged with high-frequency weather information from the E-OBS dataset provided by Coperni-
cus, as constructed by Middes et al. (2024). This allows us to compute annual measures of heat
wave exposure at a spatial resolution that varies across countries but corresponds, on average, to
a level between a region (NUTS2) and a province (NUTS3, see Section 3 for details).

Our empirical strategy exploits plausibly exogenous variation in heat waves across individuals
from different cohorts within the same generation (defined over a 10-year window) and residing
in the same location (sub-minimum NUTS area), conditional on a rich set of socio-demographic



and labor market controls. In practice, we compare otherwise similar individuals who live in the
same location and belong to the same generation but differ, arguably at random, in their exposure
to extreme temperature events.

To support the plausibility of a causal interpretation of our results, we expand our identifica-
tion strategy in two directions. First and foremost, we exploit the longitudinal structure of the
data by including individual fixed effects, thereby controlling for time-invariant unobserved het-
erogeneity across individuals. This allows to rule out the possibility that workers with higher or
lower unobserved productivity, which affects their potential earnings, are systematically more
likely to experience a heat wave. As suggested by Altonji et al. (2005), we pair this analysis
by inspecting the balancing of heat wave exposure also with respect to observable sociodemo-
graphic characteristics. Second, we address potential bias from non-random sorting of individ-
uals into heat-exposed (and thus arguably more affected) occupations by including individual-
by-occupation fixed effects in the earning regression, following the literature on returns to skills
(Autor and Handel, 2013). The latter specification helps account for the possibility that work-
ers self-select into heat-exposed jobs based on unobserved characteristics that may also correlate
with the probability of experiencing heat exposure. For instance, more vulnerable individuals
may systematically avoid heat-exposed occupations. In the absence of this correction, heat waves
could not be randomly assigned across workers, and estimated effects would reflect lower-bound
estimates of the true impact of temperature on wages.

To further inspect the distributional effects of heat waves, we explore several dimensions of
heterogeneity. First, we allow the effects to vary across occupations, sectors and institutional
settings. Specifically, we focus on workers employed in outdoor occupations or in sectors with
greater exposure to extreme temperatures, and we exploit cross-country variation in collective
bargaining coverage. We expect larger losses in earnings among those in heat-exposed jobs and in
countries with more flexible wage-setting institutions, where wages are more responsive to labor
market shocks due to weaker bargaining protections. Second, we uncover the extent to which the
effect of heat waves compounds with preexisting vulnerabilities by looking at the heterogeneous
effects along the earning distribution or for specific socio-demographic characteristics, e.g. age,
education or parental background.

Our results suggest that an additional day in a heat wave reduces individual annual earn-
ings by approximately 0.31%, implying an average annual earnings loss of roughly $159.63 per
person. These results are robust to a variety of specifications, including models with individual
and occupation-by-individual fixed effects, suggesting that the estimated effects are not driven by
unobserved heterogeneity or occupational sorting.

Beyond the average effect, we document substantial heterogeneity in the impact of heat waves
on earnings across occupations, sectors, institutional settings, and sociodemographic groups. As
would be expected, earnings losses are substantially larger for workers in heat-exposed occupa-
tions (-1.23% on annual earnings) compared to those in non-exposed (-0.45%) roles, underscoring
that the nature of the tasks performed is a key driver of vulnerability to heat stress. The effect
is particularly severe among those working outdoor and performing not only manual tasks, but



also - although to a less extent- clerical ones. Among sectors, Agriculture and Fishing stands out,
followed by Industry (which includes Manufacturing, Mining & Quarrying, and Utility). The pro-
nounced impact in agriculture is likely driven not only by the high prevalence of outdoor work
in this sector but also by the widespread use of piece-rate contracts, which directly tie productiv-
ity losses to reductions in income. By investigating the role of worker sorting into heat-exposed
occupations, we also highlight that these effects may exacerbate existing inequalities. Indeed, our
analysis shows that individuals in these roles tend to have lower levels of education and come
from more disadvantaged socioeconomic backgrounds.

We also document that, along the earnings distribution, the adverse effects are more severe
among low-income workers, particularly within outdoor occupations. Earnings losses are also
larger among socio-demographically vulnerable groups, such as the elderly, less educated or from
more disadvantaged family backgrounds. These patterns suggest that extreme heat may reinforce
preexisting socioeconomic inequalities.

In addition to worker characteristics, we find that labor market institutions play a critical medi-
ating role: countries with decentralised or deregulated wage-setting systems exhibit significantly
larger income losses from heat exposure compared to those with centralised or sectoral bargaining,
where heat waves have no effect on wages. This suggests that stronger and well-enforced collec-
tive bargaining mechanisms may provide important protection against climate-induced earnings
shocks.

Related Literature and Contributions. This paper contributes to the growing literature on the
labor market impacts of extreme temperature exposure. Although heat exposure has been shown
to reduce performance even in less physically demanding or indoor occupations (Niemeli et al.,
2002; LoPalo, 2023) and in capital-intensive industries (Cachon et al., 2012; Zhang et al., 2018),
the most substantial and economically relevant effects operate through reductions in labor input,
with productivity losses concentrated in manual labor-intensive sectors (Cai et al., 2018). Heat
impairs labor productivity primarily through physiological stress, fatigue, and reduced cogni-
tive performance (Heal and Park, 2016). Beyond its effects on productivity, heat also reduces
labor supply, as reflected in shorter working hours (Graff Zivin and Neidell, 2014; Neidell et al.,
2021; Rode et al., 2022) and higher absenteeism (Somanathan et al., 2021). Over longer horizons,
temperature shocks can induce broader labor market adjustments, including sectoral reallocation
(Colmer, 2021), particularly out of agriculture (Liu et al., 2023), and declines in wage and non-farm
employment (Jessoe et al., 2018).

This paper builds on prior work on the consequences of extreme heat on labor, by providing
new evidence on the impact on workers’ earnings. Earlier studies have primarily investigated the
effects of extreme weather events—such as hurricanes (Belasen and Polachek, 2008; Deryugina
et al., 2018)—and temperature exposure on income at more aggregated levels, including counties
(Deryugina and Hsiang, 2014; Deryugina, 2017; Park, 2016; Behrer et al., 2021; Colmer, 2021). To
our knowledge, only two studies (Oliveira et al., 2021; Li and Pan, 2021) have examined earnings
effects at the individual level. However, both remain limited in scope, focusing primarily on



developing countries and specific segments of the labor force.! Our paper advances this literature
by providing evidence on high and middle income countries, analyzing losses on individual-
level earnings, by using longitudinal data from several European countries over an extended time
horizon. In contrast with previous studies, our analysis includes both employees and the self-
employed, spanning a wide range of occupations across agricultural and non-agricultural sectors.

Furthermore, we contribute to the understanding of the distributional effects of exposure to the
negative effects of environmental damage. We are the first to examine various channels through
which heat waves compound with existing inequalities, related to workers’ tasks, sociodemo-
graphic characteristics, parental background and quantiles of the income distribution. Prior re-
search has documented that the economic impacts of climate change are regressive, both across
countries (Burke et al., 2015; Carleton and Hsiang, 2016; Heal and Park, 2016; Diffenbaugh and
Burke, 2019), within countries (Hsiang et al., 2017; Park et al., 2018; Burke and Tanutama, 2019;
Behrer et al., 2021; Dasgupta et al., 2024; Zhang et al., 2024; Gilli et al., 2024) and can have sub-
stantial heterogenous effect across firms (Yuan et al., 2024; Tarsia, 2024). The key mechanism is the
spatial sorting of individuals: poorer households are more likely to reside in climate-vulnerable
areas, and lower-income workers are disproportionately represented in occupations with high
exposure to heat stress (Park et al.,, 2018). However, evidence on how these shocks affect dif-
ferent groups of workers within the same region remains limited. We extend this literature by
documenting heterogeneity in the earnings response to temperature shocks across occupations
performing different tasks. As an additional contribution, we explore the distributional effects
along the earnings distribution and across workers with different sociodemographic character-
istics—finding stronger negative effects among individuals with worse family background and
very low earnings. Here we contribute to the broader literature on the effects of environmental
hazards on intergenerational, gender and ethnic inequalities (Banzhaf et al., 2019; Colmer and
Voorheis, 2020; Currie et al., 2023). As in this literature, we find that heat waves exacerbate exist-
ing inequalities along non-income dimensions. From a policy perspective, our findings inform the
debate on the so-called just energy transition emphasizing the importance of considering the issue
of recognition justice - which is related to preexisting non—income related inequalities—and the
multidimensionality of distributional effects (Vona, 2023; Hernandez et al., 2026).

Finally, we provide novel evidence on the role of unexplored mediating factors in shaping
the relationship between temperature and labor outcomes (Jessoe et al., 2018; Colmer, 2021; So-
manathan et al., 2021; Neidell et al., 2021; Acevedo et al., 2020; Yuan et al., 2024). In particular,
we examine how different wage-bargaining structures shape the earnings response to tempera-
ture shocks, highlighting the importance of institutional context in determining the distribution
and magnitude of climate-related impacts. While this analysis remains suggestive given the limi-
tations in capturing differences in labor market institutions, our findings call for further research
that incorporates these institutional features into bottom-up approaches to climate impact assess-

1Qliveira et al. (2021) analyze impacts on non-agriculture wages in Brazil, leveraging monthly information but only
for two years (2015-2016). Li and Pan (2021) explore extreme temperature effect on employees” annual rural wages in
China from 1989 to 2011, but their focus remains confined to the rural labor force.



ment and policy evaluation (see, e.g., Carleton et al. (2022) and Rode et al. (2022)).

The remainder of the paper is structured as follows. Section 2 outlines the conceptual frame-
work, detailing the key mechanisms through which high temperatures may influence earnings.
Section 3 introduces the data used in the analysis. Section 4 presents the empirical strategy. Sec-
tion 5 reports the main results on the impact of temperature on earnings, while Section 6 investi-
gates heterogeneity across occupations, sectors, labor market institutions, and sociodemographic
characteristics. Section 7 concludes with a summary of findings and a discussion of their broader

implications.

2 Conceptual Framework

Previous research on the direct impact of extreme temperatures on individual earnings remains
limited (Oliveira et al., 2021; Li and Pan, 2021). To guide our empirical analysis and conceptual-
ize the mechanisms through which temperature affects monthly earnings, we draw insights both
from the climate impact literature and from the broader labor economics literature on the effect of
productivity shocks on wages.

In competitive labor markets, earnings reflect both the marginal productivity of labor and
workers’ labor supply decisions. In our setting, however, labor supply responses are likely lim-
ited, as we observe average monthly earnings within a given year. In turn, labor productivity can
be disentangled in two components: (i) aggregate productivity, usually measured with Total Fac-
tor Productivity (TFP), and (ii) match-specific productivity, which depends on the quality of the
alignment between workers” skills and the tasks they perform (Acemoglu and Autor, 2011; Guve-
nen et al., 2020). Both components of labor productivity may be affected by extreme temperatures,
but the match-specific one drives wage differentials across workers in different occupations.

Wage responses to productivity shocks also depend to the institutional context. The assump-
tion of a perfectly competitive labor market often fails in practice, particularly where institutions
such as unions and governments play a direct role in wage setting through collective bargaining
agreements, minimum wage regulations, and employment protection laws. As well-known since
the 1990s (Krugman et al., 1994), in flexible labor markets, wages are more responsive to produc-
tivity shocks, while, in rigid markets, institutions may buffer short-term wage fluctuations leading
to larger effects on employment.

Building on these insights, we conceptualise five main channels through which temperature
shocks may affect earnings Ej;, of individual 7, in location / and year y as:

Eily =f (TFPily(le)/ MatChily(le)r LSily(le)/ LRily(le)/ InStily) 1)

where TFP;;,, match-specific productivity (Matchy;, ), labor supply (LS;;,), and labor reallocation
across sectors (LR;;,) are functions of temperature extremes T, while labor market institutions
(Inst;;, ) are a mediating factor. Borrowing insights from previous literature, we will briefly discuss
the potential effects of heat extremes through each of these channels. The empirical analysis will



provide new evidence on the relevance of match-specific effects and labor market institutions, two
less-explored mechanisms.

Total Factor Productivity. It is well-documented in the literature that extreme heat can reduce
overall economic efficiency and TFP through multiple channels: i. by impairing labor perfor-
mance, e.g. fatigue and cognitive impairment (Zivin and Shrader, 2016; Zivin et al., 2020; Krebs,
2024); ii. by reducing the efficiency of physical capital, e.g., machinery overheating, energy in-
efficiency (Zhang et al., 2018); iii. by increasing input misallocation due to uncoordinated work
interruptions and disruptions (Graff Zivin and Neidell, 2014; Neidell et al., 2021). Recent evidence
also suggests that - as for natural disasters (Miao and Popp, 2014) - extreme temperatures can trig-
ger effective adaptation through regulation-induced investments, such as in capital equipment
(Adhvaryu et al., 2020; Zhang et al., 2023; Ortiz-Molina et al., 2024)—or by driving innovation in
adaptation strategies (Auci et al., 2021), which may partially offset productivity losses or even en-
hance firms” economic performance. Successful adaptation responses are more likely to curb the
negative productivity effect of HWs in our sample of high- and middle-income countries, which
benefit from greater access to adaptive technologies and resources. Importantly, aggregate pro-
ductivity shocks are unlikely to amplify wage inequality, conditional on sectoral or occupational

characteristics.

Match-specific productivity. As well-known in labor economics, labor productivity is not de-
termined by worker characteristics or task attributes in isolation, but rather by the quality of the
match between the two (Jovanovic, 1979; Mortensen and Pissarides, 1994; Acemoglu and Autor,
2011; Guvenen et al., 2020). This notion of match-specific productivity implies that the effects
of external shocks—such as extreme temperatures—are inherently heterogeneous depending on
three factors. First, jobs are not equally exposed to weather shocks. As documented in the litera-
ture, workers in sectors where most tasks are performed outdoors (e.g. agriculture, mining, con-
struction) (Acevedo et al., 2020; Graff Zivin and Neidell, 2014; Neidell et al., 2021; Gagliardi et al.,
2024), in non-climate-controlled environments (e.g., manufacturing, transportation) with limited
adaptation options (Kjellstrom et al., 2009; Zhang et al., 2023), or in physically demanding occupa-
tions are more vulnerable to these shocks. Second, the workers’ skills and capabilities to perform
a given task under new conditions (under heat stress or not) may vary depending on factors such
as educational level, age, health and gender. Third, match-specific productivity is also affected
by the sorting of workers with different characteristics to tasks. For instance, workers with poor
health or older can systematically avoid jobs more exposed to heat stress. A successful task-skill
match can also enhance labor productivity through learning effects (Gathmann and Schénberg,
2010; Guvenen et al., 2020). Our data are well-suited to explore this channels as we have detailed
information on the main task performed by the worker (through detailed ISCO 4-digit occupa-
tional codes) and of the main sector of work. Moreover, the longitudinal dimension of our data
allows to uncover the potential role of sorting into heat-exposed workplaces of individuals with
different capabilities (health, education, age).



Labor supply responses. Alongside changes in productivity, labor supply responses have been
identified as a key channel through which extreme temperature affects labor dynamics (Graff
Zivin and Neidell, 2014; Neidell et al., 2021; Garg et al., 2020; Rode et al., 2022; Lai et al., 2023). In
occupations that are intensive of physical tasks and offer limited possibilities for adaptation—such
as outdoor manual work—extreme heat may lead to increased absenteeism and shorter working
hours, in addition to reductions in work intensity (Graff Zivin and Neidell, 2014; Neidell et al.,
2021; Somanathan et al., 2021). These responses are often driven by heat-induced fatigue (Graff
Zivin and Neidell, 2014), discomfort (Picchio and Van Ours, 2025), and avoidance of health risks
(Kjellstrom et al., 2009; Dillender, 2021; Park et al., 2021; Ireland et al., 2023; Behrer et al., 2024;
Bressler et al., 2025). Especially in sectors where piece-rate contracts are more diffused or in coun-
tries where wage setting is more flexible, earnings may decline through reduced labor supply
even if employment status remains unchanged. In absence of detailed information on hours or
days worked, beyond a binary indicator for full versus part-time employment, our data do not
allow to disentangle the effects of productivity changes from those driven by labor supply ad-
justments. However, because we observe average monthly wages, short-term labor supply ad-
justments—such as workers reducing hours on extremely hot days and compensating later in
the month—are likely to be smoothed out. As a result, the estimated effects primarily capture
productivity-related channels rather than transitory fluctuations in hours worked.

Labor Reallocation. Recent research highlights labor reallocation as an additional potential mech-
anism linking temperature shocks to wage dynamics. Heat-induced productivity declines in agri-
culture (Schlenker and Roberts, 2009; Hultgren et al., 2025) reduce labor demand in rural activities,
prompting workers to move into non-agricultural sectors (Emerick, 2018; Colmer, 2021). The re-
sulting increase in labor supply exerts downward pressure on wages in these receiving sectors. Al-
though most evidence on such cross-sectoral adjustments originates from developing economies
(Emerick, 2018; Colmer, 2021; Liu et al., 2023), recent findings for European regions (Zilia et al.,
2025) suggest that similar dynamics may also operate within advanced labor markets. While our
data do not allow us to directly observe and empirically test labor reallocation, the pattern of wage
responses we document is consistent with this mechanism: wage reductions following episodes
of extreme heat are not confined to agriculture but extend to industry (including manufacturing),
public and other services, and wholesale and retail trade. This evidence points to labor reallo-
cation as a plausible channel through which climate shocks propagate across sectors and affect

aggregate wage outcomes.

Labor Market Institutions. The extent to which productivity shocks translate into wage ad-
justments crucially depends on the institutional configuration of the labor market. Prior work
has shown that rigid employment protection and centralized bargaining systems can dampen
the wage response to firm- or sector-specific shocks (Calmfors and Diriffill, 1988; Blanchard and
Wolfers, 2000; Blanchard and Philippon, 2004; Boeri and Garibaldi, 2007). These institutions cre-
ate a buffer between productivity and pay, thereby reducing the transmission of transitory shocks



into earnings dynamics. In the context of climate-induced productivity shocks, Yuan et al. (2024)
show that disparities in bargaining power within firms—specifically between managers and em-
ployees—can modulate the extent to which such shocks exacerbate within-firm wage inequality.
Analogously, at a more aggregate level, we expect that in labor markets where wage bargaining is
coordinated across unions at the national or sectoral level, wages exhibit limited responsiveness to
productivity shocks. Typically, collective wage bargaining entails institutionalized rigidities (e.g.,
minimum wages, sectoral agreements, automatic seniority-based pay increases in the public sec-
tor) (Babecky et al., 2010), which constrain the transmission of temperature-induced productivity
losses into individual earnings. Similarly, binding minimum wage regulations impose a lower
bound on compensation, preventing wage adjustments for low-productivity workers and thereby
further decoupling wages from output. In these contexts, the direct link between productivity and
wages is attenuated. Our empirical analysis tests this hypothesis by examining whether the trans-
mission of temperature-induced productivity shocks is mediated by wage-setting institutions.

3 Data and Measures

To examine the impact of temperature on earnings, this paper uses retrospective data from waves
3 and 7 of the Survey on Health, Ageing and Retirement in Europe (SHARE), which provides rich
information on individuals’ life histories, including detailed job and residential records. These
data are linked to high-frequency weather variables from the E-OBS dataset provided by Coperni-
cus (Midodes et al., 2024). The linkage matches individuals” locations of residence during each job
episode with corresponding temperature and precipitation records. The resulting dataset enables
individual-level analysis of heat-wave exposure at a fine spatial resolution—typically between the
NUTS2 (region) and NUTS3 (province) levels—across several European countries and spanning
more than six decades. This section described the data and measures adopted in greater details.

SHARE Data. The SHARE survey collects rich information on individuals aged 50 and above,
covering multiple dimensions of their lives. The survey includes a wide range of variables related
to family background, childhood conditions, lifetime health, educational attainment, and other
sociodemographic characteristics. Importantly, the SHARE dataset includes modules on residen-
tial histories: these information allow to link the share data to weather variables and are discussed
below. The survey is conducted in repeated waves, each of which not only follows respondents
from earlier rounds while also introducing refreshment samples to incorporate new cohorts and
to compensate for panel attrition.

We use only waves 3 and 7 which include retrospective modules collecting information on
past life events.” Of particular importance for this work, these modules provide comprehensive

2Previous research (Garrouste, Paccagnella, et al., 2011; Havari and Mazzonna, 2015) shows that recall bias in
SHARELIFE data is limited, likely due to the type of survey design. Respondents are first guided through easily
memorable life episodes, beginning with domains that are easier to remember and gradually moving to more specific
details.



data on respondents” working histories, including unemployment spells, earnings, working hours
(full-time vs. part-time), occupation (ISCO codes), and employment status (employee vs. self-
employed).

Earnings. The retrospective nature of SHARE data implies that information is collected at one
point in time (the year of the survey), but refers to different periods in respondents’ lives, which
may raise concerns regarding the comparability and accuracy of wage reports across time. To
account for heterogeneity in time and currencies, we harmonize the raw data using a procedure
detailed in Table A4 in Appendix A.

The survey differentiates between “income,” referring to self-employment earnings, and “wage,”
referring to earnings from employment.® The survey also classifies earnings based on the timing
within the job episode (e.g., first, last and current wage or income*) and the source of income
(self-employment vs. employment). In our analysis, we aggregate all available earnings informa-
tion, accounting for the source of income by including a dummy variable for self-employment and

controlling for both labor market experience and within-job seniority (see Section 4).

Sociodemographic characteristics. In addition to comprehensive income data, SHARE provides
extensive information on various aspects of individuals’ lives, allowing us to control for both time-
varying and time-invariant factors at the individual level that may be correlated with earnings.
Beyond main demographic characteristics such as gender, age, and education, a key feature for our
analysis is information on preexisting vulnerability. For example, parental background—proxied
by the number of books at home—is used to assess whether the impact of heat waves is stronger
for individuals from disadvantaged families. Moreover, data on illnesses experienced at different
points in life—measured by the days lost due to disability — allow us to account for health-related
vulnerabilities that may amplify susceptibility to external shocks.

Occupations and Sectors. A key advantage of the SHARE dataset is that it allows for a precise
identification of heat-exposure in the workplace by providing detailed occupational information
for each job episode using the International Standard Classification of Occupations (ISCO). For
our primary estimation sample, 91,7% of observations have occupational information coded at
the 1-digit ISCO level and 49.4% at the 4-digit ISCO level, allowing for precise identification of job
roles and tasks. Leveraging this information, we manually classify occupations predominantly
involving outdoor tasks as heat-exposed. Table Al in Appendix A lists the 4-digit ISCO codes
identified as heat-exposed (coded as 1) as well as the main general task they perform (abstract,
routine, manual). Compared to previous research that focuses on sector-level exposure (Graff
Zivin and Neidell, 2014; Neidell et al., 2021), our occupational-level refinement allows us to more

3In what follows, we use “income” and “wage” interchangeably to denote the worker’s gross labor earnings, i.e.,
monthly compensation from employment or self-employment before taxes and social contributions.

4The survey provides initial income (or wage) for each job episode, final income (or wage) for the main job episode,
and current income (or wage) if the respondent was still employed at the time of the interview
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precisely capture the match-specific component of productivity shocks. By considering the main
tasks performed within each occupation, we better account for workers’ susceptibility to heat
exposure based on the nature of their role (e.g., physically demanding or outdoor tasks). That is,
the effect of heat exposure can vary depending on specific job characteristics—effects that sector-
level analyses may overlook.

When 4-digit ISCO codes are missing, we classify workers using their 1-digit ISCO group
combined with their sector of employment. Specifically, workers in groups 3 (Technicians and As-
sociate Professionals), 5 (Clerical Support Workers), 6 (Skilled Agricultural, Forestry and Fishery
Workers), 7 (Craft and Related Trades Workers), 8 (Plant and Machine Operators and Assem-
blers), and 9 (Elementary Occupations) are classified as heat-exposed if employed in agriculture,
construction, or mining and quarrying — sectors known to have higher heat risk because typically
characterized by outdoor work. These sectors along with manufacturing, utilities, and transport,
storage and communication which even if performed mainly indoor are likely to be in non-climate
controlled environment, are classified as exposed sectors when we explore sectoral heterogeneity
in the effect of HWs (Graff Zivin and Neidell, 2014).

Weather Data and Heat Waves Measures. Weather data are sourced from the E-OBS dataset,
distributed through the Copernicus Climate Change Service (C3S), which offers daily gridded
weather observations across Europe at a spatial resolution of 0.1° x 0.1°. This dataset has been in-
tegrated with the SHARE survey through the so-called SHARE-ENV dataset (Middes et al., 2024),
anovel and publicly accessible resource. A key advantage of E-OBS is its long temporal coverage,
which enables effective linkage with SHARE'’s retrospective socioeconomic data, extending back
to the early 1950s. Although E-OBS data are available daily, they are aggregated annually to match
the temporal resolution of the SHARE data.

In our analysis, temperature is the primary weather variable of interest, while average annual
precipitation is included as a control in the absence of humidity data. To capture exposure to
extreme heat, we follow Miller et al. (2021) and construct measures of heat waves. Unlike aver-
age temperature, heat wave metrics capture both the intensity and persistence of thermal stress,
which will increase with climate change across most land areas (Climate Change (IPCC), 2023).°
Epidemiological evidence shows that prolonged periods of extreme heat are associated with ex-
cess mortality beyond the general temperature-mortality relationship, underscoring the impor-
tance of duration of exposure.® Moreover, adaptation to consecutive hot days is more challenging
than adaptation to isolated events, making heat waves a particularly relevant measure for assess-
ing socioeconomic impacts, such as on local income and investments (Bilal and Rossi-Hansberg,
2023), agricultural output (Miller et al., 2021), firm productivity (Costa et al., 2024), sick leave in-
cidence (Klauber et al., 2025), and environmental attitudes and voting behavior (Hoffmann et al.,

5Tt has been estimated that, relative to the pre-industrial period (1850-1900), global warming has made the median
heatwave event about 200 times more likely, and that a quarter of such events would have been virtually impossible
without climate change (Quilcaille et al., 2025).

®Heat wave indicators are widely used in the medical and epidemiological literature to assess health impacts (Hajat
et al., 2006; Peng et al., 2011; Barnett et al., 2012).
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2022). Heat waves are identified as a periods of at least 5 consecutive days when daily maximum
temperature exceeds the 95th percentile of a 30-year moving distribution of daily values, updated
annually to reflect evolving local conditions. Our main metric is the annual number of days that
fall within such events.

We define heat waves using relative temperature thresholds, which adjust to evolving local
climate conditions and local adaptation, allowing us to capture unexpected temperature shocks.
Location fixed effects, as described in Section 4, account for average differences across locations
but do not capture long-term climate trends. Relative thresholds are therefore particularly suit-
able because they (i) avoid bias arising from potential correlations between long-term temperature
trends and outcome trends (Jones et al., 2025), (ii) preserve important observations that would be
missed using absolute thresholds—especially in colder regions—and (iii) capture shocks that are
extreme relative to local climate and adaptation. In contrast, absolute thresholds (e.g., five con-
secutive days above 30°C) vary dramatically across countries: they occur frequently in southern
Europe (Greece, Spain) but are extremely rare in northern countries (Table A7), limiting the identi-
fication of meaningful heat shocks. For completeness, Appendix D presents and discusses results
using temperature bins, a common approach in the climate economics literature (Deryugina and
Hsiang, 2014; Deschénes and Greenstone, 2011; Hsiang, 2016), and heat waves defined with abso-
lute thresholds.

Spatial Resolution and Urbanization Data. A potential concern with E-OBS is that its gridded
values are based on spatial interpolation from station data, which may introduce measurement
error. Moreover, in the SHARE dataset, the spatial information on place of residence vary in
granularity across countries. Specifically, residence data are available at the NUTS1, NUTS2, or
NUTS3 level, depending on the country.”

To improve spatial resolution, additional information on the degree of urbanisation for each
residential location is incorporated (Middes et al., 2024). Specifically, each minimum available

awrs

NUTS region is subdivided into five urbanisation categories: “big city,” “suburbs or outskirts

awrs

of a big city,” “large town,” “small town,” and “rural area or village.”® Average weather data
(e.g., daily temperature) are then calculated using a population-weighted average of grid-level
data across cells within each artificial sub-minimum NUTS region, constructed based on the finest
available NUTS level and the degree of urbanisation within each region. Overall, this procedure
mitigates concerns that interpolation-related measurement error could meaningfully bias the es-
timates. This disaggregation strategy also enhances the accuracy of our temperature exposure

measure and strengthens the detection of spatial variation in weather shocks.

’NUTS1 for Belgium, France, and Germany; NUTS2 for Austria, Denmark, Greece, Hungary, Poland, Portugal,
Spain, Sweden, and Switzerland; NUTS3 for the Czech Republic and Slovenia; and the entire country for Luxembourg.

8This classification follows the criteria established in the DEGURBA Manual by the European Union
(union2021applying).
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Final Dataset and Descriptive Statistics. After data cleaning (see Table A4 in Appendix A),
the final dataset’” comprises 32782 individuals from 14 European countries—Austria, Belgium,
the Czech Republic, Denmark, France, Germany, Greece, Italy, Poland, Portugal, Slovenia, Spain,
Sweden, and Switzerland—across 643 sub-NUTS regions, spanning the period 1955-2019. Sum-
mary statistics for all variables used in the main analysis are reported in Table A2 of Appendix
A.

Table A3 reports the distribution of individuals by the number of available earnings records.
Of the 32,782 individuals in the sample, approximately 42% have only a single observation, indi-
cating limited longitudinal information for a substantial share of the sample. Conversely, about
one-third (34%) have more than three observations, providing sufficient variation for panel spec-
ifications, while fewer than 1% have more than ten records. Tables A5 and A6 present summary
statistics for earnings by country and by occupation—sector groups, respectively. The latter exhibits
a slightly lower number of observations due to missing ISCO codes or sectoral classifications.
The combination of limited repeated observations and missing occupation-sector information ac-
counts for the reduction in sample size in more demanding specifications that include individual
and individual-by-occupation fixed effects (Table 1).

Figure Al shows the weighted average number of heatwaves, defined according to absolute
and relative temperature thresholds, over time. While absolute-threshold heatwaves display a
clear upward trend, relative ones show irregular shocks, with pronounced peaks in several years.
Tables A7, A8, and A9 document average heatwave exposure by country, income percentile, and
occupation-sector groups. While the distribution of absolute temperature shocks varies substan-
tially across countries, reflecting underlying climate differences, cross-country variation is much
smaller for relative-threshold heatwaves. Similarly, absolute temperatures generate sizable differ-
ences across earnings deciles, with exposure tending to decline as income rises, whereas relative
measures exhibit much less variation along the earnings distribution. Among occupations and
sectors, gaps in exposure are also larger under absolute measures: although the most susceptible
occupations and sectors experience slightly higher average exposure, these differences are negli-
gible when relative thresholds are considered.

Finally, Tables A10, A11, and A12 report the distribution of exposed versus non-exposed occu-
pations—as defined in Table A1—by country, income percentiles, and occupation-sector groups.
Overall, exposure levels vary across countries, with higher shares of exposed workers in Southern
and Central European economies such as Italy, Spain, and the Czech Republic, and lower ones
in Northern countries like Sweden and Denmark. When looking across the earnings distribution,
exposure appears relatively evenly spread across percentiles, though it tends to be slightly higher
in the lower and middle parts of the income scale, reflecting the greater concentration of manual
and service occupations in these groups. Finally, the breakdown by sector and occupation group
shows that outdoor exposed occupations are particularly pronounced in construction, agriculture,
and industry, as well as among manual and elementary occupations.

90ut of 79029 available earnings records, we retain 75258 observations (32782 individuals) with complete informa-
tion on the main regressors and control variables (Table 1).
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4 Empirical Strategy

In this section, we estimate the earning effects of HWs exploiting variation in heat wave expo-
sure across cohorts within the same generation (defined over a 10-year window) and location. To
illustrate, consider two workers from different cohorts within the same generation and location
who experience an additional HW day in the same year, but at different ages and stages of their
careers. By controlling for a rich set of individual and labor market characteristics, these workers
are similar enough to be comparable and thus differ only in their exposure to randomly assigned
HWs, allowing us to isolate the impact of the temperature shock.
Specifically, we estimate the following model:

Eily = ,Bf(T)ily + 'Yg(P)ily + HXily + ¢g + ¢ + )\y + 9cty + €ily (2)

where i, [, and y index individuals, locations (sub-minimum NUTS level described in Section
3), and years, respectively. The outcome variable E;;, denotes the logarithm of individual average
monthly earnings in year y. The variable f(T);, captures temperature exposure, modeled as the
number of days spent in a HW.!” We include year, location, and generation (10-year) fixed effects
are denoted by Ay, p;, and ¢, respectively. The latter two sets of fixed effects allow to isolate
the source of identifying variation used in this paper: we compare two individuals living in the
same location and of the same generation, differing only for their exposure to HWs. Among the
additional covariates that make this comparison more credible, we include a second-degree poly-
nomial in average annual precipitation (f (P)ily), a vector Xj, of individual socio-demographic
characteristics and standard labor market controls in Mincerian wage regression'! and country-
year specific linear trends (6.t,), which account for time-varying country-level dynamics - such as
macroeconomic and labor dynamics - that could confound the relationship between temperature
shocks and wages. Standard errors are clustered at the sub-minimum NUTS level | because this
is the level of spatial disaggregation that determines the assignment of temperature exposure to
individuals.

Testing the identifying assumption. In climate econometric research (Hsiang, 2016; Hogan and
Schlenker, 2024), unexpected weather shocks are treated as plausibly random at the location level
(sub-minimum NUTS) by controlling—as we do—for location fixed effects A,. Using individual-
level data, identification of the effects of HWs becomes more challenging. The assumption that
HWs are as good-as-randomly assigned conditional on the covariates described above can be vio-
lated if workers” exposure to HWs is correlated with observable and unobservable characteristics

10Recall that we define a HW as a period of more than five consecutive days with maximum daily temperature above
the 95th percentile of the local temperature distribution. The percentile is computed over a 30-year moving window
using all daily temperatures from the preceding 30 years.

These are: age and age squared interacted by a gender dummy, education attainments (no education or primary,
lower secondary, upper secondary, tertiary), cumulative days lost due to disability (as a proxy for health), the number of
books at age 10, as a proxy for parental background (Brunello et al., 2017), two second-order polynomials in experience
and job seniority, dummies for part-time and self-employment status.
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that also influence earnings (Altonji et al., 2005). To support this identifying assumption, we con-
duct three validation tests.

First, we assess whether the probability of experiencing a heatwave is balanced across observ-
able covariates included in equation 2. To do so, we regress these covariates on a dummy variable
that takes the value of 1 if a heatwave occurs and 0 otherwise.'” The results are presented in Table
B.13 in Appendix B. Our findings indicate that, when using HWs longer than 5 consecutive days,
the coefficients of most covariates are not statistically significant, suggesting that exposure to HW
is not systematically correlated with drivers of earnings dynamics. The only relevant exception
is the ‘always part-time’ variable in column (1), which appears to be consistently associated with
the likelihood of experiencing a heatwave and may be of concern for our results. To address this,
we perform robustness checks in Section 5, where we show that restricting the sample to full-time
workers does not affect the results.

Second, while the degree of selection on observables provides a useful indication of potential
selection on unobservables (Altonji et al., 2005), we can explicitly assess the role of unobservable
characteristics by exploiting the longitudinal dimension of our earnings and climatic data in a
fixed effect model. Individual fixed effects account for unobserved, time-invariant characteristics,
such as innate ability, that are difficult to observe or measure and may be correlated with both
earnings and HWs exposure. While results are discussed in detail in the next section, they are
consistent with those from the main specification without individual fixed effects.

Finally, we know from previous literature that the effects of HWs are heterogeneous depend-
ing on the heat-exposure of the occupation or sector of employment (Graff Zivin and Neidell,
2014; Neidell et al., 2021; Gagliardi et al., 2024). The effect of HWs on earnings estimated in our
main specification can be biased if individuals sort into particular occupations based on preexist-
ing characteristics that are correlated both with the exposure to temperature and with earnings
outcomes. For instance, one potential form of sorting arises if individuals in poorer health sys-
tematically avoid occupations with higher exposure to extreme temperatures. Since health is also
a key determinant of human capital and earnings, failing to account for this may underestimate
the temperature effect. Conversely, individuals with lower skills or education may be more likely
to accept jobs with greater exposure, while these same characteristics are strongly correlated with
earnings.

We carefully examine this issue by estimating the main model including individual-by- occu-
pation (ISCO-1) fixed effects, which directly control for the main unobservable factors affecting the

sorting of individuals to occupations (Autor and Handel, 2013)."?

We argue that our main identi-
fication strategy, which relies on the random assignments of HWs conditional on observables, is
credible if the addition of individual-by-occupation fixed effect does not change the effect of HW

on earnings.

12We estimate these regressions at the individual level.

13When we include individual-by-occupation fixed effects, we are effectively comparing individuals with the same
unobserved characteristics (e.g. skills), within the same occupational position, who differ only in their exposure to
HWs.
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Interpretation of the coefficients. Even if HWs are good as randomly assigned, the interpreta-
tion of the effect of HWSs on earnings is not straightforward. Note that, by adding location fixed
effects, we account for the permanent component of climate. Thus, our identification strategy es-
timates only the impact of weather shocks on earnings, but it may not fully capture the effects of
slower, long-term adjustments in climate. This limitation arises unless the assumption of marginal
treatment comparability holds—i.e., if a marginal change in weather distribution has the same ef-
fect on income as an analogous marginal change in climate (Hsiang, 2016). While we cannot fully
corroborate this assumption, we argue that it is more plausible in contexts, such as HW shocks,
with limited effective adaptation or greater adaptation challenges than isolated extreme tempera-
ture days.

The second issue concerns the persistence of heatwaves. Some locations may experience seri-
ally correlated heatwave events that, depending on the effectiveness of adaptation, could either
amplify or mitigate their effects on earnings. To assess this, we test for serial correlation in HWs
occurrence by estimating whether the probability of experiencing a HW at time t depends on
having experienced one at time t — 1. Table B.14 in Appendix B presents estimates using two al-
ternative heatwave definitions. Columns (1-2) correspond to our baseline measure of prolonged
heatwaves (exceeding five consecutive days), while columns (3-4) adopt a shorter-duration defi-
nition (fewer than two consecutive days). For prolonged heatwaves, we find a weak negative rela-
tionship, indicating that these events are not positively serially correlated. This suggests that our
contemporaneous estimates are unlikely to be confounded by adaptation or cumulative effects,
supporting the interpretation of heatwaves as quasi-random shocks. In contrast, the shorter HWs
reveals significant serial dependence, particularly in absence of individual fixed effects. Overall,
these findings support our preferred definition of heatwaves as capturing unexpected and quasi-
random temperature shocks.

A final issue is that some covariates in equation 2, particularly experience, seniority and days
lost due to disability, may also be affected by HWs. Including them ensures comparability across
cohorts within a generation, but also affects the size of the HW effects conjuring a "bad controls"
problem (Angrist and Pischke, 2009). In column (1) of Table 1, we test our main model excluding
these potentially problematic controls to assess whether this changes the size of the estimated
coefficients.

Heterogeneous effects. A key contribution of this paper is to investigate the heterogeneous ef-
fects of heatwaves (HWs) on earnings, documenting previously unexplored dimensions of the
distributional impacts of weather shocks. Specifically, we examine how HWs impact earnings
along the earnings distribution. To this end, we employ the well-known framework proposed
by Firpo et al. (2009), which allows estimating the impact of changes in regressors on a specific
quantile, g%, of the unconditional distribution of the dependent variable. The method relies on
the Recentered Influence Function (RIF), a transformation of the outcome variable that captures
deviations around the quantile of interest. By regressing the RIF on explanatory variables, we
can estimate the effect of covariates on the unconditional distributional statistic of interest, in this
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case, the unconditional earnings percentiles. Unlike standard quantile regression (Koenker and
Bassett, 1978; Koenker, 2005), a key advantage of this method is that the estimated effects pertain
to the distribution of earnings itself, rather than to the distribution of residuals from a reweighted
earnings regression. Consequently, the effect at the nth percentile can be interpreted as the effect
for workers at that specific earnings level. In our analysis, this approach enables us to detect the
impact of HWs on workers at different percentiles of the earnings distribution, independent of the
underlying mechanisms driving such effects.

The next step is to unpack the profile of those workers that are more affected by HWs. This
complements the unconditional quantile regression analysis by looking at whether more vulner-
able groups are also more impacted by HWs. In doing so, we extend our baseline model by inter-
acting temperature shocks with a dummy or categorical variable that captures an workplace char-
acteristic (heat-exposed occupations and sectors), a sociodemographic attribute (parental back-
ground, gender, age, health status), or a labor market (collective bargaining) or regional charac-
teristics (broad climatic conditions). Besides shedding light on the distributional impacts of HWs,
these analyses also sheds light on potential mechanisms through which temperature affects indi-
vidual earnings, particularly those pertaining the heterogeneous effects across occupations and
sectors.

Formally, we augment the specification of Equation 2 by interacting the main regressor, f(T);,
with a group-defining variable Dy ;;), which denotes membership in a particular category based
on personal, regional or occupational characteristics. The resulting equation reads as follows:

Eﬂy = ,Bf(T>ily + 5f(T)ily X Dd(ﬂ) + 77Dd(il) + ’)’f(P)ily + GXily + e+ ¢+ )Ly + Gcty + €iry (3)

The coefficients é capture whether the effect of temperature on earnings differs significantly across
groups within a given dimension, relative to the omitted (reference) group.

5 The Effect of Heat Waves on Earnings

This section presents the results on the impact of heat waves on earnings. Column 2 of Table 1,
our favorite estimate,'* indicates that each additional day spent in a heat wave lasting more than
five consecutive days reduces the average monthly earnings by approximately 0.31%.

These results are robust across alternative model specifications. In column (1), we use a more
parsimonious set of individual-level controls to mitigate concerns about bad controls. The esti-
mated earnings loss remains virtually unchanged relative to column (2), differing by only 0.019
percentage points. In column (3), we estimate the specification of column 2 for the reduced sample
for which we can estimate also the fixed effect model. Here we observe a negligible increase of
the HW effect (from -0.31% to -0.32%). When individual fixed effects are added in column (4), the

14We label this specification as preferred because it includes the full set of individual and labor market controls
while excluding the more demanding individual and individual-by-sorting fixed effects, which substantially reduce
the sample size.
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results remain robust, although the magnitude of the coefficient declines slightly. This finding is
consistent with the balancing tests on the probability of experiencing a heat wave reported in Table
B.13 in Appendix B. Finally, the estimated effect of heat waves on earnings remains robust to the
inclusion of individual-by-occupation fixed effects in column (5), which account for unobserved
sorting of individuals into specific occupations.

The stability of the coefficients across specifications suggests that heat wave exposure is plau-
sibly as-good-as-random conditional on controls, and that omitting these additional fixed effects
does not introduce substantial bias. While accounting for individual fixed effects and occupa-
tional sorting are in principle important to lend support to our identifying assumption, our com-
prehensive set of controls already rule out severe selection-biases. In light of these results, we can
confidently use the model of column 2 and the related largest sample as the reference specification
for analyzing heterogeneity across groups and along the earnings distribution.

Table 1: Effect of Heat Waves on Earnings

@ 2 ®) 4) ©)

Days of HW (Tyax > 95th perc) -0.00291**  -0.00310*** -0.00320*** -0.00236* -0.00248*
(0.0009)  (0.0008)  (0.0010)  (0.0013)  (0.0014)
Precipitation control v v v v v
Location, Generation, Year FE v v v v v
Main Covariates v v v v v
Extended Covariates v v v v
Country-Year Linear Trends v v v v v
Individual FE v v
Individual x Occupation (ISCO1) FE v
Individuals 32782 32337 15580 15580 15580
Observations 75258 73577 44271 44271 44271
Adjusted R? 0.51744 0.51754 0.52100 0.66158 0.67177

Notes. The dependent variable is the log transformation of earnings expressed in dollars (base year 2010). Days
of HW count the number of days spent in a heatwave (Tyax > 95th perc) longer than 5 consecutive days. Main
covariates: age and age squared by gender, the level of education, the number of books at age 10, part-time and
self-employment status. Extended covariates also include the cumulative days lost due to disability (health loss),
experience and experience squared, seniority within the job and seniority squared. Clustered standard errors at
the location level (sub-minimum NUTS level, the source of temperature variation) are reported in parentheses *
(p < 0.10), ** (p < 0.05), ** (p < 0.01).

In Section 4, we show that HWs are not serially correlated. Yet, the effect of repeated HWs can
be reduced, i.e. through adaptation responses, or amplified, i.e. through reduced on-the-job skill
formation. We further explore this empirical issue by augmenting our favourite specification with
the lagged HW indicators at time t — 1 and t — 2. Table 2 shows that, as indicated by the cumu-
lative marginal effects (row 4), the impact of heat exposure over a three-year windows remains
negative and statistically significant and is larger in magnitude (-0.521%) than the contemporane-
ous effect alone (-0.310%). While the contemporaneous effect (at time ) likely captures the direct
impact of temperature shocks on labor productivity and labor supply, the lagged effect is more
plausibly driven by broader, indirect effects and spillovers operating at various level of aggrega-
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tion. These include firm-, sector-, or region-level output disruptions that persist over time, and
labor reallocation across sectors, which tends to unfold gradually as workers adjust to shifting rel-
ative productivities and labor demands. At the micro level, persistent impacts may also stem from
individual productivity losses due to skill deterioration or slower on-the-job learning. Our results
resonates with previous research that has documented that weather shocks can have delayed im-
pacts on firm output in China (Chen and Yang, 2019) and global economic production (Burke et
al., 2015). Similar lagged effects have not been observed for annual income per capita across U.S.
counties, where part of the impact appears to be recovered in the following year (Deryugina and
Hsiang, 2014).

Table 2: Effect of Heat Waves on Earnings, Lags at t-1, t-2

1) ) ) @) ©)
Days of HW (Tyax > 95th perc) -0.00280***  -0.00299*** -0.00304***  -0.00207 -0.00220
(0.0008) (0.0008) (0.0010) (0.0014) (0.0014)
Days of HW (Tyax > 95th perc) att-1 ~ -0.00134 -0.00145*  -0.00248***  -0.00204*  -0.00228*
(0.0009) (0.0008) (0.0009) (0.0012) (0.0012)
Days of HW (Tyax > 95th perc) at -2 -0.000999  -0.000774  -0.000932  -0.00164 -0.00186
(0.0009) (0.0009) (0.0010) (0.0011) (0.0012)
Cumulative Marginal Effects
Days of HW (Tyax > 95th perc) -0.00513***  -0.00521*** -0.00645*** -0.00576*** -0.00622***
(0.0017) (0.0017) (0.0018) (0.0022) (0.0022)

Precipitation control v v v v v
Location, Generation, Year FE v v Ve v v
Main Covariates v v v v v
Extended Covariates v N v v
Country-Year Linear Trends v v v v v
Individual FE v v
Individual x Occupation (ISCO1) FE v
Individuals 32582 32134 15281 15281 15281
Observations 73853 72229 43134 43134 43134
Adjusted R? 0.51917 0.51944 0.52246 0.66233 0.67260

Notes. The dependent variable is the log transformation of earnings expressed in dollars (base year 2010). Days
of HW count the number of days spent in a heatwave (Tyax > 95th perc) longer than 5 consecutive days. Main
covariates: age and age squared by gender, the level of education, the number of books at age 10, part-time and
self-employment status. Extended covariates also include the cumulative days lost due to disability (health loss),
experience and experience squared, seniority within the job and seniority squared. Clustered standard errors at
the location level (sub-minimum NUTS level, the source of temperature variation) are reported in parentheses *
(p < 0.10), ** (p < 0.05), ** (p < 0.01).

Quantifying the Impact. The average individual in our sample experiences approximately 2.91
HW days per year (Table A7). Assuming a standard 260-day work year—roughly 71% of the
calendar year—this implies an expected 2.07 heatwave days falling on working days. The aver-
age monthly income in our sample is $2070.14 per person (Table A5). Based on our estimated
marginal effect, each additional heatwave day reduces income by 0.310%. Overall, multiplying
the estimated effect by the average monthly income, the number of months in a year (12), and the
expected number of HW days occurring on workdays, we obtain an estimated annual income loss
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of approximately $159.63 per person:
Average Annual Earning Loss = —0.00310 x 2070.14 x 12 x 2.07 ~ —$159.63.

We compare our quantified annual income loss due to heatwaves with the potential earnings
loss associated with a full labor supply disruption—i.e., absenteeism at work—which previous
studies (Somanathan et al., 2021) have shown can be one of the consequences of extreme heat,
alongside decreases in productivity and reduced working hours. Given an average monthly in-
come of $2,070.14, the implied daily income—assuming 22 working days per month—is approxi-
mately $94.10. If a worker is fully absent, the average annual earnings loss amounts to:

Average Annual Earnings Loss = $94.098 x 2.073 ~ $195.12.

This quantified loss reflects a scenario in which workers lack any form of adaptation and are
compelled to miss work entirely due to extreme heat. In this case, the income loss arises not from
reduced productivity, but from a pure labor supply reduction.

As noted, the estimated total earnings loss is smaller than the hypothetical loss that would
occur if workers were fully absent on heat wave days. While we cannot disentangle whether
this effect reflects reduced labor productivity or lower labor supply, its magnitude suggests that
heat waves have a meaningful impact on earnings. Even if workers do not miss work entirely,
their productivity may be severely impaired on those days. Alternatively, the observed effect may
capture a more persistent reduction in earnings extending beyond the heat wave itself, potentially
driven by heat-related health issues or cumulative fatigue.

While previous studies have identified potential channels through which temperature shocks
affect income—such as reductions in agricultural yields (Schlenker and Roberts, 2009) and labor
supply (Graff Zivin and Neidell, 2014)—less is known about how these effects translate into actual
monetary losses across different sectors. Direct comparisons with prior research are not straight-
forward, due to differences in data granularity, exposure definitions, and institutional contexts.
For instance, Deryugina and Hsiang (2014) estimate an income loss of approximately $20 per
person for each additional weekday above 30°C (86°F) across U.S. counties. In comparison, we es-
timate that each additional heatwave day reduces, on average, annual income by approximately
—0.00310 x $2070.14 x 12 ~ —$77.01."% Scaling our estimate'® by the employment-to-population
ratio!”, we obtain a lower average income loss, roughly $39.12 per person. Moreover, individual-
level effects on employed workers are plausibly expected to be larger, as prior literature has shown

15 A factor contributing to this difference is the severity and duration of the temperature episodes considered. While
their measure captures isolated hot days, ours reflects a sustained exposure, periods of at least five consecutive days
above a temperature threshold. Accordingly, our estimated income loss should be interpreted as the incremental effect
of prolonged extreme heat, rather than the effect of a single hot day.

160ur sample focuses on employed individuals, whereas Deryugina and Hsiang (2014) estimates income losses at
the population level.

7In the European Union, the average between 1983 and 2023 is approximately 50.8% (World Bank - World Develop-
ment Indicators: Employment to population ratio, 15+, total, %). This value was likely lower during our study period
due to historically low female labor force participation.
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that temperature shocks affect labor income more than capital returns. Finally, contextual differ-
ences between Europe and the United States—particularly in institutions, labor market regula-
tion, and wage-setting mechanisms—likely shape the degree of vulnerability to extreme heat. As
shown in Section 6.2, in settings characterized by higher levels of labor market deregulation, the
adverse effects of heat exposure appear to be substantially larger, suggesting that institutions can
play a protective role by limiting the transmission of climate shocks to workers.

Heat waves are expected to become longer, more frequent, and more intense as a consequence
of climate change (Climate Change (IPCC), 2023; Quilcaille et al., 2025). Under the high-emissions
scenario (RCP 8.5), projections for the European Union suggest that the average annual number
of heatwave days'® during the period 2071-2100 will rise approximately to 14 (Russo et al., 2014;
Hooyberghs et al., 2019). Based on our estimates, and assuming no further adaptation, this in-
crease would translate into an average annual income loss of approximately $897.5 per person.]9
These estimates can serve as inputs for Integrated Assessment Models (IAMs), providing more
comprehensive, empirically grounded projections of heat wave-induced economic impacts at the
individual level, disaggregated by sector and occupation.

Robustness Checks. The core findings remain robust across a range of alternative specifications,
as detailed in Appendix C. First, Table C.15 reports results estimated without country-year spe-
cific linear trends, allowing us to assess robustness in the absence of controls for macroeconomic
dynamics that may be correlated with climatic events (Bilal and Kénzig, 2024). In contrast, Ta-
ble C.16 includes more flexible, spatially disaggregated NUTS1-year trends to account for local
evolution in climate, labor market conditions, and other unobserved factors that may confound
their relationship. Then, we assess the sensitivity of our findings to alternative definitions of heat
waves (HWs) by relaxing the duration criterion to at least three consecutive days above the tem-
perature threshold (Table C.17). The results remain robust across all specifications. As expected,
the estimated effects are smaller in magnitude, consistent with the shorter exposure period. This
evidence suggests that it is important to account not only for exposure to extreme temperatures
but also for the duration of such exposure, as this dimension can influence the marginal effect of
temperature on the outcome variable, in this case, earnings.

Subsample analyses by historical period (Table C.18) show that the effect of heat waves on
earnings is statistically significant across all periods. The estimated impact is slightly larger in the
earliest period, indicating that while heat waves consistently affect wages, partial adaptation may
have had a modest mitigating effect; however, these estimates are not directly comparable, as they

18Heat waves are here defined as periods of at least three consecutive days with maximum daily temperatures above
the 90th percentile, calculated with a centered 31-day window (Russo et al., 2014), or alternatively as periods exceeding
the 99th percentile of the climatological distribution of daily maxima (Hooyberghs et al., 2019). Our measure is based
on the 95th percentile, which lies between these two definitions. Since both studies project approximately 14 heatwave
days under RCP 8.5, we can reasonably assume a comparable number of days for our definition.

19This calculation relies on the estimates from our robustness check with shorter heatwave definitions (see Table C.17
in Appendix C). Each additional HW day is associated with a 0.258% reduction in earnings. The computation follows
the same formula introduced earlier, adjusting for the probability that a heatwave day falls on a working day, and using
the average income observed in our sample.
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pertain to different samples. Analyses by leave-one-country-out estimations (Table C.19) confirm
that our main findings are not driven by any single country.

As discussed in the Empirical Strategy (Section 4), we provide evidence that observable co-
variates are balanced between individuals exposed and unexposed to heatwaves, supporting the
identifying assumption that HWs are as good as randomly assigned. This balance also suggests
that unobserved characteristics are expected to be balanced among the two groups (Altonji et
al., 2005). The only notable exception is part-time employment status, which differs significantly
between the treated and control groups. To address potential related concerns, we re-estimate
our main specifications on the subsample of individuals consistently employed in full-time posi-
tions (Table C.20). The results remain robust, indicating that our findings are not driven by the
higher exposure among part-time workers. To account for the possibility that individuals may
sort into occupations that are both more prevalent in hotter regions and more vulnerable to heat
exposure (e.g., outdoor or physically intensive jobs), we test our initial baseline specification (Ta-
ble 1, columns 1-4) by including location-by-occupation fixed effects. These controls absorb any
time-invariant heterogeneity across occupations within geographic areas. Results, presented in
Table C.21, remain robust, indicating that our estimates are not driven by pre-existing spatial and
occupational characteristics that jointly determine heat exposure and earnings potential.

Finally, we also report estimates of the impact of extreme temperatures on earnings using heat
waves defined according to absolute temperature thresholds (Tables D.22 and D.23), and temper-
ature bins (Table D.24, D.25, and Figure A2). The motivation for adopting relative thresholds,
as well as the challenges and limitations associated with absolute measures, were introduced in
Section 3 and are further discussed, together with the corresponding results, in Appendix D.

6 Distributional and Heterogeneous Effects of Heat Waves

In this section, we explore the heterogeneity of the effects to shed light on the distributional im-
plications of heat waves beyond their average impact. The analysis relies on our preferred speci-
fication from Column (2) of Table 1, which includes the complete set of controls while excluding
individual and individual-by-occupation fixed effects. This choice enables us to retain the largest
possible sample and is supported by the remarkable stability of our baseline results (Section 5).

6.1 Heterogeneity across Occupations and Sectors

Figure 1 summarizes the results (see also Table E.26 in the Appendix E) on the heterogeneous
effects of heat waves across individuals employed in different sectors and occupations. Each panel
reports marginal effects from estimating equation 3, where temperature shocks are interacted with
(i) an exposed-sector dummy (Panel A); (ii) sector categorical variables (Panel B); (iii) an exposed-
occupation dummy (Panel C); and (iv) occupation categorical variables (Panel D).

0

First, we explore heterogeneity across exposed sectors’’. Panel A shows that workers em-

20Following Graff Zivin and Neidell (2014), we classify Agriculture & Fishing, Construction, Mining & Quarrying,
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Figure 1: Marginal Effect of Heat Waves by Occupation and Sector

The figure displays the marginal effects and corresponding 95% confidence intervals from the
regressions estimated in Equation 3, where heat waves are interacted with (i) a dummy for heat-
exposed sectors (column 1 of Table E.26), (ii) a categorical variable for sectors (column 2), (iii) a
dummy for heat-exposed occupations (column 3), (iv) a categorical variable classifying occupa-
tion groups (column 4).

ployed in these sectors experience larger earnings losses relative to those in non-exposed sectors,
although the difference among the two groups is not statistically significant. To assess whether
meaningful differences arise at a more disaggregated level-—such as between predominantly out-
door sectors (e.g., Agriculture & Fishing) and predominantly indoor sectors (e.g., Manufacturing)
— Panel B further breaks down the analysis by sector. Losses are particularly pronounced in
Agriculture & Fishing, with significant impacts also observed in Wholesale & Retail Trade, Indus-
try (covering Manufacturing, Mining & Quarrying, and Utility) and in Public & Other Services.
For Construction, we do not identify a clear impact, as confidence intervals (CIs) remain wide.
By contrast, Financial, Real Estate & Business Services appear largely unaffected. Notably, even

Manufacturing, Utilities and Transport, Storage & Communication as heat-exposed sectors.
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industries in which most tasks are performed indoors are not immune to heat-related declines in
earnings, likely because many workplaces lack climate control. The strong effect observed in Agri-
culture & Fishing may be attributed not only to the higher prevalence of outdoor work but also to
the greater incidence of piece-rate contracts. These contracts tie earnings directly to productivity,
making income more immediately sensitive to productivity losses during extreme heat events.
Given that exposure to heat is not uniform within the same sector, and that even among out-
door workers the degree of vulnerability differs depending on the nature of the task performed,
we also examine heterogeneity across occupations. We first manually classify all 4-digit ISCO
occupations as “exposed” if the typical tasks are carried out primarily outdoors (see Table Al

in Appendix A).%!

The corresponding results, presented in Panel C of Figure 1, show that the
gap in the marginal effect of HWs is more pronounced when workers are grouped by occupa-
tion. Exposed occupations experience a statistically significant larger impact than non-exposed
occupations, corresponding to an additional earnings loss of —-0.353%. This highlights the critical
role of task characteristics in shaping the impact of heat on income. To further capture hetero-
geneity in the type of tasks performed—while still distinguishing between outdoor and indoor
activities — we also classify occupations into four broad categories: elementary, manual, cleri-
cal, and abstract (Panel D). Among occupations, Manual workers and Clerical in outdoor settings
experience the most pronounced income reductions. For Manual workers, many tasks involve
sustained physical effort in environments without temperature control, so extreme heat reduces
productivity primarily through increased fatigue and lower work intensity. For outdoor Clerical
occupations—such as mail carriers, transport clerks, and salespersons — extreme heat compro-
mises timely task execution. The result for Abstract indoor workers is consistent with the average
impact. Even though they’re not physically exposed, heat can still affect cognitive performance
(Zivin and Shrader, 2016; Zivin et al., 2020; Krebs, 2024), and in many of these jobs, wages are
directly linked to productivity, so any drop in performance could affect earnings. The absence of a
statistically significant effect for Abstract outdoor workers is likely driven by the limited number
of observations in this group, which results in wide confidence intervals. For Elementary Occu-
pations, the estimated effect is also not statistically significant. A plausible explanation is wage
stickiness at the lower end of the distribution. These jobs often have fixed or minimum wages, or
are paid per day rather than per unit of output, so even if productivity drops, earnings may not
change significantly.

We follow the same logic outlined in Section 5 to compute the average annual earnings loss for
each category.”> Workers in outdoor-exposed occupations experience an average annual income
reduction of approximately $272.57, corresponding to a 1.23% decline in yearly earnings. Workers

Z'When 4-digit information is missing but available at the 1-digit level, we classify an occupation as exposed if it
belongs to major group 6 (Skilled Agricultural, Forestry and Fishery Workers). In addition, groups 3 (Technicians and
Associate Professionals), 7 (Craft and Related Trades Workers), 8 (Plant and Machine Operators, and Assemblers), and
9 (Elementary Occupations) are classified as exposed when they occur in sectors that are typically outdoor, such as
Agriculture & Fishing, Construction, and Mining & Quarrying.

22 All descriptive statistics used in these calculations are obtained from the relevant subsample. See Table G.32 in
Appendix G for key statistics by subgroup and for the results of the quantification.
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employed in Exposed Sectors face an average loss of about $181.30 (-0.82%). The burden is even
larger for certain subgroups: Manual and Clerical outdoor workers incur an average annual loss of
respectively $375.58 and $492.19 while, among sectors, those employed in Agriculture & Fishing
suffer the highest estimated loss, at around $414.89 per year.

Overall, outdoor workers face significant constraints in accessing adaptive measures to miti-
gate heat exposure, such as air conditioning or other cooling technologies, and often have limited
flexibility to adjust their work schedules. Our findings are consistent with previous research iden-
tifying environmentally exposed sectors as particularly susceptible to temperature shocks (Graff
Zivin and Neidell, 2014; Kahn, 2016; Park, 2016; Neidell et al., 2021; Rode et al., 2022) but also
highlight the heterogeneous effect across occupational groups. Particularly, we show that Manual
and Clerical workers performing tasks mainly outdoor are particularly damaged by HWs. Note
that both groups were already vulnerable as more negatively exposed to routine-replacing techno-
logical change (Autor and Handel, 2013) and automation (Graetz and Michaels, 2018; Acemoglu
and Restrepo, 2019). In addition, manual workers are also more negatively impacted by import
competition (Autor et al., 2013; Acemoglu et al., 2016) and climate policy (Marin and Vona, 2019).

Sorting into Exposed Occupations and Sectors. Our results indicate that workers in heat-exposed
occupations experience significantly larger earnings losses. To better understand the mechanisms
through which heat exposure may exacerbate income inequality, we examine the individual char-
acteristics that predict sorting into these occupations. As shown in Table 3, individuals who are
male, younger, have lower levels of education, and come from lower socio-economic backgrounds
are significantly more likely to sort into heat-exposed jobs. Since occupational and sectoral heat
exposure is correlated with key drivers of earnings dynamics, and the largest income losses are
concentrated in these occupations, exposure to HWs may reinforce existing inequalities, acting as
a channel through which socio-economic disparities are further amplified

6.2 Mediating Role of Labor Market Institutions

Our conceptual framework suggests that the impacts of productivity shocks on wages are not ob-
vious in countries that, such European ones, have different system of wage settings. We expect
that, in systems with more centralized and coordinated collective bargaining, wages are down-
ward rigid and thus the negative effect of HWs on wages will be smaller, while the effect on
employment bigger (Krugman et al., 1994). We can test this conjecture exploiting substantial cross-
country variation in wage setting institutions across Europe. More specifically, we investigate the
potential heterogeneity in the impact of temperature across countries with differing systems of
wage determination. Figure 2 presents the results that are detailed in Table E.27.

While the majority of European nations rely on labor union negotiations for wage-setting, the
extent of wage coordination exhibits considerable variation (Bhuller et al., 2022; Momferatou et al.,
2008). Over the past four decades, there has been a general trend toward greater decentralisation
in wage-setting systems; however, significant differences persist in bargaining structures and prac-
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Table 3: Sorting into Exposed Occupations and Sectors

) )

Exposed Occupations Exposed Sectors

Female -0.219*** -0.282***
(0.010) (0.012)
25 < Age<45 -0.0286*** 0.00105
(0.008) (0.011)
Age > 45 -0.0408*** 0.0172
(0.011) (0.015)
Female x 25 < Age<45 0.0613*** -0.0145
(0.009) (0.012)
Female x Age > 45 0.0664*** -0.0209*
(0.010) (0.012)
Lower Secondary Edu -0.0552*** -0.0514***
(0.008) (0.009)
Upper Secondary Edu -0.0992*** -0.103***
(0.007) (0.009)
Tertiary Edu -0.162%** -0.208***
(0.008) (0.011)
One shelf of books (at age 10) -0.0275*** -0.0270***
(0.006) (0.007)
One bookcase (at age 10) -0.0355*** -0.03971***
(0.006) (0.007)
Two bookcases (at age 10) -0.0347*** -0.0450%**
(0.008) (0.009)
More than two bookcases (at age 10) -0.0454*** -0.0706***
(0.006) (0.009)
Health Loss 0.00495 0.00144
(0.007) (0.010)
Experience -0.00247*** 0.00125*
(0.000) (0.001)
Experience Squared 0.0000668*** -0.0000252*
(0.000) (0.000)
Location, Generation, Year FE v v
Country-Year Time Trends v v
Individuals 30310 32261
Observations 54741 59768
Adjusted R? 0.14515 0.17010

Notes. The dependent variable is the dummy for exposed outdoor-occupations in column

(1) and a dummy for exposed sectors in column (2). The reference category is Male for
gender; Age < 25 for age group; Good Health (Health Loss <95th percentile) for health
loss; No or primary education for education level; None or very few books (at age 10)
for parental background. Clustered standard errors at the location level (sub-minimum
NUTS level, the source of temperature variation) are reported in parentheses * (p < 0.10),
** (p < 0.05), ** (p < 0.01).

tices across countries. Following (Momferatou et al., 2008), We classify these systems into three
categories: highly centralised, sectorally regulated, and largely deregulated. The first category
includes countries®® with centralised systems with a substantial role in government intervention

23Belgium, Slovenia, and Spain.
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Figure 2: Marginal Effect of Heat Waves by Institutional Setting and Geographical Area

The figure displays the marginal effects and corresponding 95% confidence intervals from the
regressions estimated in Equation 3, where heat waves are interacted with (i) a categorical vari-
able classifying the type of bargaining systems.

in addition to sectoral and intersectoral agreements. The second category encompasses nations”*
where wage-setting is predominantly regulated at the sectoral level with some firm-level coordi-
nation. Finally, the third group consists of countries®® with largely deregulated systems, where
wage bargaining is primarily decentralised.

As shown in Figure 2, highly centralized bargaining systems appear to act as a buffer, mitigat-
ing the adverse effects of heat-wave exposure on earnings. In contrast, workers in sectorally and
largely deregulated bargaining systems experience substantially greater income losses—on aver-
age $236.08 (-0.88%) and $50.03 (-0.65%) per year, respectively (Table G.32 in Appendix G). The
effect is statistically significant only for countries with sectorally regulated bargaining systems;
however, despite the wider confidence intervals for largely deregulated systems, their point esti-
mates are of comparable magnitude. These patterns indicate that only highly coordinated wage-
setting systems are effective in insulating workers” earnings from temperature-induced produc-
tivity shocks, whereas in less centralized systems—where institutional protections are weaker—
workers remain more vulnerable. Given the limited cross-country variation in bargaining institu-
tions, these results should be interpreted as suggestive rather than conclusive. Nonetheless, they
underscore the mediating role of collective bargaining and wage-setting arrangements in protect-
ing labor income from climate-related shocks.

24 Austria, Denmark, France, Germany, Greece, Italy, Portugal, and Sweden.
25The Czech Republic and Poland.

27



6.3 Effects Along the Earning Distribution

Our results from the unconditional quantile regression are reported in Figure 3. The negative ef-
fects of HWs are widespread across the earnings distribution. However, a visual inspection of the
confidence intervals and the point estimate reveals that the impact at the lower tail—particularly
at the 5th percentile—is significantly larger than at most other deciles. Our findings provide new
evidence to the fact that climate change harms disproportionally low-income households (Halle-
gatte and Rozenberg, 2017) harming within-country income inequality (Behrer et al., 2021; Gilli
etal., 2024).

Because sectoral and occupational exposure to heat shocks drive the average results, we repli-
cate the quantile regression analysis for the specification allowing for a differential effects for
highly exposed categories. Panel B of Figure 3 presents quantile regression estimates interacting
heat wave exposure with a dummy for outdoor-exposed sectors, while Panel C shows analogous
estimates using a dummy for outdoor-exposed occupations. As would be expected, both sets of
results follow a similar pattern to the baseline estimates— low-income workers are particularly
damaged by HWs when they are in exposed workplaces. Notably, the pattern is particularly ev-
ident when using occupational rather than sectoral exposure to HWs. This finding supports the
insight of our conceptual framework where the nature of the tasks performed is the primary driver
of the adverse impact of heat waves on wages.

Quantifying the impact (Table G.32), we observe that workers at the 5th percentile within
exposed occupations experience an average annual income loss of $68.71, compared to $1400.91
for those at the 95th percentile. While the absolute loss is larger for higher earners, the relative
burden is significantly greater for low-income workers: the loss represents approximately 4.47%
of their annual income versus the 1.55% for those in the top income bracket. This further reinforces
one of the key findings of this paper: the increasing incidence of heat waves is likely to exacerbate
existing labor market inequalities.

6.4 The Role of Socio-Demographics Vulnerabilities

Table E.28 and Figure 4 present heterogeneity in the estimated effects across socio-demographic
groups. The results indicate variation by age, with statistically significant effects only among in-
dividuals older than 25. This pattern is consistent with the lower capacity of older workers to per-
form physically demanding tasks on hot days, implying that their productivity—closely tied to in-
dividual capabilities—declines more sharply. No meaningful differences are observed by gender
or health status. Our results on sorting (Table 3) show that women are less frequently employed in
these occupations. While we do not find statistically significant differences for individuals in poor
health, it is plausible that they try to avoid such jobs, if possible. Educational attainment does not
reveal strong heterogeneity overall, although, the adverse effect of heat waves is absent among
individuals with the highest level of education—those with tertiary qualifications. Finally, results
highlight that HWs trigger also a mechanism of intergenerational inequality: workers from more
advantaged social backgrounds (proxied by the number of books at home) show no significant
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Figure 3: Temperature Impact on Earnings - Unconditional Quantile Regression

The figure displays estimates and 95% confidence intervals from 11 separate regressions, each
using as the dependent variable the RIF (Recentered Influence Function) transformation corre-
sponding to a specific decile of the dependent variable (the log of earnings in 2010 U.S. dollars).
All regressions include fixed effects for location, generation, and year, as well as a second-degree
polynomial in annual average precipitation and country-year linear time trends. Covariates in-
clude age and age squared by gender, the level of education, the cumulative days lost due to
disability (health loss), number of books at age 10, experience and experience squared, job se-
niority and its square, and indicators for part-time and self-employment status. Clustered stan-
dard errors at sub-minimum NUTS level (the source of temperature variation) in parentheses. *
(p <0.10),** (p < 0.05), ** (p < 0.01).
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Figure 4: Marginal Effect of Heat Waves by Socio-Demographic Dimensions

The figure reports marginal effects and 95% confidence intervals from regressions based on Equa-
tion 3, where heat waves are interacted with: (i) a gender indicator (column 1); (ii) a categorical
variable for age groups (column 2); (iii) an indicator for deteriorated health, defined as days lost
due to disability above the 95th percentile (column 3); (iv) a categorical variable for education
level (column 4); and (v) a categorical variable capturing the number of books at age 10, used as
a proxy for parental background (column 5).

earnings response to heat wave exposure, suggesting that climate shocks can exacerbate existing
social inequalities. Our findings support previous evidence of regressive impacts observed at the
county level (Behrer et al., 2021), but enrich them by uncovering the most vulnerable workers
along several dimensions.

Overall, although the difference in the marginal effects of HWs is not always statistically sig-
nificant across groups within a given dimension, our results indicate that the average annual loss
in earnings (Table G.32 of Appendix G) is often larger among more disadvantaged groups. For
instance, workers from low parental backgrounds (proxied by having none or few books at home
at age 10) experience an average annual loss of $235.64, whereas those from the highest parental
background (two bookcases) exhibit a much smaller, statistically insignificant gain of $1.12. This
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highlights how exposure to extreme heat may act as a mechanism that reinforces pre-existing
socio-economic inequalities, both within and across generations.

7 Conclusions

This paper provides new evidence on the earnings impact of extreme heat using rich, individual-
level longitudinal data for 14 European countries spanning more than six decades. We find that
heatcwaves exposure has a significant negative effect, with each additional day lowering average
monthly earnings by approximately 0.31%, corresponding to an average annual income loss of
around $159.63.

Earnings losses are highly uneven across workers. Individuals employed in more exposed
occupations and sectors—particularly outdoor manual and clerical jobs, as well as in agricul-
ture—experience the largest reductions in income. We show that these roles are more likely to be
held by individuals with lower educational attainment and more disadvantaged socio-economic
backgrounds, suggesting that extreme heat serves as a reinforcing mechanism for existing inequal-
ities.

Institutional context plays a critical mediating role. In countries with more decentralised or
deregulated wage-setting systems, we observe significantly larger earnings losses from heat expo-
sure. By contrast, collective bargaining appears to offer a buffer, protecting workers’” incomes from
climate-related shocks. This finding highlights the importance of wage institutions in shaping the
incidence and severity of climate impacts on the labor market.

We also document that earnings losses are disproportionately concentrated among vulnerable
sociodemographic groups, particularly low-income individuals (5th poorest percentile), adults
and the elderly, individuals with low educational attainment, and those from less advantaged
family backgrounds. These results further underscore that the labor market consequences of cli-
mate change are not evenly distributed. The unequal nature of climate-induced earnings losses
calls for targeted public policy responses; indeed, unequal damages from climate shocks can jus-
tify public intervention even in the absence of conventional market failures (Carleton et al., 2024).
Policies that strengthen labor protections, support adaptation in vulnerable sectors, and address
distributional disparities are essential to prevent climate change from exacerbating pre-existing
inequalities.
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Appendices

A Descriptive Statistics

Table A1: Classification of Occupations at Risk of Heat Stress

ISCO-08 Definition ISCO-08 Heat-Exposed Main task
1311 Agricultural and Forestry Production Managers 1 Abstract
1312 Aquaculture and Fisheries Production Managers 1 Abstract
1322 Mining Managers 1 Abstract
1323 Construction Managers 1 Abstract
2132 Farming, Forestry and Fisheries Advisers 1 Abstract
3117 Mining and metallurgical technicians 1 Abstract
3121 Mining Supervisors 1 Abstract
3123 Construction Supervisors 1 Abstract
3134 Petroleum and Natural Gas Refining Plant Operators 1 Abstract
3142 Agricultural Technicians 1 Abstract
3143 Forestry Technicians 1 Abstract
3152 Ships’ Deck Officers and Pilots 1 Abstract
4323 Transport Clerks 1 Clerical
4412 Mail Carriers and Sorting Clerks 1 Clerical
5112 Transport Conductors 1 Clerical
5113 Travel Guides 1 Clerical
5165 Driving Instructors 1 Clerical
5211 Stall and Market Salespersons 1 Clerical
5212 Street Food Salespersons 1 Clerical
5243 Door-to-door Salespersons 1 Clerical
5411 Fire Fighters 1 Clerical
5412 Police Officers 1 Clerical
5414 Security Guards 1 Clerical
5419 Protective Services Workers Not Elsewhere Classified 1 Clerical
6111 Field Crop and Vegetable Growers 1 Manual
6112 Tree and Shrub Crop Growers 1 Manual
6113 Gardeners, Horticultural and Nursery Growers 1 Manual
6114 Mixed Crop Growers 1 Manual
6121 Livestock and Dairy Producers 1 Manual
6123 Apiarists and Sericulturists 1 Manual
6129 Animal Producers Not Elsewhere Classified 1 Manual
6130 Mixed Crop and Animal Producers 1 Manual
6210 Forestry and Related Workers 1 Manual
6221 Aquaculture Workers 1 Manual
6222 Inland and Coastal Waters Fishery Workers 1 Manual
6223 Deep-sea Fishery Workers 1 Manual
6224 Hunters and Trappers 1 Manual
6310 Subsistence Crop Farmers 1 Manual
6320 Subsistence Livestock Farmers 1 Manual
6330 Subsistence Mixed Crop and Livestock Farmers 1 Manual
6340 Subsistence Fishers, Hunters, Trappers and Gatherers 1 Manual
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ISCO-08 Definition ISCO-08 Heat-Exposed Occupation

7111 House Builders 1 Manual
7112 Bricklayers and Related Workers 1 Manual
7113 Stonemasons, Stone Cutters, Splitters and Carvers 1 Manual
7114 Concrete Placers, Concrete Finishers and Related Workers 1 Manual
7115 Carpenters and Joiners 1 Manual
7119 Building Frame and Related Trades Workers Not Elsewhere Classified 1 Manual
7121 Roofers 1 Manual
7124 Insulation Workers 1 Manual
7126 Plumbers and Pipe Fitters 1 Manual
7127 Air Conditioning and Refrigeration Mechanics 1 Manual
7133 Building Structure Cleaners 1 Manual
7413 Electrical Line Installers and Repairers 1 Manual
7542 Shotfirers and Blasters 1 Manual
7544 Fumigators and Other Pest and Weed Controllers 1 Manual
8111 Miners and Quarriers 1 Manual
8112 Mineral and Stone Processing Plant Operators 1 Manual
8113 Well Drillers and Borers and Related Workers 1 Manual
8114 Cement, Stone and Other Mineral Products Machine Operators 1 Manual
8311 Locomotive Engine Drivers 1 Manual
8312 Railway Brake, Signal and Switch Operators 1 Manual
8322 Car, Taxi and Van Drivers 1 Manual
8331 Bus and Tram Drivers 1 Manual
8332 Heavy Truck and Lorry Drivers 1 Manual
8341 Mobile Farm and Forestry Plant Operators 1 Manual
8342 Earthmoving and Related Plant Operators 1 Manual
8343 Crane, hoist and related plant operators 1 Manual
8344 Lifting Truck Operators 1 Manual
8350 Ships” Deck Crews and Related Workers 1 Manual
9121 Hand Launderers and Pressers 1 Elementary
9122 Vehicle Cleaners 1 Elementary
9123 Window Cleaners 1 Elementary
9129 Other Cleaning Workers 1 Elementary
9211 Crop Farm Labourers 1 Elementary
9212 Livestock Farm Labourers 1 Elementary
9213 Mixed Crop and Livestock Farm Labourers 1 Elementary
9214 Garden and Horticultural Labourers 1 Elementary
9215 Forestry Labourers 1 Elementary
9216 Fishery and Aquaculture Labourers 1 Elementary
9311 Mining and Quarrying Labourers 1 Elementary
9312 Civil Engineering Labourers 1 Elementary
9313 Building Construction Labourers 1 Elementary
9331 Hand and Pedal Vehicle Drivers 1 Elementary
9332 Drivers of Animal-drawn Vehicles and Machinery 1 Elementary
9333 Freight Handlers 1 Elementary
9510 Street and Related Service Workers 1 Elementary
9520 Street Vendors (excluding Food) 1 Elementary
9611 Garbage and Recycling Collectors 1 Elementary
9612 Refuse Sorters 1 Elementary
9613 Sweepers and Related Labourers 1 Elementary
9621 Messengers, Package Deliverers and Luggage Porters 1 Elementary
9622 Odd Job Persons 1 Elementary
9623 Meter Readers and Vending-machine Collectors 1 Elementary
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Table A2: Summary Statistics

Variable Obs Mean Median SD Min Max
Dependent Variable
Earnings continuous 75258 2070.14 1608.82 1782.01 16.71 11595.59
Main Regressors
T > 95th perc, 3 days discrete 75258 8.53 7.00 7.49 0 69
T > 95th perc, 5 days discrete 75258 291 1.00 4.62 0 60
T > 30 °C, 3 days discrete 75258 5.65 0.00 13.29 0 108
T >30°C, 5 days discrete 75258 2.98 0.00 9.26 0 86
Main Covariates
Avg. prec. continuous 75258 2.10 2.00 0.71 0.27 7.70
Age discrete 75258  39.96 40.00 16.55 9 92
Gender dummy 75258 1.49 1 0.50 1 2
Education categorical 75258 1.79 2 1.01 0 3
Books at age 10 categorical 75258 2.44 2 1.29 1 5
Part-time (working hours) categorical 75258  1.21 1 0.62 1 5
Self-Employment dummy 75258  0.07 0 0.26 0 1
Extended Covariates
Cumulative Days Lost (Disability) discrete 73577  598.86 49.00 1309.82 0 21475
Experience discrete 75258  19.39 17.00 15.76 1 64
Seniority (within job) discrete 75258 7.87 0.00 13.17 0 62
Additional Variables
Exposed Sector dummy 75092  0.37 0 0.48 0 1
Sector Groups categorical 75092  5.24 6 1.83 1 7
Exposed Occupation dummy 69018 0.15 0 0.35 0 1
Occupation Groups categorical 68717 4.84 5 1.97 1 8

Table A3: Number of Earnings Information Available at Individual Level

Earnings Info Individuals (Frequency) Percentage Cumulative
1 Obs 13869 42.31% 42.31%
2 Obs 7902 24.10% 66.41%
3 Obs 5177 15.79% 82.20%
4 Obs 2735 8.34% 90.55%
5 Obs 1393 4.25% 94.80%
6 Obs 787 2.40% 97.20%
7 Obs 418 1.28% 98.47%
8 Obs 252 0.77% 99.24%
9 Obs 125 0.38% 99.62%
10 Obs 63 0.19% 99.81%

> 10 Obs 61 0.19% 100.00%
Total 32782 100.00%
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A.1 Earnings

Table A4: Wage Data Cleaning: Sample Size and Distribution

Variable N Mean SD p5 p25 p50 p75 p95

Step 0 196463 1679483 3.95e+07 69.0  500.0 1500 6000 80000

Step 1 110827 1913281 4.19e+07 200.0 1000 2900 14000 150000
Step 2 109349 1927449 4.21e+07 200.0 1000 3000 14000 150000
Step 3 97826 1195408 3.31e+07 200.0 1050 3000 15000 150000
Step 4 87944 252387 1.28e+07 20.03 19346 71571 1803.83 4172.46
Step 5 83537 1.24e+07 1.42e+09 199.55 79196 1628.60 2854.42 7310.72
Step 6 81526 431858 1.93e+07 201.10 788.08 1603.10 2791.31 6677.50
Step 7 77029  2066.72 178141 236.51 811.86 1604.94 273729 5651.64

Notes. Each step of the cleaning procedure reports the sample size and the distribution
of wages as the data are progressively refined. Initially, we have earnings information
for 196,463 observations (step 0). The sample is reduced to 110,827 observations in step
1, after retaining only income records that can be linked to a specific SHARE country,
allowing the reconstruction of location and exposure to temperature. In step 2, we re-
strict the sample to observations for which the currency is known, reducing the sample to
109349. Step 3 further limits the sample to observations with codable currencies: either
standard ISO 4217 codes or generic labels that can be confidently assigned to a specific
currency. This assignment is based on whether the income value falls within the range
of observed values for that currency within a three-year moving window, reducing the
sample to 97,826 observations. Step 4 converts all monetary values into U.S. dollars using
exchange rates provided by the Bank of Italy. Step 5 adjusts for inflation over time by
normalizing wages to 2010 U.S. dollars using the Consumer Price Index (CPI, 2010 = 100)
provided by the World Bank. Step 6 removes observations affected by extreme histori-
cal or political conditions: for example, wages in East Germany, Poland and Greece are
retained only from 1991 onward due to the presence of extreme outliers likely associated
with the economic transition, political instability and episodes of high chronic inflation.
Finally, step 7 removes implausibly high or low wage observations within each country
by trimming outliers below the 0.5th percentile and above the 99th percentile—first at the
country level and then in the overall sample. We adopt a less conservative approach on the
upper tail of the distribution, given that several implausible high values were reported.

All earnings information in SHARE is reported as the average monthly income in a specific
year. Values are expressed in nominal currencies, typically coded according to the ISO 4217 stan-
dard (e.g., “PLN — Polish zloty”). However, some observations use generic labels (e.g., “zloty”) or
period-specific currencies (e.g., “Czechoslovak koruna, 1953-1992”). The data cleaning proceeds
in several steps (Table A4) builds on the approach proposed by Trevisan et al. (2011). We follow
the same core steps, adjusting for inflation using CPI series and excluding implausible outliers,
but we do not apply PPP adjustments, as country fixed effects in our empirical models absorb
cross-country differences in purchasing power. All monetary amounts are expressed in 2010 U.S.
dollars using the CPI (2010 = 100) from the World Bank. Periods affected by major political or
monetary instability—such as East Germany, Poland, and Greece before 1991—display numer-
ous implausible wage outliers, likely reflecting distortions associated with economic transitions,
chronic inflation, or inconsistent reporting; these early observations are excluded. Finally, we trim

the lower 0.5th and upper 99th percentiles of the wage distribution within each country to re-
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move residual extreme values. The trimming threshold is asymmetric, reflecting the presence of
disproportionately many implausibly high wage observations that would otherwise bias upward
the mean and variance of earnings. This procedure preserves the integrity of the underlying wage
distribution while eliminating values that are implausible or historically inconsistent. Table A4
reports the evolution of the sample size and distribution across successive cleaning steps.

Table A5: Earnings by Country of Residence

Country Individuals Obs.  Mean SD p25 p50 p75 po95

Austria 2337 5959 117946 1125.16 301.65 842.64 174411 3399.89
Belgium 4084 9892 1735.74 1222.02 880.86 1508.72 226224 3986.23
Czech Republic 2098 3021 60151 34857 354.83 540.04 771.86 1275.53
Denmark 3114 9556 2907.31 172242 176219 2675.44 3662.53 6132.04
France 2834 6938 1940.68 1663.87 890.48 1489.17 2447.41 5216.67
Germany 2880 4691 1902.01 1410.38 895.89 1546.46 2474.34 4785.25
Greece 1284 1484 177556 1330.64 948.24 1456.37 2184.55 4274.09
Italy 3471 7982  2110.23 1770.64 1026.75 1643.84 254470 5812.89
Poland 1428 2116 68778 673.04 386.37 530.71 749.89 1569.62
Portugal 642 1405 1848.02 2082.58 59898 1032.73 2332.69 6433.27
Slovenia 895 1112 1368.66 1117.71 789.21 1072.02 1574.54 3073.39
Spain 2236 4624 1610.55 1596.78 582.86 1248.32 2043.17 4614.83
Sweden 3060 8260 2957.23 1961.17 1688.57 249246 3619.59 7239.19
Switzerland 2419 8218 2760.27 2321.84 939.96 2066.86 3928.52 7604.91
Total 32782 75258 2070.14 1782.01 81220 1608.82 274294 5661.05
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Table A6: Earnings by Occupation

Observations Mean SD p25 p50 p75 p95
By Sector Exposure
Not-Exposed 46934 2062.87 175836 822.84 1610.84 2736.73 5557.14
Exposed 28158 2082.81 182145 79148 160535 275229 5769.90
Total 75092 2070.35 178229 81220 1608.90 2743.40 5659.06
By Sector Group
Financial, Real Estate and Business 3735 2592.06 2007.12 1098.39 2085.72 3491.84 6730.95
Agriculture & Fishing 3119 1632.89 1623.75 55321 1133.30 214643 4769.84
Construction 5472 231044 194172 957.25 179334 3005.41 6347.22
Industry 15575 2016.21 178896 747.89 154349 2671.71 5550.19
Wholesale and Retail Trade 9353 1804.34 1671.62 678.62 1361.19 2352.07 5109.29
Transport, Hospitality & Storage 6534 2091.06 176520 849.04 1664.44 2730.16 5733.10
Public & Other Services 31304 2111.81 1747.73 873.82 1694.15 2790.20 5553.93
Total 75092 2070.35 178229 81220 1608.90 2743.40 5659.06
By Occupation Exposure
Not-Exposed 58827 210129 179198 83598 164522 2777.61 5711.92
Exposed 10191 1852.06 169542 697.83 1412.12 2418.19 5181.57
Total 69018 206449 178024 811.86 1602.78 2728.37 5648.46
By Occupation Group
Elementary (Indoor) 6859 1360.52 1279.80 514.45 104432 178259 3635.29
Elementary (Outdoor) 2441 1470.11 142564 564.17 113345 1846.36 3915.04
Manual (Indoor) 8853 177435 1641.80 639.72 137791 235440 4946.54
Manual (Outdoor) 5617 1896.87 1694.84 731.68 1475.58 2448.03 5325.51
Clerical (Indoor) 21375 1825.07 154594 77323 1455.80 2379.55 4753.07
Clerical (Outdoor) 1181 1786.97 1613.07 618.58 1431.68 2478.74 4682.46
Abstract (Indoor) 21443 274470 2008.03 1296.39 2309.33 3612.01 6917.86
Abstract (Outdoor) 948 2645.02 2090.60 104529 2134.44 363422 7149.44
Total 68717 2063.05 1779.74 811.64 1602.01 2724.23 5648.46
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A.2 Heat Waves
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Figure A1: Average Days of Heat Wave over Time

The figure displays the sample-weighted average number of heatwave days over time, based on two thresh-
old definitions. The relative threshold measure defines a heatwave as at least five consecutive days with
maximum temperatures above the 95th percentile of the location-specific historical distribution. The abso-
lute threshold measure defines a heatwave as at least five consecutive days with maximum temperatures
exceeding 30°C. The number of heatwave days under the absolute threshold shows a clear upward trend
over time, reflecting rising temperatures. In contrast, heatwave frequency under the relative threshold ex-
hibits recurring peaks but no consistent upward trend, as this measure is based on the 95th percentile of
daily maximum temperatures calculated over a rolling 30-year window.
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Table A7: Heat Waves Exposure by Country of Residence

T > 95th perc, 2 days T > 95th perc,5days T >30°C,2days T > 30°C,5 days

Obs Mean Obs Mean Obs Mean Obs Mean
Austria 5959 8.40 5959 2.33 5959 2.35 5959 0.57
Belgium 9892 6.03 9892 1.52 9892 0.68 9892 0.12
Czech Republic 3021 8.86 3021 2.65 3021 2.33 3021 0.75
Denmark 9556 8.63 9556 3.50 9556 0.03 9556 0.00
France 6938 8.18 6938 2.75 6938 3.48 6938 1.21
Germany 4691 7.73 4691 1.85 4691 1.22 4691 0.24
Greece 1484 10.05 1484 3.57 1484 44.06 1484 29.10
Italy 7982 12.15 7982 5.35 7982 16.01 7982 8.36
Poland 2116 7.86 2116 217 2116 1.81 2116 0.31
Portugal 1405 8.16 1405 1.87 1405 14.94 1405 5.23
Slovenia 1112 16.38 1112 6.19 1112 9.43 1112 2.78
Spain 4624 941 4624 3.16 4624 28.50 4624 18.45
Sweden 8260 8.79 8260 3.49 8260 0.13 8260 0.03
Switzerland 8218 6.75 8218 1.84 8218 0.72 8218 0.14
Total 75258 8.53 75258 291 75258 5.65 75258 2.98

Table A8: Heat Waves Exposure by Earnings Decile

T > 95th perc,2 days T > 95th perc, 5days T >30°C,2days T > 30°C,5days

Obs Mean Obs Mean Obs Mean Obs Mean
0-5th percentile 3761 7.65 3761 2.31 3761 5.90 3761 3.20
10th-20th percentile 7531 8.09 7531 2.54 7531 5.45 7531 2.71
20th-30th percentile 7512 8.22 7512 2.64 7512 6.43 7512 3.36
30th-40th percentile 7520 9.07 7520 3.13 7520 7.95 7520 437
40th-50th percentile 7527 9.15 7527 3.18 7527 7.93 7527 428
50th-60th percentile 7529 9.01 7529 3.18 7529 7.27 7529 4.01
5th-10th percentile 3766 7.73 3766 2.34 3766 448 3766 2.20
60th-70th percentile 7528 8.79 7528 3.20 7528 5.63 7528 3.04
70th-80th percentile 7525 8.26 7525 291 7525 4.00 7525 2.04
80th-90th percentile 7533 8.58 7533 3.11 7533 3.38 7533 1.73
90th-95th percentile 3760 8.46 3760 2.95 3760 3.22 3760 1.56
95th-100th percentile 3766 8.39 3766 2.73 3766 3.33 3766 1.48
Total 75258 8.53 75258 291 75258 5.65 75258 2.98
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Table A9: Heat Waves Exposure by Exposed Occupations and Sectors

T > 95th perc, 2days T > 95th perc,5days T >30°C,2days T >30°C,5days

Obs Mean Obs Mean Obs Mean Obs Mean
By Sector Exposure
Not-Exposed 46934 8.53 46934 2.89 46934 547 46934 2.87
Exposed 28158 8.52 28158 2.93 28158 5.93 28158 3.13
Total 75092 8.53 75092 291 75092 5.64 75092 2.97
By Sector Group
Financial, Real Estate and Business 3735 8.54 3735 2.96 3735 412 3735 2.02
Agriculture & Fishing 3119 8.77 3119 3.03 3119 9.67 3119 5.59
Construction 5472 8.51 5472 297 5472 6.81 5472 3.83
Industry 15575 8.46 15575 2.88 15575 5.03 15575 2.48
Wholesale and Retail Trade 9353 8.31 9353 2.79 9353 5.55 9353 2.90
Transport, Hospitality & Storage 6534 8.59 6534 2.95 6534 6.18 6534 3.37
Public & Other Services 31304 8.59 31304 2.92 31304 5.43 31304 2.85
Total 75092 8.53 75092 291 75092 5.64 75092 2.97
By Occupation Exposure
Not-Exposed 58827 8.50 58827 291 58827 5.45 58827 2.88
Exposed 10191 8.77 10191 2.99 10191 7.88 10191 4.33
Total 69018 8.54 69018 2.92 69018 5.81 69018 3.10
By Occupation Group
Elementary (Indoor) 6859 8.82 6859 3.20 6859 7.89 6859 4.44
Elementary (Outdoor) 2441 9.11 2441 3.17 2441 10.57 2441 6.02
Manual (Indoor) 8853 8.35 8853 2.80 8853 6.22 8853 3.26
Manual (Outdoor) 5617 8.77 5617 3.02 5617 7.90 5617 4.36
Clerical (Indoor) 21375 8.40 21375 2.87 21375 5.58 21375 3.03
Clerical (Outdoor) 1181 8.48 1181 2.74 1181 5.05 1181 242
Abstract (Indoor) 21443 8.54 21443 2.90 21443 4.18 21443 2.05
Abstract (Outdoor) 948 8.24 948 2.66 948 4.35 948 2.13
Total 68717 8.53 68717 292 68717 5.80 68717 3.09
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A.3 Occupational and Sectoral Exposure

Table A10: Exposed Occupations and Sectors by Country of Residence

Sectors

Occupations

Not-Exposed Exposed

Total Not-Exposed Exposed Total

Austria 3713 2240 5953 4318 941 5259
Belgium 6537 3307 9844 8055 930 8985
Czech Republic 1522 1499 3021 2455 478 2933
Denmark 5922 3632 9554 7191 918 8109
France 4455 2476 6931 5364 926 6290
Germany 3117 1562 4679 3651 636 4287
Greece 908 549 1457 1119 284 1403
Italy 4657 3323 7980 6333 1404 7737
Poland 1131 984 2115 1300 532 1832
Portugal 823 577 1400 861 242 1103
Slovenia 596 516 1112 696 198 894

Spain 2393 2227 4620 3420 1092 4512
Sweden 5374 2849 8223 7355 761 8116
Switzerland 5786 2417 8203 6709 849 7558
Total 46934 28158 75092 58827 10191 69018

Table A11: Exposed Occupations and Sectors by Earnings Percentile

Sectors Occupations

Not-Exposed Exposed Total Not-Exposed Exposed Total
0-5th percentile 2284 1468 3752 2790 650 3440
5th-10th percentile 2306 1454 3760 2796 634 3430
10th—20th percentile 4600 2913 7513 5784 1171 6955
20th-30th percentile 4708 2792 7500 5762 1143 6905
30th—40th percentile 4727 2776 7503 5837 1086 6923
40th-50th percentile 4810 2692 7502 5899 1051 6950
50th-60th percentile 4757 2757 7514 5915 1055 6970
60th—70th percentile 4697 2814 7511 5999 919 6918
70th-80th percentile 4771 2734 7505 5990 828 6818
80th—90th percentile 4706 2814 7520 5992 845 6837
90th-95th percentile 2311 1445 3756 3056 374 3430
95th-100th percentile 2257 1499 3756 3007 435 3442
Total 46934 28158 75092 58827 10191 69018
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Table A12: Exposed Occupations by Sector and Occupation Group

Indoor Outdoor Total

By Sector Group
Financial, Real Estate and Business 3376 62 3438
Agriculture & Fishing 528 2329 2857
Construction 1884 3256 5140
Industry 12829 1418 14247
Wholesale and Retail Trade 7901 656 8557
Transport, Hospitality & Storage 5033 967 6000
Public & Other Services 27157 1496 28653
Total 58708 10184 68892

By Occupation Group

Elementary 6859 2441 9300
Manual 8853 5617 14470
Clerical 21375 1181 22556
Abstract 21443 948 22391
Total 58530 10187 68717
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B Validation of the Identifying Assumption

Table B.13: Testing for Covariates’ Imbalance in Heatwave Exposure

Tmax > 95th perc Tmax > 95th perc
>5 consecutive days >2 consecutive days
@) @ )] (©)
Age 0.000302 0.000823
(0.0016) (0.0009)
Gender x Age -0.00195 -0.00370 -0.00244*** -0.00204
(0.0013) (0.0028) (0.0007) (0.0019)
Age Squared -0.00000925 -0.0000327  -0.00000430  -0.0000250
(0.0000) (0.0000) (0.0000) (0.0000)
Gender x Age Squared 0.0000290*  0.0000508  0.0000352***  0.0000314
(0.0000) (0.0000) (0.0000) (0.0000)
Lower Seconday Edu -0.00737 0.00186
(0.0063) (0.0037)
Upper Seconday Edu 0.000936 0.00620*
(0.0052) (0.0032)
Tertiary Edu -0.00540 0.00421
(0.0059) (0.0038)
One shelf of books (at age 10) 0.00195 -0.00127
(0.0049) (0.0026)
One bookcase (at age 10) 0.00759 0.00133
(0.0047) (0.0028)
Two bookcases (at age 10) 0.0101* 0.000212
(0.0060) (0.0034)
More than two bookcases (at age 10) 0.00784 0.00325
(0.0061) (0.0036)
Health loss 0.00000148  0.00000550  0.000000779  0.00000531*
(0.0000) (0.0000) (0.0000) (0.0000)
Always Part-time 0.0159*** 0.0119 0.00139 -0.0122
(0.0059) (0.0156) (0.0030) (0.0082)
From part- to full-time -0.00382 0.0180 0.00477 -0.0149
(0.0110) (0.0259) (0.0076) (0.0196)
From full- to part-time -0.0146 -0.109** 0.00732 -0.0236
(0.0152) (0.0447) (0.0102) (0.0297)
Changed multiple time part-/full-time 0.0156 -0.00185 -0.0133 -0.0527
(0.0156) (0.0494) (0.0099) (0.0378)
Self Employed 0.00337 0.0193 0.00351 0.00506
(0.0064) (0.0168) (0.0039) (0.0098)
Experience -0.000317 -0.00389* 0.0000887 -0.00126
(0.0007) (0.0023) (0.0004) (0.0013)
Experience Squared 0.0000104  0.0000513**  -0.00000356  0.0000180
(0.0000) (0.0000) (0.0000) (0.0000)
Seniority -0.000616 -0.00244*  -0.000888** -0.00111
(0.0006) (0.0014) (0.0004) (0.0009)
Seniority Squared 0.0000274*  0.0000782**  0.0000181**  0.0000134
(0.0000) (0.0000) (0.0000) (0.0000)
Location, Generation, Year FE v v v v
Country-Year Linear Trends v v v v
Individual FE v v
Individual by Occupation (iscol) FE
Individuals 32337 15580 32337 15580
Observations 73577 44271 73577 44271
Adjusted R? 0.29645 0.28196 0.21827 0.17257

Notes. The dependent variable is a binary indicator that takes the value 1 if a heat wave occurs, and 0 oth-
erwise. Clustered standard errors at the location level (sub-minimum NUTS level, the source of temperature
variation) are reported in parentheses * (p < 0.10), ** (p < 0.05), *** (p < 0.01).
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Table B.14: Testing for Serial Correlation in Heatwave Occurrence

@) ) ®) (©)

Shock (Tmax > 95th perc, >5 consecutive days) t-1

Shock (Tmax > 95th perc, >2 consecutive days) t-1

-0.0188* -0.0133
(0.0113) (0.0162)
0.0310**  0.0208
(0.0156)  (0.0196)

Precipitation control

Location, Generation, Year FE
Covariates

Country-Year Linear Trends
Individual FE

Individual by Occupation (iscol) FE

SSENENEN
ASENENENEN

SSENENEN
ASENENENEN

Individuals
Observations
Adjusted R?

32188 15399 32188 15399
72674 43590 72674 43590
0.31517 0.29838 0.23418 0.18762

Notes. The dependent variable is a binary indicator that takes the value 1 if a heatwave oc-
curs, and 0 otherwise. The manin regressor is a dummy for the occurence of the heat wave at
time t-1. Covariates: age and age squared by gender, experience and experience squared, se-
niority within the job and seniority squared, part-time and self-employment status. Clustered
standard errors at the location level (sub-minimum NUTS level, the source of temperature
variation) are reported in parentheses * (p < 0.10), ** (p < 0.05), *** (p < 0.01).
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Complementary Results: Temperature Impact on Earnings

Table C.15: Effect of Heat Waves on Earnings, Without Country-Year Linear Trends

€] (2 (3) 4) ©)

Days of HW (Tmax > 95th perc) -0.00612***  -0.00601*** -0.00615*** -0.00511*** -0.00485***

(0.0013) (0.0013) (0.0015) (0.0019) (0.0019)
Precipitation control N v v v v
Location, Generation, Year FE v v v v v
Main Covariates v v v v v
Extended Covariates v v v v
Country-Year Linear Trends
Individual FE v v
Individual x Occupation (ISCO1) FE v
Individuals 32782 32337 15580 15580 15580
Observations 75258 73577 44271 44271 44271
Adjusted R? 0.45921 0.45954 0.45797 0.59877 0.61307

Notes. The dependent variable is the log transformation of earnings expressed in dollars (base year 2010). Days
of HW count the number of days spent in a heatwave (Tyax > 95th perc) longer than 5 consecutive days. Main
covariates: age and age squared by gender, the level of education, the number of books at age 10, part-time and
self-employment status. Extended covariates also include the cumulative days lost due to disability (health loss),
experience and experience squared, seniority within the job and seniority squared. Clustered standard errors at
the location level (sub-minimum NUTS level, the source of temperature variation) are reported in parentheses *

(p < 0.10),** (p < 0.05), *** (p < 0.01).

Table C.16: Effect of Heat Waves on Earnings, with NUTS1-Year Linear Trends

(1) 2 (3) 4) ©)

Days of HW (Tyax > 95th perc) -0.00311*** -0.00327*** -0.00314*** -0.00242* -0.00254*
(0.0009) (0.0009) (0.0011) (0.0013)  (0.0014)

Precipitation control v v v v v
Location, Generation, Year FE v v v v v
Main Covariates v v v v v
Extended Covariates v v v v
NUTSI1-Year Linear Trends v v v v v
Individual FE v v
Individual x Occupation ISCO1) FE v
Individuals 31671 31232 15455 15455 15455
Observations 73977 72305 43997 43997 43997
Adjusted R? 0.52023 0.52041 0.52159 0.66237 0.67252

Notes. The dependent variable is the log transformation of earnings expressed in dollars (base year 2010). Days
of HW count the number of days spent in a heatwave (Tyax > 95th perc) longer than 5 consecutive days. Main
covariates: age and age squared by gender, the level of education, the number of books at age 10, part-time and
self-employment status. Extended covariates also include the cumulative days lost due to disability (health loss),
experience and experience squared, seniority within the job and seniority squared. Clustered standard errors at
the location level (sub-minimum NUTS level, the source of temperature variation) are reported in parentheses *
(p < 0.10), ** (p < 0.05), ** (p < 0.01).
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Table C.17: Effect of Heat Waves on Earnings, Short Heat Waves

0 (2 (3) 4 ©)

Days of HW (Tyax > 95th perc) -0.00239***  -0.00258*** -0.00237*** -0.00173** -0.00180**

(0.0005) (0.0005) (0.0006) (0.0008) (0.0009)
Precipitation control v v v v v
Location, Generation, Year FE v v v v N
Main Covariates v v v v v
Extended Covariates v v v v
Country-Year Linear Trends v v v v v
Individual FE v v
Individual x Occupation (ISCO1) FE v
Individuals 32782 32337 15580 15580 15580
Observations 75258 73577 44271 44271 44271
Adjusted R? 0.51750 0.51762 0.52105 0.66160 0.67179

Notes. The dependent variable is the log transformation of earnings expressed in dollars (base year 2010). Days
of HW count the number of days spent in a heatwave (Tyax > 95th perc) longer than 2 consecutive days. Main
covariates: age and age squared by gender, the level of education, the number of books at age 10, part-time and
self-employment status. Extended covariates also include the cumulative days lost due to disability (health loss),
experience and experience squared, seniority within the job and seniority squared. Clustered standard errors at
the location level (sub-minimum NUTS level, the source of temperature variation) are reported in parentheses *
(p < 0.10), ** (p < 0.05), *** (p < 0.01).

Table C.18: Effect of Heat Waves on Earnings, by Period

1960-1990 1975-2005 1990-2020

1) (2) 3)

Days of HW (Tyax > 95th perc) -0.00320*  -0.00188** -0.00208**

(0.0018) (0.0009) (0.0008)
Precipitation control v v v
Location, Generation,Year FE v v v
Main Covariates v v v
Extended Covariates v v v
Country-Year Linear Trends v v v
Individual FE
Individual by Occupation (iscol) FE
Individuals 18654 19754 25897
Observations 35252 33000 38313
Adjusted R? 0.45833 0.48493 0.63109

Notes. The dependent variable is the log transformation of earnings expressed in
dollars (base year 2010). Days of HW count the number of days spent in a heatwave
(Tmax > 95th perc) longer than 2 consecutive days. Main covariates: age and age
squared by gender, the level of education, the number of books at age 10, part-time
and self-employment status. Extended covariates also include the cumulative days
lost due to disability (health loss), experience and experience squared, seniority
within the job and seniority squared. Clustered standard errors at the location level
(sub-minimum NUTS level, the source of temperature variation) are reported in
parentheses * (p < 0.10), ** (p < 0.05), ** (p < 0.01).
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Table C.20: Effect of Heat Waves on Earnings, Full-Time Workers

1) (2) 3) 4) %)
Days of HW (Tyax > 95th perc) -0.00280***  -0.00292*** -0.00311*** -0.00211 -0.00218
(0.0009) (0.0009) (0.0011) (0.0014)  (0.0014)
Precipitation control v v v v v
Location, Generation, Year FE v v v ve v
Main Covariates v v v v v
Extended Covariates v v v v
Country-Year Linear Trends v v v v v
Individual FE v v
Individual x Occupation (ISCO1) FE v
Individuals 29934 29540 13262 13262 13262
Observations 64788 63567 36628 36628 36628
Adjusted R2 0.52431 0.52229 0.51666 0.65847 0.66721

Notes. The sample is restricted to full-time workers. The dependent variable is the log transformation of
income expressed in dollars (base year 2010). Days of HW count the number of days spent in a heatwave
(Tmax > 95th perc) longer than 5 consecutive days. Main covariates: age and age squared by gender, the level
of education, the number of books at age 10, part-time and self-employment status. Extended covariates also
include the cumulative days lost due to disability (health loss), experience and experience squared, seniority
within the job and seniority squared. Clustered standard errors at the location level (sub-minimum NUTS level,
the source of temperature variation) are reported in parentheses * (p < 0.10), ** (p < 0.05), *** (p < 0.01).

Table C.21: Effect of Heat Waves on Earnings, with Location by Occupation FE

(1) (2) 3) 4

Days of HW (Tyvax > 95th perc) -0.00583***  -0.00559*** -0.00576*** -0.00525***

(0.0014) (0.0014) (0.0015) (0.0019)
Precipitation control v v v v
Location, Generation, Year FE v v v v
Main Covariates v v v v
Extended Covariates v v v
Country-Year Linear Trends v v v v
Individual FE v
Individuals 30360 29916 16929 16929
Observations 68309 66653 53450 53450
Adjusted R? 0.48449 0.48427 0.48506 0.59463

Notes. The dependent variable is the log transformation of income expressed in dollars (base
year 2010). Days of HW count the number of days spent in a heatwave (Tyax > 95th perc)
longer than 5 consecutive days. Main covariates: age and age squared by gender, the level
of education, the number of books at age 10, part-time and self-employment status. Extended
covariates also include the cumulative days lost due to disability (health loss), experience and
experience squared, seniority within the job and seniority squared. Clustered standard errors at
the location level (sub-minimum NUTS level, the source of temperature variation) are reported

in parentheses * (p < 0.10), ** (p < 0.05), *** (p < 0.01).
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D Complementary Results: Absolute Temperature Measures

In this section of the Appendix, we re-estimate our main results using absolute temperature
thresholds, defining heatwave days as those with Tyjax > 30°C for at least five consecutive days
(Tables D.22 and D.23). We also explore the effects of temperature across the full distribution by
modeling exposure through temperature bins (Tables D.24, D.25, and Figure A2), with the 10-15°C
range as the omitted category, following prior literature that identifies it as optimal for productiv-
ity (Burke et al., 2015).

Although adopting absolute thresholds reduces the number of identified heatwave events—
particularly in Northern European countries—we continue to find economically and statistically
significant effects when country-year linear trends are excluded. In our preferred specification
(Table D.22, column 2), an additional day in a heat wave of at least five consecutive days lowers
income by approximately 1 percent, while Table D.24 shows that each additional day above 30°C
reduces earnings by about 1.3 percent. These magnitudes are consistent with, though somewhat
larger than, those obtained using relative thresholds.

When we include country-year linear trends (Tables D.23 and D.25), the estimated effects
largely disappear, highlighting that much of the variation in absolute threshold measures is driven
by long-term local trends rather than short-term heat shocks.

This pattern is consistent with recent evidence on binning bias in nonlinear temperature re-
gressions (Jones et al., 2025). Global warming mechanically increases the number of very hot days
in already warm countries and decreases the number of very cold days in cooler ones. When
long-run income dynamics also differ systematically with baseline climate—as is likely across Eu-
ropean countries—regressions may conflate these parallel trends with causal temperature shocks.
The fact that the estimated effects disappear even when we include country-year linear trends
suggests that much of the identifying variation in absolute temperature measures reflects these
cross-country differences in baseline climate rather than genuine short-run heat shocks. In other
words, the attenuation of effects likely indicates the removal of spurious “trends-on-trends” cor-
relations, rather than the absence of any short-run temperature impacts, which may not be ade-
quately captured by our absolute temperature thresholds.
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Table D.22: Effect of Heat Waves (Absolute Measures, Tyiax > 30 © C) on Earnings, Without
Country-Year Linear Trends

(1) (2 3) 4) )

Days of HW (Tyax > 30°C) -0.0111**  -0.0108*** -0.0107*** -0.00993***  -0.00976***

(0.0016) (0.0016) (0.0018) (0.0021) (0.0021)
Precipitation control v v v v v
Location, Generation, Year FE v v v v v
Main Covariates v v v v v
Extended Covariates v v v v
Country-Year Linear Trends
Individual FE v v
Individual x Occupation (ISCO1) FE v
Individuals 32782 32337 15580 15580 15580
Observations 75258 73577 44271 44271 44271
Adjusted R? 0.46122 0.46148 0.45989 0.60049 0.61476

Notes. The dependent variable is the log transformation of earnings expressed in dollars (base year 2010). Days
of HW count the number of days spent in a heatwave (Typax > 95th perc) longer than 5 consecutive days. Main
covariates: age and age squared by gender, the level of education, the number of books at age 10, part-time and
self-employment status. Extended covariates also include the cumulative days lost due to disability (health loss),
experience and experience squared, seniority within the job and seniority squared. Clustered standard errors at
the location level (sub-minimum NUTS level, the source of temperature variation) are reported in parentheses *
(p <0.10), ** (p < 0.05), *** (p < 0.01).

Table D.23: Effect of Heat Waves (Absolute Measures, Tyiax > 30 ° C) on Earnings, With Country-
Year Linear Trends

1) () 3) 4) ©)
Days of HW (Tpmax > 30 ° C) 0.000220 0.000186 0.00132 0.00202 0.00217
(0.0009)  (0.0008) (0.0011) (0.0015) (0.0015)
Precipitation control v v v v v
Location, Generation, Year FE v v v v v
Main Covariates v v v v v
Extended Covariates v v v v
Country-Year Linear Trends v v v v v
Individual FE v v
Individual x Occupation (ISCO1) FE v
Individuals 32782 32337 15580 15580 15580
Observations 75258 73577 44271 44271 44271
Adjusted R? 0.51733 0.51741 0.52089 0.66157 0.67177

Notes. The dependent variable is the log transformation of earnings expressed in dollars (base year

2010). Days of HW count the number of days spent in a heatwave (Tyjax > 95th perc) longer than
5 consecutive days. Main covariates: age and age squared by gender, the level of education, the
number of books at age 10, part-time and self-employment status. Extended covariates also include
the cumulative days lost due to disability (health loss), experience and experience squared, seniority
within the job and seniority squared. Clustered standard errors at the location level (sub-minimum
NUTS level, the source of temperature variation) are reported in parentheses * (p < 0.10), ** (p <
0.05), *** (p < 0.01).
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Table D.24: Effect of Temperature Bins on Earnings, Without Country-Year Linear Trends

(1) (2 3 4 )
Tavg <-5°C 0.00380***  0.00342***  0.00475***  0.00409***  0.00309*
(0.0013) (0.0013) (0.0014) (0.0015) (0.0016)
-5°C > Tavg < 0°C 0.000328  -0.000114 0.000893 0.00132 0.00104
(0.0011) (0.0011) (0.0011) (0.0013) (0.0013)
0°C > Tayg < 5°C -0.000261  -0.000419  0.0000820  -0.000323  -0.000724
(0.0010) (0.0010) (0.0011) (0.0012) (0.0012)
5°C > Tavg < 10°C 0.000139  -0.0000106  0.000355 0.000148 0.000140
(0.0007) (0.0007) (0.0008) (0.0009) (0.0009)
15 °C > Tayg < 20°C -0.000936*  -0.000852  -0.000813 -0.00107 -0.00112
(0.0005) (0.0005) (0.0006) (0.0007) (0.0007)
20 °C > Tavg < 25°C 0.00312***  (0.00312***  0.00348***  0.00387***  0.00355***
(0.0008) (0.0007) (0.0008) (0.0010) (0.0010)
25°C > Tayg < 30°C -0.0115***  -0.0112***  -0.00942*** -0.00894*** -0.00884***
(0.0017) (0.0017) (0.0018) (0.0022) (0.0023)
T avg >30 °C -0.0137***  -0.0136**  -0.0211***  -0.0150** -0.0154**
(0.0044) (0.0044) (0.0051) (0.0065) (0.0068)
Precipitation control v v v v v
Location, Generation, Year FE v v v v v
Main Covariates v v v v v
Extended Covariates v v v v
Country-Year Linear Trends
Individual FE v v
Individual x Occupation (ISCO1) FE v
Individuals 32779 32334 15580 15580 15580
Observations 75255 73574 44271 44271 44271
Adjusted R? 0.46443 0.46458 0.46335 0.60384 0.61780

Notes. The dependent variable is the log transformation of earnings expressed in dollars (base year 2010). The
omitted temperature bin is 5°C > Tayg < 10°C. Main covariates: age and age squared by gender, the level of
education, the number of books at age 10, part-time and self-employment status. Extended covariates also include
the cumulative days lost due to disability (health loss), experience and experience squared, seniority within the
job and seniority squared. Clustered standard errors at the location level (sub-minimum NUTS level, the source of
temperature variation) are reported in parentheses * (p < 0.10), ** (p < 0.05), *** (p < 0.01).
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Table D.25: Effect of Temperature Bins on Earnings, With Country-Year Linear Trends

1) () 3) 4) ()
Tavg <-5°C 0.000270 0.000486 0.00116 0.000860 0.000280
(0.0008) (0.0008) (0.0010) (0.0012) (0.0013)
-5°C > Tayg < 0°C -0.000519  -0.000214 0.000645 0.00143 0.00111
(0.0006) (0.0006)  (0.0008)  (0.0009)  (0.0009)
0°C > Tayg < 5°C -0.000560  -0.000294 0.000250 0.000756 0.000299
(0.0005) (0.0006) (0.0007) (0.0008) (0.0008)
5°C > Tavg < 10°C -0.000467  -0.000450  -0.000137 0.000626 0.000508
(0.0005) (0.0005) (0.0006) (0.0007) (0.0007)
15 °C > Tayg < 20°C -0.000975**  -0.00101** -0.000619 -0.000636 -0.000774
(0.0005) (0.0005) (0.0005) (0.0006) (0.0006)
20 °C > Tayg < 25°C -0.00235***  -0.00240%** -0.00194*** -0.00206*** -0.00217***
(0.0005) (0.0005)  (0.0006)  (0.0007)  (0.0007)
25 °C > Tayg < 30°C -0.00177**  -0.00172**  0.000260 0.000928 0.000998
(0.0008) (0.0008)  (0.0010)  (0.0014)  (0.0014)
Tavg >30 °C -0.00303 -0.00289 -0.000174 0.00344 0.00217
(0.0029) (0.0029) (0.0057) (0.0051) (0.0051)
Precipitation control v v v v v
Location, Generation, Year FE v v v v v
Main Covariates v v v v v
Extended Covariates v v v v
Country-Year Linear Trends v v v v v
Individual FE v v
Individual x Occupation (ISCO1) FE v
Individuals 32779 32334 15580 15580 15580
Observations 75255 73574 44271 44271 44271
Adjusted R? 0.51753 0.51762 0.52102 0.66178 0.67197

Notes. The dependent variable is the log transformation of earnings expressed in dollars (base year 2010). The
omitted temperature bin is 5°C > Tayg < 10°C. Main covariates: age and age squared by gender, the level of
education, the number of books at age 10, part-time and self-employment status. Extended covariates also include
the cumulative days lost due to disability (health loss), experience and experience squared, seniority within the job
and seniority squared. Clustered standard errors at the location level (sub-minimum NUTS level, the source of
temperature variation) are reported in parentheses * (p < 0.10), ** (p < 0.05), *** (p < 0.01).
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Figure A2: Temperature Impact on Earnings - Temperature Bins

Notes. The dependent variable is the log transformation of earnings expressed in dollars (base year 2010).
The omitted temperature bin is 5°C > Tayg < 10°C. Main covariates: age and age squared by gender,
the level of education, the number of books at age 10, part-time and self-employment status. Extended
covariates also include the cumulative days lost due to disability (health loss), experience and experience
squared, seniority within the job and seniority squared. Clustered standard errors at the location level

(sub-minimum NUTS level, the source of temperature variation) are reported in parentheses * (p < 0.10),
** (p <0.05), ** (p < 0.01).
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E Complementary Results: Distributional and Heterogeneous Effects
of Heat Waves

Table E.26: Effect of Heat Waves on Earnings, Heterogeneity by Occupation and Sector

@ @ )] 4
Days of HW (Tyax > 95th perc) -0.00263**  -0.000138  -0.00219** -0.00343*
(0.0009) (0.0024) (0.0008) (0.0019)
Panel A: By Exposed Sectors

Exposed Sectors x HW (Tyax > 95th perc) -0.00120
(0.0011)
Panel B: By Sector
Agriculture & Fishing x HW (Tymax > 95th perc) -0.00967**
(0.0048)
Construction x HW (Tyax > 95th perc) -0.00161
(0.0034)
Industry x HW (Tyax > 95th perc) -0.00264
(0.0027)
Wholesale & Retail Trade x HW (Tyax > 95th perc) -0.00482
(0.0031)
Transport, Hospitality & Storage x HW (Tyax > 95th perc) -0.00316
(0.0029)
Public & Other Services x HW (Tyax > 95th perc) -0.00248
(0.0026)

Panel C: By Exposed Occupations

Outdoor Exposed Occupations x HW (Tyax > 95th perc) -0.00353*
(0.0018)

Panel D: By Occupations

Elementary (Outdoor) x HW (Tyax > 95th perc) 0.00163
(0.0031)
Manual (Indoor) x HW (Tyax > 95th perc) 0.00346
(0.0024)
Manual (Outdoor) x HW (Tmax > 95th perc) -0.00424
(0.0029)
Clerical (Indoor) x HW (Tyax > 95th perc) 0.00121
(0.0021)
Clerical (Outdoor) x HW (Tyax > 95th perc) -0.00833*
(0.0047)
Abstract (Indoor) x HW (Tyax > 95th perc) 0.000962
(0.0022)
Abstract (Outdoor) x HW (Tymax > 95th perc) 0.00719
(0.0052)
Precipitation control v v v v
Location, Generation, Year FE v v v v
Restricted Covariates v v v v
Extended Covariates v v v v
Country-Year Linear Trends v v v v
Individual FE
Individual by Occupation (iscol) FE
Individuals 32269 32269 30318 30218
Observations 73413 73413 67355 67057
Adjusted R? 0.51793 0.52036 0.51738 0.52807

Notes. The dependent variable is the log transformation of earnings expressed in dollars (base year 2010). Days of HW
count the number of days spent in a heatwave (Tyax > 95th perc) > 5 consecutive days. The reference category is Not
Outdoor Exposed Occupations in column (1); Armed Forces, Managers, Professionals in column (2); Not Exposed Sectors
in column (3); and Financial, Real Estate and Business in column (4). Restricted covariates: age and age squared by
gender, experience and experience squared, seniority within the job and seniority squared, part-time and self-employment
status. Extended covariates also include the level of education, the cumulative days lost due to disability (health loss), and
the number of books at age 10. Clustered standard errors at the location level (sub-minimum NUTS level, the source of
temperature variation) are reported in parentheses * (p < 0.10), ** (p < 0.05), *** (p < 0.01).
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Table E.27: Effect of Heat Waves on Earnings, Heterogenity by Institutional Setting

1)

Days of HW (Tymax > 95th perc) -0.000163

(0.0014)
Sectoral Regulation x HW (Tyax > 95th perc)  -0.00353**

(0.0014)
Large Deregulation x HW (Tyvax > 95th perc)  -0.00359

(0.0026)
Precipitation control v
Location, Generation, Year FE v
Restricted Covariates v
Extended Covariates v
Country-Year Linear Trends v
Individual FE
Individual by Occupation (iscol) FE
Individuals 32337
Observations 73577
Adjusted R? 0.51756

Notes. The dependent variable is the log transformation of earn-

ings expressed in dollars (base year 2010). Days of HW count the
number of days spent in a heatwave (Tyjax > 95th perc) longer
than 5 consecutive days. The reference category is centralized bar-
gaining system countries in column (1) and Alpine Regions in col-
umn (2). Restricted covariates: age and age squared by gender,
experience and experience squared, seniority within the job and
seniority squared, part-time and self-employment status. Clus-
tered standard errors at the location level (sub-minimum NUTS
level, the source of temperature variation) are reported in paren-
theses * (p < 0.10), ** (p < 0.05), ** (p < 0.01).
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Table E.28: Effect of Heat Waves on Earnings, Heterogenity by Socio-demographic factors

) 2 ®) 4 ©)
Days of HW (Tyax > 95th perc) -0.00303*** -0.00112 -0.00302*** -0.00513*** -0.00505***
(0.0010) (0.0020) (0.0009) (0.0015) (0.0012)
By Gender
Female x HW (Tyax > 95th perc) -0.000216
(0.0011)
By Age
25 < Age<45 x HW (Tyax > 95th perc) -0.00293
(0.0024)
Age > x HW (Tumax > 95th perc) -0.00247
By Health Condition
Health Loss x HW (Tyax > 95th perc) -0.00177
(0.0022)
By Education
Lower Secondary Edu x HW (Tyax > 95th perc) 0.000746
(0.0020)
Upper Secondary Edu x HW (Tyax > 95th perc) 0.00285*
(0.0017)
Tertiary Edu x HW (Tyax > 95th perc) 0.00404**
(0.0018)
By Parental Background
One shelf of books (at age 10) x HW (Tyax > 95th perc) 0.00304**
(0.0014)
One bookcase (at age 10) x HW (Tyax > 95th perc) 0.00244
(0.0018)
Two bookcases (at age 10) x HW (Tyax > 95th perc) 0.00498***
(0.0019)
More than two bookcases (at age 10) x HW (Tyax > 95th perc) 0.00516**
(0.0021)
Precipitation, Geo id, Generation, Year FE v v v v v
Restricted Covariates v v v v v
Extended Covariates v v v v v
Country-Year Linear Trends v v v v v
Individual FE
Individual by Occupation (iscol) FE
Individuals 32337 32337 32390 32337 32337
Observations 73577 73577 73661 73577 73577
Adjusted R? 0.51639 0.50783 0.51769 0.51757 0.51758

Notes. The dependent variable is the log transformation of earnings expressed in dollars (base year 2010). Days of HW count the number

of days spent in a heatwave (Tyjax > 95th perc) > 5 consecutive days. The reference category is Male in column (1); Age <25 in column (2);
Good Health (Health Loss <95th percentile) in column (3); No education in column (4); None or very few books (at age 10) in column (5).
Restricted covariates: age and age squared by gender, experience and experience squared, seniority within the job and seniority squared,
part-time and self-employment status. Extended covariates also include the level of education, the cumulative days lost due to disability
(health loss), and the number of books at age 10. Clustered standard errors at the location level (sub-minimum NUTS level, the source of
temperature variation) are reported in parentheses * (p < 0.10), ** (p < 0.05), *** (p < 0.01).
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G Quantification of the Impacts

Table G.32: Quantification of the Average Annual Loss in Earnings by Category

Marginal Avg. Avg. Annual  Avg. % Loss on
Effect Monthly Heat Waves ~ Annual  Annual
Earnings ($) (days) Loss ($) Earnings
Full Sample -0.00310*** 2070.14 291 -159.63 -0.64
Not-Exposed Sectors -0.00263** 2101.29 291 -137.47 -0.55
Exposed Sectors -0.00383*** 1852.06 2.99 -181.30 -0.82
Financial, Real Estate & Business -0.00014 2592.06 2.96 -9.18 -0.03
Agriculture & Fishing -0.00981** 1632.89 3.03 -414.89 -2.12
Construction -0.00175 2310.44 2.97 -102.65 -0.37
Industry -0.00278** 2016.21 2.88 -137.99 -0.57
Wholesale & Retail Trade -0.00496** 1804.34 2.79 -213.44 -0.99
Transport, Hospitality & Storage -0.00329* 2091.06 2.95 -173.48 -0.69
Public & Other Services -0.00262** 2111.81 2.92 -138.10 -0.54
Not-Exposed Occupations -0.00219** 2101.29 291 -114.47 -0.45
Exposed Occupations -0.00572** 1852.06 3.01 -272.57 -1.23
Elementary (Indoor) -0.00343* 1360.52 3.20 -127.65 -0.78
Elementary (Outdoor) -0.00247* 1470.11 3.17 -98.39 -0.56
Manual (Indoor) 0.00376 1774.35 2.80 159.68 0.75
Manual (Outdoor) -0.00767** 1896.88 3.02 -375.58 -1.65
Clerical (Indoor) -0.00223* 1825.07 2.87 -99.85 -0.46
Clerical (Outdoor) -0.01176** 1786.97 2.74 -492.19 -2.30
Abstract (Indoor) -0.00247* 2744.70 2.90 -168.06 -0.51
Abstract (Outdoor) 0.00376 2645.02 2.66 226.13 0.71
Full Sample (5th perc) -0.01341*** 136.06 2.31 -36.03 -2.21
Full Sample (95th perc) -0.00641*** 7540.31 2.73 -1127.90 -1.25
Exposed Sectors (5th perc) -0.01358*** 128.05 2.63 -39.09 -2.54
Exposed Sectors (95th perc) -0.00691*** 7509.56 2.48 -1100.03 -1.22
Exposed Occupations (5th perc) -0.02387** 128.05 2.63 -68.71 -4.47
Exposed Occupations (95th perc) -0.00880*** 7509.56 2.48 -1400.91 -1.55
Highly Centralized -0.00016 2047.43 217 -6.08 -0.02
Sectorally Regulated -0.00369*** 2240.94 3.34 -236.08 -0.88
Largely Deregulated -0.00375 637.05 2.45 -50.03 -0.65
Age <25y/0 -0.00112 1553.75 2.25 -33.47 -0.18
Age 25-44y/0 -0.00406** 2297.53 3.04 -242.39 -0.88
Age>44y/o -0.00359*** 2241.37 3.22 -221.48 -0.82
Male -0.00303*** 2464.74 2.93 -187.04 -0.63
Female -0.00324*** 1652.43 2.88 -131.80 -0.66
No/Primary Edu -0.00513*** 1695.29 3.40 -252.76 -1.24
Lower Secondary Edu -0.00438** 1675.33 3.05 -191.31 -0.95
Upper Secondary Edu -0.00228* 1962.75 2.74 -104.81 -0.45
Tertiary Edu -0.00109 2688.15 2.78 -69.63 -0.22
Health Good /Moderate Healthy -0.00302*** 2053.81 2.92 -154.81 -0.63
Health Sick -0.00479* 1964.24 3.20 -257.36 -1.09
None/few books (at age 10) -0.00505*** 1749.62 3.12 -235.64 -1.12
One shelf (at age 10) -0.00201 1959.81 2.86 -96.30 -0.41
One bookcase (at age 10) -0.00261 2205.99 2.77 -136.33 -0.51
Two bookcases (at age 10) -0.00007 2422.66 2.81 -4.07 -0.01
More than two bookcases (at age 10) 0.00011 2625.52 2.78 6.86 0.02

Notes. Average annual earnings losses are computed by multiplying the average monthly earnings of
each subgroup by 12 (months), the subgroup-specific marginal effect, and the share of working days in a
year (260/365) of the average number of heatwave days for that subgroup. The final column expresses the
implied loss as a percentage of annual earnings.

69



=

b

L 0 N O

10.
11.

12.
13.

14.
15.
16.

17.

18.
19.
20.

21.

22.

23.

24.
25.

26.
27.

28.

29.
30.
31.

FONDAZIONE ENI ENRICO MATTEI WORKING PAPER SERIES

Our Working Papers are available on the Internet at the following address:
https://www.feem.it/pubblicazioni/feem-working-papers/

“NOTE DI LAVORO” PUBLISHED IN 2024

A. Sileo, M. Bonacina, The automotive industry: when regulated supply fails to meet demand. The Case of Italy

A. Bastianin, E. Mirto, Y. Qin, L. Rossini, What drives the European carbon market? Macroeconomic factors and

forecasts
M. Rizzati, E. Ciola, E. Turco, D. Bazzana, S. Vergalli, Beyond Green Preferences: Alternative Pathways to Net-Zero
Emissions in the MATRIX model

L. Di Corato, M. Moretto, Supply contracting under dynamic asymmetric cost information

C. Drago, L. Errichiello, Remote work admist the Covid-19 outbreak: Insights from an Ensemble Community-Based Keyword
Network Analysis

F. Cappelli, Unequal contributions to CO2 emissions along the income distribution within and between countries

I. Bos, G. Maccarrone, M. A. Marini, Anti-Consumerism: Stick or Carrot?

M. Gilli, A. Sorrentino, The Set of Equilibria in Max-Min Two Groups Contests with Binary Actions and a Private Good Prize

E. Bachiocchi, A. Bastianin, G. Moramarco, Macroeconomic Spillovers of Weather Shocks across U.S. States

T. Schmitz, |. Colantone, G. Ottaviano, Regional and Aggregate Economic Consequences of Environmental Policy

D. Bosco, M. Gilli, Effort Provision and Incentivisation in Tullock Group-Contests with Many Groups: An Explicit
Characterisation

A. Drigo, Environmental justice gap in Italy: the role of industrial agglomerations and regional pollution dispersion capacity

P. I. Rivadeneyra Garcia, F. Cornacchia, A. G. Martinez Hernandez, M. Bidoia, C. Giupponi, Multi-platform assessment of
coastal protection and carbon sequestration in the Venice Lagoon under future scenarios

T. Angel, A. Berthe, V. Costantini, M. D’Angeli, How the nature of inequality reduction matters for CO2 emissions

E. Bacchiocchi, A. Bastianin, T. Kitagawa, E. Mirto, Partially identified heteroskedastic SVARs

B. Bosco, C. F. Bosco, P. Maranzano, Income taxation and labour response. Empirical evidence from a DID analysis of an
income tax treatment in ltaly

M. M. H. Sarker, A. Gabino Martinez-Hernandez, J. Reyes Vasquez, P. Rivadeneyra, S. Raimondo, Coastal Infrastructure and
Climate Change adaptation in Bangladesh: Ecosystem services insights from an integrated SES-DAPSIR framework

P. Maranzano, M. Pelagatti, A Hodrick-Prescott filter with automatically selected jumps

M. Bonacina, M. Demir, A. Sileo, A. Zanoni, The slow lane: a study on the diffusion of full-electric cars in Italy

C. Castelli, M. Castellini, C. Gusperti, V. Lupi, S. Vergalli, Balancing Climate Policies and Economic Development in the
Mediterranean Countries

M. Gilli, A. Sorrentino, Characterization of the Set of Equilibria in Max-Min Group Contests with Continuous Efforts and a
Private Good Prize

P. Pakrooh, M. Manera, Causality, Connectedness, and Volatility Pass-through among Energy-Metal-Stock-Carbon Markets:
New Evidence from the EU

F. F. Frattini, F. Vona, F. Bontadini, Does Green Re-industrialization Pay off? Impacts on Employment, Wages and
Productivity

A. Drigo, Breathing Inequality? Income, Ethnicity and PM2.5 Exposure in Bologna, Italy

D. Bosco, M. Gilli, A. Sorrentino, A Max-Min Two-Group Contest with Binary Actions and Incomplete Information a la Global
Games

C. Amadei, C. Dosi, F. J. Pintus, Energy Intensity and Structural Changes: Does Offshoring Matter?

E. Ciola, E. M. Turco, M. Rizzati, D. Bazzana, S. Vergalli, Taking the green pill: Macro-financial transition risks and policy
challenges in the MATRIX model

P. Agnolin, I. Colantone, P. Stanig, In Search of the Causes of the Globalization Backlash: Methodological Considerations on
Post-Treatment Bias

I. Colantone, G. I. P. Ottaviano, K. Takeda, Trade and Intergenerational Income Mobility: Theory and Evidence from the U.S.

L. Mufoz-Blanco, F. F. Frattini, Vaccines on the Move and the War on Polio

M. Kuntze, F. F. Frattini, F. Vona, |. Brunetti, A. Ricci, Exploring Skills in the Green Transition: New Insights from Italian Data




Fondazione Eni Enrico Mattei
Corso Magenta 63, Milano - ltalia

Tel. +39 02 403 36934

E-mail: letter@feem.it
www.feem.it

o~

¢
&~ FONDAZIONE ENI
R o ENRICO MATTEI



	Introduction
	Conceptual Framework
	Data and Measures
	Empirical Strategy
	The Effect of Heat Waves on Earnings
	Distributional and Heterogeneous Effects of Heat Waves
	Heterogeneity across Occupations and Sectors
	Mediating Role of Labor Market Institutions
	Effects Along the Earning Distribution
	The Role of Socio-Demographics Vulnerabilities

	Conclusions
	Appendices
	Descriptive Statistics
	Earnings
	Heat Waves
	Occupational and Sectoral Exposure

	Validation of the Identifying Assumption
	Complementary Results: Temperature Impact on Earnings
	Complementary Results: Absolute Temperature Measures
	Complementary Results: Distributional and Heterogeneous Effects of Heat Waves
	Complementary Results: Unconditional Quantile Regression
	Quantification of the Impacts
	Cover.pdf
	ndl2021-031
	Senza titolo
	Senza titolo


	Seconda pagina.pdf
	ndl2021-031




