

The World's Largest Open Access Agricultural & Applied Economics Digital Library

This document is discoverable and free to researchers across the globe due to the work of AgEcon Search.

Help ensure our sustainability.

Give to AgEcon Search

AgEcon Search http://ageconsearch.umn.edu aesearch@umn.edu

Papers downloaded from **AgEcon Search** may be used for non-commercial purposes and personal study only. No other use, including posting to another Internet site, is permitted without permission from the copyright owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C.

No endorsement of AgEcon Search or its fundraising activities by the author(s) of the following work or their employer(s) is intended or implied.

Historic, archived document

Do not assume content reflects current scientific knowledge, policies, or practices.

•

.

2 S21 A75U69 cop.3 An Evaluation System **To Rate Feedlot Pollution Potential**

Agricultural Reviews and Manuals Agricultural Research Service U.S. Department of Agriculture

ARM-NC-17 **April 1982**

The P.

An Evaluation System To Rate Feedlot Pollution Potential

Robert A. Young, Michael A. Otterby, and Amos Roos

Published by Agricultural Research Service, North Central Region U.S. Department of Agriculture 2000 W. Pioneer Parkway Peoria, Illinois 61615

Library of Congress ISSN 0193-3787

List of tables iv
List of figures iv
Introduction 1
The Model 1
Local watershed 2
Rainfall 2
Pollutant indicators 3
Runoff 3
Equivalent animal units 4
Animal unit density and percent manure pack4
Concentration of runoff at feedlot edge 4
Contact time
Pollutant reduction from filtration
Concentration reduction from dilution7
Determining whether pollution hazard exists
Feedlot rating
Combining feedlot ratings 7
Limitations
Summary
Literature cited10

Contents

Appendix A

Feedlot screening procedure	
-----------------------------	--

Appendix B

Feedlot evaulation system—Feedlot screening13
Screening instructions
Feedlot evaluation system—Preliminary evaluation data15
First-level preliminary evaluation15
Second-level preliminary evaluation17
Feedlot evaluation system—Animal lot evaluation data

Appendix C

Detailed instructions for calculations using the Hewlett-Packard	
97 calculator	30
Calculating animal lot screening	
Calculating animal lot evaluation	30
Additional information available	32
Combined animal lot rating	
Detailed instructions for calculations using the Monroe 335 calculator	

Appendix **D**

Calculator programs
Program for Hewlett-Packard 67/97/41C calculator
Screening program—Card144
Evaluation program—Card 244
Evaluation program—Card 345
Additional information—Card 446
Combining ratings—Card 547
Preliminary evaluation—Card 647
Program for Monroe 325/Compucorp 327 calculator
Screening program—Block 1
Evaluation program—Block 249
—Block 3
—Block 4
Combining ratings—Block 5

Appendix E

Manual calculations	
User-oriented manual calculation procedure58)
Calculator-oriented manual calculation procedure65	

Appendix **F**

Notes on the feedlot evaluation system
Interpreting animal lot ratings
Determining Area 3 and the discharge point
Buffer effectiveness
Evaluating manure stacks
Adjusting for loafing areas

List of Tables

Table 1.—COD BOD ratios correlated in feedlot runoff	3
Table 2.—Concentration of COD and P in runoff from feedlots	5
Table 3.—Background concentrations of P and COD from various sources	5

Appendix B

Table 1.—Ratio of COD produced by various animals to that produced by a 1,000 pound slaughter steer	13
Table 2.—Surface condition constant for various types of cover	16
Table 3.—Ratio of COD produced by various animals to that produced by a 1,000 pound slaughter steer	18
Table 4.—Surface condition constant and soil cover complex numbers for various cover condition	23
Table 5.—Soil names and hydrologic classifications	25
Table 6.—Ratio of COD and P produced by various animals to that produced by	
a 1,000 pound slaughter steer	28

List of Figures

Figure 1.—Local watershed	2
Figure 2.—Percent manure pack versus animal unit density (AUD)	4
Figure 3Concentration of COD and P in feedlot runoff versus percent manure pack	5

Appendix **B**

FIGUEO	-25 very 9.1 hour re	infall (inchas)		
riguic	1.—23°ycai, 24-nour ra	man (menes)	 	- 99

Appendix **E**

Figure 1. – Soil-cover complex method of estimating direct runoff amounts from storm rainfall	73
Figure 2. – Runoff velocity versus percent slope for various cover conditions	74
Figure 3. – Reduction in pollutant strength (D) versus contact time (T_c) for vegetated filter areas	75
Figure 4. – Reduction in pollutant strength (D) versus contact time (T_c) for grass waterways	76

Appendix F

An Evaluation System To Rate Feedlot Pollution Potential

Robert A. Young,¹ Michael A. Otterby,² and Amos Roos³

Introduction

A uniform means of objectively evaluating potential pollution problems from animal feedlots has long been needed in Minnesota. Since 1971, the Minnesota Pollution Control Agency (MPCA), the State water quality agency, has had a permitting program for regulating feedlots. No standard method exists, however, for evaluating abatement measures of water pollution from feedlots and, consequently, MPCA felt a need for objective criteria to evaluate the water quality impacts of open feedlots.

In the past, dispensing of public funds for cost sharing to help alleviate pollution problems stemming from the operation of animal feedlots has usually been based on subjective evaluation by county committees or others responsible for their disbursement. Concrete guidelines or any uniform means of objectively evaluating these potential problems have been lacking. Specific guidelines are necessary for the equitable distribution of Federal and State cost-sharing funds to livestock producers. Such guidelines are necessary so limited funds will go as far as possible toward alleviating the severity of water pollution from feedlots.

Four Federal and State agencies-the Agricultural Stabilization and Conservation Service, the Soil Conservation Service (SCS), the State Soil and Water Conservation Board, and the MPCA-recognized the need to coordinate their animal waste control programs so that Federal and State cost-sharing funds, the Federal technical assistance program, and the State permit program could all work together to efficiently combat this source of potential pollution. MPCA, using a section 208 grant from the U.S. Environmental Protection Agency, gathered these agencies together, along with the cooperative extension service, in an advisory committee and contracted with the U.S. Department of Agriculture, Agricutural Research Service, to develop an animal waste-hazard analysis system. As a result, a system was developed that is impartial, relatively simple to operate, reasonably accurate, and is based on current research data. This system can be applied to any of the approximately 90,000 animal feedlot operations in the State of Minnesota.

The Model

The animal lot evaluation system consists of two parts. The first, a short screening form (Appendix A), consists of five simple questions concerning an operation, all of which can be answered by the feedlot operator, allowing the person making the evaluation to disregard the feedlot immediately if it is definitely not a pollution hazard. Information from the first three questions deal with the pollution potential of surface water, and the last two deal with the potential pollution hazard to ground water. Answers to the first three questions relating to surface-water pollution can be fed into a small desktop, programmable calculator, which uses a short program (Appendix D) to get a preliminary indication of whether or not a pollution hazard exists. If no calculator is available, a simple manual calculation will provide the same result. The methods used in this program or calculation procedure are discussed in Appendix A.

If, after completing the screening calculations, no apparent pollution hazard is indicated, no further evaluation is necessary. However, if the screening procedure indicates a potential hazard, then a more detailed evaluation form must be completed (Appendix B).

To carry out screening on the basis of information readily available to the feedlot operator, we used an ex-

¹Agricultural engineer, North Central Soil Conservation Research Laboratory, North Central Region, Agricultural Research Service, U.S. Department of Agriculture, Morris, Minn. 56267.

²Agricultural engineer, Load King, CMI, Elk Point, S. Dak. 57025. (formerly USDA-ARS, Morris, Minn.)

³Senior engineer, Division of Water Quality, Minnesota Pollution Control Agency, 1935 West County Road B2, Roseville, Minn. 55113.

tremely "coarse" screen. Many feedlots "fall through" the screen with a "yes" answer, indicating that they are potential pollution hazards. Experience shows that, on detailed evaluation, relatively few of these are found to be polluters. In other words, the screening method has a large factor of safety for protecting water quality.

Preliminary evaluation provides a "finer" screen, that is, one which is better able to identify feedlots that are not potential pollution hazards. We included a preliminary evaluation method in the appendices. This method may be useful where programmable calculators are available to field personnel.

Local Watershed

With the longer evaluation form, which must be filled out by the person making the evaluation rather than the feedlot operator, the first step is to study the animal lot and the area around it to determine the local watershed. A detailed sketch must be made of this watershed.

For this evaluation system, we divided the local watershed into three parts (fig. 1). The first part (Area 1) consists of the animal lot itself. Animal lot in this

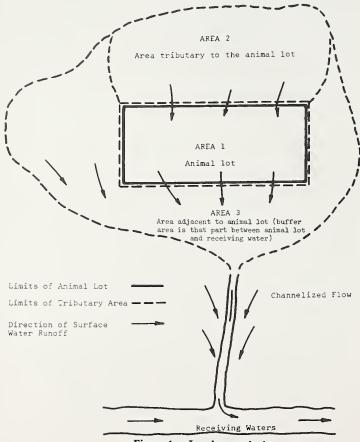


Figure 1. - Local watershed.

context refers to an open lot or a combination of open lots intended for the confined feeding, breeding, rais ing, or holding of animals. It is specifically designed as a confinement area in which manure may accumulate or where the concentration of animals is such that vegetative cover cannot be maintained within the enclosure. This includes poultry ranges, but it does not include pastures. "Animal area" is equivalent to animal lot. Roof areas of buildings are not included in this part.

The second part (Area 2) refers to tributary areas or the areas from which runoff will drain through the lot or wash across it. This usually includes part of the roof areas of buildings in or adjoining the lot and often includes part of the farmstead. The nonroof portions of the tributary areas may be divided into subareas if there are differences in either soil type or ground cover.

The third part (Area 3) is that portion of the local watershed that contributes runoff to a discharge point but is not included in either the feedlot itself or in the tributary areas. This area is referred to as the adjacent area. That part of Area 3 through which runoff from the feedlot passes before reaching the discharge point is referred to as the buffer area. The buffer-adjacent area may be divided into subareas if there are differences in soil type or ground cover within it.

This discharge point is the point nearest the animal lot at which runoff from the lot becomes channelized and no longer receives effective treatment as it flows over surface vegetation. This discharge point may be a tile inlet, the edge of a drainage ditch or sink hole, or the normal high-water mark of a perennial or intermittent stream, lake, or marsh. It may also be some other point closer to the feedlot at which sheet flow of animal lot runoff ceases; for example, a point where the runoff enters a dry run, a gully, or a large rill. The discharge point can also be the inlet of a grass waterway. However, if the grass waterway is used principally for drainage and treatment of the feedlot runoff, it should be included as part of the buffer area. The discharge point would then be at the outlet of the grass waterway.

Kainfall

After sketching the local watershed, the next step is to determine the design rainfall for which the feedlot is to be evaluated. The runoff volume calculations used to evaluate feedlots for potential pollution can be based on any given design storm. The design rainfall that we selected for use gives a general measure of frequency that runoff from the lot will be allowed to enter the discharge point.

Federal regulations governing animal lots require

that, for animal lots having 1,000 animal units or more, no discharge of surface runoff from the animal lot may occur from a 24-hour duration, one in 25-year frequency rainfall. At the present time, federal regulations do not specify any effluent limitations or performance standards for animal lots having less than 1,000 animal units (43). The Minnesota Code of Agency Rules of the Pollution Control Agency, however, defines as a potential pollution hazard any feedlot or manure storage area whose construction or operation will allow a discharge of pollutants to surface waters of the State in excess of applicable standards during a rainstorm event of less magnitude than a 25-year, 24hour event.

For this evaluation system, therefore, even though we are dealing mainly with the potential pollution hazards of feedlots with less than 1,000 animal units, we will use as a design storm the 24-hour duration, 25-year frequency rainfall. Rainfall of any other frequency or duration storm easily can be substituted. Figure 1, Appendix B, shows the estimated rainfall for a 25-year, 24-hour rainfall event in the State of Minnesota (42).

The model does not consider pollutants, or nutrients, in precipitation because their contribution would be very small. Measurements of phosphorus in precipitation from several locations in Minnesota indicated that their contribution would probably not exceed 2-1/2 percent of the total phosphorus content of runoff from a vegetated area resulting from a 25-year, 24-hour storm (5, 47).

Pollutant Indicators

Runoff from feedlots contains many agents that can be considered potential pollutants, including potential disease carrying organisms, other organic material, nutrients, and suspended inorganic solids. These agents affect receiving waters by increasing the nutrient and suspended solid concentration, decreasing the dissolved oxygen content of the water, and in some cases, even threatening human health. For this model, we selected two parameters to represent the potential pollution hazard of feedlot runoff—chemical oxygen demand (COD) and phosphorus (P).

COD is a measure of the amount of oxygen required to oxidize organic and oxidizable inorganic compounds in water and, thus, can be used to indicate the degree of pollution in an effluent; P, an essential element for plant growth, is found in animal manures and mineral deposits and is a major contributor to eutrophication of surface waters. Sufficient data exist on both to develop some general predictive relationships. While feedlots are a source of nitrogen, a potential pollutant of surface waters as well as ground waters, serious difficulties arise in predicting the movement of nitrogen from feedlot surfaces.

COD alone is used for the simplified rating of potential pollution hazard from feedlots because it is a lumped parameter that reasonably appears to be representative of most of the potential pollutants in feedlot runoff. The more detailed information on COD and P is used to design corrective measures and to provide a basis by which the regulatory agency can make judgments on the need for monitoring as well as for pollution-abatement measures.

When dealing with animal wastes, we find that biochemical oxygen demand (BOD) is perhaps a more meaningful parameter than COD, but the analysis for BOD is more complex and time consuming and, as a result, less data are available on BOD concentrations in feedlot runoff. Because animal wastes consist mostly of organic material, however, a number of studies show that, in the case of feedlot runoff, the COD and BOD can be correlated, as can be seen in table 1. These ratios have an average value of 4.57 with a standard deviation of 1.15. Although the ratio will depend on the type of feeding operation and the ration fed for feedlots in the Northern States, a ratio of COD to BOD of approximately 4.5 to 1 appears to be typical and was chosen for use in the model.

Runoff

We used the soil cover complex method, or curve number method, described in the SCS National Engineering Handbook, Section 4, Hydrology, and illustrated in figure 1, Appendix E, to estimate runoff from rainfall for each of the areas included in the local watershed (39). For this evaluation, we assumed the curve number method to be accurate. Other more sophisticated runoff models are available, but they would add undue complexity to this procedure.

TABLE 1. - COD/BOD ratios correlated in feedlot runoff

Source	COD/BOD
Wienecke and others $(45)^1$	4.66
Agricultural Research	
Council (1)	5.31
Midwest Plan Service (27)	
Loehr (19)	3.20
Madden and Dornbush	
(23, 24)	4.57
Loehr and others	
(poultry) (<i>20</i>)	6.60
Witzel and others (46)	

¹Italic numbers in parentheses refer to Literature Cited, page 10.

In the curve number method, a combination of hydrologic soil group (representing soil) and land use and treatment class (representing vegetative cover) is used to determine the hydrologic soil cover complex. The relationship of the hydrologic soil cover complex to the amount of rainfall that runs off the area is represented by the runoff curve number. These curve numbers, also referred to as soil cover complex numbers, are shown in table 4, Appendix B, which was derived from table 9.1, Section 4, of the National Engineering Handbook (39). The values for paved and unpaved feedlots were obtained from previous research results (28). We estimated values for the grass waterways to be similar to values from pasture in fair condition. The hydrologic soil groups are found in table 5, Appendix B, which we adapted from table 2.1 of the SCS Hydrology Guide for Minnesota (41). When using the model, the soil type involved must be obtained from a soil survey, the SCS, or other source.

Equivalent Animal Units

Because animal species differ in their relative production of various waste constituents or potential pollutant material, equivalent animal units (EAU) are determined from tables and used as a unit of measure to compare differences in the production of COD and P, the two parameters used in the model to measure a pollution hazard. We used these EAU's to determine the potential loading of each parameter in the feedlot discharge. The amount of each potential pollutant produced on a regular basis by a 1,000-pound beef feeder or slaughter steer is used as a standard. Thus, the amount of pollutant produced by a beef animal is represented by a value of one, with the amount produced by all other animals being relative to that. These factors then reflect both the manure production of the various animal species and the concentration of COD and P in that manure. Values used, as shown in table 6, Appendix B, are derived from the American Society of Agricultural Engineers (ASAE D-384) data and from the Midwest Plan Service (MWPS-18) data (2, 26).

Animal Unit Density and Percent Manure Pack

The animal unit density (AUD) is equal to the EAU, divided by the area of the feedlot. Because animals differ in the relative proportion of COD and P generated in manure, the values of EAU and AUD for each will be different.

When animal density is high, such as in confined feedlots, almost all of the rainfall and runoff in and from the lot comes in contact with animal wastes before leaving the lot. When animal density is low, however, some of the runoff may escape contact with manure and thus contain no fecal contamination. In a previous study (36), the percent coverage was calculated for different densities, assuming completely uniform spreading of cattle manure over a feedlot area, which gives the highest estimate of areal coverage over a given time period.

These figures indicated that one beef animal (1,000 lbs) covered approximately 0.001 acres per day with waste material. Assuming a minimum scraping or removal frequency of 10 days, an animal density of 100 head of beef cattle per acre will result in a 100 percent manure pack. Based on this assumption, we assume that the percent manure pack will vary linearly with AUD up to a value of 100, as shown in figure 2. We emphasized that the percent manure pack factor from this figure reflects the total mass of the pollutant as a product of the total manure produced and the pollutant content of that manure.

Where feedlot systems include partially enclosed areas, or are totally enclosed with some outdoor exercise areas, AUD's must be adjusted on the basis of the average percent of time that the animals spend outside.

Concentration of Runoff at Feedlot Edge

The concentration of various nutrients in runoff from feedlots has been the subject of many different studies (8, 9, 17, 18, 22, 25, 27, 32, 35, 45, 48). The average concentration of COD and BOD in feedlot runoff appears to increase from north to south in the United States, probably because of increasing average annual temperatures.

Considering only values from high animal density feedlots in the northern one-half of the United States, typical COD concentrations in runoff from feedlots from 10 different studies are shown in table 2. They averaged 4,462 mg/ ℓ with a standard deviation of

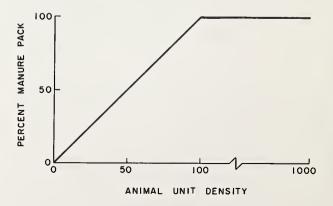


Figure 2. – Percent manure pack versus animal unit density (AUD).

Location	COD	P
and source	(mg/l)	(mg/ℓ)
Minnesota $(48)^1$	4,000	9
Ontario (9)	3,441	72
Utah (45)	7,265	32
Kansas (25)	7,596	79
Nebraska (17)	3,529	300
Kansas (8)	5,000	50
South Dakota (8)	2,160	47
Nebraska (22)	3,100	_
Nebraska (35)	2,102	374
Kansas (16)	6,111	87
Nebraska (18)	4,773	30
Ohio (15)	-	14

TABLE 2.—Concentration of COD and P in runoff from feedlots

¹Italic numbers in parentheses refer to Literature Cited, page 10.

1,888 mg/l. While these values vary around the country, depending upon such factors as species or type of feed, based upon this average, a rounded value of 4,500 mg/l was selected as an average concentration of COD in runoff for feedlots having a 100-percent manure pack. A value of 85 mg/l was selected as an average concentration for P. Concentrations were assumed to decrease linearly with percent manure pack below 100 percent as shown in figure 3. The assumption is made here that with AUD's greater than 100, the pollutant concentration of the runoff from the feedlot itself reaches a maximum level and, thereafter, is independent of the number of animal units in the lot.

If a tributary area (Area 2) generates additional runoff volume passing through the feedlot, the concentration of pollutants in this water must also be taken into

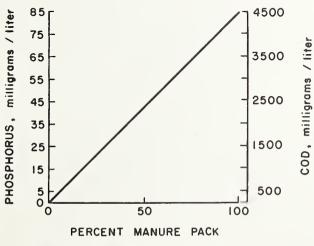


Figure 3.—Concentration of COD and P in feedlot runoff versus percent manure pack.

consideration. If this volume is small and not channelized, then whatever the pollutant concentration is, as it enters the lot, it will become sufficiently mixed with the runoff water generated within the feedlot to approach the same concentration. If, however, the volume is large, it will not all come in contact with the manure in the lot but will probably channelize as it passes through the lot. In this event, the volume of runoff contributed by Area 2 will have a lower level of concentration of pollutants and will dilute the concentration of the pollutants in the runoff originating in the lot. We estimated this volume at which some dilution will begin to occur as 30 acre-in.

While the background level of pollutants in runoff from tributary areas will depend on the land use in those areas (table 3), for simplification we used a standard background concentration of 60 mg/ ℓ of COD and 2 mg/ ℓ of P in runoff water in the model.

Concentration of runoff at the feedlot edge is determined using the general relationship:

	$C_1V_1 + C_2V_2 = C_FV_F$	[1]
where	$C_1 = \text{concentration of runoff in the feedlot, } mg/l,$	
	V_1 = volume of runoff from the feedlot itself, acre-in	n,
	$C_2 = \text{concentration of runoff from Area 2, mg/l},$	
	V_2 = volume of runoff from Area 2, acre-in,	
	$C_{F} =$ concentration of runoff at the feedlot edge, ma	g/ℓ,
and	V_F = volume of runoff at the feedlot edge, acre-in,	

Using the assumed background levels, if the volume from tributary Area 2 is less than or equal to 30 acrein, the concentration at the feedlot edge is calculated by

TABLE 3. – Background concentrations of P and COD from various sources

Source	Р	COD
	(mg/l)	(mg/l)
Native prairie (<i>38</i>) ¹	0.2	49
Corn (47)	.9	
Continuous corn (5)	1.1	
Native grass (10)	.1	31
Wheat (31)	1.4	
Pasture (31)	1.0	
Alfalfa (31)	2.1	
Corn ²	.3	
Soybeans ²	.5	
Small grain ²	.6	
Cropped watershed ²	.7	59
Road ditches draining		
cropped land ²		144
Forest ²	.2	78
Soybeans (21)	1.5	

¹Italic numbers in parentheses refer to Literature Cited, page 10.

²Young, Robert A. Unpublished data, Morris, Minn.

$$\frac{\text{Percent manure pack}}{100} \times 4500 = \text{mg/l of COD}, \quad [2]$$

$$\frac{\text{Percent manure pack}}{100} \times 85.0 = \text{mg/}\ell \text{ of P.}$$
[3]

If the volume of runoff from tributary Area 2 is greater than 30 acre-in, the concentration at the feedlot edge is calculated by

percent manure pack×45×(
$$V_1$$
+30)+60(V_2 -30)]/(V_1 + V_2)
=mg/ℓ of COD

[percent manure pack× $0.85 \times (V_1 + 30) + 2(V_2 - 30)$]/(V₁+V₂) = mg/l of P.

where all runoff volumes are expressed in acre-in. Once the concentration of pollutants at the lot edge is determined, then the mass load of pollutants at the lot edge, in pounds, is simply the concentration of the runoff multiplied by the total runoff leaving the lot.

Contact Time

As runoff flows overland across vegetated areas or buffer strips, infiltration, filtration, settling, and adsorption of pollutants all decrease the concentration of pollutants in the runoff water. The rate of reduction in concentration of these pollutants depends on the type of vegetation present in the buffer strip and the length of time the water is in contact with this vegetation. Contact time (T_c) will depend on the effective length of buffer and the velocity of the runoff water, which is a function of land slope and surface roughness resulting from the type of vegetation present. Runoff velocities for various types of vegetation and different slopes are shown in figure 2, Appendix E (from ch. 15 of SCS National Engineering Handbook, Section 4, Hydrology (39)). For computing purposes, the following equation may also be used to calculate velocity:

Values of c are shown in table 2, Appendix B, and were calculated from figure 2, Appendix E. However, since flow velocities greater than 2 ft/sec seldom occur in nature for areas of overland flow, if the buffer area is other than a grass waterway, and the calculated value of velocity is greater than 2 ft/sec, a maximum value of 2 should be used. Figure 2, Appendix E, was derived by assuming Manning's flow equation for channels was valid for overland flow (6).

The c value of "1" shown for grass waterways in table 4, Appendix B, is used only as a flag in the calculator program to indicate a different series of calculations. When manually calculating runoff velocity in grass waterways using equation [6], the c value that should be used is -0.18. This value was determined from velocity curves for low retardance channels (n = 0.04) (6).

Once runoff velocity has been estimated, T_c is calculated by dividing the distance (L) from the feedlot edge to the discharge point by the runoff velocity (v):

Pollutant Reduction from Filtration

 $T_c =$

Based on several studies, vegetative buffer areas are a relatively effective means of reducing the concentration of potential pollutants from runoff waters (3, 12, 13, 30, 37, 44, 48). Based on measured data from these studies, we developed the following equations by simple regression analysis to estimate the percent reduction in pollutant strength of feedlot runoff moving as overland flow as it passes through a vegetative buffer area:

$$D_{c_1} = -27.9 + 42.8 \log T_c$$
 [8]

$$D_1 = -49.3 + 50.5 \log T_c$$
 [9]

 $D_{p_1} = -49.3 + 50.5 \log T_c$ where $D_{c_1} =$ percent reduction in COD concentration $(if < 0, D_{c_1} = 0),$

 D_{p_1} = percent reduction in P concentration

 $(if < 0, D_{p_1} = 0),$

and

 $T_c = contact time in sec.$

Equations [8] and [9] do not apply to grass waterways. Channelized flow is not as effective as overland flow in removing potential pollutants (11, 44). They require a much greater flow length, or contact time, to achieve the same level of removal as an area of overland flow. For this reason, we developed the following equations for grass waterways as buffer areas (11, 14):4

$$D_{c_2} = 15.95 + 0.033 T_c$$
 [10]

$$D_{p_2} = 21.2 \pm 0.036 T_c$$
 [11]

where $D_{c_2}^{r_1}$ = percent reduction in COD concentration

in a grass waterway (if <0,
$$D_{C_2} = 0$$
),
 D_{p_2} = percent reduction in P concentration
in a grass waterway (if <0, $D_{p_2} = 0$),
T = contact time in sec

and $T_c = contact time in sec.$

Both sets of equations are illustrated in figures 3 and 4, Appendix E. If the buffer area consists of portions of both overland flow and grass waterway, the net reduction in concentration is calculated by

$$C_{F} \times (1 - \frac{D_{1}}{100}) \times (1 - \frac{D_{2}}{100}) = C_{R}$$
 [12]

⁴Swanson, N. P., Mielke, L. N., and Ellis, J. R. Control of feedlot runoff with a waterway. Unpublished report.

where $C_{\rm F}$ = pollutant concentration at the feedlot edge,

 $D_i =$ percent reduction in pollutant concentration in overland flow,

 D_2 = percent reduction in pollutant concentration in grass waterway,

and C_R = reduced pollutant concentration.

If the calculated net reduction equals or exceeds 100 percent, then the buffer strip is sufficient to eliminate any potential pollution hazard posed by the feedlot.

Concentration Reduction from Dilution

In addition to a reduction in pollutant strength from the nature of the vegetated buffer area, a further change in concentration occurs as a result of dilution of the feedlot runoff with the relatively cleaner water running off from the adjacent areas. This change can be calculated by using the following equation:

 $C_R V_F + C_3 V_3 = C_T V_T$

where C_R = reduced concentration after filtration, mg/l,

 $V_{\rm F}$ = runoff volume at the feedlot edge, acre-in,

 $\overline{C_3}$ = concentration of runoff from Area 3, mg/ ℓ ,

 V_3 = runoff volume from Area 3, acre-in,

 C_T = final concentration at the discharge point, mg/l,

and V_T = total runoff volume at the discharge point, acre-in.

As with runoff from the tributary areas of the feedlot, background levels of COD and P of runoff generated by the buffer area and other adjacent areas are assumed to be 60 mg/ ℓ and 2 mg/ ℓ , respectively. The product of final concentration times the total runoff volume for the feedlot watershed system is equal to the mass load of pollutants, in pounds, reaching the discharge point.

Determining Whether Pollution Hazard Exists

Once the final concentration of the runoff at the discharge point is estimated, you must determine whether it is a pollution hazard. If it is, then the feedlot can be rated on the basis of its potential to pollute a receiving body of water. We chose COD as the critical parameter on which to judge severity of the potential pollution hazard posed in the feedlot.

The final COD concentration of the runoff at the discharge point is compared with the limits that the State has set for allowable concentrations of COD in all waters of the State. For Minnesota, these limits are set forth in chapters 14 and 15 of the Water Pollution Control Regulations, promulgated in 1973, which state that the limiting concentration for 5-day BOD is 25 mg/ ℓ (29).

As previously stated, for feedlots in the Northern States, the ratio of COD to BOD is approximately 4.5 to 1. Therefore, a limiting COD concentration of 112 mg/ ℓ is approximately equivalent to the limiting BOD concentration of 25 mg/l and is used for comparison with the calculated final concentration of COD in the runoff to determine if the feedlot poses a potential hazard. If the calculated COD exceeds 112 mg/l, the lot is assumed to be a potential hazard and is subjected to a numerical rating procedure. Any other limiting concentration of COD or P could be easily substituted at this point if desired.

Feedlot Rating

The feedlot rating is based only upon the mass load, in pounds of COD, contributed by the feedlot itself and does not include any additional background COD loading contributed by tributary areas above the feedlot or adjacent areas. However, we subtracted any attenuation in loading caused by runoff passing through the buffer from the total at the feedlot edge. The remaining load, in pounds, is first used to determine a factor, F_1 , which compresses the range of possible loads onto a logarithmic scale from zero to about 1, as follows:

$$F_1 = \frac{(\log \text{COD}_{\text{mass load}}) - 2}{3} \quad [14]$$

A second factor, F_2 , is then calculated to slightly modify or weight F_1 on the likelihood of a significant runoff event occurring for that feedlot, considering the location of that feedlot in the State and the ability of its local watershed to intercept and hold runoff. This weighting follows the form:

$$F_2 = 0.8 + 0.1 \log (V_T)$$
where V_T = total volume of runoff from the local
$$\begin{bmatrix} 15 \\ 2 \end{bmatrix}$$

watershed in acre-in for the design storm.

The product of F_1 and F_2 , multiplied by 100 and rounded off to the nearest whole number, is equal to the animal lot rating. This numerical rating places a value from zero to approximately 100 on all feedlots whose mass COD load in pounds at the receiving water is from 100 to 100,000 lb and can now be used to assess the relative potential pollution hazard posed by any of the approximately 90,000 feedlots in the State. This rating is **not** a percentile. Estimates show that more than one half of all polluting feedlots in the state would be rated between 40 and 70.

Combining Feedlot Ratings

If the runoff from one or more animal lots at one location does not mix within a single local watershed, animal lot evaluations should be done separately for each feedlot watershed. The ratings of each can then be combined, either manually or using a short computer program, to get a net rating for the system. The computer program for this procedure is found in Appendix D. This feedlot evaluation system has a number of limitations:

(1) The calculations used in determining the concentrations and mass loads of pollutants are based upon the most current research data available but use average values only. Therefore, results and figures are estimates and are not to be regarded as absolute values. Their main purpose is to provide a uniform basis for comparison between feedlots regardless of their location in the State.

(2) If the tributary areas above the feedlot or the adjacent areas below the feedlot are very large, that is, greater than 100 acres, then the runoff calculations become somewhat questionable because of the greater chance for error in determining cover and topographic conditions. Also, the curve number method, upon which all of the runoff calculations are based, was developed primarily from runoff data from relatively small watersheds. Of the approximately 70 watersheds used in developing the curve number system, at least 50 were less than 100 acres (7).

In checking the accuracy of the curve number method, using observed versus estimated values of runoff from 25 small, single-crop watersheds (34), we obtained the following regression equation:

$$Q_{est} = 1.365 + 0.578 Q_{obs}$$
[16]

$$r^{2} = 0.616$$
where $Q_{est} =$ estimated average annual direct runoff,
 $Q_{obs} =$ observed average annual runoff,

$$Q_{abs} = 0.516 + 0.578 Q_{obs} = 0.578 Q_{o$$

and $r^2 = coefficient of variation.$

This equation indicates that the method underestimates runoff of more than 3-1/4 in while overestimating runoff of less than 3-1/4 in.

(3) The evaluation system gives an indication of the quality of runoff only at the feedlot edge and the defined discharge point; the rating indicates the impact of the discharge on the receiving water at the discharge point. The system does not deal with the value or importance of the receiving water, nor does the rating reflect this factor. The user of the system – county Agricultural Stabilization Conservation Service committee, pollution control official, or others—shall assess the value of the receiving water. This is a local determination and can best be performed by persons familiar with their locat waters.

(4) The definition of discharge point, as described earlier, is sometimes difficult to apply in the field (Appendix F).

(5) The potential pollution threat to ground water is treated only lightly in this system. Since groundwater pollution is a matter of serious concern in Minnesota, it deserves additional discussion at this point. The pollution hazard to ground water has been touched on only superfically in the model because of the difficulty of analyzing the many factors affecting it and because those factors are less subject to generalization than are the factors affecting surface waters. Persons using this system to evaluate feedlots for potential pollution problems, however, should be aware of some considerations that could lead to ground-water pollution, even though their degree of seriousness can only be estimated subjectively, unless an extensive program of site-specific studies is undertaken.

Some significant factors to consider in potential ground-water pollution are the depth to the water table or bedrock, the distance to the nearest well, soil characteristics, the local watershed topography, and the type of vegetation present in the area.

As water passes through the soil profile, many potential contaminants are removed or transformed either by plant roots, soil microorganisms, or other natural processes. Therefore, the farther water must pass through the soil before reaching ground water, the less chance of polluting the ground water. Depth to the water table or bedrock, therefore, plays an obvious role in the potential pollution of ground water. The distance to the nearest well also can be significant in considering potential ground-water pollution because the closer a water well is to a source of pollution, the higher the chance for contaminating that well.

Most of those soil characteristics relating to potential ground-water pollution generally are reflected in the hydrologic soil group. The hydrologic soil group is a classification characterizing the natural drainage of a soil and has values ranging from A to D. Group A is a well-drained soil having high infiltration rates, whereas Group D is a poorly drained soil with very slow infiltration rates under wet conditions. This system of classifying soils takes into consideration soil structure and soil texture and their effects on infiltration, permeability, and hydraulic conductivity. Soils belonging to Group A have a low potential for surface-water pollution but may pose a fairly severe hazard to ground water because of their drainage characteristics, which allow more water to infiltrate and percolate downward. Conversely, while soils of hydrologic Group D may pose a severe hazard to surface-water pollution, their potential for polluting ground water is less because relatively little water infiltrates into the soil. The model considers the effect of the hydrologic soil group on the estimated pollutant load to surface waters only.

Another soil factor, which may play a significant role in affecting the potential for ground-water pollution, is the soil cation exchange capacity (CEC). CEC, simply stated, is the ability of soil colloids to adsorb and store positively charged ions on their surface. Since adsorbed ions are less likely to be leached to ground water, soils having a low CEC will pose a much greater threat to ground water than those having a high CEC. CEC depends primarily on soil texture and organic matter content, but it is also affected by clay type and soil pH. Generally, the finer the soil texture or the greater the organic matter content, or both, the higher the CEC. CEC is measured in millequivalents per 100 g of dry soil and can be estimated by using this equation (4):

CEC = $(2 \times \text{pct. organic matter}) + (0.5 \times \text{pct. clay})$. [17]

The topography of a watershed, both macro and micro, affects the pollution potential to ground water because of its effect on the rate at which water is conducted across the watershed to the outlet. The faster the runoff moves across the surface, the less time for infiltration. Macrotopography refers to the land slopes within the watershed. The steeper the slopes, the more rapidly the runoff water is conducted across the watershed, thus allowing less infiltration. Microtopography refers mainly to the soil surface condition or roughness. A rough cloddy surface will decrease runoff and increase the potential for infiltration and ground-water pollution compared to a smooth-tilled surface.

Many practices such as till planting, ridging, contour stripping and terracing, while helping to control soil loss and runoff may, as a result, actually increase the potential for ground-water pollution. The general effects of most of these systems on surface-water pollution are considered in the model in the curve number method of calculating estimated runoff. As with a hydrologic soil group, however, where conditions are beneficial to reducing potential surface-water pollution, generally they will increase the potential for ground-water pollution.

The type of vegetation present downslope from a

feedlot is also an important consideration in assessing potential ground-water pollution hazard. As stated in the discussion of surface-water pollution, vegetation affects runoff by increasing the infiltration, filtration, settling, and adsorption of pollutants, all of which reduce the concentration of pollutants in runoff water. These same actions will tend to reduce the potential for ground-water pollution with the possible exception of increasing infiltration. More water infiltrating into the soil can increase the possibility of contaminants reaching the ground water. However, plants take up different amounts of nutrients and different proportions of nutrients from a soil according to their species and to soil conditions (33).

Nitrates are the major potential soluble groundwater contaminants. If the vegetation through which the runoff passes has a high capacity for utilizing nitrogen, much of the nitrate in the infiltrating water may be extracted by the plant roots, lessening the chance of nitrate contamination reaching the ground water, thus offsetting any increased infiltration. If a crop is to be planted with the specific purpose of serving as a vegetative filter for feedlot runoff, then such crops as corn, soybeans, or alfalfa, with high-nitrogen requirements, would probably be more suitable for use than crops with lower nitrogen requirements.

A final consideration in potential ground-water pollution is the sink-hole potential. The southeast corner of the State of Minnesota includes a large area of Karst topography, that is, an area of porous limestone containing deep fissures and sink holes and characterized by many underground caves and streams. Feedlot runoff in these areas can provide a severe threat to groundwater quality. As yet, there are no proven means for objectively assessing the seriousness of the problem in the Karst areas. The severity of the threat to groundwater pollution must be subjectively evaluated on a case-by-case basis.

Summary

In conclusion, the evaluation system described in this report was developed through the cooperation of several State and Federal agencies to provide a uniform and objective method of evaluating and rating the pollution potential of the approximately 90,000 animal feedlot operations in the State of Minnesota. The system is simple to use and appears to be quite precise. It provides a generally equitable means of dispersing public funds for pollution abatement, based on the seseverity of the hazard posed by any feedlot operation relative to that of any others. It also helps persons designing feedlot improvements to find the most economical and practical way to abate surface water pollution from any feedlot.

- Agricultural Research Council. 1976. Studies on farm livestock wastes. Agricultural Research Council, London.
- (2) American Society of Agricultural Engineers.
 - 1977. Agricultural Engineering Yearbook. American Society of Agricultural Engineers, St. Joseph, Mich., ASAE D384, p. 503.
- (3) Bingham, S. C., M. R. Overcash, and P. W. Westerman. 1978. Effectiveness of grass buffer zones in eliminating pollutants in runoff from waste application sites. American Society of Agricultural Engineers, St. Joseph, Mich., Paper No. 78-2571.
- Brady, N. C.
 1974. The nature and properties of soils, p. 103. 8th edition. Macmillian Publishing Co., Inc., New York.
- (5) Burwell, R. E., D. R. Timmons, and R. F. Holt.
 - 1975. Nutrient transport in surface runoff as influenced by soil cover and seasonal periods. Proceedings of the Soil Science Society of America 39(3):523-528.
- (6) Chow, Ven Te.
 1959. Open-channel hydraulics, p. 98-114. Mcgraw-Hill Book Co., Inc., New York.
 - 1964. Handbook of applied hydrology, section 21, p. 28-37, McGraw-Hill Book Co., Inc., New York.
- (8) Clark, R. N., C. B. Gilbertson, and H. R. Duke.
 - 1975. Quantity and quality of beef feedyard runoff in the great plains. In Managing livestock wastes. American Society of Agricultural Engineers, St. Joseph, Mich., PROC-275, p. 429-431.
- (9) Coote, D. R., and F. R. Hore.

(7)

- 1978. Pollution Potential of cattle feedlots and manure storages in the Canadian Great Lakes Basin. Agricultural Watershed Studies Project 21, Final Report, International Joint Commission. Agriculture Canada, Ottawa, Ontario KIA OC6.
- (10) Crow, F. R., J. Powell, and D. Wagner.
 - 1979. Nonpoint source pollution: how much does a well-managed rangeland watershed contribute. Presented at Southwest Region meeting of the American Society of Agricultural Engineers, Hot Springs, Ark., April 26, 1979.
- (11) Dickey, E. C., and D. H. Vanderholm. 1979. Vegetative filter treatment of livestock feedlot runoff. Journal of Environmental Quality. 10(3): 279-284

(12) Doyle, R. C., G. C. Stanton, and D. C. Wolf.

1977. Effectiveness of forest and grass buffer strips in improving the water quality of manure polluted runoff. American Society of Agricultural Engineers, St. Joseph, Mich., Paper No. 77-2501.

(13) _____ D. C. Wolf, and D. F. Bezdicek.

1975. Effectiveness of forest buffer strips in improving the water quality of manure polluted runoff. In Managing livestock wastes. American Society of Agricultural Engineers, St. Joseph, Mich., PROC-275, p. 299-302.

- (14) Edwards, W. M., F. W. Chichester, and L. L. Harrold.
 - 1971. Management of barnlot runoff to improve downstream water quality. In Livestock waste management and pollution abatement. American Society of Agricultural Engineers, St. Joseph, Mich., PROC-271. p. 48-50.
- (15) _____ and J. L. McGuiness.
 - 1975. Estimating quantity and quality of runoff from eastern beef barnlots. In Managing livestock wastes. American Society of Agricultural Engineers, St. Joseph, Mich., PROC-275, p. 408-411.
- (16) Fields, W. J. 1971. Hydrologic and water quality characteristics of beef feedlot runoff. M.S. thesis, Kansas State University, Manhattan.
- (17) Gilbertson, C. B., J. R. Ellis, J. A. Nienaber, T. M. Mc-Calla, and T. J. Klopfenstein.

1975. Physical and chemical properties of outdoor beef cattle feedlot runoff. Nebraska Agricultural Experiment Station, Research Bulletin No. 271.

- (18) T. M. McCalla, J. R. Ellis, O. E. Cross, and W. R. Woods.
 - 1970. The effect of animal density and surface slope on characteristics of runoff, solid wastes and nitrate movement on compared beef feedlots. Nebraska Agricultural Experiment Station, Research Bulletin No. S/B 508.
- (19) Loehr, R. C. 1972. Animal waste management-problems and guidelines for solutions. Journal of Environmental Quality 1(1):71-78.
- (20) _____ D. F. Anderson, and A. C. Anthonisen. 1971. An oxidation ditch for the handling and treatment of poultry wastes. In Livestock waste management and pollution abatement. American Society of Agricultural Engineers, St. Joseph, Mich., PROC-
- (21) Logan, T. J., and R. C. Stiefel. 1979. The Maumee river basin pilot watershed study. Vol. I: Watershed characteristics and pollution loadings. U.S. Environmental Protection Agency, Chicago, Ill., EPA-905/9 -79-005-A.
- (22) McCalla, T. M., J. R. Ellis, C. B. Gilbertson, and W. R. Woods.
 - 1972. Chemical studies of solids, runoff, soil profile and groundwater from beef leedlots at Mead, Nebr.) Proceedings of the 1972 Cornell Waste Management Conference, Cornell University, Ithaca, N.Y., p. 211-223.
- (23) Madden, J. M., and J. N. Dornbush.

271, p. 209-212.

1971. Measurement of runoff and runoff carried waste from commercial feedlots. In Livestock waste management and pollution abatement. American Society of Agricultural Engineers, St. Joseph, Mich., PROC-271, p. 44-47. (24) _____ and J. N. Dornbush.

- 1971. Pollution potential of snowmelt runoff from livestock feeding operations. American Society of Agricultural Engineers, St. Joseph, Mich., Paper No. 71-212.
- (25) Manges, H. L., R. J. Lipper, L. S. Murphy, W. L. Powers, and L. A. Schmid.
 - 1975. Treatment and ultimate disposal of cattle feedlot wastes. U.S. Environmental Protection Agency, EPA 660/2-75-013.
- Midwest Plan Service.
 1975a. Livestock waste facilities handbook. MWPS-18, Iowa State University, Ames, Iowa.
- (28) Miner, J. R., L. R. Fina, J. W. Funk, R. I. Lipper, and G. H. Larson.
 - 1966. Stormwater runoff from cattle feedlots. In Management of farm animal wastes. American Society of Agricultural Engineers, St. Joseph, Mich., SP-0366, p. 23-27.
- (29) Minnesota Pollution Control Agency
 - 1973. Minnesota Regulation WPC 14, Minnesota Pollution Control Agency, Minnesota Code of Agency Rules, published by Office of the State Register, Department of Administration, St. Paul, Minn.
- (30) Norman, D. A., W. M. Edwards, and L. B. Owens. 1978. Design criteria for grass filter areas. American Society of Agricultural Engineers, St. Joseph, Mich., Paper No. 78-2573.
- (31) Olness, A. E., S. J. Smith, E. D. Rhoades, and R. G. Menzel.
 1975. Nutrient and sediment discharge from agricultural watersheds in Oklahoma. Journal of Environmental Quality 4(3):331-336.
- (32) Reddell, D. L., and S. Wise. 1974. Water quality of storm runoff from a Texas beef feedlot. Texas Agricultural Experiment Station, PR-3224.
- (33) Russell, E. W.
 1961. Soil conditions and plant growth. 9th edition.
 John Wiley and Sons, Inc., N.Y.
- (34) Stewart, B. A., D. A. Woolhiser, W. H. Wischmeier, J. H. Caro, and M. H. Frere.
 - 1975. Control of water pollution from cropland. Vol. II. An overview. U.S. Department of Agriculture, Agricultural Research Service, ARS-H-5-2, 187 p.

- (35) Swanson, N. P., L. N. Mielke, J. C. Lorimore, T. M. Mc-Calla, and J. R. Ellis.
 - 1971. Transport of pollutants from sloping cattle feedlots as affected by rainfall intensity, duration, and recurrence. *In* Livestock waste mangement and pollution abatement. American Society of Agricultural Engineers, St. Joseph, Mich. PROC-271, p. 51-55.
- (36) Sweeten, J. M., and D. L. Reddell. 1976. Nonpoint sources: State-of-the art overview. American Society of Agricultural Engineers, St. Joseph, Mich., Paper No. 76-2563.
- (37) Thompson, D. B., T. L. Loudon, and J. B. Gerrish. 1978. Winter and spring runoff from manure application plots. American Society of Agricultural Engineers, St. Joseph, Mich., Paper No. 78-2032.
- (38) Timmons, D. R., and R. F. Holt. 1977. Nutrient losses on surface runoff from a native prairie. Journal of Environmental Quality 6(4): 369-373.
- (39) U.S. Department of Agriculture, Soil Conservation Service.
 1972. U.S. Department of Agriculture, SCS National Engineering Handbook, Section 4, Hydrology.
- (40) _____ Soil Conservation Service.
 1975. U.S. Department of Agriculture, Agricultural Waste Management Field Manual, Washington, D.C.
- (41) _____ Soil Conservation Service.
 1976. U.S. Department of Agriculture, Hydrology Guide for Minnesota, St. Paul, Minn.
- (42) U.S. Department of Commerce, Weather Bureau. 1961. Technical Paper No. 40.
- U.S. Government.
 1976. Title 40, Code of Federal Regulations, Part 124, Subpart I, Section 124.82 (a) (2), March 1976.
- (44) Vanderholm, D. H., and E. C. Dickey.
 1978. Design of vegetation filters for feedlot runoff treatment in humid areas. American Society of Agricultural Engineers, St. Joseph, Mich., Paper No. 78-2570.
- (45) Wieneke, S., D. B. George, D. S. Filip, Brad Finney, W. J. Grenney, and J. H. Reynolds.
 1978. A mathematical model to predict impacts of livestock waste runoff on receiving streams. American Society of Agricultural Engineers, St. Joseph, Mich., Paper No. 78-2512.
- (46) Witzel, S. A., E. McCoy, L. B. Polkowski, O. J. Attoe, and M. S. Nichols.
 1966. Physical, chemical and bacteriological properties
 - of farm wastes (bovine animals). In Farm animal wastes. Proceedings of the National Symposium on Animal Waste Management, Michigan State University, East Lansing, Mich.
- (47) -Young, R. A., and R. F. Holt.
 - 1977. Winter-applied manure: Affects on annual runoff, erosion, and nutrient movement. Journal of Soil and Water Conservation 32(5):219-222.
- (48) _____ T. Huntrods, and M. Anderson.
 1980. Effectiveness of vegetated buffer strips in controlling pollution from feedlot runoff. Journal of Environmental Quality 9(3):483-487.

Appendix A

Feedlot Screening Procedure

The screening procedure is based on the premise that if no allowance is made for dilution with water carrying a low background level of chemical oxygen demand (COD), that is, runoff from Area 2, then the maximum allowable COD concentration in the feedlot runoff is 112 mg/l. Based on the COD or percent manure pack relationship shown in figure 3 (text p. 5), this concentration is equivalent to the COD concentration generated by a feedlot having an animal unit density (AUD) of 2.5 animal units per acre $(2.5 \times 45 \text{ mg/l})$ = 112.5). Therefore, if the distance from the feedlot edge to the discharge point is sufficient to reduce the COD concentration in the runoff to the level that would result from a feedlot having an AUD of 2.5, then the lot would not present a threat to water quality. The screening procedure uses the relationship between contact time(T_c) and percent COD reduction (equation [8], p. 6) to determine this.

The screening formula may be derived as follows:

Given: feedlot area, A distance from feedlot to discharge point, L animal type. number, and COD factor, EAU = Σ number of animals × COD factor (for all animal types) AUD = EAU/APercent reduction = $D_c = -27.9 + 42.8 \log T_c =$ $100\left(\frac{\text{AUD} - 2.5}{\text{AUD}}\right)$ 42.8 log T_c ≥127.9 - $\frac{250}{\text{AUD}}$ or

where

 $v \leq 2$ ft/sec.

For the worst case v=2 and $L = 2T_c$, then $\log L = \log 2 + \log T_c$.

 $T_c = L/v$

Thus,

 $\log L = \log 2 + 2.99$ -

$$L = 10^{\left(3.29 - \frac{5.84}{AUD}\right)}$$

 $\frac{5.84}{\text{AUD}} = 3.29 - \frac{5.84}{\text{AUD}}$

This is the screening formula, and it is used to calculate the minimum value of L that would be required before the feedlot would be considered to pose no pollution

hazard. If L, as calculated above, is greater than the value of L reported on the screening form, then the feedlot could present a hazard and should be evaluated further.

Field experience has pointed out the need for a more sensitive screening tool. A preliminary evaluation method, based on a detailed evaluation of the buffer, is presented here to meet this need. This preliminary evaluation can be further refined with certain information from the screening form. It should be noted that this supplementary method is optional and has not been implemented in Minnesota.

The preliminary evaluation must be conducted on the site by the technician. It will result in time savings only if the technician is equipped with a portable programmable calculator so that the preliminary evaluation can be determined immediately at the conclusion of a brief field inspection. If the feedlot is then determined to be a potential pollution hazard, the technician immediately can continue to examine the feedlot and collect the additional data needed for a full evaluation. Instructions for Hewlett-Packard calculators, therefore, are incorporated in the preliminary evaluation form.

The preliminary evaluation formula is based on most of the same assumptions as the screening formula. It is derived simply by substituting the actual T_c, calculated for the buffer in existence on the property, for the estimated $T_c (T_c = L/2)$.

Thus	42.8 log T _c = 127.9 - $\frac{250}{\text{AUD}}$,
and	$\log T_c = 2.988 - \frac{5.841}{AUD}$

In the worst case, AUD = 100, so the required $T_c =$ 851 sec. The preliminary evaluation first checks the calculated T_c using this worst case AUD; if T_c is insufficient, the feedlot is a potential hazard. If the technician believes the AUD is less than 100, information needed for calculating AUD is input, and the actual T_c (from buffer calculations) is compared to the required T_c (from equation above).

If T_c is insufficient – either with or without detailed information on AUD-the feedlot could pose a hazard and should be evaluated further.

Appendix **B**

	Feedlot Evaluation System – Feedlot Screening		
Applican	plicant Location (Section, Township, County)		
A. Scree	ning for surface-water pollution hazard: What are the approximate dimensions, or what is th area of the animal lot?		
	ft X ft or	acres	
(2)	Approximately how far away from the animal lot is where sheet flow ceases or flow becomes channelize tile inlet, the edge of a gully, drainage ditch or inlet of a grass waterway or the normal high-wate perennial or intermittent stream, lake, or marsh.	d? This may be a sink hole, the er mark of a	
(3)	(3) What types of animals is the lot intended to support, and what is the maximum number of each? If more than three types, write in margin.		
	Animal Type		
	Number of animals		
	COD factor		
	Number of animals		
	COD factor		
	Number of animals		
	COD factor		
(4)	Screening result from programmable calculator (zero = no hazard, two = evaluation needed) Calculated by (clerk's initials and date) CONTINUE AND COMPLETE ON NEXT PAGE:		
	TABLE 1.—Ratio of COD produced by various		
	animals to		

that produced by a 1,000 pound slaughter steer

Animal type	Design weight ¹	COD
	Pounds	
Slaughter steer	1,000	1.00
Young beef	500	.50
Dairy cow	1,400	1.96
Young dairy stock	500	.70
Swine	200	.17
Feeder pig	50	.04
Sheep	100	.18
Turkey	10	.02
Chicken	4	.01
Duck	4	.01
Horse	1,000	.42

¹Interpolation of values should be based on the maximum weight that the animal would be expected to reach.

B. Screening for ground-water pollution hazard:

(1) How would you describe the soils around your feedlot?

// light // medium // heavy

- (2) Estimate the depth to ground water or bedrock: _____ ft.
- (3) Is further evaluation of ground-water pollution potential needed?

Clerk's initials and date:

<u>/</u>/ yes // no

I have received a summary of how the cost-share programs apply to feedlots. I understand that the pollution potential of my feedlot must be evaluated to help set priorities for cost sharing. To assist in the evaluation, I have provided the above information, which is correct to the best of my knowledge.

Signed

(Applicant)

Date _____

Screening instructions

For surface-water pollution hazard -

- 1. Determine acreage of feedlot from dimensions, if necessary.
- 2. For each animal type in question 3, insert the appropriate COD factor from Table 1.
- 3. Calculate the screening using the H-P or Monroe/Compucorp programmable calculator.
- 4. The screening program will display and print either a zero or a two.
 - -- If zero, the animal lot is not a potential surface-water pollution hazard, and no further evaluation is necessary.
 - -- If two, the animal lot may be a potential surface-water pollution hazard. It should be evaluated using the Evaluation Data Form and calculated starting with program #2 on either programmable calculator.

For ground-water pollution hazard -

Further evaluation of the ground-water pollution potential is needed if -

soils are desc	ribed as:	depth to ground water or bedrock is less than:
light or mediu or heavy	m and	6 feet 4 feet 2 feet

Feedlot Evaluation System - Preliminary Evaluation Data

Operator _____ Location

(Section, Township, County)

This is a preliminary evaluation of the potential surface-water pollution hazard of runoff from an open animal lot.

Definitions, as used in this preliminary evaluation, are as follows:

- Buffer -- That area of land where surface runoff from the lot receives effective treatment as it flows over vegetation, not including any grass waterway. The total length of the buffer is the shortest distance, measured along the line of flow, from any part of the lot to the discharge point.
- Discharge -- The point where runoff from the lot and the buffer Point becomes channelized and no longer receives effective treatment as it flows over surface vegetation. The discharge point may be a tile inlet; the edge of a sinkhole, drainage ditch, or grass waterway; the normal high-water mark of a perennial or intermittent stream, lake, or marsh if animal lot runoff drains to such an area; or the point where the runoff enters a dry run, gully, or large rill.

First-level preliminary evaluation

Divide the buffer into one or more sections so that each is fairly uniform in both ground cover and slope. If there is no buffer, proceed with a complete animal lot evaluation.

Survey the slope of each section. If slope is surveyed as zero, record as .01. Refer to table 2 for the surface condition constant c.

	Slope (S)	= Percent
Ground cover	(c)	=
	Distance (L)	
	Slope (S)	= Percent
Ground cover	(c)	
	Distance (L)	=

Ground cover	Surface condition constant (c)
Fallow	0.22
Row crops:	
Straight rows	.05
Contoured rows	.29
Rotation meadow, small grains, legumes, or	
woodland	.29
Farmsteads	.01
Forest with heavy litter, permanent meadow	.59
Pasture:1	
Poor	.01
Fair	.15
Good	.22

TABLE 2. — Surface condition constant for various types of cover

¹Pasture should be considered "poor" if it is heavily grazed, with no mulch. "Fair" pasture has between 50 and 75 percent plant cover and is moderately grazed. "Good" pasture is lightly grazed and has more than 75 percent plant cover.

Calculate preliminary evaluation on the Hewlett-Packard 67/97.

- (1) Turn power switch to "on", set man-trace-norm switch on "norm" and prgm-run switch on "run", and insert program card 6 into calculator (side 1 only). (Feed printed side up.)
- (2) Press "A". After flickering briefly, the display will read "6.00".
- (3) Enter data on ground cover and slope from previous page. After each complete number entry, press "R/S".
 - -- CAUTION: Do not depress any key while display is flickering.
 - -- Note that the spacing of the printed tape matches the format of this form.
 - -- While only two sets of blanks are provided, note that any number of buffer sections may be entered.
 - -- When information for all buffer sections has been entered, the display will show "0.00". Press "R/S" to enter the zero from the display, signaling the calculator that there are no additional buffer sections.

16

- (4) After the display flickers briefly, the calculator will display and print "0.00" or "2.00".
 - -- If "0.00", the lot is not a potential surfacewater pollution hazard. The preliminary evaluation is complete.
 - -- If "2.00", further information is required to determine whether the lot may be a potential surface-water pollution hazard. Continue with the second level.

Second-level preliminary evaluation

Determine and enter the area of the lot in either of these two ways:

Use the calculator to compute the area of the lot in square feet. When the correct number of square feet shows in the display, <u>press "C"</u> to automatically convert the area to acres; continue with the next step. Determine the area of the lot:

acres

Key this number into the calculator, <u>press "R/S"</u>, and continue with the next step.

Enter the number of animals in the lot and the animal-type factor from Table 3 for chemical oxygen demand (COD) as follows:

Animal type

Number	of animals	=
COD	factor	=
Number	of animals	=
COD	factor	=
Number	of animals	=
COD	factor	=

TABLE 3. – Ratio of COD produced by various	
animals to that produced	
by a 1,000 pound slaughter steer	

Animal	Design	
type	weight ¹	COD
	Pounds	
Slaughter steer	1,000	1.00
Young beef	500	.50
Dairy cow	1,400	1.96
Young dairy stock	500	.70
Swine	200	.17
Feeder pig	50	.04
Sheep	100	.18
Turkey	10	.02
Chicken	4	.01
Duck	4	.01
Horse	1,000	.42

¹Interpolation of values should be based on the maximum weight that the animal would be expected to reach.

Enter the animal data into the calculator.

- -- While only three sets of blanks are provided, note that any number of animal types may be entered.
- -- When information for all animal types has been entered, the display will show "0.00". Press "R/S" to enter the zero from the display, signaling the calculator that there are no additional animal types.

After the display flickers briefly, the calculator will display and print "0.00" or "2.00".

- -- If "0.00", the lot is not a potential surface-water pollution hazard. The evaluation is complete.
- -- If "2.00", the lot may be a potential surface-water pollution hazard. Proceed with a complete animal lot evaluation.
- <u>NOTE</u>: If an error in entering data is made at any point, it is <u>not</u> necessary to reenter card 6. Simply press "A", and proceed to enter data for first-level evaluation after the display reads "6.00". Similarly, to check your work or to conduct a preliminary evaluation of another animal lot, simply press "A" and proceed to enter data.

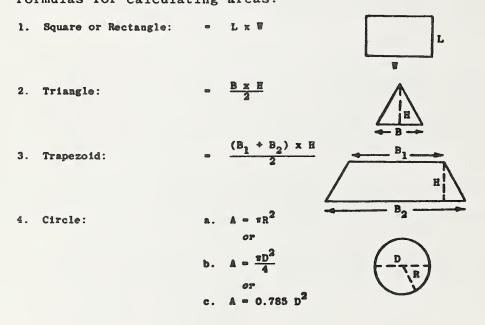
Operator

Location

(Section, Township, County)

This is a system for evaluating the potential pollution hazard of runoff from an open animal lot. It provides numerical ratings for both the surface-water pollution hazard and the ground-water pollution hazard.

Definitions, as used in this system:


- Animal lot -- an open lot, or a combination of open lots, intended for the confined feeding, breeding, raising, or holding of animals and specifically designed as a confinement area in which manure may accumulate, or where the concentration of animals is such that a vegetative cover cannot be maintained within the enclosure. This includes poultry ranges, but does not include pastures. "Animal area" is equivalent to "animal lot".
- Area 1 -- The animal lot or lots, less any area covered by a roof. (Roof area is considered part of Area 2 if it drains across the lot. Otherwise, it may be part of Area 3 or outside the local watershed entirely.)
- Area 2 -- Area tributary to the animal lot, that is, the area from which runoff will drain through the lot or wash across it. Usually includes part of the roof area of buildings adjoining the lot and often includes part of the farmstead.
- Area 3 -- That part of the local watershed that contributes runoff to the discharge point but is not included in Area 1 or Area 2. Area 3 includes the entire buffer, plus any other area whose runoff flows over the buffer.
- Buffer -- That part of Area 3 in which runoff from the animal' lot receives effective treatment as it flows over surface vegetation.
- Point --The point where runoff from the local watershed becomes channelized and no longer receives effective treatment as it flows over surface vegetation. The discharge point may be a tile inlet, the edge of a sinkhole, drainage ditch or grass waterway,* or the normal high-water mark of a perennial or intermittent stream, lake, or marsh, if animal lot runoff drains to such a point. The discharge point may also be some other point, closer to the animal lot, at which sheet flow of animal lot runoff ceases--for example, a point where the runoff enters a dry run, gully, or large rill.

Local

- Watershed -- The smallest watershed that includes the animal lot and the buffer. Consists of Areas 1, 2, and 3.
 - * If an animal lot and its associated Area 2 comprise the majority of the drainage area of a grass waterway, and the waterway is designed principally to treat feedlot runoff, the grass waterway constitutes a buffer and its outlet should be considered the discharge point.

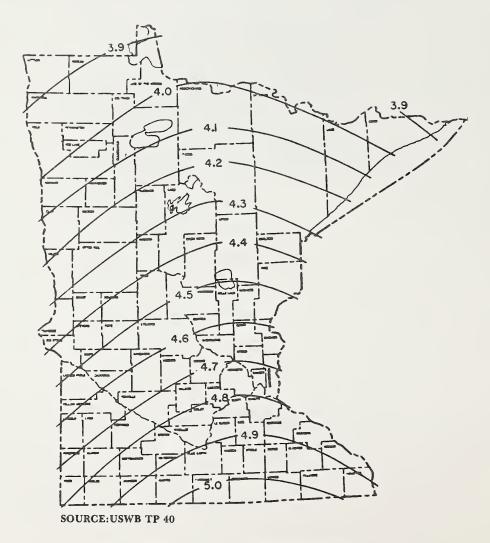
Calculations and notes

Information for Step4 (next page): $43,560 \text{ ft}^2 = 1 \text{ acre.}$ Formulas for calculating areas:

The following steps should be taken to evaluate and rate an animal lot:

Surface-water pollution potential

- Step 1. Carefully study the animal lot and the area immediately surrounding it. Briefly describe the discharge point, using the name of the receiving water, if applicable, in the blank on page 29.
- Step 2. On the back of this form, sketch the local watershed. For those portions of this watershed outside the animal lot itself, indicate soil types (use the best available soils information) and ground cover (use the categories in table 4). Determine the outside (plan) dimensions of the roofs of barns, feeders, and other buildings. Scale all land dimensions needed for the sketch, using the best available maps and photos, or pace the distances. If the lot is partly paved and partly earthen, estimate the proportion of the total that is paved.


Indicate Areas 1, 2, and 3 on the sketch. Divide Areas 2 and 3 into sub-areas (2a, 2b, 2r; and 3a, 3b, 3c, 3d) if there are differences in soil types or ground cover or if parts are paved or roofed.

- Step 3. Determine the design rainfall (R) $R = ____ in (1)$ from rainfall map (fig. 1) for a 25-yr, 24-hour rainfall.
- Step 4. Complete all blanks in the following table, inserting "O" in all blanks not otherwise filled. Record the ground cover of each area or subarea as well as their sizes. (Ground cover was indicated on the sketch.) Sizes may be determined from the dimensions on the sketch or, if sketch is drawn to scale, a planimeter or an SCS transparent area scale may be used.

Area	1	Feedlot	 ft. ²	=	acre(2)
Area	2a		 $ft.^2$	=	acre(3)
Area	2Ъ		 $ft.^2$	=	acre(4)
Area	2r	Roof Area	 $ft.^2$	=	acre(5)
Area	3a		 $ft.^2$	=	acre(6)
Area	3b		 $ft.^2$	=	acre(7)
Area	3c		 $ft.^2$	=	acre ⁽⁸⁾
Area	3d		 $ft.^2$	=	acre(9)

Step 5. Enter soil cover complex number (CN) for the animal lot (Area 1) based on the following table:

Percent paved CN	0-24 91	25-49 92	50-74 93	75-100 94	
				CN =	 (10)

ŀ

Figure 1.-25-year, 24-hour rainfall (inches).

	Surface		Soil cover cor	nplex number	
Cover	constant (c)	Soil Group A	Soil Group B	Soil Group C	Soil Group D
Fallow	0.22	77	86	91	94
Row crop:					
Straight row	.05	67	78	85	89
Contoured	.29	65	75	82	86
Small grain	.29	63	74	82	85
Legumes or rotation meadow	.29	58	72	81	85
Pasture:1					
Poor,	.01	68	79	86	89
Fair	.15	49	69	79	84
Good	.22	39	61	74	80
Permanent meadow	.59	30	58	71	78
Woodland	.29	36	60	73	79
Forest with heavy litter	.59	25	55	70	77
Farmsteads	.01	59	74	82	86
Grass waterway	1.00^{2}	49	69	79	84
Animal lot:					
Unpaved			9	91	
Paved				94	
Roof area			10		

 TABLE 4. - Surface condition constant and soil cover complex numbers for various cover conditions

¹Pasture should be considered "poor" if it is heavily grazed with no mulch.

"Fair" pasture has between 50% and 75% plant cover and is moderately grazed. "Good" pasture is lightly grazed and has more than 75% plant cover.

²Disregard this value when interpolating c values. The "one" for a grass waterway should not be treated as a number. It is merely a code that tells the calculator to use a special formula for computing buffer effectiveness. Source: Hydrology Guide for Minnesota, USDA-SCS, St. Paul, MN.

Step 6.	Complete all blanks in the f serting "O" in blanks not of Soil type was indicated on t determining the soil hydrold table 5, find the soil cover from table 4.	therwise filled. the sketch. After ogic group from
		Soil Hydro-
	Soil Type	logic Group

Area	² a	 CN =	(11)
Area	² b	 CN =	(12)
Area	² r Roof		
Area	3 _a	 CN =	(13)
Area	3 _b	 CN =	(14)
Area	3 _c	 CN =	(15)
Area	3 _d	CN =	(16)

Step 7. Identify the buffer. If there is no buffer, enter zero on line 17 and continue with Step 8.

> The total length of the buffer is the shortest distance, measured along the line of flow, from any part of the animal lot to the discharge point. This length may be analyzed as one or more sections so that each is fairly uniform in both ground cover and slope. Note that the calculator will accept any number of buffer sections. If using more than two, write in the margin.

Survey the slope of each section. If slope is surveyed as zero, record as .01. Refer to table 4 for the surface-condition constant (c).

Section a:	Slope (S)	=%	(17)
Ground cover	(c)	=	(18)
	Distance (L)	=	(19)

TABLE 5. - Soil names and hydrologic classifications

lastad	B	Brickton	С	Dorset	B	Greenwood	A/1
Aasdahl	В	Brill	В	Dovray	C/D	Grimstad	В
Adolph	B/D	Brodale	С	Downs	В	Grogan	В
Adrian	A/D	Brookings	В	Dubuque	В	Growton	В
Afton	C/D	Brophy	A/D	Duelm	Α	Grygla	B /1
Ahmeek	C	Brownton	C/D	Duluth	С	Guckeen	С
	В	Burkhardt	B	Dunbarton	D	Halder	c
Alcester					B/D		A/
Allendale	В	Burnsville	B	Dundas		Hamar	
Almena	С	Buse	В	Dunnville	B	Hamel	С
Alstad	В	Calamine	C/D	Dusler	С	Hamerly	С
Alvin	В	Calco	C/D	Eckman	В	Hangaard	A/
Amery	В	Campia	В	Edison	В	Hanska	С
Ames	C/D	Canisteo	C/D	Edwards	B/D	Hantho	в
	B		A/D	Egeland	В		B/
Ankeny		Carlos		0		Harps	
I noka	В	Caron	A/D	Elderon	В	Harpster	B/
Antigo	В	Cashel	С	Eleva	В	Hatfield	B/
rcola	С	Cathro	A/D	Ely	В	Hattie	С
Aredale	В	Channahon	D	Embden	В	Haug	B/
renzville	B	Chaseburg	B	Emmert	A	Havana	B
	B	-	-	Enloe	D		В
Arland	-	Chaska	B/D		B	Hayden	
Arveson	A/D	Chelsea	A	Enstrom	-	Hayfield	B
Arvilla	В	Chetek	В	Erin	В	Hecla	A
Athelwold	В	Chilgren	С	Estelline	В	Hegne	C,
Atkinson	B	Clarion	В	Estherville	В	Hesch	В
Auburndale	C/D	Clontarf	B	Etter	В	Heyder	В
	B/D		-	Everly	В	Hibbing	c
Augsburg		Cloquet	B		A		c
Automba	В	Clyde	B/D	Eyota		Hidewood	-
Badger	C/D	Collinwood	C	Fairhaven	В	Hillet	C
Barbert	D	Colo	B/D	Fargo	С	Hiwood	A
Barnes	В	Colvin	C/D	Farrar	В	Hixton	В
Baroda	D	Comfrey	B/D	Faxon	B/D	Holdingford	С
		-		Fayette	В		Ā
Barrington	B	Conic	С	~	A	Houghton	•
Barronett	B/D	Copaston	D	Fedji		Hubbard	A
Barrows	B/D	Cordova	C/D	Fieldon	B/D	Huntsville	В
Barto	B/D	Cormant	A/D	Finchford	A	Ihlen	В
Baudette	В	Crippin	В	Flak	С		D
Bearden	c		Ā	Flaming	Α	Indus	_
		Crocker		Flandreau	В	Insula	D
Beauford	D	Crofton	В		B/D	Isan	A
Becker	В	Cromwell	A	Flom		Isanti	A
Bellechester	Α	Curran	С	Floyd	В	Jackson	В
Beltrami	В	Cushing	В	Foldahl	В	Joliet	D
Bena	A	Cutfoot	A	Forada	B/D		E
	B/D		B	Fordville	B	Joy	-
Benoit		Cylinder	-		B	Judson	E
Beotia	В	Dakota	B	Forman		Kamrar	E
Bergland	D	Dalbo	В	Formdale	B	Kanaranzi	E
Bertrand	В	Darfur	B/D	Fossum	A/D	Karlstad	A
Beseman	A/D	Darnen	B	Foxhome	В	Kasota	Ċ
Billett	В	Dassel	B/D	Fram	В		0
	B/D		A/D	Freeon	В	Kasson	
Biscay		Dawson			c	Kato	C
Bixby	В	Deerwood	B/D	Freer	B	Kegonsa	I
Blackhoof	C/D	Derinda	С	Frontenac		Kennebec	1
Blomford	B/D	Dickey	Α	Fulda	C/D	Kenyon]
Blooming	В	Dickinson	В	Gale	В		i
Blue Earth	B/D	Dickman	Ā	Galva	В	Kilkenny	
		Dinsdale	B	Garnes	В	Kingsley]
Bluffton	C/D		-		C/D	Kingston	
Bold	В	Divide	В	Garwin		Kittson	(
Boone	Α	Dodgeville	В	Glencoe	B/D	Klinger	
Boots	A/D	Doland	В	Glyndon	В	Kranzburg	
	B/D	Donaldson	В	Gonvick	В		
Borup	-	Donnan	č	Gotham	Α	Kratka	
Braham	В	Donnan	-		A/D	LaPrairie	
Brainerd	С	Doran	С	Granby	A/ U		

Lamont	В	Mosomo	A	Rauville	C/D	Swenoda	в
Lamoure	С	Mt. Carroll	В	Readlyn	В	Syrene	B/I
Langhei	В	Muscatine	В	Redby	В	Talcot	B/I
Langola	В	Muskego	A/D	Renova	В	Tallula	В
Lasa	Α	Nebish	В	Renshaw	В	Tama	В
Lawler	В	Nemadji	В	Rib	С	Taopi	c
Lawson	В	Nereson	В	Richwood	В	Tara	В
LeSueur	В	Nessel	В	Rifle	A/D	Tawas	A/D
Lemond	B/D	Newfound	С	Rockton	В	Taylor	C
Lerdal	С	Newglarus	В	Rockwell	B/D	Tell	В
Lester	В	Newry	В	Rockwood	C	Terril	В
Letri	B/D	Newson	A/D	Rolfe	C/D	Tilfer	B/D
Lilah	А	Nicollet	В	Roliss	B/D	Timula	B
Linder	В	Nokasippi	D	Rondeau	A/D	Toddville	В
Lindstrom	В	Nokay	С	Ronneby	C	Toivola	Ā
Lino	В	Nordness	В	Rosemount	B	Tonka	C/D
Lismore	В	Normania	В	Rosendale	B	Torning	B
Litchfield	Α	Northcote	Ċ/D	Roseville	B	Towner	В
Lobo	D	Nowen	B/D	Rosholt	B	Trent	B
Lohnes	A	Noves	C/D	Rothsay	B	Tripoli	B/D
Lomax	В	Nutley	C	Rushmore	B/D	Trosky	B/D
Loxley	A/D	Nymore	Ă	Ryan	D	Truman	B
Lupton	A/D	Oak Lake	B	Sac	B	Twig	A/D
Lura	C/D	Ocheyedan	В	Salida	A	Udolpho	B/D
Maddock	A	Ogilvie	B/D	Santiago	B	Ulen	B
Madelia	B/D	Okoboji	B/D	Sargeant	D	Upsala	c
Mahtowa	C/D	Oldham	C/D	Sartell	A	Urness	B/D
Malachy	B	Omega	A	Sature	В	Vallers	C
Marcus	B/D	Onamia	B	Sawmill	B/D	Vasa	В
Markey	A/D	Ontonagon	D	Schapville	C	Ves	B
Marlean	B	Opole	B	Schley	B	Vienna	B
Marna	D	Orion	B	Seaforth	B	Viking	D
Marquette	A	Oronoco	B	Seaton	B	Vlasaty	c
Marshan	B/D	Osakis	B	Seelyeville	A/D	Waccusta	B/D
Marysland	B/D	Oshawa	C/D	Shakopee	C/D	Wadena	B
Marysiand	B/D	Ossian	B/D	Shawano		Wahpeton	c
Maxcreek	B/D B/D	Ostrander	B	Shible	A B	Waldorf	C/D
Maxfield	B/D B/D	Otter	B/D	Shields	C	Warba	B
	B/D B/D	Otterholt	B	Shocker	c	Warman	B/D
Mayer Mazaska	C/D	Paget	c		c	Waskish	A/D
McDonaldsville		Palms	A/D	Shorewood Shullsburg			C
	B	Palsgrove	B		С	Watab Watseka	A
McIntosh	B	Parent	B/D	Sinai	C B	Waubav	В
McPaul	Б С	Parnell	C/D	Singsaas	-	-	B
Medary	-	Pelan	B	Sioux	A	Waubeek Waucoma	-
Meehan	A/D		B B/D	Skyberg	C		B B
Menagha	A	Percy		Sletten	B/D	Waukee	-
Meridian	B	Perella	B/D	Soderville	A	Waukegan	B
Merton	B	Plainfield	A	Sogn	D	Waukon	B
Merwin	A/D	Poinsett	B	Sparta	A	Webster	B/D
Mesaba	C	Pomroy	B	Spencer	C	Whalan	B
Metogga	A/D	Poppleton	A	Spicer	B/D	Wheatville	B
Milaca	C	Port Byron	B	Spillville	B	Whitewood	C/D
Millerville	A/D	Prebish	C/D	Spooner	C/D	Wildwood	C/D
Millington	В	Primghar	В	Spottswood	В	Wilmonton	B
Minneiska	С	Protvin	С	Storden	В	Winger	B/D
Minneopa	B	Quam	B/D	Strandquist	B/D	Wyndmere	B
Minnetonka	D	Quetico	D	Stronghurst	В	Zell	В
Moland	В	Racine	В	Stuntz	С	Zimmerman	A
Moody	В	Radford	В	Suamico	A/D	Zumbro	A
Moose Lake	A/D	Ransom	В	Svea	В	Zwingle	D
Mora	С	Rasset	В	Sverdrup	ъ		

Note: Two soil groups, such as B/D, indicate the drained/undrained situation.

Animal Lot	Evaluation Data	Operator		
Section	b:	Slope (S)	=	(20)
Grou	nd cover	(c)	=	(21)
		Distance (L)	=	(22)
Step 8.	the animal type fa	of animals in the lot and actors from table 6 for emand (COD) and total		
	Animal Type			
		Number of Animals	=	(23)
		COD Factor	=	(24)
		P Factor	=	(25)
		Number of		(22)
		Animals	=	(26)
		COD Factor	=	(27)
		P Factor	=	(28)
		Number of		
-		Animals	=	(29)
		COD Factor	=	(30)
		P Factor	=	(31)

** End of data entry **

Ground-water Pollution Potential

Step 9. Consider the first (upper) buffer section.

(A) Note the soil type as shown on the sketch

Determine the hydrologic soil group from table 5, and indicate the soil group and soil factor on the table below.

<u>Hydrologic</u>	Soil Group	Soil Factor
А		2
В		1
С		0
D		0

 (B) Note the minimum depth to ground water or bedrock and indicate source of this information (for example: site inspection or SCS - soils - 5 soil interpretation).

Minimum depth _____

According to

Determine the depth factor and indicate on the table below:

	<u>Minimu</u>	m	depth	Depth factor
	0 -	2	ft	3
	2 -	4	ft	2
	4 -	6	ft	1
more	than	6	ft	0

(C) Rating value for ground-water pollution: Soil factor plus depth factor =

(32)

TABLE 6. - Ratio of COD
and P produced by various
animals to that produced
by a 1,000 pound slaughter
steer

Animal	Design		
type	weight ¹	COD	Р
	Pounds		
Slaughter steer .	1,000	1.00	1.00
Young beef	500	.50	.51
Dairy cow	1,400	1.96	.92
Young dairy			
stock	500	.70	.33
Swine	200	.17	.27
Feeder pig	50	.04	.07
Sheep	100	.18	.06
Turkey	10	.02	.03
Chicken	4	.01	.01
Duck	4	.01	.01
Horse	1,000	.42	.42

¹Interpolation of values should be based on the maximum weight animals would be expected to reach.

28

a. 10 1				
-	esults of evaluation:			
Surface wat				
Total vo	lume of runoff at the o	discharge point	acre-in	(3:
COD cond	entration at the discha	arge point	mg/ L	(34
	ion of discharge point g water if applicable (
	ot rating for surface-w hazard, 100 = very se			(3
Ground wate	r: (from line 32) (0 =			()
	5 = very severe haza	ard)		(36
Addition	5 = very severe haza al comments:	ard)		(36
Addition				(36
Addition		ard)		(36
Addition				(36
		ion includes separa y to each other tha combine ratings fo	at are interdepend	len
	al comments: If the feedlot operation immediate proximity in use or management,	ion includes separa y to each other tha combine ratings fo sults here.	at are interdepend	len
	al comments: If the feedlot operation in immediate proximity in use or management, lots and enter the res	ion includes separa y to each other tha combine ratings fo sults here. f from feedlot	at are interdepend or all such animal	len
	al comments: If the feedlot operation in immediate proximity in use or management, lots and enter the res Total volume of runoff	ion includes separa y to each other tha combine ratings fo sults here. f from feedlot	at are interdepend or all such animal acre-in	len

Prepared by _____

Date

Appendix C

Detailed Instructions for Calculations Using the Hewlett-Packard 97 Calculator

Calculating animal lot screening

NOTE -- First follow instructions on back of Screening form.

- A. Turn power switch "on".
- B. Set man-trace-norm switch on "norm" and prgm-run switch on "run".
- C. Insert screening program into calculator. This program is on side 1 of card 1. (Feed printed side up, numbered side leading.)
- D. Press "A". After flickering briefly, display will read "1.00".
- E. Enter information from the screening form. After each complete number entry, press "R/S".
 - -- CAUTION Do not depress any key while display is flashing.
 - -- Note that the spacing of the printout matches the spacing of the screening form.
- F. When information for all animal types has been entered, the display will show "0.00". Press "R/S" to enter the zero from the display, signaling the calculator that there are no additional entries. After the display flickers briefly, the calculator will display and print the surface water pollution hazard screening result.
- G. If an error is made in entering data, or if more than one animal lot is to be screened, it is <u>not</u> necessary to reenter the program card. In either case, simply go back to D above: press "A", etc.
- H. An optional feature allows the user to enter the feedlot area from line 1 of the form (E above) in square feet. If this option is selected, the calculator determines and prints the number of acres. To make this automatic conversion, press "C" (instead of "R/S") after keying in the number of square feet.

Calculating animal lot evaluation

- A. Turn power switch "on".
- B. Set man-trace-norm switch on "norm" and prgm-run switch on "run".
- C. Insert program card 2 into calculator (both sides). (Feed printed side up.)
- D. Press "A". After flickering briefly, display will read "2.00".

- E. Enter data from steps 3 6 of the evaluation data form. After each complete number entry, press "R/S".
 - -- CAUTION Do not depress any key while display is flickering.
 - -- Note that the spacing of the printed tape matches the format of the Animal Lot Evaluation Data Form.
 - -- WARNING In Step 6, the calculator enters zeroes automatically where required. It "knows" where because of corresponding zeroes entered in Step 4. Watch the paper tape and do not enter any zeroes from keyboard.
- F. Enter data from Step 7 of the data form.
 - -- If there is no buffer, press "R/S" and proceed to enter data from Step 8, as described in G below.
 - -- While only two sets of blanks are provided, note that any number of buffer sections may be entered.
 - -- When information for all buffer sections has been entered, the display will show "0.00". Press "R/S" to enter the zero from the display, signalling the calculator that there are no additional buffer sections.
- G. Enter data from Step 8 of the data form.
 - -- While only three sets of blanks are provided, note that any number of animal types may be entered.
 - -- When information for all animal types has been entered, the display will show "0.00". Press "R/S" to enter the zero from the display, signalling the calculator that there are no additional animal types.
- H. If an error is made in entering data from the evaluation data form, it is <u>not</u> necessary to reenter card 2. Simply press "A", and proceed with E above after the display reads "2.00".
- I. The calculator will display "3.00" after flickering briefly. Insert program card 3 into calculator (both sides). The display will now read "3.".
- J. Press "R/S". The calculator will continue flickering and will then print the following information for the animal lot:
 - -- total runoff volume (acre-inches)
 - -- COD concentration at discharge point (parts per million, ppm)
 - -- animal lot rating

The calculator will display "4.00" to indicate that card 4 may now be fed into the calculator if design information is desired.

K. If additional information is desired, insert program card 4 into calculator (both sides). The display will now read "4.".

- L. Press "R/S". The calculator will print groups of information on the following factors:
 - -- Runoff volume
 - -- The rating this lot would have if all runoff from Area 2 was diverted
 - -- COD concentrations
 - -- COD loadings
 - -- P concentrations
 - -- P loadings

Details on the format and information are given on the next two pages.

- M. To evaluate another animal lot, insert card 2 into calculator and proceed with D above.
- N. The following summary of keyboard displays may prove helpful:

2.00 -- awaiting entry of first number (rainfall, step 3) from data form
3.00 -- awaiting insertion of card 3
3. -- card 3 inserted; awaiting the pressing of "R/S"
4.00 -- awaiting insertion of card 4
4. -- card 4 inserted; awaiting the pressing of "R/S"

O. Two optional features provide user convenience in entering data from Step 4 (E above). If not helpful, these should be disregarded.

 Press "R/S" to enter zero areas from the display; it is not necessary to press "O" when the display shows zero.
 To automatically convert areas from square feet to acres, press "C" (instead of "R/S") after keying in the number of square feet. The calculator will calculate and enter the correct acreage. (Screening does this too.)

Additional information available

If desired, additional information about an animal lot may be obtained after the calculator has printed the rating.

The information relates to:

- -- Runoff volume, acre-inches (A-in);
- -- The rating this animal lot would have if all Area 2 runoff was diverted from the feedlot watershed area (diverted lot);
- -- Concentrations of Chemical Oxygen Demand (COD) in parts per million (ppm);
- -- Loadings of COD in pounds (#);
- -- Concentrations of Phosphorous (P) in ppm; and
- -- Loadings of P in #.

The spacing of the accompanying table matches the spacing of the calculator printout. In interpreting the information, the following comments may be helpful.

- -- Runoff from Areas 1+2+3 is the same as the total runoff volume, output previously by the calculator (line 33 on the data form).
- -- ppm COD at discharge point is the same as the COD concentration at the discharge point, output previously by the calculator (line 34 on the data form).
- -- "at feedlot edge" refers to the lower edge of the animal lot.
- -- "buffer effects" include settling, infiltration, adsorption, interception, and other effects. These depend on the time of contact between runoff water and the ground surface.
- -- "dilution" refers to the fact that the relatively polluted water from the animal lot, after some cleansing in the buffer, is diluted with runoff from Area 3. Percent reduction due to dilution is positive because dilution reduces concentration of pollutants. Loadings in pounds may be negative because the dilution water contributes additional amounts of pollutants. When calculated pollutant concentrations are less than background levels because the buffer is effective, these percentages are left blank.
- -- The animal lot rating is based on COD loadings, but the basis for rating is not included in the information listed here. The model estimates the actual COD and P quality of discharge water.

Number printed	Explanation of printout
A -in A -in A -in	Runoff from Area 1 Runoff from Area 2 Runoff from Areas 1 + 2
A −in A −in	Runoff from Area 3 Runoff from Areas 1 + 2 + 3
A -in ppm rating	Runoff from diverted lot COD at discharge point for diverted lot for diverted lot
ppm	COD at feedlot edge
89 89	reduction from buffer effects reduction due to dilution
ppm	COD at discharge point
#	COD at feedlot edge
B 6 P6	reduction from buffer effects reduction due to dilution
#	COD at discharge point
ppm	P at feedlot edge
50 60	reduction from buffer effects reduction due to dilution
ppm	P at discharge point
#	P at feedlot edge
ge ge	reduction from buffer effects reduction due to dilution
#	P at discharge point

If a combined rating is required for more than one animal lot on the farm -

FIRST - evaluate each lot separately, using the evaluation program; THEN - take the outputs (J above) from each lot and use this program to combine them.

- A. Turn power switch "on".
- B. Set man-trace-norm switch on "norm" and prgm-run switch on "run".
- C. Insert program for combining ratings into calculator. This is program 5, on side 2 of card 1. (Feed printed side up, numbered end leading.)
- D. Press "A". After flickering briefly, display will read "5.".
- E. For each animal lot included in the total feedlot operation, enter in order:

-- Runoff volume (acre-inches)
-- COD concentration at discharge point (ppm)
-- Animal lot rating*

CAUTION - Do not depress any key while display is flashing.

- F. After the information for all animal lots has been entered, the display will show "0.00". Press "R/S" to enter the zero from the display, signalling the calculator that there are no additional entries. After the display flickers briefly, the calculator will combine the information and print:
 - -- total feedlot runoff volume -- average COD concentration at discharge point -- overall feedlot rating
- G. If an error is made in entering data, or if more than one set of animal lot ratings is to be combined, it is not necessary to reenter the program card. In either case, simply go back to D above: press "A", etc.

^{*} If the rating of any animal lot is zero, the calculator will disregard information on that lot. The information may be entered nonetheless so that the calculator tape will show a complete record.

Detailed Instructions for Calculations Using the Monroe 325 Calculator

PROGRAM OPERATION SHEET	No. 41
Animal Lot Screening Program	Page 1 of 1
OPERATING PI	ROCEDURE
GENERAL	SAMPLE
FIRST: Follow instructions on back	of Screening form.
Load Cassette ACP WP-4 3/80.	
Rewind; latch Ready on tape drive; pr Read From Tape on tape drive. Wait u play. Rewind tape by pressing Stop,	ntil "1.0000" appears in dis-
Program located at: BLOCK 1 FILE 1	41 01 01 0
DEPRESS: Jump/Start-Stop/Start-Stop	-1 • 1 • 0 0
READ: Program number and location	-2 •
IDENTIFIER:	1 • 0 0
1. ENTER approximate area of animal lot (acres)*	-3 • 1 • 0 0 1 • 0 0
2. ENTER approximate distance between animal lot and	
discharge point.	4 • () •
<pre>3. ENTER for first animal type: # of head</pre>	
COD factor	
Continue entering: Number of head COD factor	41 01 01 • 0 • • • • • • • • • • • −1 • 1 • 0 0
DEPRESS Start-Stop ONCE when all information has been entered.	2 • 1 • 0 0
	-3 •
4. READ surface water pollution hazard screening result	5 • 0 0 0 • 7 0
	2 • 0 0 0 • 1 7
Program will return to beginning for screening another animal lot.	
* Noteacres = sq. ft. ÷ 43,560.	4 • 2 •
+ NOLE-acres - Sq. 11. + 10,000.	•••••

PROGRAM OPERATION SHEET

No. 42

Animal Lot Evaluation Program

Poge 1

of 6

OPERATING PROCEDURE		
GENERAL	SAMPL E	
Load Cassette ACP WP-4 3/80.		
Rewind; latch Ready on tape drive; Read From Tape on tape drive. Wait (may show as "2." or "2.00" or "2.0	until two appears in display	
WARNING: Ready key on tape drive <u>mu</u> program automatically cont	st remain latched! This nues on Blocks 3 & 4.	
Program located at: BLOCK 2 FILE 1		
DEPRESS: Jump/Start-Stop/Start-Stop		
READ: Program number and location		
IDENTIFIER: (Matches step number on left side of data form)		
3. ENTER Design Rainfall (inches), line 1 (line numbers are in right margin of data form). (To enter a number, depress the appropriate number keys; then depress Start-Stop once.)	-3• 4•35	
DBSERVE: The spacing of the printed tape matches the spacing of blanks on the data form	0 • 7 7 0 • 0 0	
4. ENTER size of each area or sub- area (acres), lines 2 through 9. Enter zero for lines not used. Note acres= sq. ft. ÷ 43,560.	0 • 1 4 0 • 4 7 0 • 0 0 0 • 0 0 0 • 0 0 -5 •	
5. ENTER Soil Cover Complex Number (CN) for Area 1 (animal lot), line 10.	91.00	
VARNING: DO NOT press anything whil display is flashing, now	e !	

PROGRAM OPERATION SHEET

Animal Lot Evaluation Program

No. 42 Poge 2

of 6

OPERATING P	ROCEDURE
GENERAL	SAMPL E
 ENTER Soil Cover Complex Number (CN) for remaining areas, lines 11 through 16. 	-6 •
 WARNING: The calculator enters zeroes automatically where required. It "knows" where because of corresponding zeroes entered in Step 4. Watch the paper tape and do not enter any zeroes from keyboard. 7. If no buffer, DEPRESS Start-Stop ONCE and proceed to Step 8. If there is any buffer: 	86 • 0 0 0 • 0 0 79 • 0 0 0 • 0 0 0 • 0 0 0 • 0 0 -7 • 1 • 0 0 0 • 2 5 6 0 • 0 0 -8 • 300 • 5 0
ENTER for first buffer section:	
Slope (S,%) (line 17)	300 • 00
Surface Condition Constant (C) (line 18)	0 • 5 0 0 • 5 1
Distance (L,feet) (line 19) Continue Entering: Slope (S) Surface Condition Constant (C) Distance (L)	SAMPLE if there is <u>no</u> buffer: -6. 74.00 0.00
DEPRESS Start-Stop ONCE when all buffer sections have been entered. 8. ENTER for first animal type;	74 • 40 55 • 66 144 • 64 8 • 66
# of head (line 23)	-7 •
CQD factor (line 24) P factor (line 25) Continue entering: # of head COD factor P factor	-8 • 1 / U • U U U • 1 7 U • 2 7 1 0 • 0 0 0 • 5 0 0 • 5 1

PROGRAM	OPERATION	SHEET
---------	-----------	-------

Animal Lot Evaluation Program OPERATING PROCE GENERAL NOTE: If any errors were made in entering data, DEPRESS Jump/ Start-Stop/Start-Stop and start again by entering Design Rainfall (line 1, Step 3) After all information has been entered,	Page 3 of 6 DURE SAMPLE
GENERAL NOTE: If any errors were made in entering data, DEPRESS Jump/ Start-Stop/Start-Stop and start again by entering Design Rainfall (line 1, Step 3) After all information has been	
NOTE: If any errors were made in entering data, DEPRESS Jump/ Start-Stop/Start-Stop and start again by entering Design Rainfall (line 1, Step 3) After all information has been	SAMPL E
entering data, DEPRESS Jump/ Start-Stop/Start-Stop and start again by entering Design Rainfall (line 1, Step 3) After all information has been	
9.DEPRESS Start-Stop ONCE for animal lot rating	
OBSERVE: Tape drive advancing cassette to Block 3	
10. READ:	10•
Total runoff volume	7 •
(acre-inches) (line 33)	1,516 •
COD concentration at discharge point (parts per million, ppm) (line 34)	41+
Animal lot rating (line 35)	•••••
AT THIS POINT YOU HAVE TWO OPTIONS.	
OPTION 1 - To evaluate another animal lot,	
RETURN to the top of Page 1 and read B ever, as "2" already appears in necessary to press "2" on the c	the display, it is not
OPTION 2 - To obtain additional information technician,	on, <u>if requested</u> by the

PROGRAM OPERATION SHEET

Animal Lot Evaluation Program

No. 42 Page 4 of 6

OPERATING PROCEDURE

OPERATING PROCEDURE		
GENERAL	SAMPLE	
DEPRESS Start-Stop ONCE		
READ:	••••••••••••••••••••••••••••••••••••••	
	ζ • β ζ 3 • Γ λ	
11. *Information on runoff volume	6 • U U 1 • 0 6	
	7 • 0 6	
OBSERVÉ: Tape drive advancing cassette to Block 4	120	
	4 • 1,345 • 32 •	
12. *Information on the rating this lot would have if all runoff	• • • • • • • • • • •	
from Area 2 were diverted.	13•1 4,500•	
13.1 *Information on COD concentra-	78 • P 7 •	
tions, ppm 13.2 *Information on COD loadings,	1,516 •	
pounds	13•2 6,130•	
	61 •	
14.1 *Information on P concentrations, ppm	-1 •	
14.2 *Information on P loadings, pounds	2,4 2 9 •	
	14 • 1 85 •	
Fo evaluate another animal lot,	55.	
RETURN to the top of Page 1 and read Block 2 from the tape.	1 4 • 3 3 •	
However, as "2" already appears in the display, it is not necessary to press "2"	14 • 2	
on the calculator.	• • • • •	
*Details of the format and informa- tion are given on the next two	-1 •	
pages.	52.	

Animal Lot Evaluation Program	No. 42 Page 5 of 6
Animal Lot Evaluation Program	
Additional information avai	ilable
If desired, additional information about an after the calculator has printed the rating	animal lot may be obtained.
The information relates to:	
Runoff volume, acre-inches (A-in);	
The rating this animal lot would have were diverted from the feedlot waters	e if all Area 2 runoff shed area (diverted lot);
Concentrations of Chemical Oxygen Dem million (ppm);	and (COD) in parts per
Loadings of COD in pounds (#);	
Concentrations of Phosphorous (P) in	ppm; and
Loadings of P in #.	
The spacing of the accompanying table match calculator printout. In interpreting the i comments (keyed to the identifiers and line be helpful.	nformation, the following
Line ll(e) is the same as the total r viously by the calculator (line 33 on	
Line 13.1(d) is the same as the COD c charge point, output previously by th the data form).	concentration at the dis- ne calculator (line 34 on
"at feedlot edge" refers to the lower	edge of the animal lot.
"buffer effects" include settling, in interception, and other effects. The contact between runoff water and the	ofiltration, absorption, ese depend on the time of ground surface.
"dilution" refers to the fact that th water from the animal lot, after some is diluted with runoff from Area 3. are positive because dilution reduces tants. Lines 13.2(c) and 14.2(c) are dilution water contributes additional When calculated pollutant concentrati ground levels because the buffer is e ages are left blank.	e cleansing in the buffer, Lines 13.1(c) and 14.1(c) s concentration of pollu- e negative because the amounts of pollutants. cons are less than back-
The animal lot rating is based on COD for rating is not included in the inf The model estimates the actual COD an water.	ormation listed here.

water.

OGRAM OPER			No. 42 Poge 6 of 6
Identifier (Monroe & Compucorp <u>only</u>)	Number Printed	Line Refer- ence	Explanation
	A -in A -in A -in		Runoff from Area 1 Runoff from Area 2 Runoff from Areas 1 + 2
	A -in A -in	(e)	Runoff from Area 3 Runoff from Areas 1 + 2 + 3
	A -in ppm rating		Runoff from diverted lot COD at disch pt. for diverted lo for diverted lot
13.1	ppm	(a)	COD at feedlot edge
	% %	(b) (c)	reduction from buffer effects reduction due to dilution
	ppm	(d)	COD at discharge point
13.2	#	(a)	COD at feedlot edge
	% %	(b) (c)	reduction from buffer effects reduction due to dilutio;
	#	(d)	COD at discharge point
14.1	ppm	(a)	P at feedlot edge
	% %	(b) (c)	reduction from buffer effects reduction due to dilution
	ppm	(d)	P at discharge point
14.2	#	(a)	P at feedlot edge
	% %	(b) (c)	reduction from buffer effects reduction due to dilution
	#	(d)	P at discharge point

PROGRAM OPERATION SHEET

Combining Animal Lot Ratings

Ne. 43

Page 1 of 2

Urgkathor	ROCEDURE
GENERAL	SAMPLE
If technician requests combined rating for more than one animal lot on the farm-	
FIRST evaluate each lot separately, using Program 42 (the evalu- ation program); THEN take the outputs (Identifier 10) from each lot and use this program to combine them.	
coad Cassette ACP WP-4 3/80	
Latch Ready on tape drive; press 5 on Tape on tape drive. Wait until five as "5." or "5.0000"). Rewind tape by on tape drive.	appears in display (may show
Program located at: BLOCK 5 FILE 1	
EPRESS: Jump/Start-Stop/Start-Stop	
EAD: Program number and location	
NTER for first animal lot:	
Runoff Volume (acre-inches) (line 33)	43 01 05 ° 0
COD concentration at discharge point (ppm) (line 34)	7 • 1,515 •
Animal lot rating (line 35)*	41.
ontinue entering: Runoff volume COD concentration at discharge poin Animal lot rating*	28• 805• 0•
CONTINUED ON NEXT PAGE	
If the rating of any animal lot is zero, the calculator will disregard information on that lot. The infor- mation may be entered nonetheless so that the calculator tape will show a complete record.	

animal lots have been entered. 	GENERAL SAMPLE DEPRESS: Start-Stop ONCE when all animal lots have been entered.	Combining Animal Lot Ratings	No. 43 Page 2 of 2
DEPRESS: Start-Stop ONCE when all animal lots have been entered. NEAD: 10.9 Total feedlot runoff volume Average COD conc. at discharge point Overall feedlot rating 	DEPRESS: Start-Stop ONCE when all animal lots have been entered. NEAD: 10.9 Total feedlot runoff volume Average COD conc. at discharge point Overall feedlot rating 	OPERATING PR	OCEDURE
animal lots have been entered. 	animal lots have been entered. 	GENERAL	SAMPLE
		GEMERAL DEPRESS: Start-Stop ONCE when all animal lots have been entered. READ: 10.9 Total feedlot runoff volume Average COD conc. at discharge point	MPLE

Appendix D

Calculator Programs

Program for Hewlett-Packard 67/97/41C Calculator

1		g program									
	CA	RD 1		001.5		~ . m				- t	
001	*LBLA	<i>21</i> 11	046	RCLD	36 14	013	2	ΞŽ	059	ST+2	35-55 02
001 002	CLRG	16-53	047	÷	-24	014	SPC	16-11	060	RCL5	36 05
00Z 003	ULKO J		048	EEX	-23	015	RZŞ.		061	ST+2	35-55 02
		83 70	049	2	02	016	STOS	35 09	062	RCL8	36 08
004 005	•	-62	050	X>Y?	16-34	017	SPC	16-11	063	STO1	35 Øi
005 005	2	82	051	X∓Y	- <u> </u>	018	SPC	16-11	064	RCLZ	36 02
006	8	05	052	RCLB		019	*LBÉ1	21 Øi	065	÷	- 55
007	a) is	69	053	X¥Y	-41	620	R ∕3	51	066	RCL3	36 03
008		63	054	÷	-24	021	*LBLa	21 16 11	067	÷	-55
009	STOA	35 11	055	CHS	-22	022	STOj	35-45		STOA	35 11
616	5	35	056	RCLA	36 11	023	Ø	88	069	3	03
011		-52	057	÷	-55	024	DSZI	16 25 46	070	0	0 <i>8</i>
012	Đ	53	058	10×	16 33	025	GTO1	22 61	071	STOB	35 12
013	4	84	059	RCLE	36/15	026	SPC	16-11	072	RCL2	36 02
014	÷.	61	060	X¥Y?	.16-35	027	SPC	16-11	073	X≠Y	-41
015	2 1	51	061	GT02	22 02	028	8	. 08	074	-	-45
016	STOB	35 12	062	0	00	029	STOI	35 46	075	X<0?	16-45
017	4	84	063	GT03	22 03	030	RCL i	36 45	076	GT03	22 03
018	3	03	Ø64	*LBL2	21 02	031	P≠S	16-51	077	STOC	35 13
019	5	05	065	2	62	032	\$705	35 05	078	GT04	22 04
020	6	65	066	*LBL3	21 03	033	P‡S	16-51	079	*LBLC	21 13
021	ē	<i>30</i>	067	SPC.	16-11	034	GSBc	23 16 13	080	RCLB	36 12
022	STOC	35 13	068	SPC	16-11	035	SPC	16-11	081	÷	-24
023	1	.31	069	PRTX	-14	036	SPC	:16-11	082	PRTX	-14
024	SPĆ	.15-11	070	SPC	16-11	037	DSZI	16 25 46	083	GTOa	22 16 11
625	R∕S	51	071	RTN	24	038	GSBL	23 16 12	084	*LBL6	21 16 12
026	*ĽBLa	ZI 16 11	072	*LBLC	21 13	039	DSZI	16.25.46	085	RCLI	36 45
027	SFC	16-11	073	RCLC	36 13	040	GSBL	25 16 12	0 86	X≠0?	16-42
028	SPC	16-11	674	÷	-24	041	DSZI	16 25 46	000 087	GTOC	22 16 13
029	STOD	35 14	075	PRTX	-14	042	RCL9	36 09	007 088	PRTX	-14
030	R/S	51	07,6	GTOe	22 15 11	042 043	STXi	35-35 45	000 089	RTN	24
031	SPC	15-11	ØZZ	R//S	51	043 044	DSZI	16 25 46	005 090	*LBL¢	21 16 13
032	SPC	16-11	Ev		program	044 045	SPC	16 23 48	090 091	*LBLC R/S	
033	STOE	35 15		CAR		040 046		21 82	071 092		51
034	*LBL6	ZI 82	001	*LBLÅ	21 11	040	*LBL2 GSBW	23 16 12		EEX 3	-23
035	R/S	51	002	CLRĞ	16-53						63
036		16-43	003	P#S	16-51	048 040	DSZI		094 005	X∓Y	-41
037	GTOI	22 61	004	CLRG	16-53	049 050	GTO2 RCL4	22 62 36 84	095 005	÷	-24
638	R/S	51	005	4	64	051	RCL2	36 82	096 207	1	0i oc
039	X	-35	606	ż	<i>03</i>	052	+	-55	097	ē	36
035 040		-35 -35-55 (31	007	5	05 05	052 053	RCL1	36 81	<i>0</i> 98	-	-45
041	SPC	. 35-35 CI 15-11	008	6	66	054 054	ROLI	-55	099 400	ENTT	-21 -21
041 042	ort Ø	11-01 33	009	ē	80 80	054 055	ST+3	35-55 03	100	ENTŤ	-21
042 043	etoā	юс 22 83	010	STOE	35 12	055 056	RCL7		101		-62
040 044	-5109 *LBL1	22 03 21 01	011	5105 8	30 12	036 057	RULY STO2	36 07 35 02	102	= 27	02
044 045	RCLI	21 01 36 01	012	STÓI	35 <i>46</i>	057 058	stuz RÇL6		103	X	02 -35 -22
040	POLA.	00 01	UIL	0101	00 70	000	NULO	00 00	104	CHS	-44

	RD 2-C		158	∗L₿L6	21 06	212	2	02	039	Ū	00
105	RCL9	36 89	159	P‡S	16-51	213	÷	-24	040	ST06	35 06
106	÷	-55	160	CLX	-51	214	+	-55	041	ST08	35 08
107	X2	53	161		-62,	215	10×	16 33	042	*LBL2	21 02
108	X≠Y	-41	162	1	81	216	RTN	24	043	P#S	16-51
109		-62	163	8	65	217	*LBLe	21 16 15	043	RCL0	
110	. 8	58	164	GSBa	23 16 14	218	RCL5	21 16 13 36 05			
ĬП	x	-35	165	R/S	51	219	KULU ÷		045	X=0?	16-43
112	RCL9	36 89	166	XZY.	-41	220	ĒĒX		046	GT03	22 03
113	+	-55	167		-24	220		-23	047	2	62
114	÷	-24	168	ST+0	35-55 00			02	048.	7	87
i15	ST×:	35-35 45	169	5770 P#S	35-35 68 16-51	222	X>Y?	16-34	049		-62
115 116	RTN					223	X‡Y	-41	050	. 9	09
		24.	170	*LBL7	21 07	,224	RTN	24	051	CHS	-22
117	*LBL3	21 03 74 04	171	Û ARA	88	Ev	aluation	program	052	ST06	<i>35 86</i>
118	RCL2	36 82	172	SPC	16-11		CARI		053	4	64
119	STOB	35 12	173	R∕S	51		-		054	2	82
120	*LBL4	21 84	174	X≠0?	16-42	001	DSPØ	-63 00	955		-62
121	RCLB	36 12	175	GT05	22 05	002		-62	05 6	8	88
122	RCL1	36 01	176	*LBLS	21 08	003	2	82	057	ST07	35 67
123	÷	-55	177	SPC	16-11	004	2	82	058	4	164
124	STOB	35-12	178	R∕S	51	005	7	87	059	9	69
125	SPC	16-11	179	X=0?	16-43	006	STOE	35 15	060	-	-62
126	SPC	16-11	180	- GT09	22 89	007	RCLS	3 6 89	061	- 3	63
127	P≢S	16-51	181	ENTŤ	-21	008	X=0?	16-43	062	CHS	-22
128	Ũ	80	182	ENT†	-21	009	-GT04	22 84	063	ST08	35 08
129	R∕S	51	1831	R/S		010	RCLØ	36 00	064	5700	00 80 85
130	X≠0?	16-42	184	X	-35	011	X=0?	16-43	065	0 6	60 60
131	GT05	22 05	185	ST+3	35-55 03	012	GTO1	22 81	065 066		-62
132	i	81	186	R∔	-31	013	1	01		+	
133	STOØ	35 68	187	R/S	51	014	5	65	067	5	85
134	P#S	16-51	188	X	-35	015		-62	068	ST09	35 ØS
135	STOO	35 00	189	ST+4	-35 35-55 04	016	9	83 83	-069	RCLØ	36 00
136	0100	33 66 58	102		30-33 04 00	017	5	85 [,]	070	LOG	16:32
137	STO	35 09		0 otoo	22 08	018	ST06		071	GSBL	23-16-12
137	5703 P#S		191	GT08			0100	35 06	072	*LBL3	21 03
		16-51	192	*LBL9	21 09	019	*	-62	073	6	66
139	GT08	22 08	193	RCL3	36 03	020	Ø	88	074	STOI	35 46
140	*LBL5	21 05	194	GSBe	23 16 15	021	3	03 	075	GSBd	23 16 14
141	R/S	51	195	4	64	022	3	53	076	P≢S	16-51
142	CHS	-22	196	5	65	023	ST07	35 07	077	STOØ	35 00
143	1	81	197	Х	-35	024	2	02	07.8	₽₽S	16-51
144	+	-55	198	ST03	35 03	025	i,	61	079	8	<i>6</i> 8
145	X=0?	16-43	199	RCL4	36 04	026		-62	080	STOI	35 46
146	GT06	22 86 ⁴	200	GSBe	23 16 15	027	2	62	081	GSBd	23 16 14
147	1	61	201		-62	028	CHS	-22	082	STOØ	35 00
148	-	-45	202	8	88	029	ST08	35 08	083	P‡S	16-51
149	GSBd	23 16 14	203	5	85	030		-62	084	GT04	22 64
150	2	62	204	Х	-35	031	Ø	38	085	*LBLb	21 16 12
151	X>Y?	16-34	205	ST04	33 04	032	3	83	086	ENTT	-21
152	X₽Y	-41	206	P≢S	16-51	033	6	86	087	ENT†	-21
153	R/S	51	207	3	03	034	ST09	35 05	088	RCL9	36 09
154	X≠Y	-41	208	RTN	24	035	RCLØ	36 00	089	X	-35
155	÷	-24	209	*LBLd	21 16 14	036		23 16 12	090	ST+8	35-55 08
156	ST+0	35-55 00	210	XZY	-41	037	GT02	22 62	091		-31
157	GT07	22 87	211	LOG	16 32	038	*LBL1	21 01	092	RCL7	36 07
101	0101	C1	211	LUG	10 02	000	TEDE1	-1 01	052	NULI	00 01

	D 3 – Co	nt.		146	RCLØ	36 00	200	RCLD	36 14	043	X	-35
093	X		-35	147	X	-35	201	PRTX	-14	044	P#S	16-51
094	RCL6		36 86	148	RCL3	36 03	202	DSP2	-63 02	045	RCL3	36 03
095	÷		-55	149	RCL9	36 09	203	4	04	046	P#\$	16-51
096	GSBc	23		150	X	-35	204	SPC	16-11	047	RCL9	36 89
097	ST06		35 06	151	÷	-55	.205	SPC	16-11	048	X	-35
098	RCL8		36 08	152	RCLA	36 11	206	R∕S	51	.049	+	-55
099	GSBc	23	16 13	153	÷	-24.				050	RCLA	36.11
100	ST08		35 88	154	ST07	35 07				051	÷	-24
101	RTN		24	155	1	81	Addit	tional inf	ormation	052	ST07	35 07
102	*LBLc	21	16 13	156	1	01-		CARD		053	P#\$	16-51
103	X<0?		16-45	157	2	02	ooi			054	RCL1	36 81
104	GT09		22 05	158		-62	001 000	SPC	16-11	055	RCL8	36 08
105	EEX		-23	159	5	05	002	DSP2	-63 82	056	X	-35
106	2		02	160	X > Y?	16-34	003	RCLI	36 81	057	RCĹØ	36 00
107	X> Y?		16-34	161	GT05	22 Ø5	004 005	RND	16 24	058	Х	-35
108	X+Y		-41	162	RCLB	36 12	005	PRTX	-14.	059	P≇S	16-51
109	RTN		24	163	RCL8	36 08	006	RCL2	36 82	060	ST04	35 04
110	*LBL9		21 89	164	X	-35.	007	RND	16 24	061	P#S	16-51
111	0		88	165	RCLO	36 00	068	PRTX	-14	062	RCL3	36 03
<i>i1</i> 2	ŔŦŃ		24	166	X	-35	009	RCLI	36 81	063	RCL9	36 89
113	*LBLd	21	16 14	167	RCLE	36 15	010	RCL2	36 62	064	Х	-35
114	RCLI		36 45	168	Х	-35	011	÷	-55	065	₽₽S	16-51
115	GSBe	-23		169	LOG	<i>16 32</i>	012	RND	16 24.	066	÷	-55
116	stoi		35 45	170	2	82	013	PRTX	-14	067	RCL1	36 01
117	₽‡S		16-51	171	-	-45	014	SPC	16-11 ₄	068	÷	-24
118	RCL i		36 45	172	X<0?	16-45	015	RCL3	36 03	069	SŢ02	35 02
119	P#S		16-51	173	GT05	22 05	016	RND	16 24	070	i	01
120	GSBe	-23	16-15	174	3	03	017	PRTX	-14-	671	1	81
121	RCLI		36 45	175	÷	-24	018	RCLA	36 11	072	2	02
122	Х		-35	176	RCLA	<i>36 11</i>	019	RND	16 24	073		-62
123	RTN		24	177	LOG	16 32	020	PŔŦX	-14	074	5	65
124	*LBLe	21	16 15	178		-62	021	SPC	16-11	075	X > Y?	16-34
125	EEX		-23	179	1	61	022	SPC	16-11	07ь	GTŪ1	22 01
126	2		02	180	Х	-35	023	DSP0	63 00	077	RCL4	36 04
127	÷		-24	181		-62	024	RCL1	36 Øi	078	RCLE	36-15
128	i		61	182	8	08	025	RCL3	36 03	079	Х	-35
129	-		-45	183	÷	-55	026	÷	-55	<i>080</i>	LOG	16 32
130	RTN		24	184	Х	-35	027	P#S	16-51	081	2	02
131	∗LBL4		21 04	185	EEX	-23	028	ST01	35 01	082	-	-45
132	P‡S		16-51	186	2	62	. 029	8	88	083	X (0?	16-45
133	RCL3		36 03	,187	X	-35	030	ST03	35 03	084	GTO1	22 01
134	P‡S		16-51	188	RND	16 24	031	RCL4	36 84	085	3	83
135	ST081		35 08	189	STOD	35 14	032	ST08	35 68	086	÷	-24
136	6		86	190	*LBL5	21 05	033	2	Ø2	087	RCLi	36 Øi
137	8		80	191	SPC	16-11	034	ST09	35 89	088	LOG	16-32
138	STU9		35 09	192	RCLA	36 11	035	RCLC	36 13	689		-62
139	RCLC		36 13	193	RND	16 24	036	Х	-35	090	i	Ø1
140	Х		-35	194	PRTX	-14	037	RCL8	36 88	091	X	-35
141	RCL8		36 08	195	SPC	16-11	038	RCLB	36-12	092		-62
142	RCLB		36 12	196	RCL7	36 67	039	Х	-35	093	8	68
143	Х		-35,	197	PRTX	-14	040	÷	-55	094	+	-55
144	+		-55	198	SPC	16-11	041	ST06	35-06	095	Х	-35
145	ST06		35 06	199	SPC	16-11	042	RCLØ	36 00	096	, EEX	-23

~			150	Det 7	70 07	007	a: 54	10	053		52.07
	LD 4-Co		150 151	RCL7 RND	36 07 16 24	003	CLRG	16-53	057	RCL4	36 84
097	.2	62	152	PRTX	-14	064		-62	058	LOG	16 32
098	X	-35				005	Ū	80	059	RCL2	36 02
099	RND	16 24	153	SPC	16-11	006	3	03	060	X	-35
100	ST03	35.03	154	SPC	16-11	007	STO1	35 01	061	RCL3	36 83
101	*LBLi	21 Ø1	155	RCL6	36 06	008	•	-62	062	÷	-55
102	SPC	16-11.	156	RCLE	36 15	009	1	61	063	RCL6	36 06
103	RCL1	36 01	157	X	-35	010	ST02	35 82	064	LÕG	16 32
104	RND	16-24	158	RND	16 24	01i		-62	065	RCL1	36 01
105	PRTX	-14	159	PRTX	-14	012	8	88	066	÷	-24
106	RCL2	36 62	160	SPC	16-11	013	ST03	35 63	067	X	-35
107	RND	16-24	161	RCLØ	$36 \ 00$	Ū14	5	85	068	X<0?	16-45
108	PRTX	-14	162	GSBe	23 16 15	015	SPC	16-11	069	0	82
109	RCL3	36 03	163	RCL9	36 09	016	R/S	51	070	S709	35 89
110	PRTX	-14	164	RCL7	36 87	017	*LBL1	21 Ci	071	*LBL4	21 04
111	SPC	16-11	165	X>Y?	16-34	018	X=0?	16-43	072	RCL8	36 08
112	SPC	16-11	166	GTO6	22 06	019	GT03	22 03	073	SPC	16-11
113	P‡S	16-51	167	SPC	16-11	020	STOA	35-11	Ø74	PRTX	-14
114	GSBE	23 15	168	GT07	22 07	021	R/S	51	075	SPC	16-11
115	P‡S	16-51	169	*LBL6	21 06	022	STOB	35-12	076	SPC	16-11
116	*LBLE	21 15	170	RĈLA	36-11	023	R/S	51	077	RCL9	36 09
117	RCL7	36 07	171	RCL5	36 05	024	X=0?	16-43	078	RND	16 24
118	RCL6	36 06	172	Х	-35	025	GT02	22 82	079	PRTX	-14
119	RCLØ	36 00'	173	GSBe	23 16 15	026	RCL1	36 01	080	SPC	16-11
120	Х	-35	174	*LBL7	21 07	027	X	-35	081	SPC	16-11
121	X≠0?	16-42	175	SPC	16-11	028	RCLA	36 11	082	RTN	24
122	÷ -	-24	176	RCL7	36 07	029	LOG	16 32	083	R/S	51
123	ST05	35.05	177	RCLA	36-11	030	RCL2	36 02			
124	SPC		178	X	-35						
124 125	SPC RCL6	16-11				931	X	-35	Prel	iminary e	valuation
125	RCL6		178	Х	-35	031 032		-35 36 03	Prel		valuation
125 126		16-11 36 06	178 179	× RCLE	-35 36 15	031 032 033	x RCL3	-35 36 03 -55	Prel	iminary e CARD	
125	RCL6 RCLB	16-11 36 06 36 12	178 179 180	× RCLE ×	-35 36 15 -35 16 24 -14	031 032 033 034	× RCL3 + ÷	-35 36 03 -55 -24	Prel 001		9 6 21 11
125 126 127	RCL6 RCLB RCLC	16-11 36 06 36 12 36 13	178 179 180 181	X RCLE X RND	-35 36 15 -35 16 24	931 032 033 034 035	x RCL3 + ± 10×	-35 36 03 -55 -24 16 33		CARD	6
125 126 127 128 129	RCL6 RCLB RCLC	16-11 36 06 36 12 36 13 -55	178 179 180 181 182	X RCLE X RND PRTX	-35 36 15 -35 16 24 -14	931 032 033 034 035 036	× RCL3 + ± 10× ST+6	-35 36 03 -55 -24 16 33 35-55 06	001	CARD *LBLA	21 11 16-53 06
125 126 127 128	RCL6 RCLB RCLC + ÷	16-11 36 06 36 12 36 13 -55 -24	178 179 180 181 182 183	x RCLE x RND PRTX Ø	-35 36 15 -35 16 24 -14 00	031 032 033 034 035 036 037	x RCL3 + ± 10× ST+6 RCLA	-35 36 03 -55 -24 16 33 35-55 06 36 11	001 002	CARD *LBLA CLRG	96 2111 16-53 06 16-11
125 126 127 128 129 130	RCL6 RCLB RCLC ÷ ŧ RND	16-11 36 06 36 12 36 13 -55 -24 16 24	178 179 180 181 182 183 183	X RCLE X RND PRTX Ø SPC	-35 36 15 -35 16 24 -14 00 16-11 16-11 24	031 032 033 034 035 036 037 036	x RCL3 + ± 10× ST+6 RCLA ST+4	-35 36 03 -55 -24 16 33 35-55 06 36 11	001 002 003	CARD *LBLA CLRG 6	21 11 16-53 06 16-11 51
125 126 127 128 129 130 131	RCL6 RCLB RCLC + ÷ RND PRTX	16-11 36 06 36 12 36 13 -55 -24 16 24 -14	178 179 180 181 182 183 184 185	X RCLE X RND PRTX Ø SPC SPC RTN *LBLe	-35 36 15 -35 16 24 -14 00 16-11 16-11 24 21 16 15	031 032 033 034 035 036 037	x RCL3 + ± 10× ST+6 RCLA	-35 36 03 -55 -24 16 33 35-55 06 36 11 35-55 34	001 002 003 004	CARD *LBLA CLRG 6 SPC	21 11 16-53 86 16-11 51 21 01
125 126 127 128 129 130 131 132	RCL6 RCLB RCLC + ÷ RND PRTX SPC	16-11 36 06 36 12 36 13 -55 -24 16 24 -14 16-11	178 179 180 181 182 183 184 185 186	X RCLE X RND PRTX Ø SPC SPC RTN	-35 36 15 -35 16 24 -14 00 16-11 16-11 24 21 16 15 -22	931 032 033 034 035 036 037 036 039 040	x RCL3 + 10× ST+6 RCLA ST+4 RCLB x	-35 36 03 -55 -24 16 33 35-55 06 36 11 35-55 04 36 12 -35	001 002 003 004 005	CARD *LBLA CLRG 6 SPC R/S	21 11 16-53 06 16-11 51 21 01 51
125 126 127 128 129 130 131 132 133 134	RCL6 RCLB RCLC ÷ RND PRTX SPC RCL0	16-11 36 06 36 12 36 13 -55 -24 16 24 -14 16-11 36 00	178 179 180 181 182 183 184 185 186 187	X RCLE X RND PRTX Ø SPC SPC RTN *LBLe	-35 36 15 -35 16 24 -14 00 16-11 16-11 24 21 16 15 -22 01	031 032 033 034 035 036 037 036 039 040 041	x RCL3 + 10× ST+6 RCLA ST+4 RCLB x ST+5	-35 36 03 -55 -24 16 33 35-55 06 36 11 35-55 04 36 12 -35 35-55 05	001 002 003 004 005 006	CARD *LBLA CLRG 6 SPC R/S *LBL1 R/S 1	21 11 16-53 06 16-11 51 21 01 51 31
125 126 127 128 129 130 131 132 133 134 135	RCL6 RCLB RCLC ÷ RND PRTX SPC RCL0 GSDe RCL9	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	178 179 180 181 182 183 184 185 186 187 188	X RCLE X RND PRTX Ø SPC SPC RTN *LBLe CHS	-35 36 15 -35 16 24 -14 00 16-11 16-11 24 21 16 15 -22	931 032 033 034 035 036 037 036 039 040	x RCL3 + 10× ST+6 RCLA ST+4 RCLB x	$\begin{array}{r} -35\\ 36 & 03\\ -55\\ -24\\ 16 & 33\\ 35-55 & 06\\ 36 & 11\\ 35-55 & 34\\ 36 & 12\\ -35\\ 35-55 & 05\\ 21 & 02\\ 16-11\\ \end{array}$	001 002 003 004 005 006 007	CARD *LBLA CLRG 6 SPC R/S *LBL1 R/S	96 2111 16-53 06 16-11 51 2101 51 31 16-32
125 126 127 128 129 130 131 132 133 134 135 136	RCL6 RCL0 + ÷ RND PRTX SPC RCL0 GSDe RCL5 RCL7	16-11 36 06 36 12 36 13 -55 -24 16 24 -14 16-11 36 00 23 16 15 36 03 36 07	178 179 180 181 182 183 184 185 186 187 188 189	X RCLE X RND PRTX Ø SPC SPC RTN *LBLE CHS 1	-35 36 15 -35 16 24 -14 00 16-11 16-11 24 21 16 15 -22 01	031 032 033 034 035 036 037 036 039 040 041	x RCL3 + 10× ST+6 RCLA ST+4 RCLB x ST+5 *LBL2 SPC 0	-35 36 03 -55 -24 16 33 35-55 06 36 11 35-55 04 35-55 05 35-55 05 21 02 16-11 00	001 002 003 004 005 006 007 008	CARD *LBLA CLRG & SPC R/S *LBL1 R/S 1 X#Y? GT02	21 11 16-53 06 16-11 51 21 01 51 31 16-32 22 02
125 126 127 128 129 130 131 132 133 134 135 136 137	RCL6 RCL0 + ÷ RND PRTX SPC RCL0 GSBe RCL5 RCL7 X>Y?	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	178 179 180 181 182 183 184 185 186 187 188 189 190	X RCLE X RND PRTX Ø SPC SPC RTN *LBLe CHS 1 t	$\begin{array}{r} -35\\ 36 & 15\\ -35\\ 16 & 24\\ -14\\ 00\\ 16-11\\ 16-11\\ 16-11\\ 24\\ 21 & 16 & 15\\ -22\\ 01\\ -55\end{array}$	031 032 033 034 035 036 037 036 039 040 041 042 043	x RCL3 + 10× ST+6 RCLA ST+4 RCLB x ST+5 *LBL2 SPC	$\begin{array}{r} -35\\ 36 & 03\\ -55\\ -24\\ 16 & 33\\ 35-55 & 06\\ 35-55 & 06\\ 36 & 11\\ 35-55 & 04\\ 35-55 & 05\\ 35-55 & 05\\ 21 & 02\\ 16-11\\ 00\\ 51\\ \end{array}$	001 002 003 004 005 006 007 008 009	CARD *LBLA CLRG 6 SPC R∕S *LBL1 R∕S 1 X≠Y?	21 11 16-53 06 16-11 51 21 01 51 31 16-32 22 02 51
125 126 127 128 129 130 131 132 133 134 135 136 137 138	RCL6 RCL0 + ÷ RND PRTX SPC RCL0 GSBe RCL5 RCL5 RCL7 X>Y? GT04	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	178 179 180 181 182 183 184 185 186 187 188 189 190 191	X RCLE X RND PRTX Ø SPC SPC RTN *LBLe CHS 1 t EEX	-35 36 15 -35 16 24 -14 08 16-11 16-11 24 21 16 15 -22 01 -55 -23	031 032 033 034 035 036 037 036 039 040 041 042 043 044	x RCL3 + 10× ST+6 RCLA ST+4 RCLB x ST+5 *LBL2 SPC 0	-35 36 03 -55 -24 16 33 35-55 06 36 11 35-55 04 35-55 05 35-55 05 21 02 16-11 00	001 002 003 004 005 006 007 008 009 010	CARD *LBLA CLRG & SPC R/S *LBL1 R/S 1 X#Y? GT02	21 11 16-53 06 16-11 51 21 01 51 31 16-32 22 02
125 126 127 128 129 130 131 132 133 134 135 136 137 138 139	RCL6 RCL0 + ÷ RND PRTX SPC RCL0 GSBe RCL5 RCL5 RCL7 X>Y? GT04 SPC	$\begin{array}{r} 16-11\\ 36 & 06\\ 36 & 12\\ 36 & 13\\ -55\\ -24\\ 16 & 24\\ -14\\ 16-11\\ 36 & 00\\ 23 & 16 & 15\\ 36 & 05\\ 36 & 07\\ 16-34\\ 22 & 04\\ 16-11\\ \end{array}$	178 179 180 181 182 183 184 185 186 187 188 189 190 191 192	X RCLE X RND PRTX Ø SPC SPC RTN *LBLe CHS 1 t EEX 2	-35 36 15 -35 16 24 -14 08 16-11 16-11 16-11 24 21 16 15 -22 01 -55 -23 02	031 032 033 034 035 036 037 036 037 036 039 041 042 043 044 045	× RCL3 + 10× ST+6 RCLA ST+4 RCLB X ST+5 *LBL2 SPC 0 R/S	$\begin{array}{r} -35\\ 36 & 03\\ -55\\ -24\\ 16 & 33\\ 35-55 & 06\\ 35-55 & 06\\ 36 & 11\\ 35-55 & 04\\ 35-55 & 05\\ 35-55 & 05\\ 21 & 02\\ 16-11\\ 00\\ 51\\ \end{array}$	001 002 003 004 005 006 007 008 009 010 011	CARD *LBLA CLRG 6 SPC R∕S *LBL1 R∕S 1 X≠Y? GTO2 R∕S	21 11 16-53 06 16-11 51 21 01 51 31 16-32 22 02 51
125 126 127 128 130 131 132 133 134 135 136 137 138 139 140	RCL6 RCL0 + ÷ RND PRTX SPC RCL0 GSDe RCL5 RCL7 X>Ý? GT04 SPC GT05	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193	X RCLE X RND PRTX Ø SPC SPC RTN *LBLe CHS 1 t EEX 2 X	-35 36 15 -35 16 24 -14 00 16-11 16-11 16-11 24 21 16 15 -22 01 -55 -23 02 -35	031 032 033 034 035 036 037 036 037 036 039 042 042 043 044 045 046	x RCL3 + i0x ST+6 RCLA ST+4 RCLB X ST+5 *LBL2 SPC 8 CTG1	-35 36 03 -55 -24 16 33 35-55 06 36 11 35-55 04 36 12 -35 35-55 05 21 02 16-11 00 51 22 81	001 002 003 004 005 006 007 008 009 010 011 012	CARD *LBLA CLRG 6 SPC R/S *LBL1 R/S 1 XFY? GTO2 R/S GTO3	96 21 11 16-53 86 16-11 51 21 01 51 31 16-32 22 02 51 22 03
125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141	RCL6 RCLB RCLC + ÷ RND PRTX SPC RCL0 GSDe RCL9 RCL9 RCL9 RCL7 X>Y? GT04 SPC GT05 *LBL4	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194	X RCLE X RND PRTX Ø SPC SPC RTN *LBLe CHS 1 t EEX 2 X RND	$\begin{array}{r} -35\\ 36 & 15\\ -35\\ 16 & 24\\ -14\\ & 08\\ 16-11\\ 16-11\\ 16-11\\ 24\\ 21 & 16 & 15\\ -22\\ & 01\\ -55\\ -23\\ & 02\\ -35\\ 16 & 24\\ \end{array}$	031 032 033 034 035 036 037 036 037 036 037 040 041 042 043 044 045 046 047	x RCL3 + i0x ST+6 RCLA ST+4 RCLB X ST+5 *LBL2 SPC Q R/S GTC1 *LBL3	$\begin{array}{r} -35\\ 36 & 03\\ -55\\ -24\\ 16 & 33\\ 35-55 & 06\\ 35-55 & 04\\ 35-55 & 04\\ 36 & 12\\ 35-55 & 05\\ 35-55 & 05\\ 21 & 02\\ 16-11\\ 00\\ 51\\ 22 & 01\\ 21 & 03\\ 21 & 03\\ 21 & 03\\ \end{array}$	001 002 003 004 005 006 007 008 009 010 011 012 013	CARD *LBLA CLRG 6 SPC R/S *LBL1 R/S 1 XFY? GT02 R/S GT03 *LBL2	21 11 16-53 06 16-11 51 21 01 51 21 01 31 16-32 22 02 51 22 03 21 02
125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142	RCL6 RCLB RCLC + ÷ RND PRTX SPC RCL0 GSBe RCL5 RCL7 X>Y? GT04 SPC GT05 *LBL4 RCLB	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195	X RCLE X RND PRTX Ø SPC SPC RTN *LBLe CHS 1 + EEX 2 X RND PRTX	$\begin{array}{r} -35\\ 36 & 15\\ -35\\ 16 & 24\\ -14\\ 00\\ 16-11\\ 16-11\\ 16-11\\ 24\\ 21 & 16 & 15\\ -22\\ 01\\ -55\\ -23\\ 02\\ -35\\ 16 & 24\\ -14\end{array}$	031 032 033 034 035 036 037 036 037 036 037 048 044 042 044 044 045 044 045 044 045 046 047 048	× RCL3 + i0× ST+6 RCLA ST+4 RCLB ST+5 *LBL2 SPC & R∕S GT01 *LBL3 SPC	$\begin{array}{r} -35\\ 36 & 03\\ -55\\ -24\\ 16 & 33\\ 35-55 & 06\\ 35-55 & 04\\ 35-55 & 04\\ 35-55 & 05\\ 35-55 & 05\\ 21 & 02\\ 16-11\\ 00\\ 22 & 01\\ 21 & 03\\ 16-11\end{array}$	001 002 003 004 005 006 007 008 009 010 010 012 012 013 014	CARD *LBLA CLRG 6 SPC R/S *LBL1 R/S 1 X≠Y? GT02 R/S GT03 *LBL2 R↓	21 11 16-53 06 16-11 51 21 01 51 21 01 51 22 02 51 22 03 21 02 -31
125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143	RCL6 RCL0 + ÷ RND PRTX SPC RCL0 GSBe RCL5 RCL7 X>Y? GT04 SPC GT05 *LBL4 RCLB RCLC	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196	X RCLE X RND PRTX Ø SPC SPC SPC RTN *LBLE CHS 1 + EEX 2 X RND PRTX RTN	$\begin{array}{r} -35\\ 36 & 15\\ -35\\ 16 & 24\\ -14\\ 00\\ 16-11\\ 16-11\\ 16-11\\ 24\\ 21 & 16 & 15\\ -22\\ 01\\ -55\\ -23\\ 02\\ -35\\ 16 & 24\\ -14\\ 24\end{array}$	031 032 033 034 035 036 037 036 039 040 042 043 044 045 044 045 046 047 048 048	x RCL3 + 10× ST+6 RCLA ST+4 RCLB X ST+5 *LBL2 SPC 0 R/S GT01 *LBL3 SPC RCL4	$\begin{array}{r} -35\\ 36\ 03\\ -55\\ -24\\ 16\ 33\\ 35-55\ 06\\ 36\ 11\\ 35-55\ 04\\ 35-55\ 05\\ 26\ 12\\ -35\\ 35-55\ 05\\ 21\ 02\\ 16-11\\ 22\ 03\\ 16-11\\ 36\ 04\\ -14\\ 16-43\\ \end{array}$	001 002 003 004 005 006 007 008 009 010 012 012 012 012 013 014 015	CARD *LBLA CLRG 6 SPC R∕S *LBL1 R∕S 1 X≠Y? GT02 R∕S GT03 *LBL2 R↓ CHS	21 11 16-53 06 16-11 21 01 51 21 01 31 16-32 51 22 03 21 02 -31 -22
125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144	RCL6 RCLB RCLC + ÷ RND PRTX SPC RCL0 GSBe RCL9 RCL9 RCL9 RCL9 SPC GT04 SPC GT04 SPC GT05 *LBL4 RCLB RCLC +	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197	X RCLE X RND PRTX Ø SPC SPC RTN *LBLe CHS 1 † EEX 2 X RND PRTX RTN R/S	$\begin{array}{r} -35\\ 36 & 15\\ -35\\ 16 & 24\\ -14\\ 00\\ 16-11\\ 16-11\\ 16-11\\ 24\\ 21 & 16 & 15\\ -22\\ 01\\ -55\\ -23\\ 02\\ -35\\ 16 & 24\\ -14\\ 24\\ 51\end{array}$	031 032 033 034 035 036 037 036 039 040 042 043 044 042 044 045 046 047 048 045 046 045	X RCL3 + 10× ST+6 RCLA ST+4 RCLB X ST+5 *LBL2 SPC & R/S GTG1 *LBL3 SPC RCL4 PRTX	$\begin{array}{r} -35\\ 36 & 03\\ -55\\ -24\\ 16 & 33\\ 35-55 & 06\\ 36 & 11\\ 35-55 & 34\\ 35-55 & 05\\ 35-55 & 05\\ 21 & 02\\ 16-11\\ 22 & 01\\ 21 & 03\\ 16-11\\ 36 & 04\\ -14\end{array}$	001 002 003 004 005 006 007 008 009 010 012 012 012 013 014 015 016	CARD *LBLA CLRG % SPC R/S *LBL1 R/S 1 X≠Y? GT02 R/S GT03 *LBL2 R↓ CHS X≠Y	21 11 16-53 06 16-11 51 21 01 51 21 01 16-32 51 22 03 21 02 -31 -22 -41
125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145	RCL6 RCLB RCLC + ÷ RND PRTX SPC RCL0 GSBe RCL9 RCL9 RCL9 SPC GT04 SPC GT04 SPC GT05 *LBL4 RCL8 RCLC + RCL5	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197	X RCLE X RND PRTX Ø SPC SPC RTN *LBLe CHS 1 † EEX 2 X RND PRTX RTN R/S	-35 36 15 -35 16 24 -14 00 16-11 16-11 24 21 16 15 -22 01 -55 -23 02 -35 16 24 -14 24 51 g ratings	031 032 033 034 035 036 037 036 037 036 039 040 041 042 043 044 045 044 045 046 047 048 049 050	x RCL3 + i0× ST+6 RCLA ST+4 RCLB x ST+5 *LBL2 SPC 0 R/S GT01 *LBL3 SPC RCL4 PRTX X=0?	$\begin{array}{r} -35\\ 36\ 03\\ -55\\ -24\\ 16\ 33\\ 35-55\ 06\\ 36\ 11\\ 35-55\ 04\\ 35-55\ 05\\ 26\ 12\\ -35\\ 35-55\ 05\\ 21\ 02\\ 16-11\\ 22\ 03\\ 16-11\\ 36\ 04\\ -14\\ 16-43\\ \end{array}$	001 002 003 004 005 006 007 008 009 010 012 013 012 013 014 015 016 017	CARD *LBLA CLRG & SPC R∕S *LBL1 R∕S 1 X≠Y? GT02 R∕S GT03 *LBL2 R↓ CHS X≠Y LOG	<pre> 21 11 16-53 06 16-11 51 21 01 51 21 01 51 16-32 22 02 51 22 03 21 02 -31 -22 -41 16 32 .</pre>
125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146	RCL6 RCLB RCLC + E RND PRTX SPC RCL0 GSBe RCL9 RCL9 RCL9 GT04 SPC GT04 SPC GT05 *LBL4 RCL8 RCLC + RCL5 X	$\begin{array}{r} 16-11\\ 36 & 06\\ 36 & 12\\ 36 & 13\\ -55\\ -24\\ 16 & 24\\ -14\\ 16-24\\ -14\\ 16-24\\ -14\\ 16-24\\ -14\\ 16-24\\ -24\\ 36 & 05\\ 36 & 07\\ 16-34\\ 22 & 04\\ 16-24\\ 22 & 04\\ 16-24\\ 22 & 04\\ 16-24\\ 22 & 04\\ 16-24\\ 22 & 04\\ 16-24\\ 22 & 05\\ 21 & 04\\ 36 & 12\\ 3$	178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197	X RCLE X RND PRTX Ø SPC SPC RTN *LBLe CHS 1 † EEX 2 X RND PRTX RTN R/S	-35 36 15 -35 16 24 -14 00 16-11 16-11 24 21 16 15 -22 01 -55 -23 02 -35 16 24 -14 24 51 g ratings	031 032 033 034 035 036 037 036 037 036 041 042 043 044 045 044 045 046 045 046 047 048 049 050 051 052	x RCL3 + i0× ST+6 RCLA ST+4 RCLB X ST+5 *LBL2 SPC 0 R/S GT01 *LBL3 SPC RCL4 PRTX X=0? GT04	$\begin{array}{r} -35\\ 36\ 03\\ -55\\ -24\\ 16\ 33\\ 35-55\ 86\\ 36\ 11\\ 35-55\ 84\\ 36\ 12\\ -35\\ 35-55\ 05\\ 21\ 82\\ 16-11\\ 60\\ 51\\ 22\ 81\\ 21\ 83\\ 16-11\\ 36\ 84\\ -14\\ 16-43\\ 22\ 84\\ \end{array}$	001 002 003 004 005 006 007 008 010 010 012 013 014 015 016 017 018	CARD *LBLA CLRG 6 SPC R∕S *LBL1 R∕S 1 X≠Y? GT02 R∕S GT03 *LBL2 R↓ CHS X≠Y LOG 2	9 6 21 11 16-53 06 16-11 51 21 01 51 21 01 16-32 22 02 51 22 03 21 02 -31 -22 -41 16 32 02
125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145	RCL6 RCLB RCLC + E RND PRTX SPC RCL0 GSBe RCL9 RCL9 RCL9 GT04 SPC GT04 SPC GT05 *LBL4 RCL8 RCLC + RCL5 X	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197	X RCLE X RND PRTX Ø SPC SPC RTN *LBLe CHS 1 † EEX 2 X RND PRTX RTN R/S	-35 36 15 -35 16 24 -14 00 16-11 16-11 24 21 16 15 -22 01 -55 -23 02 -35 16 24 -14 24 51 g ratings	031 032 033 034 035 036 037 036 037 036 037 036 041 042 043 044 045 044 045 046 045 046 045 046 045 046 045 045 045 051 052 053	x RCL3 + i0× ST+6 RCLA ST+4 RCLB x ST+5 *LBL2 SPC & R/S GT01 *LBL3 SPC RCL4 PRTX X=0? GT04 RCL5	$\begin{array}{r} -35\\ 36\ 03\\ -55\\ -24\\ 16\ 33\\ 35-55\ 06\\ 35-55\ 06\\ 35-55\ 04\\ 35-55\ 05\\ 21\ 03\\ 16-11\\ 22\ 01\\ 21\ 03\\ 16-11\\ 36\ 04\\ -14\\ 16-43\\ 22\ 04\\ 36\ 05\\ \end{array}$	001 002 003 004 005 006 007 008 009 010 012 013 014 015 016 017 018 019	CARD *LBLA CLRG 6 SPC R∕S *LBL1 R∕S 1 X≠Y? GT02 R∕S GT03 *LBL2 R↓ CHS X≠Y LOG 2 ÷	21 11 16-53 06 16-11 51 21 01 51 21 01 51 22 02 51 22 03 21 02 -31 -22 -41 16 32 62 -24

CAR	D 6 - C c	ont.	042	6SBa	23 16 11	062	5	05	082	*LBL0	21 68
023	X> Y 2	16-34	043	SPC	16-11	063	e	-62	083	0	68
024	X≠Y	-41	044	R/S	51	064	8	08	084	GT05	22 05
025	R/S	51	045	*LBLc	21 16 13	065	4	84	085	*LBLa	21 16 11
026	X#Y	-41	046	ST02	35 82	066	1	61	086	2	Ø2
027	÷	-24	047	SPC	16-11	067	i	01	087	*LBL5	21 05
028	ST+1	35-55 01	048	SPC	16-11	068	RCL3	36 03	088	PRTX	-14
029	*LBL3	21 03	049	R∕S	51	069	÷	-24	089	SPC	16-11
030	0	00	050	∗LBL4	<i>21 04</i>	070	CHS	-22	090	SPC	16-11
031	SPC	16-11	051	R/S	51	071	2	62	091	RTN	24
032	R/S	51	052	Х	-35	072		-62	092	*LBLC	21 13
033	X≠0?	16-42	053	ST+3	35-55 03	073	9	6 <u>9</u>	093	4	Ø4
034	GT01	22 81	054	Ø	00	074	8	8 8:	094	3	Ø3
035	SPC	16-11	055	SPC	16-11	075	8	68	095	5	05
036	RCLI	36 Øİ	056	R/S	51	076	3	03	096	6	0 <i>6</i>
037	8	68	057	X≠8?	16-42	077	+	-55.	097	0	60
038	5	85	058	GTŪ4	22 64	078	10×	<i>16 33</i>	098	÷	-24
039	1	<i>B1</i>	059	SPC	16-11	079	RCLI	36 01	099	PRTX	-14
040	X≦Y?	16-35	060	RCL2	36 02	080	X¥Y?	16-35	100	GTÜc	22 16 13
Ū41	GTOØ	<u>22</u> 00	061	sT÷3	35-24 03	081	GTUa	22 16 11	101	R/S	51

Program for Monroe 325/Compucorp 327 Calculator

BLOCK 1 •028 002 2 •056 201 L •001 001 1 •029 013 S •057 112 D T •002 032 I D •030 032 I D •058 035 P P •003 035 P A •031 034 PT •059 004 •004 035 P A •032 033 S S •060 032 I D •005 112 D T •033 034 PT •061 034 PT •006 004 4 •034 300 ST •062 310 RC •006 004 4 •035 001 1 •063 002 1 1 063 002 1 1 063 002 1 1 063 002 1 1 063 002 1 1 063 002 1 1 063 002 1 <t< th=""><th>0</th></t<>	0
•002 032 I D •058 035 P A •003 035 P A •031 034 PT •059 004 •004 035 P A •032 033 S S •060 032 I D •005 112 D T •033 034 PT •061 034 PT •006 004 4 •034 300 ST •062 310 RC •006 004 4 •034 300 ST •062 310 RC •006 004 4 •034 300 ST •062 310 RC •006 004 4 •035 001 1 •063 002 002 •008 015 / •036 035 P A •064 024 •009 001 1 •037 003 3 •0655 310 RC •010 015 / •038 013	1
•003 035 PA •031 034 PT •059 004 •004 035 PA •032 033 SS •060 032 I I •005 112 D T •033 034 PT •061 034 PT •006 004 4 •034 300 ST •062 310 RC •006 004 4 •035 001 I •063 002 •006 004 4 •034 300 ST •062 310 RC •006 004 4 •035 001 I •063 002 I I •007 001 I •036 035 PA •064 024 •008 015 / •037 003 3 •065 310 RC •010 015 / •038 013 S •066 000	
•004 035 PA •032 033 S •060 032 I I •005 112 D T •033 034 PT •061 034 PT •006 004 4 •034 300 ST •062 310 RC •007 001 I •035 001 I •063 002 •008 015 / •036 035 PA •064 024 •009 001 I •037 003 3 •065 310 RC •010 015 / •038 013 S •066 000	
•005 112 D T •033 034 PT •061 034 PT •006 004 4 •034 300 ST •062 310 RC •007 001 1 •035 001 1 •063 002 •008 015 / •036 035 PA •064 024 •009 001 1 •037 003 3 •065 310 RC •010 015 / •038 013 S •066 000	4
•006 004 4 •034 300 ST •062 310 RC •007 001 1 •035 001 1 •063 002 •008 015 / •036 035 PA •064 024 •009 001 1 •037 003 3 •065 310 RC •010 015 / •038 013 S •066 000	
•007 001 1 •035 001 1 •063 002 •008 015 / •036 035 PA •064 024 •009 001 1 •037 003 3 •065 310 RC •010 015 / •038 013 S •066 000	
•008 015 / •036 035 P A •064 024 •009 001 1 •037 003 3 •065 310 RC •010 015 / •038 013 S •066 000	
•009 001 1 •037 003 3 •065 310 RC •010 015 / •038 013 S •066 000	2
•010 015 / •038 013 S •066 000	+
•011 001 2 •039 032 I D •067 020	0
	=
•012 012 d •040 034 PT •068 300 S1	
•013 000 0 •041 200 L 0 •069 002	2
•014 015 / •042 000 o •070 022	-
•015 034 PT •043 033 S S •071 001	1
•016 112 D T •044 354 JC •072 000	0
•017 137 CA •045 001 1 •073 000	0
•018 222 DP 2 •046 034 PT •074 300 ST	
•019 001 1 •047 023 × •075 003	Э
•020 013 S •048 033 S S •076 020	
•021 032 I D •049 034 PT •077 355 JC	
•022 034 PT •050 020 = •078 002	2
•023 033 5 S •051 301 ST+ •079 310 RC	
•024 034 PT •052 002 2 •080 002	2
•025 300 ST •053 035 P A •081 350 J	
•026 000 a •054 350 J •082 003	Э

			110	рт		-057 004 DT
BLOCK	1 - Cont.	• 0 0 5	112	DT		•057 034 PT
• 0 8 3	202 L 2	• 0 0 6			4	•058 300 ST
•084	310 RC	•007	002		2	•059 005 5
•085	003 3	•008	015	/		•060 000 o
•086	203 L J	•009	001		1	•061 033 S S
• 0 8 7	063 ½	•010	015	/		•062 034 PT
• 0 8 8	023 ×	•011	002		2	•063 300 ST
• 0 8 9	005 5	•012	012		ď	•064 006 6
•090		•013	C O O		0	•065 000 o
		•014	015	1		•066 033 S S
•091	010 8	•015	034	PT		•067 034 PT
• 0 9 2	004 4	•016	112	DT		•068 300 ST
• 0 9 3	001 1	•017	137	CA		•069 007 7
• 0 9 4	001 1	•018	222	DP	2	•070 000 o
•095	020 =	•019	003		3	•071 033 S S
•096	013 S	• 0 2 0	013		s	•072 034 PT
•097	021 +	• 0 2 1	032	ΙD	Ŭ	•073 300 ST
• 0 9 8	0 03 3	• 0 2 2	034	PT		1074 010
• 0 9 9	012 d	• 0 2 3	000	E I		
•100	C O 2 🤰			6	0	
•101	010 .	• 0 2 4	033	S	S	
•102	011 9	• 0 2 5	034	PT		•077 013 S
•103	003 3	•026	30 0	ST		•078 032 I D
•104	020 =	•027	000		0	•079 034 PT
•105		• 0 2 8	035	F A		•080 310 RC
•105		•029	004		4	•081 001 I
		•030	013		S	•082 360 B
•107	310 RC	•031	032	I D		•083 013 S
•108	001 1	•032	034	ΡT		•084 303 ST×
•109	020 =	•033	000		о	•085 001 i
•110	220 DP 0	• 0 3 4	033	S	S	•086 035 P A
+111	355 JC	-035	034	PT		•087 006 6
•112	004 4	• 0 3 6	300	ST		•088 013 S
•113	000 0	• 0 3 7	001	•	1	•089 032 I D
•114	350 J	• 0 3 8	300	ST		•090 034 PT
•115	005 5	+039	012	51	d	•091 310 RC
•116	204 L 4		000			0.0.0
•117	002 2	• 0 4 0		c	o S	
•118	205 L 5	•041	033	S	3	
•119	034 PT	• 642	034	PT		
•120	035 P A	• 043	300	ST		
•121	112 D T	• 0 4 4	002		2	•096 002 2
•122		•045	000		0	•097 310 RC
		• 0 4 6	033	S	S	•098 003 3
•123	222 DP 2	• 0 4 7	034	PT		•099 360 B
•124	350 J	• 0 4 8	300	ST		•100 013 S
•125	033 S S	•049	003		31	•101 303 ST×
		• 0 5 0	000		o	•102 003 э
Eva	luation program	•051	033	S	S	•103 310 RC
	BLOCK 2	• 0 5 2	034	PT		•104 000 o
•001		• 0 5 3	300	ST		•105 303 ST×
		• 0 5 4	004	01	4	•106 004 4
•002	032 I D	•054	000		0	•107 035 P A
•003	035 P A			S	s	•108 310 RC
•004	035 P A	•056	033	3	5	-100 310 NC

BLOCK	2-Con	+	•160	005	5	• 212	021	+
•109	005	5	•161	C 0 0		•213	310	RC
•110	360		• 162	300	o S T	•214	000	0
		B				•215	020	=
•111	013	S	• 163	006	6	•216	162	S Q
• 1 1 2	303	ST×	•164	300	ST	•217	320	XC
•113	005	5	• 165	007	7	•218	013	S
•114	310	RC	• 166	300	ST	•219	023	x
•115	006	6	• 1 5 7	010	8	+		
•116	360	В	• 1 5 8	035	PA	•220 •221	012	d
•117	013	S	• 1 5 9	007	7		010	8
•118	303	ST×	•170	013	S	• 2 2 2	021	•
•119	006	6	• 1 7 1	032	ID	• 2 2 3	310	RC
•120	310	RC	• 172	034	PT	• 2 2 4	000	0
•121	007	7	•173	000	0	• 2 2 5	020	=
•122	360	В	•174	033	S S	• 2 2 6	063	У <u>л</u>
•123	013	S	•175	300	ST	• 2 2 7	023	×
•124	303	STX	•176	013	S	• 2 2 8	310	RC
•125	007	7	•177	300	ST	• 2 2 9	013	S
•126	310	RC	•178	000	0	• 2 3 0	020	**
•127	010	8	•179	351	JC	•231	030	RT
•128	360	в	•180	001	1	•232	201	L 1
•129	013	S	• 1 8 1	001	1	• 2 3 3	354	JC
•130	303	STX	• 1 8 2	300	ST	• 2 3 4	005	5
•131	010	8	•183	012	d	•235	034	PT
•132	310	RC	• 1 8 4	300	ST	• 236	033	S S
•133	002	2	•185	013	S	•237	034	PT
•134	021	+	•186	035	PA	• 2 3 8	013	S
•135	310	КС	•187	350	J	• 2 3 9	300	ST
•136	003	з	•188	005	5	• 2 4 0	004	4
•137	021	+	•189	213	LS	•241	021	+
•138	310	RC	•190	351	JC	• 2 4 2	001	1
•139	004	u	•191	000	0	• 2 4 3	020	=
•140	020	=	•192	034	PT	•244	354	JC
•141	300	ST	•193	030	RT	•245	003	3
•142	002	2	•194	200	LO	•245	360	В
•143	310	RC	•195	033	S S	•247	012	d
• 1 4 4	005	5	•196	034	PT	• 2 4 8	022	
•145	021	÷	•197	063	Y _z	•249	002	2
•146	310	RC	•198	023	×	•250	020	=
•147	006	6	•199	014	ЕX	• 251	352	JC
• 1 4 8	021	+	·200	003	3	• 2 5 2	002	2
•149	310	RC	•201	020	=	•253	002	2
•150	007	7	•202	022	-	•254	300	ST
•151	021	+	• 203	001	1	• 2 5 5	004	4
•152	310	RC	• 2 0 4	000	0	• 2 5 6	202	L 2
•153	010	8	• 205	020	=	•257	310	RC
•154	020	=	• 206	300	ST	• 2 5 8	004	4
•155	300	ST	•207	013	S	• 2 5 9	033	s s
•156	003	3	•208	023	×	•260	034	PT
•157	310	RC	• 209	012	d	•261	024	
•158	012	d	•210	002	2	• 2 6 2	310	RC
•159	300	ST	• 2 1 1	013	S	• 2 5 3	004	4
								v

BLOCK	2 – Con	it.	•315	007	7	• 367	000	0
• 264	020		• 3 1 6	034	PT	• 368	300	ST
• 265	301	ST+	• 3 1 7	300	ST	• 3 6 9	004	4
• 266	006	6	• 3 1 8	004	4	• 370	300	ST
•267	350	J	•319	033	S S	• 371	005	5
-			• 3 2 0	034	PT	• 372	003	3
• 268	004	4	• 3 2 1	023	×	• 373	041	TR
• 269	203	L 3 d	• 3 2 2	310	RC	• 374	211	L 9
• 270	012		• 3 2 3	004	110	• 375	024	÷
• 271	001	1	• 3 2 4	020	÷	• 376	310	RC
•272	010	8	• 3 2 5	301	ST+	• 377	005	5
• 273	300	ST	• 3 2 5					_
• 274	004	4		010	8	• 378	020	=
•275	360	Б	• 3 2 7	033	S S	• 379	300	ST
•276	012	d	• 3 2 8	034	PT	• 380	004	4
•277	033	S S	• 3 2 9	023	×	• 3 8 1	022	-
•278	034	PT	• 3 3 0	310	RC	• 3 8 2	014	EX
•279	024	*	• 3 3 1	004	4	• 3 8 3	002	2
•280	310	RC	• 3 3 2	020	=	• 3 8 4	020	=
• 281	004	4	•333	301	ST+	• 3 8 5	351	JC
• 282	020	=	• 3 3 4	011	9	•386	010	9
• 283	301	ST+	•335	000	0	•387	030	RT
-284	007	7	•336	035	PA	• 388	210	La
•285	204	L 4	• 3 3 7	350	J	• 3 8 9	014	EX
• 2 8 6	000	0	• 3 3 8	006	6	• 3 9 0	002	2
• 287	035	PA	• 3 3 9	207	L 7	• 3 9 1	300	ST
• 2 8 8	033	S S	• 3 4 0	112	DT	• 3 9 2	004	4
• 289	300	ST	• 3 4 1	035	PA	• 3 9 3	030	RT
			• 3 4 2		RC			
•290	013	S	• 3 4 2	310			luation I BLOC	program
•290 •291	013 350	S J	• 3 4 2 • 3 4 3	310 010	RC 8	Eva	luation J BLOC	program
•290 •291 •292	013 350 001	S J 1	• 3 4 2 • 3 4 3 • 3 4 4	310 010 360	RC 8 B	Eva • 0 0 1	Iluation J BLOC 003	program K 3 J
•290 •291 •292 •293	013 350 001 212	S J L d	• 3 4 2 • 3 4 3 • 3 4 4 • 3 4 5	310 010 360 011	RC 8 B 9	Eva • 0 0 1 • 0 0 2	Iluation p BLOC 003 032	program K 3 J D
• 2 9 0 • 2 9 1 • 2 9 2 • 2 9 3 • 2 9 4	013 350 001 212 310	S J Ld RC	• 3 4 2 • 3 4 3 • 3 4 4 • 3 4 5 • 3 4 5	310 010 360 011 004	RC 8 8 9 4	• 0 0 1 • 0 0 2 • 0 0 3	Iluation 1 BLOC 003 032 310	program K 3 J D R C
• 2 9 0 • 2 9 1 • 2 9 2 • 2 9 3 • 2 9 4 • 2 9 5	013 350 001 212 310 013	S J L d RC S	 3 4 2 3 4 3 3 4 4 3 4 5 3 4 6 3 4 7 	310 010 360 011 004 005	RC 8 9 4 5	• 0 0.1 • 0 0 2 • 0 0 3 • 0 0 4	aluation f BLOC 003 032 310 000	program K 3 J D R C O
• 2 9 0 • 2 9 1 • 2 9 2 • 2 9 3 • 2 9 4 • 2 9 5 • 2 9 6	013 350 001 212 310 013 061	S J L d RC S LG	 3 4 2 3 4 3 3 4 4 3 4 5 3 4 5 3 4 6 3 4 7 3 4 8 	310 010 360 011 004 005 023	RC 8 9 4 5 ×	• 0 0 1 • 0 0 2 • 0 0 3 • 0 0 4 • 0 0 5	luation j BLOC 0 0 3 0 32 3 1 0 0 0 0 3 5 4	Frogram K 3 3 K D R C J C
 290 291 292 293 294 295 296 297 	013 350 001 212 310 013 061 024	S J L R C S L G +	 3 4 2 3 4 3 3 4 4 3 4 5 3 4 6 3 4 7 3 4 8 3 4 9 	3 1 0 0 1 0 3 6 0 0 1 1 0 0 4 0 0 5 0 2 3 3 1 0	RC 8 B 9 4 5 RC	• 0 0 1 • 0 0 2 • 0 0 3 • 0 0 4 • 0 0 5 • 0 0 6	luation j BLOC 0 0 3 0 32 3 1 0 0 0 0 3 5 4 0 0 2	Frogram K 3 3 K D R C J C 2
 290 291 292 293 294 295 296 297 298 	013 350 001 212 310 013 061 024 002	S J L d RC S LG	 3 4 2 3 4 3 3 4 4 3 4 5 3 4 6 3 4 6 3 4 7 3 4 8 3 4 9 3 5 0 	3 1 0 0 1 0 3 6 0 0 1 1 0 0 4 0 0 5 0 2 3 3 1 0 0 0 4	RC 8 9 4 5 ×	• 0 0 1 • 0 0 2 • 0 0 3 • 0 0 4 • 0 0 5 • 0 0 6 • 0 0 7	luation J BLOC 0033 032 310 000 354 002 310	rogram K 3 3 K C C J C R C R C
 290 291 292 293 294 295 296 297 298 299 	0 1 3 3 5 0 0 0 1 2 1 2 3 1 0 0 1 3 0 6 1 0 2 4 0 0 2 0 2 1	S J L R C S L G + 2 +	 3 4 2 3 4 3 3 4 4 3 4 5 3 4 6 3 4 6 3 4 7 3 4 8 3 4 9 3 5 0 3 5 1 	3 1 0 0 1 0 3 6 0 0 1 1 0 0 4 0 0 5 0 2 3 3 1 0 0 0 4 0 2 0	RC 8 9 4 5 RC 4 =	• 0 0.1 • 0 0 2 • 0 0 3 • 0 0 4 • 0 0 5 • 0 0 6 • 0 0 7 • 0 0 8	luation p BLOC 0 0 3 0 32 3 1 0 0 0 0 3 5 4 0 0 2 3 1 0 0 0 7	rogram K 3 FC JC RC Z RC 7
 290 291 292 293 294 295 296 297 298 299 300 	0 1 3 3 5 0 0 0 1 2 1 2 3 1 0 0 1 3 0 6 1 0 2 4 0 0 2 0 2 1 3 1 0	S J L d RC S LG + RC	 3 4 2 3 4 3 3 4 4 3 4 5 3 4 6 3 4 6 3 4 7 3 4 8 3 4 9 3 5 0 3 5 1 3 5 2 	3 1 0 0 1 0 3 6 0 0 1 1 0 0 4 0 0 5 0 2 3 3 1 0 0 0 4 0 2 0 3 0 0	RC 8 9 4 5 RC 4 5 8 5 8 5	• 0 0 1 • 0 0 2 • 0 0 3 • 0 0 4 • 0 0 5 • 0 0 6 • 0 0 7 • 0 0 8 • 0 0 9	BLOCI BLOCI 0 0 3 0 1 2 3 1 0 0 0 0 3 5 4 0 0 2 3 1 0 0 0 7 3 5 4	Frogram K 3 FC JC RC JC JC JC JC
 290 291 292 293 294 295 296 297 298 299 300 301 	0 1 3 3 5 0 0 0 1 2 1 2 3 1 0 0 1 3 0 6 1 0 2 4 0 0 2 0 2 1 3 1 0 0 0 4	S J L R C S L G + R C 4	 3 4 2 3 4 3 3 4 4 3 4 5 3 4 6 3 4 6 3 4 7 3 4 8 3 4 9 3 5 0 3 5 1 3 5 2 3 5 3 	310 010 360 011 004 005 023 310 004 020 300 010	RC 8 9 4 5 RC 4 ST 8	Eva • 0 0 1 • 0 0 2 • 0 0 3 • 0 0 4 • 0 0 5 • 0 0 6 • 0 0 7 • 0 0 8 • 0 0 9 • 0 1 0	Iluation p BLOCI 0 0 3 0 1 3 0 0 0 3 1 0 0 0 0 3 5 4 0 0 7 3 5 4 0 0 7 0 5 4 0 0 0	RC RC JC JC JC JC JC JC JC
 290 291 292 293 294 295 296 297 298 299 300 301 302 	013 350 001 212 310 013 061 024 002 021 310 004 020	S J L d RC S LG + RC 4 RC 4	 3 4 2 3 4 3 3 4 4 3 4 5 3 4 6 3 4 6 3 4 7 3 4 8 3 4 9 3 5 0 3 5 1 3 5 2 3 5 3 3 5 4 	3 1 0 0 1 0 3 6 0 0 1 1 0 0 4 0 0 5 0 2 3 3 1 0 0 0 4 0 2 0 3 0 0 0 1 0 3 1 0	RC B ST RC RC B RC B B B B B B B B B B B B B B	• 0 0 1 • 0 0 2 • 0 0 3 • 0 0 4 • 0 0 5 • 0 0 6 • 0 0 7 • 0 0 8 • 0 0 9 • 0 1 0 • 0 1 1	luation J BLOC 0 0 3 0 0 2 3 1 0 0 0 0 3 5 4 0 0 2 3 1 0 0 0 7 3 5 4 0 0 0 0 0 0 0 2 3	RC AC AC AC AC AC AC AC AC AC AC AC AC AC
 290 291 292 293 294 295 296 297 298 299 300 301 302 303 	013 350 001 212 310 013 061 024 002 021 310 004 020 161	S J L d RC S LG + 2 RC 4 RC 4 L-J	 3 4 2 3 4 3 3 4 4 3 4 5 3 4 6 3 4 6 3 4 7 3 4 8 3 4 9 3 5 0 3 5 1 3 5 2 3 5 2 3 5 4 3 5 5 	310 010 360 011 004 005 023 310 004 020 300 010 310 011	RC B ST RC G RC 9	• 0 0 1 • 0 0 2 • 0 0 3 • 0 0 4 • 0 0 5 • 0 0 6 • 0 0 7 • 0 0 8 • 0 0 9 • 0 1 0 • 0 1 1 • 0 1 2	luation p BLOC 0 0 3 0 3 2 3 1 0 0 0 0 3 5 4 0 0 2 3 1 0 0 0 7 3 5 4 0 0 0 0 7 3 5 4 0 0 0 0 2 3 0 1 2	rogram K 3 RC JC RC 7 JC 7 JC 0 × d
 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 	013 350 001 212 310 013 061 024 002 021 310 004 020 161 300	S J L d RC S LG + RC 4 RC 4	 3 4 2 3 4 3 3 4 4 3 4 5 3 4 6 3 4 6 3 4 7 3 4 8 3 4 9 3 5 0 3 5 1 3 5 2 3 5 3 3 5 4 3 5 5 3 5 6 	310 010 360 011 004 005 023 310 004 020 300 010 310 011 360	RC B 9 4 5 RC 4 ST 8 RC 9 B	• 0 0 1 • 0 0 2 • 0 0 3 • 0 0 4 • 0 0 5 • 0 0 6 • 0 0 7 • 0 0 8 • 0 0 9 • 0 1 0 • 0 1 1 • 0 1 2 • 0 1 3	luation p BLOC 0 0 3 0 0 2 3 1 0 0 0 0 3 5 4 0 0 2 3 1 0 0 0 7 3 5 4 0 0 0 0 2 3 0 1 2 0 0 0	rogram K 3 RC JC RC 7 JC 0 × d 0
 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 	013 350 001 212 310 013 061 024 002 021 310 004 020 161 300 004	S J L C S L G + R C 4 R C 4 S T 4	 3 4 2 3 4 3 3 4 4 3 4 5 3 4 6 3 4 6 3 4 7 3 4 8 3 4 9 3 5 0 3 5 1 3 5 2 3 5 3 3 5 4 3 5 5 3 5 6 3 5 7 	3 1 0 0 1 0 3 6 0 0 1 1 0 0 4 0 0 5 0 2 3 3 1 0 0 0 4 0 2 0 3 1 0 0 1 0 3 1 0 0 1 1 3 6 0 0 1 1	RC B 9 4 5 RC 4 ST 8 RC 9 B 9	• 0 0 1 • 0 0 2 • 0 0 3 • 0 0 4 • 0 0 5 • 0 0 6 • 0 0 7 • 0 0 8 • 0 0 9 • 0 1 0 • 0 1 1 • 0 1 2 • 0 1 3 • 0 1 4	luation p BLOCI 0 0 3 3 1 0 0 0 0 3 5 4 0 0 2 3 1 0 0 0 7 3 5 4 0 0 0 7 3 5 4 0 0 0 0 2 3 0 1 2 0 0 0 0 0 3	rogram K 3 RC JC RC JC JC JC JC JC JC JC JC JC JC JC JC JC
 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 	013 350 001 212 310 013 061 024 002 021 310 004 020 161 300 004 030	S J L R C S L G + 2 R C 4 R C 4 R C 4 R C 4 R C 4 R C 4 R C 4 R C 4 R C 4 R C 4 R C 4 R C 5 R C 7 8 R C 8 R S C 8 R S S R C 8 R C 8 R C 8 R C 8 R R C 8 R C 8 R C 8 R C 8 R C 8 R C 8 R C 8 R C 8 R C 8 R C 8 R C 8 R C 8 R C 8 R C 8 R C 8 R C 8 R C 8 R 8 R	 3 4 2 3 4 3 3 4 4 3 4 5 3 4 6 3 4 6 3 4 7 3 4 8 3 4 9 3 5 0 3 5 1 3 5 2 3 5 2 3 5 3 3 5 5 3 5 6 3 5 7 3 5 8 	3 1 0 0 1 0 3 6 0 0 1 1 0 0 4 0 0 5 0 2 3 3 1 0 0 0 4 0 2 0 3 0 0 0 1 0 3 1 0 0 1 1 3 6 0 0 1 1 0 1 2	RC B ST RC B RC B B B B B B B B B B B B B B B B	• 0 0 1 • 0 0 2 • 0 0 3 • 0 0 4 • 0 0 5 • 0 0 6 • 0 0 7 • 0 0 8 • 0 0 9 • 0 1 0 • 0 1 1 • 0 1 2 • 0 1 3 • 0 1 4 • 0 1 5	luation p BLOCI 0 0 3 3 0 32 3 1 0 0 0 0 3 5 4 0 0 2 3 1 0 0 0 7 3 5 4 0 0 0 0 7 3 5 4 0 0 0 0 2 3 0 1 2 0 0 0 0 0 3 0 0 3	program K 3 RC JC RC JC JC JC JC JC JC JC JC JC JC JC JC JC
 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 	013 350 001 212 310 013 061 024 002 021 310 004 020 161 300 004 030 205	S J L C S L G + R C 4 R C 4 S T 4	 3 4 2 3 4 3 3 4 4 3 4 5 3 4 6 3 4 6 3 4 7 3 4 8 3 4 9 3 5 1 3 5 2 3 5 3 3 5 5 3 5 6 3 5 7 3 5 8 3 5 9 	3 1 0 0 1 0 3 6 0 0 1 1 0 0 4 0 0 5 0 2 3 3 1 0 0 0 4 0 2 0 3 0 0 0 1 0 3 1 0 0 1 1 3 6 0 0 1 1 0 1 2 0 1 0	RC B RC RC ST RC B B B B B B B B B B B B B B B B B B	Eva • 0 0 1 • 0 0 2 • 0 0 3 • 0 0 4 • 0 0 5 • 0 0 6 • 0 0 7 • 0 0 8 • 0 0 9 • 0 1 0 • 0 1 1 • 0 1 2 • 0 1 3 • 0 1 4 • 0 1 5 • 0 1 6	luation p BLOCI 0 0 3 0 0 2 3 1 0 0 0 0 3 5 4 0 0 2 3 1 0 0 0 7 3 5 4 0 0 0 0 7 3 5 4 0 0 0 0 2 3 0 1 2 0 0 0 0 0 3 0 0 3 0 0 3 0 2 1	rogram K 3 F D RC JC RC 7 JC 0 X d 0 3 3 +
 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 	$\begin{array}{c} 0 1 3 \\ 3 5 0 \\ 0 0 1 \\ 2 1 2 \\ 3 1 0 \\ 0 1 3 \\ 0 6 1 \\ 0 2 4 \\ 0 0 2 \\ 0 2 1 \\ 3 1 0 \\ 0 0 4 \\ 0 2 0 \\ 1 6 1 \\ 3 0 0 \\ 0 0 4 \\ 0 3 0 \\ 2 0 5 \\ 0 1 0 \end{array}$	S J L R C S L G + R C 4 R C 4 R C 4 R C 4 R C 4 R C 4 R C 4 R C 4 R C 5 L G 4 R C 5 L G 4 R C 5 L G 4 R C 5 L G 7 8 C 5 L G 7 8 C 7 8 C 7 8 C 8 C 8 C 8 C 8 C 8 C 8	 3 4 2 3 4 3 3 4 4 3 4 5 3 4 6 3 4 6 3 4 7 3 4 8 3 4 9 3 5 0 3 5 1 3 5 2 3 5 3 3 5 4 3 5 5 3 5 6 3 5 7 3 5 8 3 5 9 3 6 0 	310 010 360 011 004 005 023 310 004 020 300 010 310 011 360 011 360 011 012 010 005	RC B ST RC B RC B B B B B B B B B B B B B B B B	Eva • 0 0 1 • 0 0 2 • 0 0 3 • 0 0 4 • 0 0 5 • 0 0 6 • 0 0 7 • 0 0 8 • 0 0 7 • 0 0 8 • 0 0 7 • 0 0 8 • 0 0 7 • 0 1 0 • 0 1 1 • 0 1 2 • 0 1 3 • 0 1 4 • 0 1 5 • 0 1 6 • 0 1 7	luation p BLOC 0 0 3 0 0 2 3 1 0 0 0 0 3 5 4 0 0 2 3 1 0 0 0 7 3 5 4 0 0 0 0 2 3 0 1 2 0 0 0 0 0 3 0 0 3 0 0 3 0 2 1 0 0 1	rogram K 3 FC JC C JC C JC C JC C JC C JC C JC C
 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 	013 350 001 212 310 013 061 024 002 021 310 004 020 161 300 004 030 205	S J L R C S L G + R C 4 R C 4 R C 4 R C 4 R C 4 R C 4 R C 4 R C 4 R C 5 L G 4 R C 4 R C 5 S L G 4 R C 5 S L G 4 R C 5 S L G 4 R C 5 S L G 4 S C 5 S L G 4 S C 5 S L G 4 S C 5 S S S S	 3 4 2 3 4 3 3 4 4 3 4 5 3 4 6 3 4 6 3 4 7 3 4 8 3 4 9 3 5 0 3 5 1 3 5 2 3 5 3 3 5 2 3 5 3 3 5 4 3 5 5 3 5 6 3 5 7 3 5 8 3 5 9 3 6 0 3 6 1 	310 010 360 011 004 005 023 310 004 020 300 010 310 011 360 011 360 011 012 010 05 023	RC B ST RC B RC B B B ST A C S C B S C S C S C S C S C S C S C S C	• 0 0 1 • 0 0 2 • 0 0 3 • 0 0 4 • 0 0 5 • 0 0 6 • 0 0 7 • 0 0 8 • 0 0 9 • 0 1 0 • 0 1 1 • 0 1 2 • 0 1 3 • 0 1 4 • 0 1 5 • 0 1 6 • 0 1 7 • 0 1 8	luation p BLOC 0 0 3 0 0 2 3 1 0 0 0 0 3 5 4 0 0 2 3 1 0 0 0 2 3 1 0 0 0 7 3 5 4 0 0 0 0 2 3 0 1 2 0 0 0 0 0 3 0 0 2 1 0 0 1 0 0 5	rogram K 3 RC JC RC JC C JC C V d O JC S H C JC C S S
 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 	$\begin{array}{c} 0 1 3 \\ 3 5 0 \\ 0 0 1 \\ 2 1 2 \\ 3 1 0 \\ 0 1 3 \\ 0 6 1 \\ 0 2 4 \\ 0 0 2 \\ 0 2 1 \\ 3 1 0 \\ 0 0 4 \\ 0 2 0 \\ 1 6 1 \\ 3 0 0 \\ 0 0 4 \\ 0 3 0 \\ 2 0 5 \\ 0 1 0 \end{array}$	S J L R C S L G + R C 4 R C 4 R C 4 R C 4 R C 4 R C 4 R C 4 R C 4 R C 5 L G 4 R C 5 L G 4 R C 5 L G 4 R C 5 L G 7 8 C 5 L G 7 8 C 7 8 C 7 8 C 8 C 8 C 8 C 8 C 8 C 8	 3 4 2 3 4 3 3 4 4 3 4 5 3 4 6 3 4 6 3 4 7 3 4 8 3 4 9 3 5 0 3 5 1 3 5 2 3 5 3 3 5 4 3 5 5 3 5 6 3 5 7 3 5 8 3 5 9 3 6 0 3 6 1 3 6 2 	310 010 360 011 004 005 023 310 004 020 300 010 310 011 360 011 360 011 012 010 005 023 310	RC B ST RC B RC B B B B B B B B B B B B B B B B	• 0 0.1 • 0 0 2 • 0 0 3 • 0 0 4 • 0 0 5 • 0 0 6 • 0 0 7 • 0 0 8 • 0 0 9 • 0 1 0 • 0 1 1 • 0 1 2 • 0 1 3 • 0 1 4 • 0 1 5 • 0 1 6 • 0 1 7 • 0 1 8 • 0 1 9	luation p BLOCI 0 0 3 0 2 2 3 1 0 0 0 0 3 5 4 0 0 2 3 1 0 0 0 7 3 5 4 0 0 0 0 2 3 0 1 2 0 0 0 0 0 3 0 0 2 1 0 0 1 0 0 5 0 1 2	rogram K 3 RC JC RC JC C JC C V d O JC S d
 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 	013 350 001 212 310 013 061 024 002 021 310 004 020 161 300 004 030 205 010 013	S J L R C S L G + R C 4 R C 4 R C 4 R C 4 R C 4 R C 4 R C 4 R C 4 R C 5 L G 4 R C 4 R C 5 S L G 4 R C 5 S L G 4 R C 5 S L G 4 R C 5 S L G 4 S C 5 S L G 4 S C 5 S L G 4 S C 5 S S S S	 3 4 2 3 4 3 3 4 4 3 4 5 3 4 6 3 4 6 3 4 7 3 4 8 3 4 9 3 5 0 3 5 1 3 5 2 3 5 3 3 5 2 3 5 3 3 5 4 3 5 5 3 5 6 3 5 7 3 5 8 3 5 9 3 6 1 3 6 2 3 6 3 	310 010 360 011 004 005 023 310 004 020 300 010 310 011 360 011 360 011 012 010 005 023 310 004	RC B ST RC B ST RC B B B B S C C 4	• 0 0 1 • 0 0 2 • 0 0 3 • 0 0 4 • 0 0 5 • 0 0 6 • 0 0 7 • 0 0 8 • 0 0 9 • 0 1 0 • 0 1 1 • 0 1 2 • 0 1 3 • 0 1 4 • 0 1 5 • 0 1 6 • 0 1 7 • 0 1 8 • 0 1 9 • 0 2 0	luation p BLOCI 0 0 3 3 1 0 0 0 0 3 5 4 0 0 2 3 1 0 0 0 7 3 5 4 0 0 0 0 2 3 0 1 2 0 0 0 0 0 3 0 0 3 0 0 3 0 0 1 0 0 1 0 0 5 0 1 2 0 1 1	rogram K 3 RC JC RC JC C X d 0 3 3 + 1 S d 9
 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 	013 350 001 212 310 013 061 024 002 021 310 004 020 161 300 004 030 205 010 013 032	S J L C S L G + R C 4 R C 4 R C 4 R C 4 R C 4 R C 4 R C 4 R C 4 R C 4 S I D P T L 6	 3 4 2 3 4 3 3 4 4 3 4 5 3 4 6 3 4 6 3 4 7 3 4 8 3 4 9 3 5 0 3 5 1 3 5 2 3 5 3 3 5 5 3 5 5 3 5 6 3 5 7 3 5 8 3 5 9 3 6 1 3 6 2 3 6 3 3 6 4 	3 1 0 0 1 0 3 6 0 0 1 1 0 0 4 0 0 5 0 2 3 3 1 0 0 0 4 0 2 0 3 0 0 0 1 0 3 1 0 0 1 1 3 6 0 0 1 1 3 6 0 0 1 1 0 2 0 3 1 0 0 1 0 3 1 0 0 1 1 0 0 4 0 2 0 3 1 0 0 1 0 3 1 0 0 1 1 0 0 4 0 2 0 3 1 0 0 1 1 0 0 4 0 2 0 3 1 0 0 1 1 0 0 5 0 2 3 3 1 0 0 1 1 0 0 4 0 2 0 3 1 0 0 1 1 0 0 5 0 2 0 3 1 0 0 1 1 0 0 5 0 2 0 3 1 0 0 0 1 1 0 0 1 1 0 0 1 0 3 1 0 0 0 1 0 3 1 0 0 0 1 0 3 1 0 0 0 1 0 0 1 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	RC B ST RC B ST RC B B B B C C C C C C C C C C C C C C	• 0 0 1 • 0 0 2 • 0 0 3 • 0 0 4 • 0 0 5 • 0 0 6 • 0 0 7 • 0 0 8 • 0 0 9 • 0 1 0 • 0 1 1 • 0 1 2 • 0 1 3 • 0 1 4 • 0 1 5 • 0 1 6 • 0 1 7 • 0 1 8 • 0 1 9 • 0 2 0 • 0 2 1	luation p BLOC 0 0 3 3 0 3 2 3 1 0 0 0 0 3 5 4 0 0 2 3 1 0 0 0 7 3 5 4 0 0 0 0 2 3 0 1 2 0 0 0 0 0 3 0 0 3 0 0 3 0 0 3 0 0 3 0 0 2 1 0 0 1 0 0 5 0 1 2 0 1 1 0 0 5	program K 3 RC JC RC JC C JC C V d O JC S d S S
 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 	013 350 001 212 310 013 061 024 002 021 310 004 020 161 300 004 030 205 010 013 032 034	S J L C S L G + R C 4 R C 4 R C 4 R C 4 R C 4 R C 4 R C 4 R C 4 R C 4 S I C 5 L G 5 C 5 L G 7 S L G 7 S L G 7 S L G 7 S L G 7 S L G 7 S L G 7 S L G 7 S L G 7 S L G 7 S L G 7 S L G 7 S L G 7 S L G 7 S L G 7 S L G 7 S L G 7 S L G 7 S S L G 7 S S L G 7 S S L G 7 S S S S S S S S S S S S S S S S S S	 342 343 344 345 346 347 348 349 350 351 352 353 355 356 357 358 359 360 361 363 364 365 	3 1 0 0 1 0 3 6 0 0 1 1 0 0 4 0 0 5 0 2 3 3 1 0 0 0 4 0 2 0 3 0 0 0 1 0 3 1 0 0 1 1 3 6 0 0 1 1 3 6 0 0 1 1 3 6 0 0 1 1 0 2 0 3 1 0 0 1 1 0 0 4 0 2 0 3 1 0 0 1 1 0 0 5 0 2 3 3 1 0 0 1 1 0 0 5 0 2 0 3 1 0 0 1 1 0 0 5 0 2 0 3 1 0 0 1 1 0 0 5 0 2 0 3 1 0 0 0 1 1 0 0 5 0 2 0 3 1 0 0 0 1 1 0 0 5 0 2 0 3 1 0 0 0 1 1 0 0 5 0 2 3 3 1 0 0 0 1 0 3 1 0 0 0 0 1 0 3 1 0 0 0 0 5 0 2 3 3 1 0 0 0 0 1 0 0 0 2 0 3 1 0 0 0 0 1 0 0 0 1 0 0 0 5 0 2 3 3 1 0 0 0 0 5 0 2 3 3 1 0 0 0 0 5 0 2 0 3 0 0 0 0 0 5 0 0 0 4 0 0 0 5 0 0 0 4 0 0 0 5 0 0 0 0 0 0 0 5 0 0 0 0 0 0 0 0	RC B ST RC B ST RC B B B B S C C 4	• 0 0 1 • 0 0 2 • 0 0 3 • 0 0 4 • 0 0 5 • 0 0 6 • 0 0 7 • 0 0 8 • 0 0 9 • 0 1 0 • 0 1 1 • 0 1 2 • 0 1 3 • 0 1 4 • 0 1 5 • 0 1 6 • 0 1 7 • 0 1 8 • 0 1 9 • 0 2 0	luation p BLOCI 0 0 3 0 3 2 3 1 0 0 0 0 3 5 4 0 0 2 3 1 0 0 0 7 3 5 4 0 0 0 0 7 3 5 4 0 0 0 0 2 3 0 1 2 0 0 0 0 0 3 0 0 3 0 0 3 0 0 3 0 0 3 0 0 1 2 0 0 1 0 0 5 0 1 2 0 1 1 0 0 5 0 2 0	Program K 3 F C J C C C C C C C C C C C C C C C C C C
 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 	013 350 001 212 310 013 061 024 002 021 310 004 020 161 300 004 030 205 010 013 032 034 206	S J L C S L G + R C 4 R C 4 R C 4 R C 4 R C 4 R C 4 S T 4 R C 4 S T 5 S T 6 S S I D P T L 6	 3 4 2 3 4 3 3 4 4 3 4 5 3 4 6 3 4 6 3 4 7 3 4 8 3 4 9 3 5 0 3 5 1 3 5 2 3 5 3 3 5 5 3 5 5 3 5 6 3 5 7 3 5 8 3 5 9 3 6 1 3 6 2 3 6 3 3 6 4 	3 1 0 0 1 0 3 6 0 0 1 1 0 0 4 0 0 5 0 2 3 3 1 0 0 0 4 0 2 0 3 0 0 0 1 0 3 1 0 0 1 1 3 6 0 0 1 1 3 6 0 0 1 1 0 2 0 3 1 0 0 1 0 3 1 0 0 1 1 0 0 4 0 2 0 3 1 0 0 1 0 3 1 0 0 1 1 0 0 4 0 2 0 3 1 0 0 1 1 0 0 4 0 2 0 3 1 0 0 1 1 0 0 5 0 2 3 3 1 0 0 1 1 0 0 4 0 2 0 3 1 0 0 1 1 0 0 5 0 2 0 3 1 0 0 1 1 0 0 5 0 2 0 3 1 0 0 0 1 1 0 0 1 1 0 0 1 0 3 1 0 0 0 1 0 3 1 0 0 0 1 0 3 1 0 0 0 1 0 0 1 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	RC B ST RC B ST RC B B B B C C C C C C C C C C C C C C	• 0 0 1 • 0 0 2 • 0 0 3 • 0 0 4 • 0 0 5 • 0 0 6 • 0 0 7 • 0 0 8 • 0 0 9 • 0 1 0 • 0 1 1 • 0 1 2 • 0 1 3 • 0 1 4 • 0 1 5 • 0 1 6 • 0 1 7 • 0 1 8 • 0 1 9 • 0 2 0 • 0 2 1	luation p BLOC 0 0 3 3 0 3 2 3 1 0 0 0 0 3 5 4 0 0 2 3 1 0 0 0 7 3 5 4 0 0 0 0 2 3 0 1 2 0 0 0 0 0 3 0 0 3 0 0 3 0 0 3 0 0 3 0 0 2 1 0 0 1 0 0 5 0 1 2 0 1 1 0 0 5	program K 3 RC JC RC JC C JC C V d O JC S d S S

BLOCK	X 3-Co	nt.	•075	012	d	• 1 2 7	002	2
• 0 2 4	012	d	•076	010	8	•128	022	-
•025	300	ST	•077	022	-	•129	003	3
•026	004	4	•078	002	2	•130	000	0
• 0 2 7	310	RC	•079	007	7	•131	300	ST
• 0 2 8	007	7	•080	012	d	•132	604	44
•029	023	×	• 0 8 1	011	9	•133	020	
• 0 3 0	012	d	•082	020	=	•134	351	JC
•031	000	0	•083	360	В	•135	003	3
• 0 3 2	003	3	• 0 8 4	012	d	•136	310	RC
• 0 3 3	006	6	•085	300	ST	•137	002	2
• 0 3 4	022	-	•086	006	6	•138	300	ST
•035	002	2	•087	201	L 1	•139	004	4
• 0 3 6	001	1	• 0 8 8	310	RC	•140	350	J
•037	012	d	• 0 8 9	004	44	•141	004	4
• 038	002	2	•090	360	В	•142	203	L 3
• 039	020	=	•091	013	S	• 1 4 3	300	ST
• 0 4 0	360	В	• 0 9 2	300	ST	• 1 4 4	005	5
•041	012	d	• 0 9 3	004	4	•145	350	J
•042	300	ST	• 0 9 4	310	RC	•146	004	44
• 0 4 3	005	5	•095	006	6	• 1 4 7	213	LS
• 0 4 4	000	0	•096	360	В	• 1 4 8	024	+
• 0 4 5	300	ST	•097	013	S	•149	014	EX
•046	007	7	• 0 9 8	023	×	•150	002	2
•047	2 0 0	LO	• 0 9 9	310	RC	•151	022	-
•048	310	RC	•100	004	4	•152	001	1
• 0 4 9	006	6	•101	020	=	•153	020	=
•050	354	JC	•102	300	ST	•154	030	RT
• 0 5 1	001	1	•103	012	d	•155	212	Ld
• 0 5 2	061	LG	•104	310	RC	•156	300	ST
• 0 5 3	300	ST	•105	005	5	•157	000	O
• 0 5 4	006	6	•106	360	в	•158	351	JC
• 0 5 5	023	×	•107	013	S	•159	011	9
• 0 5 6	005	5	•108	300	ST	•160	000	0
• 0 5 7	000	0	•109	005	5	•161	030	RT
• 0 5 8	012	d	•110	310	RC	•162	211	L 9
• 0 5 9	005	5	•111	007	7	•163	022	-
• 6 6 0	G 2 2	-	•112	360	в	•164	014	EX
•061	004	4	•113	013	S	•165	002	2
• 0 6 2	011	9	•114	023	×	•166	020	=
• 0 6 3	012	d	•115	310	RC	•167	351	JC
• 0 6 4	003	3	•116	005	5	•168	010	8
• 0 6 5	020	=	•117	020	=	•169	310	RC
• 0 5 6	360	В	•118	300	ST	•170	000	0
• 0 6 7	012	d	•119	013	S	•171	030	RT
•068	300	ST	•120	202	L 2	•172	210	La
•069	007	7	•121	000	0	•173	014	EX
•070	3-10	RC	•122	300	ST	•174	002	2
•071	006	6	•123	005	5	•175	030	RT
• 072	023	×	•124	300	ST	•176	204	Lμ
•073	004	4	•125	007	7	•177	310	RC
•074	002	2	•126	310	RC	•178	C O 1	1

	_								
	K 3 – Co	nt.	•231	005	5	• 2 8 4	006		6
•179	301	ST+	• 2 3 2	310	RC	• 2 8 5	110	R	
•180	C O 4	4	• 2 3 3	004	4	• 2 8 6	034	PT	
•181	021	+	• 2 3 4	023	×	•287	035	PA	
•182	310	RC	• 2 3 5	310	RC	• 2 8 8	035	PA	
•183	002	2	• 2 3 6	010	8	• 2 8 9	310	RC	
•184	021	+	• 2 3 7	023	×	• 2 9 0	007		7
•185	310	RC	• 2 3 8	310	RC	•291	110	R	
•186	003	Э	• 2 3 9	012	d	• 2 9 2	034	PT	
•187	020	=	•240	023	×	• 2 9 3	035	PA	
•188	300	ST	• 2 4 1	012	d	• 2 9 4	035	PA	
•189	000	0	• 2 4 2	002	2	• 2 9 5	112	DT	
•190	037	CL	• 2 4 3	002	2	• 2 9 6	002		2
•191	026	(• 2 4 4	007	7		- 033	— s – s	
•192	310	RC	• 2 4 5	020	\$	• 2 9 8	112	DT	
•193	004	4	• 2 4 6	061	LG	• 2 9 9	001		1
• 1 9 4	023	×	• 2 4 7	022	_	• 300	001		1
•195			• 2 4 8	002	2	• 3 0 1	032	ID	*
•195	310	RC	• 2 4 9	020	=	• 3 0 2	034	PT	
	010	8	• 2 5 0	352	JC _	• 3 0 3	222	~ ~	
•197	021	+	• 251	005		• 3 0 4	310	DP 2 RC	
•198	026	(• 2 5 2	024	\$ ÷	• 3 0 5	001		
•199	310	RC	• 2 5 3	003		• 3 0 6	021	+	1
•200	005	5	• 2 5 4		3	• 307	310		
•201	023	×	• 2 5 5	023	×	• 3 0 8	002	RC	
• 2 0 2	006	6		026	(• 3 0 9			2
•203	000	0	• 2 5 6	310	RC		020	=	
• 2 0 4	027)	• 2 5 7	000	0	• 310	300	ST	
•205	023	×	• 2 5 8	061	LG	• 311	007		7
• 2 0 6	310	RC	• 2 5 9	023	×	• 312	310	RC	
•207	012	d	•260	012	d	• 313	001		1
• 2 0 8	027)	• 261	001	1	• 314	110	R	
•209	021	+	• 2 6 2	021	+	• 315	034	PT	
•210	026	(• 2 6 3	012	d	• 316	310	RC	
•211	310	RC	• 264	010	8	• 317	002		2
•212	003	Э	• 265	027)	• 318	110	R	
•213	023	×	• 266	023	×	• 319	034	PT	
•214	006	6	•267	014	EX	• 3 2 0	310	RC	
•215	000	0	• 2 6 8	002	2	• 3 2 1	007		7
•216	027)	•269	020	67- 69-	• 3 2 2	110	R	
•217	024	+	•270	300	ST	• 3 2 3	034	PT	
•218	310	RC	•271	007	7	• 3 2 4	035	PA	
•219	000	0	• 272	205	L 5	• 3/2 5	310	RC	
•220	020	=	• 273	001	1	• 3 2 6	003	3	3
• 2 2 1	300	ST	• 274	000	0	• 3 2 7	110	R	
• 2 2 2	006	6	• 275	032	ID	• 3 2 8	034	PT	
• 2 2 3	022	-	• 276	034	PT	• 3 2 9	310	RC	
• 2 2 4	001	1	• 2 7 7	220	DP 0	•330	000	0)
• 2 2 5	001	1	• 278	310	RC	• 3 3 1	110	R	
• 2 2 6	002	2	• 279	000	0	• 3 3 2	034	PT	
• 2 2 7	012	ď	• 2 8 0	110	R	• 3 3 3	035	PA	
• 2 2 8	005	5	• 2 8 1	034	PT	• 3 3 4		DT	
• 2 2 9	020	=	• 2 8 2	035	PA	• 3 3 5	001	1	
• 2 3 0	352	JC	• 2 8 3	310	RC	• 3 3 6	002	2	
2.00	55Z		2.00		3			-	

					* 0			
BLOC.	K 3–Co	ont.	•012	352	10	• 0 6 5	110	R
• 3 3 7	032	1 0	•013	000	0	•066	034	PT
• 3 3 8	034	PT	•014	310	RC	•067	035	PA
• 3 3 9	220	DP 0	•015	001	1	•068	112	DT
• 3 4 0	310	RC	•016	023	×	•069	661	1
• 341	001	1	•017	310	RC	•070	003	Э
• 342	021	+	•018	010	8	•071	012	d
• 3 4 3	310	RC	•019	023	×	•072	001	1
• 344	003	3	•020	310	RC	•073	032	I D
• 345	020	=	•021	012	d	•074	034	PT
• 346	300	ST	• 0 2 2	023	×	•075	310	RC
• 347	000	0	•023	012	d	•076	002	2
• 3 4 8	000	0	•024	002	2	•077	301	ST+
• 349	300	ST	•025	002	2	•078	000	0
• 350	007	7	•026	007	7	•079	006	6
• 3 5 1	310	RC	•027	020		• 0 8 0	000	0
• 3 5 2	001	1	•028	061	LG	• 0 8 1	300	ST
• 3 5 3	023	×	• 0 2 9	022	-	• 0 8 2	001	1
• 3 5 4	310	RC	•030	002	2	• 0 8 3	360	в
• 3 5 5	010		• 0 3 1	020	Ξ	• 0 8 4	001	
• 3 5 6	023	6	• 0 3 2	352	JC	• 0 8 5	001	1
• 3 5 7	310	X	• 0 3 3	000	0	•085	003	1
• 3 5 8		RC	• 0 3 4	024	÷			3
• 3 5 8	012	d .	• 0 3 5	003	. 3	• 0 8 7	012	d
• 3 5 9	021	+	•036	023	×	• 0 8 8	002	2
	026	(• 0 3 7	026	(Î	• 0 8 9	032	ID
• 361	310	RC	•038	310	RC	• 0 9 0	034	PT
• 362	003	Э	• 0 3 9	000	0	• 0 9 1	360	В
• 3 6 3	023	×	•040	061	LG	• 0 9 2	002	2
• 364	006	6	041	023	×	• 0 9 3	001	1
• 365	000	0	• 0 4 2	012		• 0 9 4	004	4
• 366	027)	•042	001	d	• 0 9 5	012	d
• 367	024	÷		-	1	• 0 9 6	001	1
• 368	310	RC	• 0 4 4	021	+	• 0 9 7	032	ID
• 369	000	0	• 0 4 5	012	d	• 0 9 8	034	PT
• 370	020	=	•046	010	0	•099	002	2
• 371	300	ST	• 0 4 7	027)	•100	300	ST
• 372	006	6	• 0 4 8	023	×	•101	001	1
• 3 7 3	004	44	•049	014	EX	•102	310	RC
• 374	041	TR	• 0 5 0	002	2	•103	010	8
			• 0 5 1	020	-	•104	320	XC
Eva		program	• 0 5 2	300	ST	•105	011	9
	BLOCI	K 4	• 0 5 3	007	7	•106	3 O C	ST
•001	004	4	•054	200	Lo	•107	010	8
• 0 0 2	032	I D	•055	310	RC	•108	310	RC
•003	310	RC	•056	000	0	•109	012	đ
•004	006	6	•057	110	R	•110	320	XC
•005	022	-	•058	034	PT	•111	013	S
•006	001	1	• 0 5 9	310	RC	•112	300	ST
• 0 0 7	001	1	•060	006	6	•113	012	d
•008	002	2	•061	110	R	•114	360	в
•009	012	d	•062	034	PT	•115	001	1
•010	005	5	•063	310	RC	•116	001	1
•011	020	8	• C 6 4	007	7	•117	004	4

DLOCK						- 0.0.0	0.94	0.7
BLOCK			•170	006	6	• 2 2 3	034	PT
•118	012	d	•171	023	×	• 2 2 4	035	PA
•119	002	2	•172	310	RC	• 2 2 5	030	RT
•120	032	ID	•173	012	d	• 2 2 6	202	L a
•121	034	PT	•174	027)	• 2 2 7	310	RC
•122	360	8	•175	020	*	• 2 2 8	006	6
•123	002	2	•176	300	ST	• 2 2 9	023	×
•124	002	2	•177	002	2	• 2 3 0	012	d
•125	033	S S	•178	203	L 3	•231	002	2
•126	201	Lı	•179	310	RC	• 2 3 2	002	2
•127	310	RC	•180	006	6	• 2 3 3	007	7
•128	005	5	• 1 8 1	024	+	• 2 3 4	020	8
•129	023	×	•182	026	(• 2 3 5	110	R
•130	310	RC	•183	310	RC	• 2 3 6	034	PT
•131	001	1	• 1 8 4	004	4	• 2 3 7	035	PA
•132	021	+	•185	021	+	• 2 3 8	310	RC
•133	026	(•186	310	RC	• 2 3 9	012	đ
•134	310	RC	•187	005	5	• 2 4 0	360	8
•135	004	4	• 1 8 8	027)	• 2 4 1	011	9
•136	023	×	•189	020	=	• 2 4 2	360	В
•137	310	RC	•190	110	R	• 2 4 3	010	8
•138	010	8	•191	034	PT	• 2 4 4	352	JC
•139	027)	• 1 9 2	035	PA	•245	006	6
•140	020	=	• 1 9 3	310	RC	.246	310	RC
•141	300	ST	•194	012	d	• 2 4 7	002	2
•142	006	6	•195	360	В	-248	023	× -
•143	023	×	•196	011		• 2 4 9	310	RC
•144	310	RC	•197	360	в	• 2 5 0	000	0
•145	012	d	•198	010		• 2 5 1	020	*
•146	021	+	•199	352	JC	• 2 5 2	360	В
•147	026	Ċ	•200	004	ц.	• 2 5 3	011	9
•146	310	RC	• 2 0 1	310	RC	•254	350	J
•149	003	3	• 2 0 2	002	2	•255	007	7
•150	023	×	• 2 0 3	023	×	• 2 5 6	206	1 4
•151	310	RC	• 2 0 4	026	Ĉ	• 2 5 7	035	PA
•152	001		• 2 0 5	310	RC	• 2 5 8	207	L 7
	027	, 1		004	RC //	• 2 5 9	035	P A
•153 •154	020		• 2 0 6 • 2 0 7	021	*	•260	310	RC
•155	024	=	• 2 0 8	310	+	• 2 5 1	007	7
•156	310		• 209	005	RC	• 2 6 2	023	
•157		RC			` S	• 2 6 3	310	×
	000	0	• 210	027	•	• 264		RC
•158	020	=	• 211	020	=	• 2 6 5	000	0
•159	300	ST	• 2 1 2	360	В		023	×
•160	007	7	• 2 1 3	011	8	• 266	012	d
•161	360	B	• 214	350	J	• 267	002	2
•162	010	8	• 215	005	5	• 2 5 8	002	2
•163	352	1 C	•216	204	Lu	• 2 6 9	007	7
•164	003	3	• 217	035	PA	• 270	020	=
•165	310	RC	• 218	205	Ls	• 271	110	R
•166	007	7	• 219	035	PA	• 272	034	PĨ
•167	024	+	• 2 2 0	310	RC	• 273	035	PA
•168	026	(• 2 2 1	007	7	• 274	112	D T
•169	310	RC	• 2 2 2	110	R	•275	030	RT

BLOCK	4 – Co	nt		•031 0	33	S S	• 0 8 4	354	JC
					34	PT	• 0 8 5	004	4
• 276	210	L	8		35	PA	•085	310	RC
• 277	310 007	RC	-		54	JC	• 0 8 7	003	з
•278 •279	022		7	•035 0	01	1	• 0 8 8	024	+
• 2 8 0	310	RC		•036 0	23	×	•089	310	RC
• 281	001	ne	1	•037 0	12	d	• 0 9 0	002	2
• 282	020		=	•038 0	00	0	•091	020	Ξ
• 2 8 3	030	RT	-	•039 0	03	Э	•092	110	R
• 2 8 4	211	L	9	• 0 4 0 0	24	ŧ	•093	300	ST
• 285	013	-	S		26	C	•094	006	6
• 286	021		+		10	RC	• 0 9 5	310	RC
• 287	001		1		10	8	•096	001	1
• 2 8 8	023	:	хŤ		61	LG	•097	061	LG
•289	014	εx			23	×	• 0 9 8	024	+
• 2 9 0	002		2		12	đ	• 0 9 9	012	d
•291	020	:	68		01	1	•100	000	0
• 2 9 2	110	R			21	+	•101	003	3
• 2 9 3	034	PT			12	d	•102	023	×
•294	030	RT			10	8	•103	026	C
					27)	•104	310	RC
Cor		g ratings			20	. =	•105	002	2
	BLOC	K 5			61	L=1	•106	061	LG
•001	005		5		01	ST+	•107	023	×
•002	032	ID			01	1	•108	012	d
• 0 0 3	035	ΡΑ			10	RC	•109	001	1
•004	112	DT			10	а С.Т.	•110	021	+
•005	004		4		01	ST+	•111	012	đ
• 0 0 6	003	,	3		0223	2	•112 •113	010	
•007 •008	015 001	/			10	× RC	•114	020	- '
•008	015	,	1		11	9	•115	351	= JC
•010	005	/	~		20	=	•116	003	
•010	012		5 d		01	ST+	•117	000	3
•012	000		0		03	311	•118	203	LJ
•013	015	1	0		00	0	+119	110	R
•014	034	PT			50	J	•120	300	ST
•015	112	DT			01	1	•121	007	7
•016	035	PA			02	L 2	•122	204	E 4
•017	137	CA			35	PA	•123	310	RC
•018	000	•	0		12	DT	•124	006	6
•019	220	DP	0		35	PA	•1.25	034	PT
•020	201	L	1		01	1	•126	035	PA
•021	033	S	S		00	0	•127	035	PA
• 0 2 2	354	JC			12	d	•128	310	RC
• 0 2 3	002		2		11		•129	007	7
• 0 2 4	300	ST			32	ID	•130	034	PT
•025	010				34	PT	•131	035	PA
•026	034	PT		• 0 7 9 3	10	RC	•132	112	DT
•027	033	S	S		02	2	•133	035	PA
•028	300	ST			10	R	•134	035	PA
•029	011		9		34	PT	•135	350	J
•030	034	PT		•083 0	35	PA	•136	033	S S
					56				

Appendix E

Manual Calculations

The worksheets in this appendix allow evaluation of an animal lot manually--that is, without aid of a programmable calculator. No worksheet is provided for the screening or the preliminary evaluation (see Appendix A for the formulas) nor to combine animal lot ratings. The latter is done by summing total runoff and loading from each animal lot or portion that is a pollution hazard (that is, whose COD concentration exceeds 112.5 ppm) before calculating F_1 and F_2 to obtain the animal lot rating.

Appendix E-1 User-Oriented Procedure Page 58

This set of worksheets is designed to make it easy for the user to calculate the rating and other outputs of the model.

Appendix E-2 Calculator-Oriented Procedure Page 65

The algorithms used here are identical to those used by the programmable calculators. This set of worksheets is designed to make it easy for the programmer to modify the programs in Appendix D to fit conditions in other States, and to run on other calculators or on computers.

User-Oriented Manual Calculation Procedure

Final calculations can also be completed manually by following the remaining steps.

	Feedlot	Evalua	tion System.	Operator					
	Step 10			volumes using d [2] may also					
			$S = \frac{1000}{CN} -$	10			[1]		
			$Q = \frac{(P - C)}{P + C}$	<u>.25)²</u> .85			[2]		
		CN =	soil cover	complex number	(from Ste	рб)			
		P =	design rain	fall, inches (from Step	3)			
		Q =	runoff, inc	hes					
		CN :	S : P :	Q X Ar (from	ea = Step 4)	Vol. (acre-in)		
Area	l			X	=	Total	Voll	=	acre-in*
	2 _a			X	=		_		
	2 _b			X	=				
	2 _r (roof)	100	0	X	= .		<u></u>		
						Total	Vol ₂	=	acre-in*
						Total	Vol ₁₊₂	=	acre-in*
	3			X	=.				
						Total	Vol3	=	acre-in*
						Total	Vol1+2+3	=	acre-in*(33)

*Note: Starred items appear in computer printout of additional information available.

Step. 11. Calculate equivalent animal units (EAU) from information in Step 8.

	Animal type	No. of animals (Step 8)			EAU	
COD:			х	. = _		
			хх	. = _		
		- <u></u>	х	- = _		
			х	. =		
					Total =	 EAU
P:			х	_ =		
			х	- =		
			х	_ =		
			х	_ =		
					Total =	 EAU
Step 12.,	Calculate ani % manure pack	mal unit density	(AUD) and	1		
		÷ Area l l) (Step 4)	= AUD			
	COD:		=			

P: __ ÷ = ____

-- if AUD < 100, % manure pack = AUD

-- if AUD \geq 100, % manure pack = 100

Manure pack (COD) = _____%

Manure pack (P) = ____%

¹Appendix B, p. 28.

Feedlot Evaluation System. Operator	
Step 13. Calculate concentration of COD and P in runoff at feedlot edge.	
a) if $Vol_2 \leq 30$	
% manure pack X Factor (Step 12)	= Concentration
COD: X 45	=mg/l*
P: X 0.85	=mg/l*
b) if Vol ₂ > 30	
$ \begin{bmatrix} \% & \text{manure pack x factor}_1 \times (\text{Vol}_1+30) + \text{Vol}_2-30) \times \text{factor}_2 \end{bmatrix} / \text{Vol}_3 $ (Step 12)	1+2 = Concentration
COD: [X 45 X (+30) + (30) X 60]/	=mg/ <i>l</i> *
P: [X 0.85 X (+30) + (30) X 2]/	
Step 14. Calculate mass load of pollutants in runoff at feedlot edge.	
Concentration X Vol $_{1+2}$ X Conversion (Step 10)	= Mass load
COD: X	=1b*
X 0.227	
P: X	=lb*
Step 15. Determine velocity through each buffer section using figure 2. Equation [3] may also be used.	
log v = 0.5 log s - c	[3]
v = runoff velocity, ft/sec	
s = slope, % (Step 7)	
c = surface condition constant (from Table 4 or St	ep 7) ³
$\frac{2(\frac{43,560 \text{ ft}^2}{\text{A}})(\frac{1}{12 \text{ in}})(\frac{1}{10^{\text{b}}})(\frac{62.4 \text{ lb}}{\text{ft}^3}) = 0.227$	
³ Table 4, p. 23 or Step 7, p. 24, Appendix B.	

Note₁: If the buffer section is a grass waterway (c from table 4 or Step 7 = 1.0),³ use a value of c = -0.18 in equation [3].

Note₂ : If the buffer section is overland flow and v > 2.0, use v = 2.0.

Section a, velocity = _____ft/sec

Section b, velocity = _____ft/sec

velocity = _____ft/sec

Step 16. Calculate the time of contact (T_c) in the buffer. Keep T_c in grass waterways separate from T_c in overland flow.

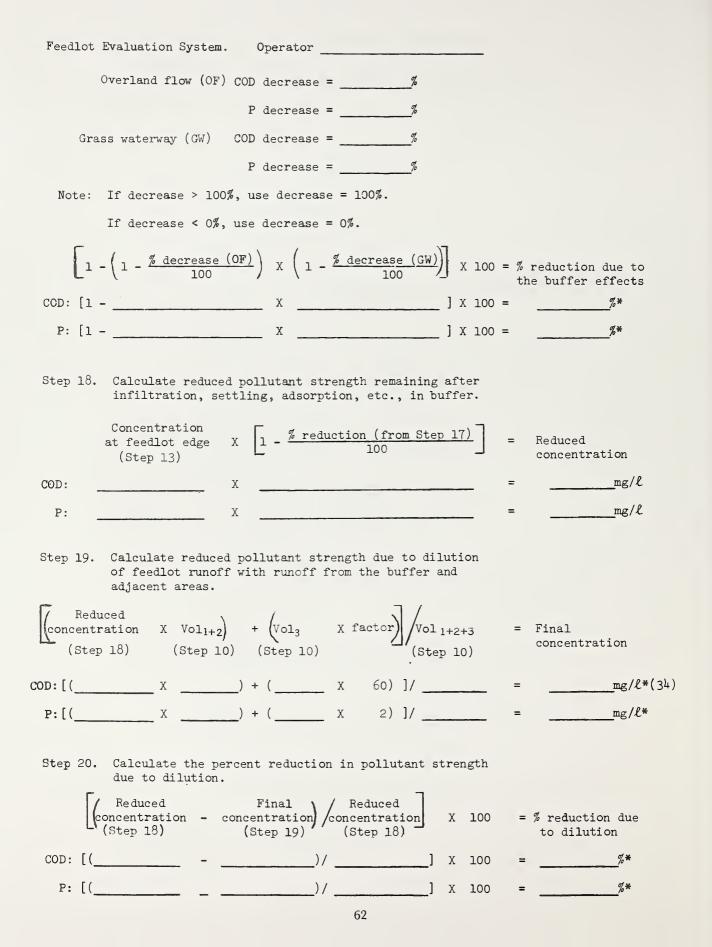
Distance, L + $\underset{(\text{Step 7})}{\text{Runoff}}$ = Time of contact, T_c (Step 7) + $\underset{(\text{Step 15})}{\text{Fine of contact, T}_c}$ sec Section b - + - = - sec + - = sec Total T_c (overland flow) = _____sec

Step 17. Calculate percent reduction in pollutant strength due to buffer effects using figures 3 and 4. Equations [4-7] may also be used.

-- if overland flow

COD: $D_c = -27.9 + 42.8 \log T_c$ [4]

P:
$$D_p = -49.3 + 50.5 \log T_c$$
 [5]


-- if grass waterway

COD: $D_c = 15.95 + 0.033 T_c$ [6]

P:
$$D_p = -21.2 + 0.036 T_c$$
 [7]

D = decrease in pollutant strength, %

 T_{c} = time of contact, sec. (Step 16)

Operator Feedlot Evaluation System. Step 21. Calculate final pollutant load Final concentration X Vol₁₊₂₊₃ X Conversion factor = Mass load (Step 19) (Step 10) _____X COD: lb* X 0.227 P: Х = 1b* Step 22. Calculate the percent change in pollutant load due to feedlot runoff mixing with runoff from the buffer and adjacent areas. $100 \begin{bmatrix} \text{Load at} \\ \text{lot edge} \end{bmatrix} \times \left(1 - \frac{\% \text{ reduction}}{100}\right) - \text{Final load} \end{bmatrix} / \begin{bmatrix} \text{Load at} \\ \text{lot edge} \end{bmatrix} \times \left(1 - \frac{\% \text{ reduction}}{100}\right) = \begin{bmatrix} \% \text{ change} \\ \text{due to} \\ \text{mixing} \end{bmatrix}$ (Step 14) (Step 17) (Step 21) (Step 14) COD: 100[_____X _____] = ____%* P: 100 [_____X ______]/[____X ____] = ____%* Step 23. Calculate mass load of COD for rating feedlot by either method a or b. a) if $Vol_2 < 30$ Manure pack x Vol₁₊₂ x factor⁴ x $\left[1 - \frac{\% \text{ reduction}}{100}\right]$ = Mass load (Step 12) (Step 10) (Step 17) x _____ x 10.215 x _____ = ____ lb COD b) if $Vol_2 > 30$ Manure pack x (Vol₁ + 30) x 10.215 x $\left[1 - \frac{\% \text{ reduction}}{100}\right]$ = Mass load x _____ x 10.215 x _____ = ____ 1b COD If the final COD concentration < 112.5 mg/l, no further calculation is necessary and the animal lot can be considered to pose no surface water pollution hazard.

If the final COD concentration > 112.5 mg/ ℓ , continue calculation to determine a numerical rating of the animal lot as follows:

 $44500/100 \times 0.227 = 10.215.$

Feedlot Evaluation System. Operator

Step 24. Calculate a rating factor for the animal lot using equation [8].

$$F_{1} = \frac{\log \text{COD}_{\text{mass load}} -2}{3}$$
(Step 23)
$$F_{1} = -$$

Step 25. Calculate a weighting factor using equation [9].

$$F_2 = 0.8 + 0.1 \log \text{Vol}_{1+2+3}$$
 [9]
(Step 10) $F_2 = ---$

Step 26. Calculate final rating for animal lot.

	F 1 (Step 24)		F ₂ (Step 25)	x	100	= Animal l rating (round of nearest number)	f to
		x		х	100	=	(35)
Results of eva	aluation.						
Surface water	:						
Total volu	ne of runoff at	the di	scharge poin	t (Step	10)	acre-in	(33)
COD concent	tration at the d	ischar	ge point (St	ep 19)		mg/L	(34)
	water if applica						
	rating for surf zard, 100 = ver)		(35)
Ground water:	(from line 32) severe hazard)			5 = ver	J		(36)
Additional	comments:						

Prepared by ____

Date

Calculator-Oriented Manual Calculation Procedure

	Final calculations can also be completed manually by following the remaining steps.	
Step 11.	Calculate runoff volumes using figure 1.	
	Equations [1] and [2] may also be used.	
	$S = \frac{1000}{CN} - 10$	1]
	$Q = \frac{(P - 0.2S)^2}{P + 0.8S}$	2]
	CN = soil cover complex number (Step 6) P = design rainfall, inches (Step 3) Q = runoff, inches	
Area	$CN : S : P : Q \times Area = Volume$ (Step 4)	
1	x = Vol ₁ =	acre-in
2 _a	X =	
2 _b	X =	
2 _r (roof)	'' x =	
	Total = Vol_2 =	acre-in
3 _a	'' x =	
3 _b	'' x =	
3 _c	x =	
³ d	× =	
	$Total = Vol_3 =$	acre-in
Step 12.	Calculate time of contact in the buffer. <u>Repeat</u> Steps 12a-12d for each buffer section.	
	(a) Check the value of c. If c = 1.0, this is a grass waterway. This fact affects the value of c and the maximum velocity.	
	(b) Determine velocity of flow through buffer usi figure 2. Equation [3] may also be used.	ng
	$\log v = 0.5 \log s - c$	[3]
	where v = runoff velocity, ft/sec s = slope, % (Step 7) c = surface condition constant (from Table 4 or Step 7, 3 <u>except</u> set c = -0.18 for a grass waterway).	

	(c)	overla	velocit; nd flow, s 2.0, u	and if	the cal					
	(d)	Calcul	ate time	of con-	tact.					
		Distan (Step	ce, L 57)	÷ Run	off velo (Step 12d	city	$= \frac{\text{Tim}}{\text{con}}$	e of tact, T	с	
				÷			=	mi	n	
	(e)	Add up	times o	f conta	ct in a	ll buf	fer s	ections	•	
		Overla	nd flow:					То	tal 7	Г _с
		+	+	+	+ .		+	=	n	nin
		Grass	waterway	:				То	tal 7	Г _с
		+	+	+	+ .		+	=	n	nin
Step 13.	tio	n in St				·) fro	m infor	ma-	
	Aniı	mal typ	e Numb	er of a	nimals		ctor le 6)			
COD:						x		=		
						x		=		
						x	<u>.</u>	=		
								Total	=	EAU
P :						x		=		
						x		=		
						x		=		
								Total	=	EAU
Step 14.	Cal	culate	animal u	nit den	sity (A	UD) ar	nd % m	anure p	ack.	
		(S	EAU tep 13)		Area (Step	1 4)	= AUD			
	COD	:		÷			=			
	Р	:		. ÷			=			
			< 100, % <u>></u> 100, %							
						Manu	ire pa	ck (COD) =	

66

Manure pack (P) =

Step 15. Calculate concentration of COD and P in undiluted

•	feedlot runo	ff.			
		e Pack x p 14)	factor	=	concentration
	COD :	x	45	=	mg/l
	P:	X	0.85	=	mg/l
Step l	 Calculate per using figures 	ccent decre 3 & 4. E	ease in po Equations	ollutant streng [4-7] may also	gth be used.
	if o	verland flo	ow,		
	COD	D = -27.9) + 42.8]	log T _C	[4]
	Р	D = -49.3	3 + 50.5]	log T _c	[5]
	if gr	ass waterw	vay,		
4	COD	D = 15.95	5 + 0.033	T _c	[6]
	Р	D = -21.2	2 + 0.036	T _c	[7]
京 .	D = decrease $T_C = time of$				
		Overland	l flow (OI	F) COD decrease	e = %
				P decrease	e = %
		Grass wat	erway (GW	V) COD decrease	e = %
				P decrease	e = %
				decrease = 100% crease = 0% .	0.
Step 17	remaining aft	er infiltr	ation, se	utant strength ttling, and ad from Step 16.	
	$\frac{1}{1}$ - $\frac{\% \text{ decrease (}}{100}$	<u>GW)</u> x 1	<u>% decre</u> 1	$\frac{\text{ase (OF)}}{00} = \Pr_{\text{of}}^{\text{Re}}$	maining oportion strength
COD:	1/1	00) x (l		/100) =	
P: (1/1	00) x (1		/100) =	

(Note: The proportion of strength remaining must be in the range from zero to 1.)

Calculate "transformed" volumes, for use in all subse-quent calculations, from Volume 1 and Volume 2 (calcu-lated in Step 11). Use <u>either</u> Step 18a <u>or</u> Step 18b, Step 18. and cross out the part not used.

	Transformed Volume 1 (Vol 1T) = volume of runoff from feedlot and Area 2 whose concentration is the same as the con- centration of undiluted feedlot run- off (this concentration was deter- mined in Step 15).
	Transformed Volume 2 (Vol 2T) = volume of runoff from Area 2, which does not flush pollutants from the feedlot surface but serves to dilute that runoff.
	(a) <u>If</u> Volume 2 ≤ 30 acre-in:
	Volume 1 + Volume 2 = Vol 1T
	+ = = Vol 1T
	Volume 2T equals zero. 0 = Vol 2T
	(b) If Volume 2 > 30 acre-in:
	Volume 1 + 30 = Vol 1T
	+ 30 = = Vol 1T
	Volume $2 - 30 = $ Vol $2T$
	- 30 = - Vol 2T
Step 19.	Calculate other needed volumes.
	Volume 1T + Volume 2T = Volume of runoff (Step 18) (Step 18) from feedlot
	+ =
	Volume of run- off from feed- + Volume 3 = Total volume lot (from line (Step 11) above)
	+ = (line 33)
Step 20.	Calculate amount of pollutants in runoff at feedlot edge.

Volume 1T xConcentration
of undiluted
runoff
(Step 18)+ Volume 2T xBackground
concentration= AmountCOD:($_$ x $_$)+ ($_$ x 60)= $_$ = $_$ P:($_$ x $_$)+ ($_$ x 2)= $_$

Step 21. Calculate concentration of pollutants in runoff at feedlot edge.⁵

		Amount (Step 20)	÷	Volume o from f (Step	eedlot	= Concent	ratio	n
	COD:		• •			=		ppm
	P:		-	<u> </u>		=		ppm
Step 22.	Calcul edge.	ate mass of	pol	llutants	in runof:	f at feedl	ot	
		Amount (Step 20)		Х	Conversio	on factor	= Mas	S ⁶
	COD:	. <u></u>		x	0.1	227	=	1b
	P:			X	0.	227	=	1b
Step 23.		ate amount d delivered f				eedlot edg	ge	
		Amount (Step 20)	хI	Remaining	g polluta: (Step 1	nt strengt 7)	th = A	mount
	COD:		х				=	
	P:		x				=	
Step 24.	Calcul	late amount o	of p	pollutant	s from A	rea 3 deli	ivered	

Step 24. Calculate amount of pollutants from Area 3 delivered to discharge point.

	Volume 3 (Step 11)	х	Background concentration	=	Amount
COD:		x	60	=	
P:		х	2	=	

⁵All the results of Steps 21, 22, 26, 28, and 31 may be printed by the programmable calculator. If such additional information on pollutant loadings is not needed, Steps 21, 22, and 27-31, as well as those portions of Steps 13-17, 20, and 23-26 pertaining to P, may all be omitted.

⁶The conversion factor used to convert <u>amount</u> of a pollutant (units: parts per million x acre-inches) to <u>mass</u> (units: pounds) is derived as follows:

- 1 acre-inch = 3,630 cubic feet
 1 acre-inch water weighs approximately 226,512 pounds
- 1 part per million (pollutant loading) in an acre-inch water weighs:

 $\frac{226,512}{1,000,000}$ = 0.227 pound = 1 ppm-acre-inch

Step	25.	Calculate	total	amount	of	pollutants	delivered	to
		discharge	point					

	Amount from feedlot edge runoff (Step 23)	+	Amount from Area 3 (Step 24)	=	Total amount
COD:		+		= _	
P :		+		=	

Step 26. Calculate concentration of pollutants delivered to discharge point.

	Amount (Step 25)	÷	Total volume (Step 19)	= (Concentratior	1		
COD:		÷		=		ppm	(line	34)
P:		·		=		ppm		

Step 27. Check for artificially low COD and P levels.⁷

- COD: If final COD concentration (Step 26) is less than 60.0, mark out the COD calculations in Steps 29 & 30, and write the word "blank" in the third and fifth lines of Step 31.
 - P: If final P concentration (Step 26) is less than 2.0, mark out the P calculations in Steps 29 & 30, and write the word "blank" in the fourth and sixth lines of Step 31.
 - <u>Note</u>: If either value is above the limit (60 or 2, respectively), you have taken no action as a result of performing the check.
- Step 28. Calculate mass of pollutants delivered to discharge point.

	Amount (Step 25)	х	Conversion factor	=	Mass
COD :		x	0.227	=	lb
Ρ:		x	0.227	=	lb

Step 29. Calculate proportion of pollutant concentration remaining after considering effect of dilution.

pollutants ÷	Concentration of pollutants in runoff at feed- lot edge	Remaining x pollutant strength	= Proportion remaining
(Step 26)	(Step 21)	(Step 17)	

⁷This check has not been incorporated in the calculator programs.

COD: ÷ (x) =
P: ÷ (x) =
Step 30. Calculate proportion of pollutant mass loading remain- ing after considering effect of dilution.
Mass of pollutants delivered to dis- ÷ charge point (Step 28) Mass of pollutants Remaining in runoff at x pollutant feedlot edge strength (Step 17) Mass of pollutants Remaining in runoff at x pollutant feedlot edge strength
COD:; () =)
P:; () =)
Step 31. Convert proportion of pollutant remaining (COD <u>and</u> P values from Steps 17, 29, <u>and</u> 30) to percentage reductions in pollutant concentration or loading, using Equation [8]:
% reduction = 100 (1 - proportion remaining) [8]
From Step 17: COD: 100 (1) = $\frac{\%}{100}$
P: 100 $(1) =\%$ These values cannot be less
From Step 29: COD: 100 (1) = $\frac{\%}{100}$ (than zero.
P: 100 (1) =%
From Step 30: COD: 100 (1) =%
P: 100 (1) =%
Step 32. Check for compliance with State standards.
If concentration of COD delivered to discharge point (from Step 26) is less than 112.5 ppm, rating is zero, no further calculations are needed, and evaluation of this feedlot is complete. Enter "0" in Step 38.
Step 33. If feedlot is not in compliance with standards, con- tinue with this step and calculate COD mass loading for computation of rating. Use these factors:
Factor a = COD concentration of undiluted feedlot runoff (from Step 15)
Factor b = Proportion of COD remaining after buffer effects (from Step 17)
Factor a x Factor b x Volume $1T$ x Conversion = COD mass for (Step 15) (Step 17) (Step 18) x factor = rating
x x x 0.227 =

Step 34. Check for miniscule COD mass.

If COD mass for rating (from Step 33) is less than 101 lbs., rating is zero, no further calculations are needed, and evaluation of this feedlot is complete. Enter "0" in Step 38.

Step 35. If COD mass loading is not miniscule, continue with this step and calculate a COD factor for rating using Equation [9], where the mass for rating was determined in Step 33.

$$F_{1} = \frac{\text{Log (mass for rating)} - 2}{3}$$

$$F_{1} =$$

$$[9]$$

Step 36. Calculate a weighting factor for rating using Equation [10], where the total volume was determined in Step 19.

 $F_2 = 0.8 + 0.1 \log (total volume)$

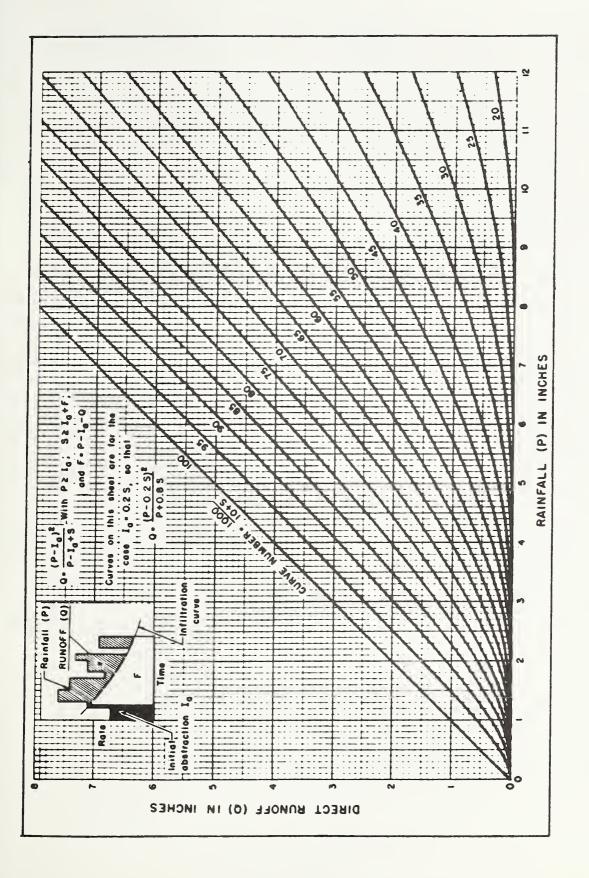
[.10]

F₂ = _____

Step 37. Calculate preliminary rating:

Step 38. Calculate final rating.

Enter "O" from Step 32 or Step 34, or round the preliminary rating (Step 37) to the nearest whole number and enter here.


Rating

(line 35)

Step 39. Calculate rating for a diverted lot.

(a) Vol 1T = Volume 1 (Step 11): Vol 1T = _____ Vol 2T = zero: Vol 2T = 0

- (b) Proceed with Steps 19, 20, and 23-26 using the new values of Vol 1T and Vol 2T from Step 39 a. Omit calculations which relate only to P.
- (c) Proceed with Steps 32-38, as applicable.

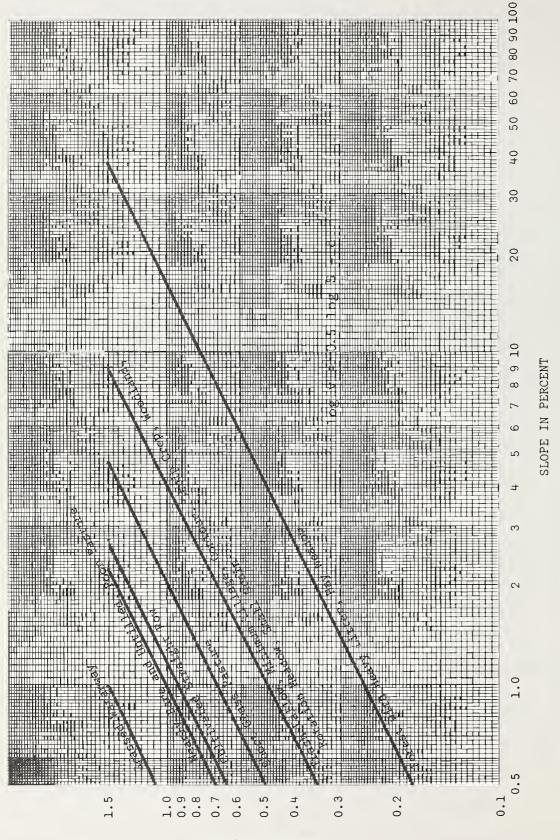


Figure 2. - Runoff velocity versus percent slope for various cover conditions.

VELOCITY ft/sec

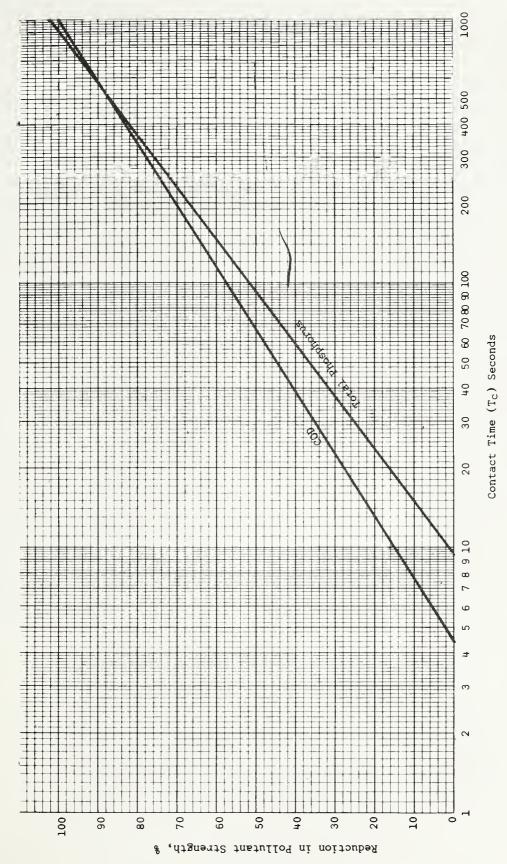
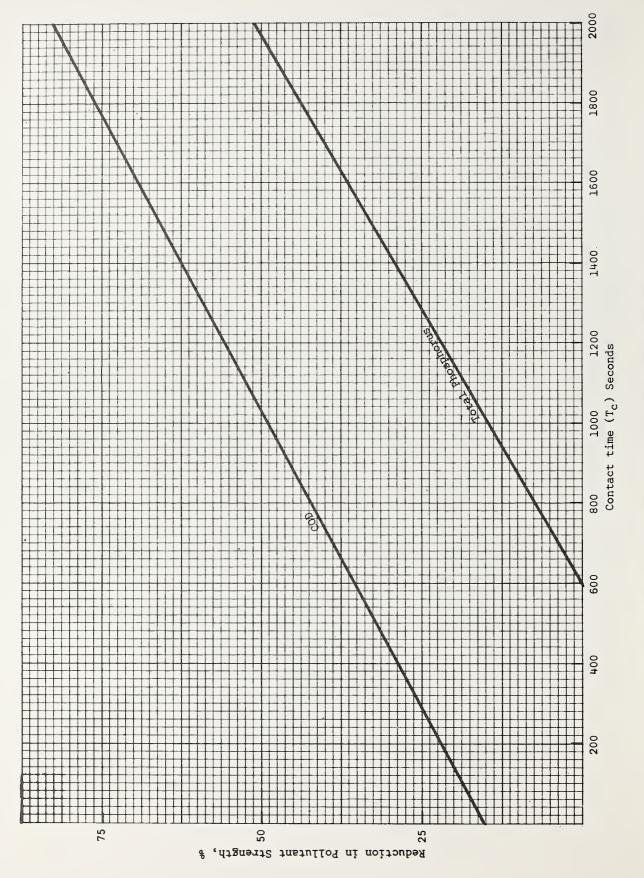




Figure 3.-Reduction in pollutant strength (D) versus contact time (T_c) for vegetated filter areas.

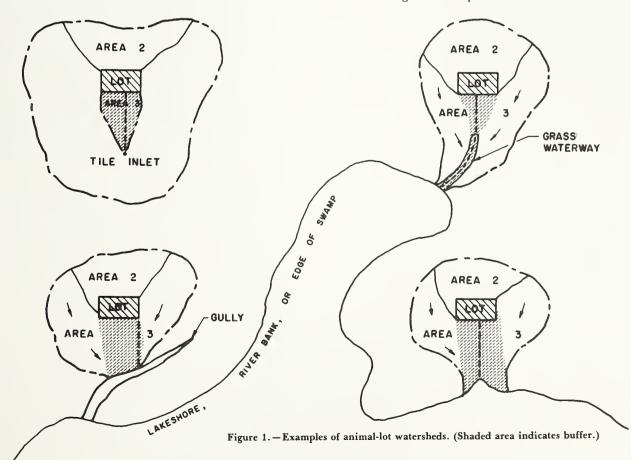
75

-

Appendix F

Notes on the Feedlot Evaluation System

Interpreting Animal Lot Ratings


The evaluation system assigns each animal lot a numerical rating for surface-water pollution hazard. These ratings **do not** represent rankings or percentiles. Feedlots will not be evenly spaced in their ratings; more than half of all polluting feedlots are expected to rate between 40 and 70. A rating of zero means the surface-water pollution hazard is negligible or zero. In extreme cases, the rating may exceed 120, but the vast majority of all feedlots will rate less than 90.

A few sample ratings, presented here, are based on the number of animal units (a.u.). An a.u. is one 1,000-lb beef steer or its equivalent in waste generation. Under the recently adopted MPCA rules, the jurisdiction of counties is limited to certain kinds of feedlots with fewer than 1,000 a.u. No Minnesota feedlot smaller than 1,000 a.u. will rate more than 91 under any circumstances. To rate 100, a feedlot would have to be significantly larger than that, at least in Minnesota, where the design (25-year/24-hour) rainfall is moderate. A fictional example of the smallest Minnesota feedlot that could possibly rate 100 would be a feedlot for 1,600 a.u., in Freeborn County, where the design rainfall is 5.05 inches. The same fictional feedlot, if located in Kittson County with a design rainfall of 3.85 inches, would rate 94.

The rating is based on a scientific estimate of the amount of pollution generated by the lot and delivered to a receiving water. However, the rating is a statistical abstraction of this estimate and, like EPA gas mileage estimates for automobiles, is to be used only for comparisons.

The actual rating value may be determined in either of two ways. If the COD concentration at the discharge point is 112 ppm or less, the runoff is considered as probably meeting State standards. (State standards require that BOD not exceed 25 ppm, and COD is approximately 4.48 times as great as BOD for typical feedlot runoff.) If the COD at the discharge point exceeds 112 ppm, the rating is determined by a logarithmic formula, based on the amount of COD delivered from the feedlot to the discharge point.

When a single feedlot operation includes several ani-

mal lots or animal areas, simple arithmetic **cannot** be used to add the several ratings, except when one of the ratings is zero. A logarithmic method has been provided for this purpose.

Determining Area 3 and the Discharge Point

Area 3 consists of the entire area over which animal lot runoff flows (that is, the buffer), plus any other area whose runoff mixes with that of the buffer.

Runoff from Area 3 mixes with animal lot runoff before it reaches the discharge point. Beyond the discharge point, additional large volumes of water will mix with and dilute it—water from an entire river basin, for example—but this must not be considered as Area 3 (dilution) water.

Another way to look at the situation involves what we might call "flow lines." These are the lines along which a drop of water might flow; they are at all places perpendicular to the contour. Area 3 is bounded above by the animal lot, below by the discharge point or the edge of a water bódy, and on the sides by flow lines from opposite edges or corners of the animal lot. Defining the local watershed area, therefore, requires two different approaches. Drainage divides are used in defining Area 2, above the animal lot. Below the animal lot, drainage divides do not apply, and flow lines must be used to define Area 3.

A few sketches (fig. 1) may help clarify flow lines and the delineation of Area 3. Arrows indicate the direction of flow in Area 3, and the heavy dashed line indicates the shortest flow line between the animal lot and the discharge point (same as the total length of all buffer sections). These sketches are simplified versions of real situations, and they are intended only to help guide the users professional judgment.

Because of the great variations between actual feedlot sites, we often have difficulty determining the discharge point for a given situation. The key to valid evaluations is, therefore, consistency in identifying the discharge point. Extensive in-the-field training is essential so that **all** personnel evaluating feedlots in any one county or State use consistent criteria.

Buffer Effectiveness

The length, ground cover, and slope of the land between an animal lot and the discharge point determine the effectiveness of a buffer in controlling animal lot pollution. Water in a buffer passes as sheet flow over the land in close contact with the soil and vegetation, facilitating settling, adsorption, interception, and infiltration of the pollutants. Buffer effect depends on the time during which the water is in contact with the buffer surface before entering a channel or flowage. Therefore, length of the buffer has the largest influence on its effectiveness, followed, in turn, by the character of vegetative cover and slope.

Overland flow generally concentrates into a channel within 300 to 500 feet of its origin. If a longer buffer is to be effective, it may be necessary to ensure maintenance of sheet flow by regrading cropland, constructing level spreaders, or other means.

A grass waterway scarcely provides sheet flow and is, therefore, a far less effective buffer (from one-half to one-tenth) as a land surface over which sheet flow occurs. However, a formula reflecting the effectiveness of a grass waterway in reducing animal lot pollution has been incorporated to enable the model to be used for design.

For any buffer other than a grass waterway, a length of about 1,700 feet as sheet flow will invariably be sufficient to reduce the COD concentration to less than 112 ppm, ensuring a zero rating. (As noted above, such a long buffer ordinarily requires measures to ensure the maintenance of sheet flow.) A shorter buffer may suffice if the animals are not packed very densely on the animal lot; the screening formula is based on this fact. While a shorter buffer may also suffice if it is heavily vegetated or relatively flat, these factors were not included in the screening formula because of the expertise required for their determination.

The screening formula cannot be used where a grass waterway serves as a buffer.

Evaluating Manure Stacks

If manure is stacked within an animal lot, no special consideration is necessary. The animal lot should be evaluated just as it would be if the manure was spread over the entire animal lot.

If manure is stacked outside an animal lot, the Animal Lot Evaluation Data Form should be completed, as if the manure stack were an animal lot. The information on Areas 2 and 3, on the buffer section(s), and on the number of animals whose manure is stacked, should all be collected in the usual way. To recognize the fact that it is a manure stack, however, Area 1 should be doubled before entry on the data form. The curve number of the manure stack is 91.

Adjusting for Loafing Areas

When an animal lot is used for a loafing or exercise area and, thus, is not occupied 100 percent of the time, the AUD used in the evaluation should be adjusted. This can be done by multiplying the number of animals by the percent of time the animal lot is occupied and entering this value in Step 8 of the evaluation form. e .

U.S. DEPARTMENT OF AGRICULTURE AGRICULTURAL RESEARCH SERVICE NORTH CENTRAL REGION NORTH CENTRAL SOIL CONSERVATION RESEARCH LABORATORY MORRIS, MINNESOTA 56267

OFFICIAL BUSINESS PENALTY FOR PRIVATE USE, \$300

POSTAGE AND FEES PAID U.S. DEPARTMENT OF AGRICULTURE AGR 101