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Agricultural Mechanization Around the World 

 

Shahrear Roman*, Hadi, David Wuepper 

Abstract 

Mechanization is one of the key ingredients for achieving high agricultural productivity. Despite 

its importance, there is currently no globally comprehensive information about countries’ agricultural 

mechanization. Here, we propose and demonstrate a machine learning approach, relying on a large, 

novel training dataset, to not only produce an up-to-date and comprehensive dataset of countries’ aver-

age agricultural mechanization, but also a global gridded map at ~ 5km resolution. Comparing our 

results to previously available data we find major improvements in accuracy, completeness, timeliness 

etc., and we notice that several countries are by now much more mechanized than reported so far. When 

investigating the association between mechanization and crop yield gaps we find a strong and robust 

link: For each 10-percentage point increase in mechanization, the associated crop yield gap decreases 

by 4 – 5 percentage points.  
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1 Introduction 

Agricultural mechanization is globally relevant for addressing several United Nations Sustainable De-

velopment Goals, including No Poverty (SDG 1), Zero Hunger (SDG 2), Decent Work and Economic 

growth (SDG 8), Climate Action (SDG 13), and Life on Land1 (SDG 15). It reduces the physical de-

mands of farming, facilitates the timely execution of agricultural tasks, and improves productivity 

(Hamilton et al. 2022; Wuepper et al. 2023)  and it improves working conditions, including allowing 

farmers to have more leisure time (Caunedo and Kala 2021). It also promotes more efficient use of 

inputs and minimizes spoilage losses (Yan et al. 2024). Finally, it also plays a crucial role in contributing 

to the mitigation of climate-related hazards (Emami et al. 2018; FAO 2017; Xinshen, Jed, and Hiroyuki 

2016). 

So far, however, at larger scales, there is comparably little information on countries’ and regions’ 

degree of agricultural mechanization, posing a severe constraint on our understanding of agricultural 

mechanization (FAO 2017).  

Figure 1 illustrates the current data situation, showing the agricultural mechanization data pub-

lished by World Bank (World Bank, 2024) which has just been taken from the web in autumn 2024 

because it was so outdated and unreliable by now. This data is considered so far the main source of 

information about countries’ agricultural mechanization (Léautier and Hanson 2013; World Bank 

Group 2017).  

Figure 1, however, clearly shows the lack of harmonization across regions, the lack of within-

country variation, and how outdated the data is by now. Even in regions like Europe and North America, 

the data is still outdated by about 15 to 50 years. This highlights a major gap in our understanding of 

agricultural mechanization, as there are no other comprehensive sources on this topic available.  

In this study, we propose and demonstrate a machine learning (ML) framework to produce a fine-

grained global map of agricultural mechanization around the world. This allows us to examine coun-

tries’ current degree of agricultural mechanization, as well as the degree of agricultural mechanization 

within countries, and to quantify the link between agricultural mechanization and crop yield gaps at the 

global level. 

Our ML approach starts with a large, newly assembled training dataset of known mechanization 

around the world. Then, the algorithm is trained to use environmental, infrastructural, agricultural, eco-

nomic, and policy data to predict a detailed global map of agricultural mechanization rates. The final 

 

 

1 https://sdgs.un.org/goals 
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step is then an extensive testing and validation phase, to quantify how well the produced map predicts 

known mechanization rates. 

 

Figure 1: The Available Mechanization Data, Tractor Use Per 100 sq km of Arable Land. This is the 

most up-to-date information on agricultural mechanization in various countries. The latest available 

data, sourced from the World Bank, is from the year 2024. The mechanization data reflects the number 

of tractors used per 100 square kilometers of arable land. On the map, darker shades indicate older data, 

while lighter shades represent more recent data from 1961 to 2009. The most recent data is from 2009 

and covers only 10 countries. 

 

One of our several robustness checks is based on a Multivariate Environmental Similarity Surface 

(MESS), to quantify the similarity in conditions between grid-cells we have training data for and grid-

cells for which we do not have training data. We also generate and compare a null model to our actual 

model and compare how much our algorithm improves upon a purely random map. 

While a comparable fine-gridded global map for agricultural mechanization does not exist to date, 

previous research has produced comparable maps for other agricultural and environmental variables. 

This includes the research by Siebert et al., (2005) for the global distribution of irrigation infrastructure, 

Kamau, Roman, and Biber-Freudenberger (2023) for the profitability of diversified farming systems, 

and Wuepper et al. (2021) for different kinds of land degradation. 

Prior research on agricultural mechanization has contributed valuable evidence on adoption pat-

terns and socioeconomic impacts of mechanization already. For example, Pingali (2007) highlights that 

while many regions in Asia and Latin America have adopted labor-saving technologies, many Sub-

Saharan African regions lag behind, indicating barriers rooted in economic and institutional constraints. 

Studies by Caunedo and Kala (2021) and Meng et al., (2024) emphasized the labor reallocation effects 

of mechanization, showing how it can enhance productivity and increase off-farm income while shifting 

agricultural labor dynamics. Lu, Du, and Qiu (2022)  found mechanization significantly boosts crop 
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yields, although this also increases risk under some conditions. Wuepper et al. (2023)  show that coun-

tries’ degree of economic freedom leads to more agricultural mechanization and this in turn increases 

crop yields. 

Here, we make three contributions to this literature. First and foremost, we provide a harmonized, 

up-to-date, global map of agricultural mechanization, at a resolution of ~5 km (i.e., ~5 km ×  ~5 km 

grid cells). This will be useful in a wide range of agricultural economics applications, not only at the 

global level, but also within individual countries. Secondly, we demonstrate how to synthesize individ-

ually available empirical data points on agricultural and environmental variables in a machine learning 

algorithm to create a fine-grained global map. Finally, we analyze the link between agricultural mech-

anization and crop yield gaps globally. This analysis cannot establish causality, but we show that the 

link is both strong and robust, and survives the inclusion of various control variables. 

The rest of the paper is organized as follows. In section 2, we explain our data and methods. In 

section 3, we explain our main results. Section 4 presents a discussion on agricultural mechanization 

and especially its relationship with crop yields as well as the potential and main limitations of our mod-

elling framework. The last section presents our conclusions. 

2 Data and Methods 

Two distinct types of data are required for our modelling approach. First, precise field or farm-level 

information, including the geographic coordinates of areas where the specific motorized machine 

(farming and processing technologies, for example, tractors, seed drills, cultivators, harvesters, etc.) are 

utilized. We call this ‘training data’. Secondly, based on the relevant theoretical background (Foster 

and Rosenzweig 2010; Shang et al. 2021) we collated different spatially explicit variables 

(environmental, economic, infrastructure, demographic, and policy variables) that are predictive of 

agricultural mechanization adoption and diffusion. Then, we applied our machine-learning algorithm 

to model the global distribution of agricultural mechanization. 

2.1 Data 

Training Data 

We use 961 unique training data points with geo-coordinates based on two sources. First, approximately 

59% (n=560) of the geo-locations were obtained from the Global Database on Sustainable Land 
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Management (SLM) of WOCAT2 (the World Overview of Conservation Approaches and Technologies) 

(WOCAT 2024). This database contains detailed data on 2,433 SLM practices in 136 countries. We 

only selected those SLM practices where farmers use any kind of motorized machine. To account for 

missing data from certain countries or regions, we filled in data gaps with an additional 41% (n=401) 

training data that were collected with a large global expert survey (Appendix A1) 

 

 

Figure 2: Global Locations Where Agricultural Mechanization is Practiced. Mechanization refers to 

farming and processing technologies, which include motorized equipment, for example, tractors, seed 

drills, cultivators, harvesters, etc. (N= 961). 

Variables 

Different variables explain agricultural mechanization at different scales. We used a theory-informed 

set of fourteen different variables as our predictors for the machine learning algorithm (see Table 1). 

Broadly, the predictor variables include economic variables, environmental variables, infrastructural 

variables, sociodemographic variables, policy variables and agricultural variables. 

We used temperature, precipitation, a terrain ruggedness index, and soil organic carbon at the grid 

cell level as environmental variables. Environmental variables (Anwar et al. 2015; Lal 2018) are critical 

as they directly affect crop growth, and with mechanization, farmers can work effectively and timely 

on the field even in suboptimal situations. Moreover, soil health, indicated by organic carbon levels, 

affects crop productivity and determines land aptness for mechanization (Lal 2018). 

We also included the country’s Economic Freedom Index and subnational Human Development 

Index as economic variables (Rochecouste et al., 2015) as well as socio-demographic variables (Ricker-

 

 

2 https://wocat.net/en/ 



Agricultural and Resource Economics, Discussion Paper 2024:1 

5 

 

Gilbert, Jumbe, and Chamberlin 2014) comprising population density and demographic characteristics 

of people aged 15 to 59 at the sub-regional level. Higher economic freedom and human development 

levels generally correlate with increased mechanization due to improved access to capital, technology, 

skilled labor, favorable business conditions, and government support  (Xinshen, Jed, and Hiroyuki 

2016). Socio-demographic variables provide insights into labor availability (Hiroyuki 2016) and work-

force demographics, which are crucial considerations for agricultural mechanization. Areas with labor 

shortages drive the demand for mechanization as an alternative to manual labor. Infrastructural varia-

bles, e.g., travel time to the nearest cities (accessibility) is important for mechanization (Mvodo and 

Liang 2012), are used at the grid cell level. These variables significantly influence the feasibility and 

efficiency of mechanization. Agricultural variables, such as cropland area, and field size (Rasouli, Sadi-

ghi, and Minaee 2009) are more conducive to mechanization, enabling larger machinery and economies 

of scale. Additionally, proximity to urban centers facilitates access to markets, services, and infrastruc-

ture necessary for mechanized farming operations. We also incorporated property rights protection at 

the country level as a policy variable because higher property rights protection increases institutional 

support for mechanization (Hagedorn 2004). Finally, the number of crop types per pixel was added to 

capture agricultural diversity. All of these indices reflect the economic environment, governance qual-

ity, and investment climate, collectively influencing farmers' ability and willingness to invest in mech-

anized technologies. We believe understanding these variables' roles and interplay is essential to model 

the agricultural mechanization in agriculture. 

Table 1. Model Input Variables  

Variables Description Units Year Resoluti

on 

Source 

Economic free-

dom index  

Measures countries’ economic free-

dom by the security of property rights, 

inflation control, absence of excessive 

regulation, and various other indicators 

 
 

Index 

(1:100) 

2023 Country 

level 

 (the herit-

age founda-

tion 2024) 

Human devel-

opment index  

A composite index assessing average 

achievements in education, income, 

and health 

Index (0:1) 2015 ~10-km 

grid 

(kummu, 

taka, and 

guillaume 

2018) 

Soil organic 

carbon 

 the carbon stored in the soil's organic 

matter, contributing to soil health, fer-

tility, and overall ecosystem function-

ing 

 
 

Cg/kg 2021 ~5-km 

grid 

(poggio et 

al. 2021) 
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Soil water con-

tent 

Indicates the volume of water retained 

in the soil, a critical factor for agricul-

tural potential 

 
 

Kilopascals  

(-10 kpa) 

2021 ~5-km 

grid 

(poggio et 

al. 2021) 

Precipitation The cumulative amount of rainfall or 

other forms of precipitation that an  

area receives over a year 

 mm Aver-

age 

(1970

-

2000) 

~5-km 

grid 

(fick and 

hijmans 

2017) 

Temperature The average temperature recorded in a 

given area over the calendar year 

Degree cel-

sius 

Aver-

age 

(1970

-

2000) 

~5-km 

grid 

(fick and 

hijmans 

2017) 

Terrain rug-

gedness index 

(tri) 

Calculated as the mean of the absolute 

differences in elevation between a fo-

cal cell and its eight neighboring cells 

 
 

Index 2020 ~90-m 

grid 

(amatulli et 

al. 2020) 

Travel time to 

cities 

Assessing the time required to reach 

the nearest densely populated area with 

at least 1,500 inhabitants as proxy for 

market access 

 
 

Minutes 2015 1-km grid (weiss et al. 

2018) 

Population Represents the number of individuals 

residing per square kilometer, based on 

2020 population estimates that align 

with national census data and popula-

tion registers  

 
 

Number of 

persons per  

km2  

2020 ~1-km 

grid 

(ciesin 

2018) 

Demographics Provides estimates of the working-age 

population (ages 15-64) and their den-

sities (individuals per square kilome-

ter), consistent with national census 

data  

Number of 

persons (15-

64y) per km2 

2010 ~1-km 

grid~1-

km grid 

(ciesin 

2018) 

Property 

rights protec-

tion  

Measures perceptions of the security of 

property rights, distinct from other as-

pects of the rule of law. This index syn-

thesizes 18 individual indicators to 

Index 

(1:100)  

Mean 

acros

s 

years 

Country 

level  

(wuepper et 

al., 2024) 
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offer a comprehensive view of prop-

erty rights protection 

 
 

Number of 

crop types 

Encompasses 42 individual crops and 

broader crop categories, offering a de-

tailed representation of global agricul-

tural production and its distribution 

across various regions  

 
 

Number of 

crop types  

per pixel 

(count) 

2010 ~10-km 

grid 

(yu et al. 

2020)  

Cropland area Cropland refers to land used for the 

cultivation of annual and perennial her-

baceous crops intended for human con-

sumption, forage (including hay), and 

biofuel production 

 
 

Percent of 

cropland per 

pixel 

2019 3-km grid (potapov et 

al. 2022)  

Field size Categorizes fields in very small (class 

3506: <0.64 ha), small (3505: 0.64–

2.56 ha), medium (3504: 2.56–16 ha), 

large (3503: 16–100 ha), and very large 

(3502: >100 ha) 

Categorical 2019 30-m grid (lesiv et al. 

2019) 

 

We conducted a Pearson correlation test (Appendix A2.1), which reveals that most variables do not 

show a strong correlation with one another. However, there is a notable correlation between population 

density and the demographic characteristics of the working-age population, specifically those aged 15 

to 64. Higher population densities lead to increased food demand, which in turn necessitates greater 

mechanization in agriculture to effectively enhance productivity. Additionally, the proportion of the 

working-age population (defined as individuals aged 15 to 59) is crucial for sustaining agricultural 

productivity, as a larger workforce is essential for efficient agricultural operations. Furthermore, we 

find a significant correlation between the economic freedom index and the protection of property rights, 

which is mechanistic, as protection of property rights is one out of many indicators for economic free-

dom. 

2.2 Modeling Approach 

We use the machine learning approach as it can easily accommodate complex relationships among 

multiple outputs, and its flexibility allows it to represent a range of linear and nonlinear relationships, 

as well as complex interactions, which results in high predictive performance (Baylis et al., 2021). Here, 

we implemented the Maxent modelling which apply machine-learning technique called maximum 
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entropy modeling in R version 4.3.2 (R Core Team, 2023) using the package ‘ENMeval 2.0’ (Kass et 

al., 2021). Following best practices, we tested an extensive set of candidate models, with different func-

tional forms and model complexity. We use linear (L) to complex nonlinear (quadratic (Q), hinge (H), 

product (P), threshold (T)) feature classes (L, LQ, H, LQH, LQHP, LQHPT). We also use low to high 

regularization multipliers (0.5, 1, 1.5, 2, 3, 5), which controls the generalization ability of the model. In 

total, this extensive model parameters combinations result in seventy-two candidate models.  

Subsequently, out of seventy-two models, we selected the best model that balances predictive per-

formance and model simplicity (i.e., minimize overfitting). This was done based on several validation 

metrics, including area under the receiver operating characteristic curve (AUC) (Hirzel et al., 2006) 

omission rate (or.10p.avg), and Continuous Boyce Index (CBI), following best practices (Hirzel et al., 

2006; Kass et al., 2021; Radosavljevic & Anderson, 2014). AUC values range from 0 to 1, with a value 

of 1 indicating perfect discrimination ability, with 0.5 or less indicating no discrimination ability of the 

model (random prediction). Omission rate ranges from 0 to 1, with 0 indicating no omission errors 

(perfect prediction). CBI (Continuous Boyce Index) is used as a metric to assess the accuracy of a 

model, specifically through the Spearman correlation between the predicted-to-expected (P/E) ratio of 

habitat suitability values and the mean habitat suitability index (HSI). Its values range from -1 to +1, 

where a value of 1 indicates a perfect prediction, 0 reflects a random prediction, and -1 signifies a highly 

inaccurate prediction (Farrell et al., 2019). 

We use the spatial cross-validation method ‘checkerboard’ partition (Radosavljevic & Anderson, 

2014)). Spatial cross-validation accounts for the geographic locations of the training data in the process 

of partitioning the data into the model calibration set and the model evaluation set.  This helps optimize 

the model transferability (i.e., extrapolation ability) from locations and regions with observed (sampled) 

training data, to other (unsampled) locations and regions, based on the learned statistical relationship 

between the outcome variable and the predictor variables.  

Our different model specifications (e.g., functional forms) tested also allow us to generate a spa-

tially explicit understanding of model uncertainty. We estimated the model-based uncertainty as the 

variability (standard deviations) of the predictions from our all-candidate models created through dif-

ferent hyperparameter tuning (linear to a complex feature class and low to high regularization multi-

plier. We also conduct MESS (Multivariate Environmental Similarity Surface) analysis to evaluate the 

reliability of model predictions in various conditions (Appendix A3.1). 

We also run a null model test to see if the model’s accuracy is significantly higher than the null 

model. This would indicate whether the model captures meaningful patterns in distributions of the ag-

ricultural mechanization rather than just fitting to noise in the data or random predictions. Finally, we 

calculated variable importance in the optimal model, based on the permutation feature importance. This 
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measures the contribution of each variable based on the resulting decrease in model accuracy if we 

randomly permute the values of that variable among the training points. 

2.3 Further analysis 

In our analysis of the relationship between mechanization levels and crop yield gaps, we utilized our 

latest available mechanization data (Figure 3a) and crop yield gap data (Gerber et al., 2024). The yield 

gap is defined as the difference between observed crop yields at any given location and attainable (i.e., 

exploitable (van Ittersum et al. 2013) not agronomic potential) yields of these crops in this location, 

expressed as percentage relative to attainable yields.  The yield gap data represents the ten most im-

portant global crops (wheat, maize, rice, barley, sorghum, cassava, soybean, rapeseed, oil palm, and 

sugar cane). Our approach employs ordinary least squares (OLS) regression models, with and without 

incorporating various sets of control variables to enhance the robustness of the model. In the first model, 

we only used agricultural mechanization as an explanatory variable, while the yield gap is the dependent 

variable. From the second to fifth model, we controlled for various variables to assess mechanization's 

impact on yield gaps. First, we included environmental variables namely precipitation, temperature, and 

terrain ruggedness to understand their associations together with mechanization. Next, we added eco-

nomic indicators such as GDP, the Human Development Index, and the Economic Freedom Index. We 

also incorporated policy-related variables, specifically property rights protection, to evaluate how gov-

ernance affects mechanization's influence. Finally, by applying country-fixed effects with the complete 

set of controls, we acknowledged country-specific factors, emphasizing their role in shaping mechani-

zation's effectiveness in reducing yield gaps both within and between countries. 

3 Results 

Our study presents a comprehensive analysis of agricultural mechanization across the globe, offering 

critical insights into its spatial distribution and potential impact on crop yield gaps. In the following 

sections, we present and analyse key findings from our study. At first, we explore global patterns of 

agricultural mechanization, offering insights of agricultural mechanization across and within countries. 

in the next section, we provide a detailed comparison of the datasets with other agricultural variables. 

Finally, Section 3.3 examines the association between mechanization and crop yield gaps, shedding 

light on how varying mechanization levels associated with yield gaps. 

3.1 Agricultural Mechanization Around the World 

Our map of the global distribution of agricultural mechanization is displayed as Figure 3a. What is 

modeled here is the probability that a farm is mechanized (i.e., tractors and similar machinery are used), 
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ranging from 0 to 100%, corresponding to the share of mechanized farms in a given region on the same 

scale.  

Western Europe is the world's most mechanized region, with an average mechanization rate of 

68%, followed by North America at 62% and Oceania at 56% (Appendix A4.1). In Western Europe, 

over 92% of farms/cropland areas have a mechanization level above 50%, with minimum and maximum 

mechanization rates of 44% and 86%, respectively. Similarly, North America has about 85% of its 

farms with mechanization levels over 50%, ranging from 44% to 82%. Oceania follows with 69% of 

farms surpassing 50% mechanization, ranging from 40% to 76%. 

On the other hand, the least mechanized regions are Sub-Saharan Africa and Middle Eastern coun-

tries, with an average mechanization rate of 37%. Only ~16% of cropland areas in this region have a 

mechanization level above 50%, with maximum and minimum mechanization rates of 69% and 24%, 

respectively.  

In South East Europe and Western Asia, average mechanization rates are 53%, with 54.37% and 

55.9% of farms exceeding the 50% mechanization mark, respectively. Central America and the Carib-

bean Islands have an average mechanization rate of 51%, with nearly half of the farms /farmers having 

more than 50% mechanization. Northern Western Africa and Central Asia show similar patterns, with 

average rates of 50% and around 48% of farms having high mechanization levels. 

South Asia and Southern Africa both have an average mechanization rate of 48%, with nearly half 

of the farms in these regions having more than 50% mechanization. Eastern Asia and South America 

have lower average mechanization rates of 45%, with 35.59% and 32.59% of farms, respectively, ex-

ceeding the 50% mechanization level. 

Figure 3b shows the degree of model uncertainty, measured as the standard deviation of all models 

developed by tuning the hyperparameter (feature class and randomization multiplier). Overall, most of 

the map has a very low uncertainty, with the global median of 0.04. The density plot's standard deviation 

illustrates the uncertainty values' distribution, mean, and median. However, there are regional uncer-

tainty hotspots with uncertainty values up to ~0.20 in some parts of East Europe and Asia. 
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Figure 3: Global distribution of agricultural mechanization. (a) The global map of mechanization levels 

at 5-km resolution. Dark blue to yellow, ranges from low to high levels of mechanization. (b) Uncer-

tainty map of the prediction of agricultural mechanization levels, measured as the variability in the 

predictions from the thirty-six different specifications model (standard deviation of the predictions). 

To better understand the pattern of mechanization in agriculture within and across countries, we closely 

examined countries/regions on various continents, as depicted in Figure 4. This figure explains the 

considerable variation in mechanization levels among agricultural nations, highlighting the disparities 

between countries in the northern and southern hemispheres. The countries in the Northern Hemisphere, 

particularly Western Europe and North America, demonstrates a high and relatively uniform 
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agricultural mechanization both across and within countries. In contrast, most countries in the Southern 

Hemisphere, with the exception of Oceania, exhibit lower levels of mechanization. 

Western Europe is the region with the highest agricultural mechanization and the most evenly 

distributed mechanization levels between and within a country (Figure 4). For example, France, Bel-

gium, Netherlands, and Germany have a similar agricultural mechanization with the mean of 72%, 77%, 

78% and 76% respectively (Appendix A5.1. Among these Western European countries, France has 

visible heterogeneity in mechanization within the northern and southern parts. For example, Northern 

France (highest 88%), well known for its grain production, has high mechanization levels, whereas the 

southern regions have slightly less mechanization (lowest 14%). Nonetheless, 98% of farm’s mechani-

zation level is above 50% (Appendix A5.1). 

Figure 4 displays US agriculture is also highly mechanized, with an average of ~63% (~85% 

farm’s mechanization level more than 50%) showing a high concentration of mechanization in the areas 

in the Midwest, the nation's agricultural heartland, often referred to as the "Corn Belt". This region 

(including, marked in chartreuse (yellow-green), signifies highly mechanized farming practices in that 

region (Figure 4). The western and southern regions exhibit less mechanized areas than the Midwest. 

In Canada, about 85% of firms have a mechanization level above 50%, with an average of 62%. But in 

Mexico, about 56% of firms have a mechanization level above 50%, with an average of 54%. On the 

other hand, Brazil's mean mechanization level is relatively lower (44%), which is more concentrated in 

the south and southeast (maximum mechanization level 76%), reflecting the dominance of mechanized 

soybean, sugarcane, and cotton farming in these regions. The northern areas, particularly the Amazon 

basin, show sparse agricultural activity, which aligns with environmental protection policies and less 

arable land. 

Compared to Europe or North America, the mechanization level in Asia is visibly lower (apart 

from Japan and South Korea). For example, the average mechanization level in India and China is 51% 

and 42%, with the highest at 75% and 83%, respectively, which is noticeable in the map. 
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Figure 5: Regional distribution of agricultural mechanization. High-resolution (5-km) map reveals sub-

stantial variability in agricultural mechanization levels both within regions and countries. The spatial 

distribution of agricultural mechanization in a) France, Belgium, Netherlands, and Germany; b) the 

United States; c) Brazil; d) India; e) China and f) Sudan 
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Figure 5: Permutation Variable importance. The values represent each variable's relative importance 

(normalized to percentages) in the model. The higher values of the variables indicate a greater im-

portance for mechanization in agriculture. 

 

In India, there is high agricultural mechanization in the northern plains, particularly around Punjab and 

Haryana, known as the "breadbasket", and also in the southern part, namely Andhra Pradesh, Tamil 

Nadu, and Kerala. In contrast, the central and eastern regions show less mechanization in agriculture. 

On the other hand, Eastern and northern China, especially the Yangtze River basin and the North China 

Plain regions, are more mechanized, where farmers mainly produce Corn, Wheat, and soybeans. In 

contrast, in south China, where rice is produced, it is less mechanized, for example, in the Pearl River 

basin region.  

On the other hand, Sudan is one of the least mechanized countries in Figure 4(f), with average 

mechanization of 26%, with high and low 15% and 64% showing sole mechanization along the central 

part of the country, likely around the Nile River basin. In Sudan, only 0.64% of firms have a more than 

50% mechanization level. Apart from that, most of the cropland is not mechanized.  

Model Performance 

Our machine learning model has a high predictive power; the spatial cross-validation AUC is 0.74. The 

model’s AUC is significantly higher (p-val < 0.01 & z-score 3.818) than the null model's AUC (0.59). 

The model has an average test omission rate (at a 10% threshold (average)) of 0.10, an AUC difference 

between training and validation of 0.01, and the Continuous Boyce Index (CBI) of 0.97, suggesting the 

empirical model effectively and accurately captures the patterns in the data, with high predictive capa-

bility while minimizing overfitting. 
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Variable Importance 

We find that infrastructural, economic, agricultural and environmental variables are the most important 

predictors of agricultural mechanization. Notably, "Travel time to cities (proxy for accessibility)," an 

infrastructural variable, is the most influential factor, having 38% of the total importance across all 

features/predictors. This highlights the critical role of infrastructure in enabling access to mechanized 

farming. Economic variables, notably the "Economic Freedom Index," make the second-largest contri-

bution, accounting for approximately 31% of the total importance across all features. This underscores 

the importance of a conducive economic environment in fostering mechanization. "Cropland area" and 

"Field size" rank third and fourth in their importance, with nearly 16% and ~6%, respectively. These 

variables emphasize the significance of land availability and management practices in adopting mech-

anized agriculture. Environmental variables, such as precipitation (4.3%) and temperature (1.3%), con-

tribute only slightly to the prediction. While their influence is smaller, it remains crucial, particularly in 

regions where extreme weather conditions can hinder mechanization. 

3.2 Datasets Comparison 

We also explore the relationship between the agricultural mechanization at the country level with other 

agricultural variables. We considered the number of tractors per 100 square kilometers of arable land 

(World Bank 2024), and fertilizer consumption per hectare (World Bank 2024) to compare the agricul-

tural mechanization.  

Agricultural machinery includes wheel and crawler tractors, reflecting the mechanization intensity 

across regions. Fertilizer consumption, which measures the use of nitrogenous, potash, and phosphate 

fertilizers, serves as a key indicator of agricultural input efficiency (excluding traditional nutrients like 

manure). Due to the lack of comprehensive data for tractors per 100 square kilometers of arable land 

after 2000 in the World Bank Databank for many countries, we took the average from 1997-2002. 

However, we used the latest available data for fertilizer consumption kilograms per hectare of arable 

land (2021) to ensure an accurate and relevant comparison. 

Figure 6 shows a scatter plot on the relationship between our modelled agricultural mechanization 

and reports number of tractors per 100 square kilometers of arable land (logged), as provided by the 

World Bank so far. Overall, the correspondence is strong (Pearson’s correlation of 0.42), but unsurpris-

ingly, there are several outliers. Several countries are by now much more mechanized than indicated in 

the data of the World Bank. Examples are Rwanda, Bangladesh, Indonesia, Togo, and Senegal, to name 

a few.  
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Figure 6: Mechanization and Number of Tractors Use. The relationship between modelled agricultural 

mechanization based on machine learning and the reported number of tractors per 100 square kilometers 

of arable land in the official data, as provided by the World Bank so far. Here, mechanization and 

fertilizer use, emphasizing the stark contrasts in agricultural inputs and practices across regions. 

 

Figure 7 shows the relationship between modelled agricultural mechanization and fertilizer consump-

tion per hectare of arable land (logged) at the country level (World Bank, 2024). The upward trend of 

the regression line, supported by a correlation coefficient of 0.27, underscores a good correspondence 

between mechanization and fertilizer use. Countries in Europe and North America, represented by blue 

and cyan dots, stand out with both high mechanization and high fertilizer use, indicative of their inten-

sive agricultural practices. Asian nations tend towards higher fertilizer consumption, though their mech-

anization levels remain moderate or low. On the other hand, African countries, marked by purple dots, 

exhibit lower levels of mechanization. 



Agricultural and Resource Economics, Discussion Paper 2024:1 

17 

 

 

 

Figure 7: Mechanization and Fertilizer Use. The relationship between modelled agricultural mechani-

zation based on machine learning and the reported fertilizer consumption (kilograms per hectare of 

arable land). 

3.3 Mechanization and Crop Yield Gaps 

Figure 8 shows the association between the agricultural mechanization and the average yield gap, glob-

ally for the ten most important global crops.  

Overall, this analysis indicates that globally, for each one percentage point increase in mechaniza-

tion, the yield gap decreases by 0.36 to 0.48 percentage points. Figure 8a presents the regression coef-

ficients with various confounding factors controlled for. Specification 1 is the baseline model without 

any control variables, where the coefficient of mechanization is −0.48. This implies that overall, one 

percentage point increase in mechanization is associated with a 0.48 percentage point decrease in the 

yield gap. This is statistically highly significant (p-val < 0.00 and a Z-score of −233.24). Specification 

2 adds environmental variables, such as precipitation, temperature, and terrain ruggedness index. The 

mechanization coefficient is −0.36 (p-value < 0.00). In Specification 3, we additionally control for eco-

nomic variables, including GDP, the Human Development Index, and the Economic Freedom Index, 

along with environmental variables. Here, the coefficient slightly increased to −0.37 (p-< 0.00). In 
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Specification 4, we further add the policy ‘property rights protection’ and obtained the coefficient of 

−0.38 (p-< 0.00), indicating that policy variables further contribute to the observed effect of mechani-

zation on yield gaps. Finally, in Specification 5, we incorporate country-fixed effects and the full set of 

controls. Here, the mechanization coefficient drops to −0.16. This suggests that country-specific factors 

explain a substantial portion of the variation, and mechanization in agriculture can play a meaningful 

role in reducing the yield gap across the country and in between the countries. 

Figure 8b shows a binscatter plot of the association between the agricultural mechanization (x-

axis) and the average yield gap (y-axis). A regression line with a 95% confidence interval (Conley 

standard error) visualizes the very clear pattern in the data that there is a strongly negative and mostly 

linear association between the agricultural mechanization and the average yield gap. 

 

Figure 8: Agricultural Mechanization and Crop Yield Gaps. (a) regression coefficients of the agricul-

tural mechanization (%) for different regression model specifications with yield gap (%) as the depend-

ent variable. Specification 1 is without any controls. Specification 2 includes environmental controls. 

Specification 3 includes additional economic controls. Specification 4 further adds policy controls. Fi-

nally, specification 5 additionally includes country-fixed effects. (b) Binscatter plot of the relationship 

between the agricultural mechanization (%) and the yield gap (%). (For both a &b panel, the  p-value < 

0.00). 

 

Figure 9 is a bivariate map depicting the relationship between the agricultural mechanization and 

the yield gap. In the map, yellow represents regions with both high mechanization levels and high yield 

gaps, while gray indicates areas where both are low. Blue signifies regions with a high yield gap but 

low mechanization, whereas red highlights areas with high and low yield gaps.  
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Figure 9: Bivariate Map for Agricultural Mechanization and Yield Gaps. Yellow indicates high agri-

cultural mechanization and a high yield gap, while gray indicates both are low. Blue indicates a high 

yield gap but a low agricultural mechanization, while red indicates a high agricultural mechanization 

with a low yield gap. 

This map reveals a clear pattern in the agricultural mechanization and yield gap across different regions. 

In North America and Western Europe, high levels of mechanization have effectively minimized the 

yield gap, reflecting advanced agricultural practices. Conversely, large parts of Sub-Saharan and middle 

Africa and some scattered regions of Asia are characterized by a significant yield gap coupled with low 

mechanization levels, indicating substantial room for potential improvement in crop yields through in-

creased mechanization. Interestingly, Eastern Europe, Western Asia, and Central Asia exhibit moderate 

mechanization but still struggle with a considerable yield gap. However, in South and Eastern Asia, 

mechanization is high for most of the area, and the yield gap is low for most of the area, though there 

is some scattered cropland area that is not highly mechanized, and the yield gap is high. This opens 

doors to finding specific areas or regions to enhance agricultural productivity and reduce the yield gap 

by improving mechanizations. 

4 Discussion 

We propose and demonstrate a novel way to model the rate of agricultural mechanization at the global 

scale in high resolution. The resulting map provides highly policy and research relevant information 

and our approach can be used to model many other variables of interest.  

Our approach is innovative in its method, scale and resolution and in the use of advanced machine-

learning modeling techniques to capture the nuanced patterns of mechanization across various geogra-

phies. To our knowledge, no prior study has examined the spatial distribution of mechanization at 
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national, continental, or global levels with such a comprehensive and integrated perspective, providing 

critical insights for policymakers aiming to optimize agricultural strategies worldwide. We argue that 

agricultural economics has a lot of use for this approach, as agricultural mechanization is by far not the 

only agricultural phenomenon for which harmonized, high-resolution data at the global scale is cur-

rently unavailable. 

Our analysis highlights significant global disparities in agricultural mechanization, underlining 

how access to mechanization varies drastically across and within regions. Mechanization is largely con-

centrated in high-income, agriculturally intensive countries, where variables such as economic freedom, 

infrastructural development, and large-scale farming (field size) contribute to higher mechanization 

levels. Regions like North America, Europe, and Australia stand out with high levels of mechanization, 

driven by favorable policy environments, economic freedom, larger field sizes, and better connectivity 

to urban centers. Within these regions, our findings reveal that proximity to cities is a critical determi-

nant—longer travel times reduce mechanization adoption significantly. This relationship is particularly 

pronounced in North America, where the western and southern fringes show lower mechanization levels 

compared to the highly accessible midwestern and eastern regions. In Latin America, mechanization is 

primarily observed in the southern parts of Brazil and Argentina, where large commercial farms domi-

nate. However, within-country disparities are evident; in Brazil, while the southern and southeastern 

regions are highly mechanized, the Amazon Basin and northeastern states show significantly lower 

mechanization levels, driven by infrastructural challenges and distinct land-use patterns. 

Conversely, in many low- and middle-income countries, especially in Africa and parts of South 

Asia, mechanization remains limited due to smaller farm sizes, low levels of economic freedom, inad-

equate policy support, and infrastructural bottlenecks. Africa has the most considerable agricultural 

mechanization gaps globally. Despite some progress in northern African countries like Egypt, much of 

sub-Saharan Africa continues to rely heavily on manual labor and animal traction, with mechanization 

limited to a few commercial hubs (Baudron et al. 2019). The low agricultural mechanization levels here 

are not only a function of economic and infrastructural constraints but also a result of inadequate policy 

frameworks that fail to address the unique needs of smallholder farmers (Dileepkumar 2013). 

Infrastructure-related variables, travel time to the nearest city, Agricultural variable, field size, and 

cropland area, alongside the Economic Freedom Index (economic variable), emerge as the top four most 

significant variables influencing mechanization levels. Environmental variables also play a critical but 

complex role. Our findings reveal that extreme precipitation and rugged terrain are linked to negatively 

associated agricultural mechanization, likely due to operational difficulties for machinery in these con-

ditions. Whereas demographic variables, e.g., population density and demographic characteristics, did 

not appear as very important variables for mechanization.   
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We also incorporated yield gap estimates to identify areas where mechanization could bridge 

productivity deficits. By mapping mechanization levels alongside yield gaps, our study also discovered 

the regions where improving mechanization could effectively close these productivity shortfalls. For 

example, regions like Sub-Saharan Africa and parts of Southeast Asia show high yield gaps and low 

mechanization, indicating a significant opportunity for mechanized solutions to elevate low productiv-

ity and reduce reliance on manual labor. In contrast, areas with relatively higher mechanization but 

persistent yield gaps (Gerber et al. 2024), such as parts of Eastern Europe, suggest that variable like 

fertilizer, crop management, or access to quality inputs may also need to be addressed along with mech-

anization. Thus, our findings underscore that the relationship between mechanization and yield gaps is 

highly context-specific, influenced not only by economic variable but also by a blend of infrastructural, 

agricultural and environmental variables that must be considered in any strategy to enhance agricultural 

productivity globally. 

Limitations. Similar to other machine learning modelling approaches, our model prediction of ag-

ricultural mechanization is subject to uncertainties stemming from diverse input sources, and the inher-

ent complexities of the model (Jain 2020). Another key source of uncertainty is the integration of vari-

ables from different years and types with varying spatial resolutions, a compromise that is necessary 

due to the lack of a globally harmonized dataset on mechanization. To mitigate these issues, we em-

ployed rigorous validation techniques to validate our models, as well as evaluated an extensive set of 

candidate models, obtaining an optimal model with high accuracy and robust generalization capability. 

This ensures our prediction at the global level remains robust despite these data constraints. To test how 

much our model is better than a randomly guessing model, we also incorporated null tests. Additionally, 

we applied uncertainty analyses among all the models to distinguish different levels of mechanization 

instead of relying on a fixed classification to capture the inherent uncertainty as comprehensively as 

possible.  

5 Conclusion 

This study provides a major update to our understanding of global agricultural mechanization. Because 

the available data so far has been considerably outdated and it was not harmonized in any way, we find 

that actually, many countries around the world are likely far more mechanized than reported and widely 

assumed so far. This information offers policymakers valuable insights to target specific regions and 

devise tailored intervention strategies—particularly in developing countries where mechanization could 

substantially improve productivity and close yield gaps. While recognizing data limitations and uncer-

tainties, our findings lay the foundation for a more precise understanding of agricultural mechaniza-

tion’s potential role in sustainable agricultural development. Our global map on agricultural mechani-

zation developed in this study is an invaluable tool for policymakers, researchers, and development 
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agencies aiming to pinpoint areas where mechanization could be a game-changer for food security and 

sustainable development. As mechanization continues to shape the future of agriculture, our work lays 

a foundation for more precise strategies that can drive transformative change in agricultural systems 

worldwide. Beyond this particular use case, we suggest that our here presented approach will be useful 

to model many other variables relevant for agricultural economics research. We provide a full replica-

tion package with this study, to enable and simplify follow-up studies. 
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A1.  Appendix A1. Training data 

The mechanization data for this analysis comes from two main sources. The first is the Global Data-

base on Sustainable Land Management (SLM) by WOCAT (World Overview of Conservation Ap-

proaches and Technologies). This database serves as a vital resource for understanding sustainable 

practices across various countries. The SLM data highlights sustainable land management techniques 

aimed at enhancing long-term productivity while preserving ecosystem functions. It includes infor-

mation on soil and water conservation practices, as well as strategies to prevent land degradation, 

drawing from over 2,446 documented SLM practices in 136 countries. The WOCAT database is es-

sential for providing baseline data on sustainable agricultural practices. 

To complement the WOCAT data, we also integrated information from the Economics of Agricul-

tural Technology Database, a newely completed survey done by University of Bonn, Germany. This 

dataset focuses on the economic aspects of agricultural innovation, including the adoption and profita-

bility of mechanization and other technologies. By surveying experts from academia, industry, exten-

sion services, and the farming community, this database provides insights into the profitability of digital 

mechanization practices, including specific locations. The combination of these data sources ensures 

our analysis reflects a diverse range of agricultural contexts and innovations, addressing gaps left by 

the WOCAT dataset and facilitating a more comprehensive evaluation. 

A2.  Pearson correlation test 
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Figure A2.1: Heatmap of Pearson correlation coefficients between predictor variables. Note: Signifi-

cance levels: p≤ 0.001 ***, p ≤0.01 **, p≤ 0.05*, p≤ 0.10. 

 

A3.  Appendix A2. Multivariate Environmental Similarity Surface (MESS) analysis 

The Multivariate Environmental Similarity Surface (MESS) analysis evaluates the reliability of model 

predictions in various environmental conditions by comparing these conditions to those present in the 

training data. Positive MESS values indicate that the environmental conditions at a location fall within 

the range observed during model training, suggesting that predictions in these areas are more dependa-

ble. Higher positive values indicate a closer match to the average training conditions, which boosts 

confidence in the predictions. 

Conversely, negative MESS values indicate that at least one environmental variable at a location 

falls outside the training data range, implying that the model must extrapolate. As a result, predictions 

in these cases should be approached with caution. A MESS value of 0 represents the boundary of envi-

ronmental similarity, marking conditions that are on the edge of the training data. This analysis helps 

identify regions where model predictions are robust versus those where they are less certain. 

The MESS plot provides a visual representation of this similarity across global environmental con-

ditions. The color gradient ranges from light shades (yellow to light pink), indicating high similarity to 

the training data, to dark shades (purple to black), which show significant divergence from the training 

conditions. The locations of training points are marked with black cross markers, making it easy to 

identify regions that closely align with the model's foundational data, as well as areas where environ-

mental conditions are different. This map serves as a valuable tool for understanding where model pre-

dictions are based on interpolation versus extrapolation, enhancing confidence in areas with higher en-

vironmental similarity. 
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Figure A3.1: The map illustrates similarity across various regions, generated using the MESS (Multi-

variate Environmental Similarity Surface). 
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A4.  Appendix A3. Agricultural Mechanization at Regional Level 

Table A4.1: Average, minimum and maximum rate of agricultural mechanization at regional level. 

 

Figure A4.2: Map of the regions which is explained in the Table A3.1 

  

REGION AVERAGE MIN MAX PERCENTAGE > 

0.50 

WESTERN EUROPE 0.68 0.44 0.86 92.44% 

NORTH AMERICA 0.63 0.44 0.82 84.88% 

OCEANIA 0.56 0.40 0.76 68 

EAST EUROPE 0.53 0.33 0.81 54.37% 

WESTERN ASIA 0.53 0.31 0.77 55.9% 

CENTRAL AMERICA AND 

CARIBBEAN ISLAND 

0.51 0.24 0.79 49.93% 

NORTHERN WESTERN AF-

RICA 

0.50 0.25 0.75 48.17% 

CENTRAL ASIA 0.50 0.31 0.78 41.23% 

SOUTH ASIA 0.48 0.25 0.67 48.3% 

SOUTHERN AFRICA 0.48 0.31 0.69 41.1% 

EASTERN ASIA 0.45 0.25 0.74 35.59% 

SOUTH AMERICA 0.45 0.24 0.69 32.59% 

SUB-SAHARAN, MIDDLE 

AFRICAN GROUP 

0.37 0.20 0.64 15.7% 
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A5.   Appendix A4. Agricultural Mechanization at Country Level 

Table A4.1 presents a detailed summary of mechanization data across 172 countries, including mean, 

minimum, maximum, standard deviation, and range metrics. The NAME_EN column lists countries 

according to the World Bank nomenclature, while the Mean value reflects each country's average mech-

anization level across pixels. The Median value signifies the midpoint of mechanization levels arranged 

in order, and the Minimum and Maximum values indicate the lowest and highest recorded mechaniza-

tion levels for each country, respectively. SD (Standard Deviation) quantifies the variability of mecha-

nization values around the mean, while the Range illustrates the difference between maximum and 

minimum values. The N column represents each country's total number of observations (i.e., the 5-km  

grid cells), with “N above 0.50” column, counting observations that surpass a mechanization level of 

0.50. Finally, Mechanization (N) and Mechanization (%) indicate the proportion of observations and 

the overall percentage of mechanization exceeding 0.50 within each country. 

The very first column shows the name of the country (according to World Bank data). The Second 

and third columns show the mean and median of agricultural mechanization for each country with min-

imum (column 4) and maximum (column 5). We also calculate the standard deviation (column 6) and 

range (column 7). In column 8, we showed the number of observations per country (pixel 5km*5km) 

per country alongside the number of pixel’s agricultural mechanization over 0.50 (column 9) with per-

centage (column 10).    

Table A5.1: Statistics of mechanization at the country level. 

Country Mean  Median  Min Maxi Sd Range 

Afghanistan 0,39 0,36 0,23 0,75 0,1 0,51 

Albania 0,58 0,57 0,35 0,83 0,12 0,47 

Algeria 0,42 0,41 0,23 0,8 0,12 0,57 

Andorra 0,4 0,3 0,29 0,63 0,19 0,34 

Angola 0,33 0,3 0,21 0,68 0,07 0,48 

Antigua And Barbuda 0,23 0,26 0,14 0,31 0,07 0,17 

Argentina 0,45 0,45 0,2 0,75 0,1 0,55 

Armenia 0,61 0,61 0,24 0,86 0,12 0,62 

Australia 0,56 0,58 0,28 0,89 0,1 0,61 

Austria 0,7 0,71 0,43 0,88 0,1 0,45 

Azerbaijan 0,61 0,62 0,24 0,86 0,13 0,62 

Bahrain 0,62 0,64 0,52 0,69 0,09 0,17 

Bangladesh 0,58 0,6 0,22 0,69 0,09 0,46 

Barbados 0,68 0,69 0,54 0,79 0,07 0,25 

Belarus 0,49 0,49 0,27 0,85 0,09 0,58 

Belgium 0,77 0,81 0,51 0,88 0,09 0,37 
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Belize 0,44 0,43 0,31 0,69 0,07 0,37 

Benin 0,47 0,45 0,27 0,74 0,1 0,47 

Bhutan 0,37 0,34 0,27 0,66 0,07 0,4 

Bolivia 0,29 0,29 0,2 0,71 0,07 0,51 

Bosnia And Herzegovina 0,59 0,58 0,37 0,86 0,1 0,49 

Botswana 0,49 0,48 0,2 0,74 0,08 0,54 

Brazil 0,44 0,43 0,2 0,76 0,11 0,56 

Brunei 0,51 0,51 0,39 0,63 0,17 0,24 

Bulgaria 0,63 0,62 0,35 0,87 0,1 0,52 

Burkina Faso 0,4 0,4 0,26 0,72 0,08 0,46 

Burundi 0,37 0,36 0,19 0,66 0,09 0,47 

Cambodia 0,48 0,5 0,24 0,75 0,12 0,51 

Cameroon 0,38 0,37 0,19 0,69 0,1 0,5 

Canada 0,62 0,61 0,36 0,88 0,1 0,52 

Central African Republic 0,24 0,22 0,17 0,64 0,06 0,48 

Chad 0,33 0,31 0,17 0,64 0,07 0,47 

Chile 0,64 0,63 0,31 0,9 0,11 0,59 

Colombia 0,5 0,49 0,17 0,82 0,11 0,65 

Costa Rica 0,52 0,51 0,28 0,78 0,1 0,5 

Croatia 0,67 0,67 0,37 0,86 0,1 0,49 

Cuba 0,28 0,28 0,15 0,48 0,07 0,33 

Cyprus 0,68 0,69 0,41 0,86 0,11 0,44 

Czech Republic 0,75 0,76 0,45 0,89 0,08 0,44 

Democratic Republic Of The Congo 0,28 0,25 0,17 0,66 0,08 0,49 

Denmark 0,76 0,76 0,41 0,89 0,07 0,48 

Dominican Republic 0,56 0,56 0,26 0,81 0,11 0,55 

East Timor 0,32 0,29 0,21 0,64 0,09 0,43 

Ecuador 0,48 0,48 0,27 0,76 0,1 0,49 

Egypt 0,57 0,61 0,29 0,74 0,14 0,45 

El Salvador 0,5 0,5 0,29 0,73 0,09 0,44 

Eritrea 0,28 0,24 0,17 0,63 0,09 0,46 

Estonia 0,6 0,6 0,36 0,88 0,11 0,52 

Eswatini 0,24 0,23 0,14 0,64 0,07 0,5 

Ethiopia 0,36 0,34 0,15 0,65 0,1 0,5 

Finland 0,6 0,58 0,16 0,89 0,11 0,73 

France 0,72 0,73 0,14 0,88 0,09 0,74 

Gabon 0,41 0,38 0,29 0,57 0,12 0,28 

Georgia 0,59 0,59 0,35 0,86 0,1 0,51 

Germany 0,76 0,77 0,41 0,89 0,08 0,48 
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Ghana 0,44 0,43 0,27 0,73 0,1 0,46 

Greece 0,57 0,57 0,32 0,83 0,11 0,5 

Guantanamo Bay Naval Base 0,33 0,33 0,24 0,42 0,13 0,18 

Guatemala 0,54 0,54 0,3 0,8 0,11 0,5 

Guinea 0,32 0,3 0,2 0,62 0,07 0,42 

Guinea-Bissau 0,25 0,23 0,19 0,55 0,06 0,35 

Guyana 0,45 0,45 0,27 0,75 0,12 0,48 

Haiti 0,41 0,41 0,23 0,63 0,08 0,4 

Honduras 0,48 0,47 0,3 0,76 0,1 0,45 

Hong Kong 0,27 0,27 0,27 0,27 Na 0 

Hungary 0,73 0,74 0,43 0,88 0,08 0,45 

Iceland 0,45 0,43 0,36 0,71 0,05 0,34 

India 0,51 0,52 0,23 0,75 0,11 0,52 

Indonesia 0,56 0,55 0,25 0,8 0,14 0,55 

Iran 0,35 0,33 0,18 0,85 0,1 0,67 

Iraq 0,51 0,5 0,22 0,8 0,12 0,58 

Ireland 0,64 0,62 0,37 0,88 0,09 0,5 

Israel 0,71 0,76 0,19 0,89 0,14 0,7 

Italy 0,7 0,72 0,37 0,87 0,09 0,5 

Ivory Coast 0,4 0,38 0,24 0,74 0,08 0,5 

Jamaica 0,57 0,58 0,31 0,77 0,11 0,46 

Japan 0,65 0,65 0,35 0,86 0,1 0,52 

Jordan 0,59 0,6 0,21 0,84 0,13 0,63 

Kazakhstan 0,49 0,45 0,25 0,87 0,1 0,62 

Kenya 0,47 0,46 0,24 0,75 0,13 0,51 

Kosovo 0,68 0,7 0,37 0,86 0,11 0,48 

Kuwait 0,51 0,5 0,37 0,76 0,1 0,4 

Kyrgyzstan 0,53 0,51 0,3 0,85 0,13 0,55 

Laos 0,34 0,31 0,22 0,76 0,1 0,54 

Latvia 0,63 0,63 0,31 0,87 0,1 0,57 

Lebanon 0,44 0,43 0,25 0,82 0,09 0,57 

Lesotho 0,43 0,41 0,27 0,72 0,11 0,45 

Liberia 0,38 0,41 0,27 0,44 0,06 0,18 

Libya 0,42 0,39 0,27 0,73 0,12 0,46 

Liechtenstein 0,73 0,72 0,66 0,83 0,05 0,17 

Lithuania 0,68 0,69 0,31 0,88 0,09 0,57 

Luxembourg 0,76 0,76 0,61 0,87 0,06 0,26 

Madagascar 0,38 0,34 0,28 0,76 0,09 0,47 

Malawi 0,48 0,48 0,24 0,73 0,12 0,5 
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Malaysia 0,59 0,6 0,34 0,83 0,12 0,49 

Mali 0,37 0,36 0,24 0,69 0,08 0,45 

Mauritania 0,33 0,3 0,25 0,71 0,08 0,47 

Mexico 0,54 0,52 0,27 0,87 0,13 0,61 

Moldova 0,66 0,66 0,4 0,86 0,08 0,46 

Mongolia 0,45 0,43 0,29 0,77 0,07 0,47 

Montenegro 0,56 0,56 0,35 0,75 0,09 0,4 

Morocco 0,57 0,57 0,25 0,83 0,12 0,58 

Mozambique 0,35 0,32 0,14 0,7 0,09 0,56 

Myanmar 0,35 0,33 0,21 0,75 0,11 0,55 

Namibia 0,4 0,37 0,26 0,77 0,07 0,51 

Nepal 0,41 0,38 0,24 0,66 0,13 0,42 

Netherlands 0,78 0,79 0,42 0,88 0,07 0,46 

New Zealand 0,55 0,55 0,36 0,87 0,1 0,51 

Nicaragua 0,44 0,43 0,26 0,72 0,1 0,45 

Niger 0,41 0,41 0,26 0,73 0,09 0,46 

Nigeria 0,46 0,45 0,25 0,71 0,1 0,46 

North Korea 0,52 0,51 0,25 0,83 0,16 0,58 

Norway 0,57 0,54 0,33 0,88 0,13 0,55 

Oman 0,53 0,51 0,37 0,78 0,1 0,41 

Pakistan 0,47 0,49 0,23 0,7 0,13 0,47 

Palestine 0,39 0,33 0,17 0,85 0,16 0,68 

Panama 0,52 0,52 0,34 0,81 0,11 0,47 

Papua New Guinea 0,34 0,33 0,25 0,63 0,08 0,38 

Paraguay 0,47 0,47 0,22 0,78 0,09 0,55 

People's Republic Of China 0,42 0,41 0,22 0,83 0,12 0,61 

Peru 0,55 0,52 0,23 0,89 0,13 0,66 

Philippines 0,52 0,53 0,27 0,75 0,13 0,48 

Poland 0,74 0,75 0,34 0,88 0,08 0,54 

Portugal 0,59 0,59 0,4 0,88 0,1 0,48 

Qatar 0,56 0,56 0,43 0,72 0,07 0,29 

Republic Of Macedonia 0,57 0,56 0,32 0,78 0,11 0,46 

Republic Of The Congo 0,27 0,24 0,21 0,57 0,06 0,36 

Romania 0,66 0,66 0,4 0,87 0,1 0,48 

Russia 0,47 0,47 0,24 0,84 0,1 0,61 

Rwanda 0,54 0,55 0,2 0,67 0,1 0,47 

San Marino 0,6 0,63 0,35 0,79 0,16 0,44 

Saudi Arabia 0,48 0,46 0,3 0,82 0,09 0,52 

Senegal 0,43 0,43 0,2 0,76 0,11 0,55 
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Serbia 0,67 0,69 0,4 0,87 0,1 0,47 

Sierra Leone 0,37 0,37 0,23 0,62 0,08 0,39 

Singapore 0,64 0,64 0,63 0,64 0,01 0,02 

Slovakia 0,71 0,72 0,46 0,88 0,09 0,42 

Slovenia 0,65 0,64 0,47 0,83 0,09 0,36 

Somalia 0,34 0,33 0,21 0,62 0,09 0,42 

South Africa 0,5 0,49 0,14 0,81 0,1 0,67 

South Korea 0,62 0,62 0,37 0,83 0,11 0,46 

South Sudan 0,21 0,19 0,16 0,63 0,05 0,47 

Spain 0,66 0,67 0,38 0,89 0,11 0,51 

Sri Lanka 0,45 0,46 0,25 0,66 0,1 0,41 

Sudan 0,26 0,26 0,15 0,64 0,06 0,49 

Suriname 0,34 0,32 0,22 0,58 0,09 0,36 

Sweden 0,64 0,62 0,4 0,89 0,11 0,49 

Switzerland 0,73 0,74 0,41 0,88 0,08 0,47 

Syria 0,49 0,49 0,21 0,84 0,11 0,63 

Tajikistan 0,46 0,44 0,28 0,8 0,14 0,53 

Tanzania 0,47 0,47 0,19 0,8 0,11 0,61 

Thailand 0,58 0,6 0,22 0,79 0,11 0,57 

The Bahamas 0,42 0,37 0,35 0,61 0,09 0,26 

The Gambia 0,49 0,49 0,29 0,73 0,1 0,44 

Togo 0,42 0,41 0,26 0,72 0,09 0,46 

Trinidad And Tobago 0,62 0,59 0,53 0,72 0,07 0,18 

Tunisia 0,54 0,55 0,24 0,77 0,1 0,53 

Turkey 0,54 0,54 0,23 0,83 0,12 0,6 

Turkmenistan 0,43 0,42 0,22 0,82 0,11 0,6 

Uganda 0,43 0,44 0,17 0,69 0,1 0,52 

Ukraine 0,6 0,6 0,29 0,85 0,09 0,55 

United Arab Emirates 0,54 0,54 0,38 0,73 0,08 0,34 

United Kingdom 0,74 0,78 0,37 0,89 0,11 0,52 

United States Of America 0,63 0,63 0,34 0,9 0,11 0,57 

Uruguay 0,52 0,51 0,22 0,85 0,11 0,62 

Uzbekistan 0,59 0,6 0,27 0,84 0,14 0,57 

Vanuatu 0,47 0,47 0,42 0,52 0,07 0,1 

Venezuela 0,24 0,22 0,16 0,71 0,07 0,56 

Vietnam 0,55 0,54 0,23 0,79 0,13 0,56 

Yemen 0,37 0,35 0,24 0,69 0,1 0,45 

Zambia 0,32 0,3 0,19 0,75 0,08 0,56 

Zimbabwe 0,28 0,28 0,18 0,66 0,07 0,48 




