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Technological differences in South African sheep production: a
stochastic meta-frontier analysis
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aAgricultural Economics, University of the Free State, Bloemfontein, South Africa; bSchool of Economics, University of
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ABSTRACT
This study compared four South African sheep producing districts relative
to each other and a common metafrontier to analyse within and between
group efficiency and explored what could be learnt from this technique
compared to simple frontiers. A sample was compiled from sources that
were previously successfully used in local benchmarking exercises, and
despite very modest sample sizes at the group level and minimal
information on how groups differ, the group models performed
adequately while the meta-model performed very well. The results
revealed that while within group performances were comparable across
districts, there were huge differences in between group performance.
These differences are partly attributable to natural resource
endowments, but institutional arrangements also contribute
significantly to local success. This suggests that to achieve rural
regeneration public–private partnerships are necessary to address this
issue. State support is insufficient and producer organisations have a
major role in promoting institutional innovation.
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1. Introduction

There are many examples in the literature where productivity efficiency is measured across groups.
These can include countries, provinces or states as well as enterprises that have organisational differ-
ences, such as private versus state owned or cooperatives. But frequently these give spurious results
as the groups are simply too disparate to be estimated using a single frontier. Equally, estimating
separate frontiers and comparing the derived efficiencies is also unjustified as the groups may
not have access to the same technology.

To overcome these difficulties Hayami and Ruttan (1971) proposed the concept of the meta-pro-
duction function. This assumes that in theory, all producers have access to the same set of technol-
ogies but will adopt those that are available to them given their unique circumstances. There may be
differences in input prices, environment, climate, natural resource endowments as well as financial
and regulatory constraints. The presence of one or more of these constraints may limit access to the
best practice technology and results in a gap between potential and actual production. Therefore,
the difference between the metafrontier and the group-specific frontiers must be measured and
this is known as the technology gap ratio (TGR). See Kawagoe, Hayami, and Ruttan (1985) for an
early empirical estimation.

More recently, models to conduct metafrontier analysis (MFA) have been proposed by Battese,
Rao, and O’Donnell (2004) and an application to regional performance in agriculture is by O’Donnell,
Rao, and Battese (2008). Metafrontiers can be derived semi-parametrically or fully parametrically.
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Battese, Rao, and O’Donnell (2004) and O’Donnell, Rao, and Battese (2008) used semi-parametric
MFA models, which estimate group stochastic frontier models introduced by Battese and Coelli’s
(1995) in the first stage and then apply mathematical programming to derive a closely fitting meta-
frontier that minimises deviations from the group frontiers. In the local literature variants of this tech-
nique have been used to compare smallholder cattle production across districts in Botswana
(Temoso et al., 2015), the gap between smallholder and commercial tomato production in Mpuma-
langa, South Africa (Gwebu and Matthews 2018) and smallholder sheep farming in adjacent districts
in the Free State, South Africa (Nyam, Matthews, and Bahta 2020).

The disadvantage of a semi-parametric analysis is that the metafrontier does not result in par-
ameters with known statistical properties from which inferences can be made. Therefore, to avoid
this problem Huang, Huang, and Liu (2014) derived a measure of the technology gap ratio (TGR)
that can be obtained directly from estimating a solely parametric metafrontier. These two
approaches define TGRs differently, which can cause confusion. See Section 2 below and Huang,
Huang, and Liu (2014) for the derivation of the stochastic TGR measure. Huang, Huang, and Liu
(2014) repeated O’Donnell’s study to demonstrate the effects of using a parametric second stage,
and as would be expected, found that the semi-parametric approach leads to smaller gaps than
the fully parametric method. This is because all deviations are treated as part of the TGR in the
non-parametric approach, whilst the parametric approach allows for a stochastic measurement error.

Only one example of the Huang, Huang, and Liu (2014) approach is found in the local literature.
Ng’ombe (2017) estimated a stochastic metafrontier model of technological diversity in smallholder
maize farming in Zambia. The functional form of the frontier was specified as a four-input translog
function which is a flexible function form that imposes few restrictions itself and, in this case,
included ten inefficiency effects. In the MFA function groups were formed by province. Lusaka Pro-
vince had the smallest number of observations (n = 312) and these degrees of freedom produced a
set of group frontiers with a good fit and an even better metafrontier. The inefficiency model in the
metafrontier included just three dummy variables capturing regional differences in expected rainfall.
The results found significant technological diversity in maize production in Zambia, but the
efficiency ordering did not simply follow rainfall patterns as anticipated.

This study uses a stochastic metafrontier model with four groups of sheep farmers (three in the
Karoo and one in the Overberg in the Western Cape). This formulation has far fewer observations and
potential explanations of farm-level inefficiencies within groups than Ng’ombe (2017) had but the
aim is to identify something potentially important for parametric productivity analysis; to find poten-
tially elusive technological heterogeneity in a single industry in one region of one country. The sector
under consideration is sheep production and the scope the of study is limited to the Northern and
Western Cape Provinces of South Africa. If pooling is rejected in this example, it is likely to be rejected
for all composite samples, and as a result metafrontier analysis will become the norm in benchmark-
ing studies of agriculture, which is not currently the case.

2. Data and methods

2.1 Deriving SMF estimators and technology gap measures

Step 1 of the stochastic metafrontier (SMF) analysis begins with estimating group frontiers specified
in the usual manner for every production region, j, for every farm i for each period t as follows:

Yijt = f jt (Xijt)e
vijt−uijt , j = 1, 2, . . . , J; i = 1, 2, . . . , I; t = 1, 2, . . . , T (1)

where: Yijt is the output of farm i in group j at time t Xijt are input vectors related to farm i in group j at
time t f jt ( · ) is the functional form of the production frontier to be estimated for the jth group vijt is
statistical noise uijt is technical inefficiency

The vijt are assumed to be independently and identically distributed as N(0, s j2
v ) and these errors

are independent of uijt . The inefficiency term, uijt , follows a truncated-normal distribution,
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N(mj(Zijt), s
j2
u (Zijt)), where Zijt are exogenous variables that explain the level of inefficiency observed,

and mj(Zijt) is the mode of the inefficiency term.
A set of group technical efficiency estimates, TEjit , is obtained from each group’s production fron-

tier:

TEjit =
Yijt

f jt (Xijt)e
vjit
= euijt (2)

In stage 2 a metafrontier is estimated by regressing fitted values of the group frontiers, f̂ jt (Xijt), on the
original inputs according to regression 3:

f̂ jt (Xijt) = fMt (Xijt)e
−uMit , ∀ j, i, t (3)

where uMit ≥ 0 and fMt ( · ) ≥ f jt ( · ) so that the metafrontier envelops the family of group frontiers
closely from above. As for the group frontiers, the use of the stochastic frontier regression and
the assumption of a truncated-normal distribution, N(mj(Zijt), s

j2
u (Zijt)), of the uijt term allows for

the evaluation of factors that explain the technology gap ratio (Bravo-Ureta, Higgins, and Arslan
2020). But it should be noted that these are different factors than the ones affecting farm-level
efficiency (Huang, Huang, and Liu 2014).

In the stochastic metafrontier model the TGRs are the efficiency scores generated when fitting
estimating Equation (3) and these are obtained from Equation (4).

TGRjit =
f jt (Xijt)
fMt (Xijt)

= e−uMit ≤ 1 (4)

Estimates of meta-technical efficiency (MTE) are extracted by calculating the product of the tech-
nology gap ratio (TGR) and group technical efficiencies (TE).

MTEjit = TGRjit∗TEjit (5)

Note that the decomposition in Equation (5) is different from the one proposed in Battese, Rao, and
O’Donnell (2004) or any subsequent applications. In semi-parametric metafrontier models, stage 2
involves the original dependent variable in the frontier and the non-parametric measure of ineffi-
ciency obtained represents the full distance between the actual observation and the metafrontier.
They isolate the residual gap between the group and metafrontiers and the smaller meta
efficiency is divided by the somewhat larger group efficiency. The innovation in Huang, Huang,
and Liu (2014) was to replace the dependent variable with estimated variables in the second
stage regression. But here, in order to measure technology gaps directly and therefore retrieve a
measure similar to the meta-technical efficiency defined in Battese, Rao, and O’Donnell (2004), the
product of stage 1 and stage 2 efficiencies is used as each part of expression 5 lies between zero
and one, 0 ≤ TEM ≤ 1.

The interpretation of the technology gap ratio is as difficult as it was previously. For example, a
gap of say TGR = 0.80 means that a given frontier is within 20% of the metafrontier, and since gaps
are farm-level observations, most studies report the average gap between groups and their meta-
frontiers. In a global analysis of country performances these gaps are likely to be much wider
than in a local analysis where “global” best practice is locally defined. Group and meta efficiencies
are also expected to vary inversely with sample size, with smaller groups resulting in higher
general efficiency levels than larger groups.

2.2 Groups in this dataset

Metafrontier analysis begins with forming groups by homogenous technologies. In the literature
geographic demarcations are commonly used (e.g., O’Donnell, Rao, and Battese 2008; Temoso,
Hadley, and Villano 2015) and otherwise producers are classified by type (e.g., Gwebu and Matthews
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2018). In this study J = 4 geographically defined groups were obtained from existing benchmarking
studies.

The Karoo Management Panel contributed most of the data. This survey dataset for the Central
Karoo District Municipality currently includes eight waves, for the period 2012–2019. Karoo farms
specialise in small stock production and the sample includes wool and mutton flocks (Conradie
and Landman 2015). Crop production is rare and generally limited in extent. Non-parametric bench-
marking was applied to Wave 1 (Conradie and Piesse 2015), a stochastic frontier trend model was
used for waves 1–3 (Conradie, Piesse, and Stephens 2019) and a Battese and Coelli (1995) stochastic
frontier with technical inefficiency effects measured and explained inefficiency levels in waves 1–4
(Conradie 2019). In these studies, the local municipalities of Laingsburg and Beaufort West were
pooled. There is not yet an analysis of the full eight waves of which the last four represent a
serious drought. In waves 1–4 efficiency improvements were associated with the presence of
wooled sheep, part-time farming and a diploma from Grootfontein Agricultural College. The
courses for this diploma include modules in sheep and wool production and are tailored to the
needs of Karoo farmers. The Karoo Management Panel covers a steep precipitation gradient with
expected rainfall varying from 113 mm per annum (p.a.) at Laingsburg to 238 mm p.a. at Beaufort
West. For this study the sample was split by district into 163 observations for Beaufort West and
248 observations for Laingsburg. Descriptive statistics are in Table 1.

The other two panel datasets are study group rather than survey data. These samples are
expected to produce higher average levels of efficiency than the Beaufort West and Laingsburg
groups because they are smaller and subject to self-selection with participants themselves choosing
to participate in the study groups.

The Swellendam sample of 93 observations from ten farms over ten years is part of a rotating
panel collected by the credit division of Sentraal-Suid Kooperasie. The Williston sample contains 75
observations collected from nine farms over thirteen years. Swellendam, in the Overberg, receives
sufficient rainfall to support dryland crop production and, in this sample, wooled sheep is a second-
ary enterprise. Despite the small sample size Conradie and Genis (2020) estimated a Cobb Douglas
stochastic frontier with inefficiency effects for the entire mixed farming system for these data. Only
data on the sheep enterprise feature in this study and overhead costs were allocated to sheep
according to its share of gross farm income. It was expected that Swellendam would set the standard
because the levels of affluence often observed in the area facilitates the adoption of new technol-
ogies. In addition, sheep farming in this area is closely associated with pasture-based dairy
farming, the only agricultural industry for which technical progress has been documented in
South Africa in recent years (Vink, Conradie, and Matthews 2022).

The Williston sample includes nine farms and 75 observations for the period 2010–2021, and
although this district is in the Karoo, due to selection bias the Williston group is expected to

Table 1. Descriptive statistics of farm-level inputs and output and selected other farm descriptors.

Beaufort West Laingsburg Swellendam Williston
n = 163 n = 248 n = 93 n = 75

Production function (R1000)
Wool & mutton income 814a 477b 3121c 1907d

Stock sheep 1208a 782b 2568c 1086a,b

Feed & remedies 110a 148a 889b 610c

Fuel & machinery repairs 127a 133a 203b 164a

Estate repairs 72a 38b 47a,b 60a,b

Labour 315 170 196 250
Inefficiency sub-model
Annual rainfall 153a 136a 418b 134a

D_ Grootfontein 4% 11% 68%
D_ part-time farming 9% 15% 29%

Notes: Financial figures in constant 2020 prices in R1000, with ZAR 17 = US$ 1 in August 2022.
Different superscripts indicate statistically significant differences across regions at p < 0.05. These were ANOVA tests.
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outperform Laingsburg which has the same rainfall and perhaps even Beaufort West with almost
twice the rainfall. The Williston farms specialise in mutton production and, as in Beaufort West
and Laingsburg, crop production is uncommon. Since the area received less than 70% of expected
annual rainfall since 2016, the Williston group adapted by setting feedlot systems for ewe-lamb pro-
duction (Conradie and Geyer 2021). High feed costs forced these producers to cull aggressively,
which should have increased efficiency, and strong vertical integration in the local cooperative of
which these producers are members, brings cost and product price benefits.

Table 1 shows that the main differences between these four areas are flock size, and feed and
animal health requirements. There was less variation between groups in fuel expenditure and mech-
anisation costs as well as in estate repairs and maintenance and there is no difference between
groups in cost of labour. Mean farm income from sheep was different in each of the four groups,
with the highest income recorded in Swellendam, followed by Williston and Beaufort West and
Laingsburg in last place. The variation is partly explained by rainfall differences and partly by differ-
ences in farm and flock size. Based on these results it was hypothesised that the technology gap
between the Laingsburg group frontier and the metafrontier might be the largest, the Beaufort
West and Williston group frontiers slightly ahead of the Laingsburg frontier, with the Swellendam
group frontier expected to be closest to the metafrontier.

2.3 Empirical models and specification tests

Group and metafrontiers were estimated using FRONT 4.1 (Coelli 1996) and the specification tests
computed in Excel. The group frontiers’ dependent variable was the natural logarithm of revenue
from sheep and mutton in a given financial year. Nominal values were adjusted to constant 2020
prices with the sheep price index published in the Abstract of Agricultural Statistics (DALRRD
2021) and the undefined logged values of zero observations were replaced with zeros. Input price
indices were from the same source. The main input is flock size, typically representing breeding
ewes and replacement ewes in mutton flocks, and sometimes including whethers in the case of
wooled sheep. Land is omitted as it is highly correlated with livestock numbers in pastoral
systems. Land enhancing inputs are represented by a composite variable of expenditures on pur-
chased and produced animal feed, remedies and reproductive costs such as artificial insemination
(AI) and pregnancy checking. The model also includes repairs and maintenance of fixed farm infra-
structure (fences) as well as labour and labour enhancing inputs. The latter is measured as the expen-
diture on fuel and machine repairs and maintenance. Theory requires positive coefficients on these
inputs and in a translog specification the coefficients on pairs of complementary inputs will be posi-
tive while substitutes will have negative coefficients. The inefficiency model in use at the group stage
simply included rainfall and two dummy variables for a specific type of training and part-time
farming status. Rainfall and training were expected to increase efficiency while part-time farming
was expected to decrease efficiency.

Hypothesis tests confirmed that the group models were indeed frontiers and to investigate if the
Cobb Douglas restriction of the more general translog functional form was acceptable. These used
general likelihood ratio tests where the test statistic l = −2× [L(H0)− L(Ha)], and L(H0) and L(Ha) are
the log likelihood values of the unrestricted (H0) and restricted (Ha) models, as described in Battese
and Coelli (1988). Lambda is x2 distributed with degrees of freedom equal to the number of restric-
tions imposed.

The second stage of a SMF estimation requires that the pooling hypothesis must be rejected, and
in this test the parameters obtained from a model estimated using the pooled data are treated as
restrictions of a set of parameters obtained from fitting J= 4 separate models. In this study the
number of restrictions was thus three times the total number of parameters (including intercepts
and gamma) in the frontier sub-models in stage 1. In this test, model specification must be the
same across all groups, and is therefore constrained by the performance of the group model with
the smallest number of observations. Therefore, the Cobb Douglas restriction only needed to be
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investigated for this group. To replace actual output in Stage 2, estimated dependent variables f̂ jt (Xijt)
are the output for the ith farmer in the tth period for the jth group based on the estimated coefficients
of Equation (1) for each group. These estimates include the value of the intercept but omits statistical
noise and any of the parameters of the inefficiency sub-model. Derived values for the J groups were
pooled to estimate the meta frontier as specified in Equation (3) and its efficiency estimates were
exported to compute the meta efficiencies. Rainfall was retained as an inefficiency variable in
Stage 2. To capture institutional differences rainfall was supplemented by three district dummy vari-
ables with Laingsburg as the base-case, and the coefficients on these were expected to be negative
because Laingsburg was one of the driest areas and appeared to show the least amount of
innovation.

3. Results and discussion

3.1 Group frontiers

At the group stage, we modelled the best production functions for sheep farming that the meagre
degrees of freedom allowed. Despite this limitation, there was clear evidence of inefficiency in all
four groups. Gamma was significant and in fact very close to one in each case, suggesting that
the observed farm-level inefficiencies were more than adequately represented by the three
factors for which there were data across the four groups. In addition, the formal LR test of the
joint significance of gamma and the coefficients of the Z-variables were easily rejected for Beaufort
West, Laingsburg andWilliston. This is shown in Table 2. The test statistic for Swellendamwas smaller
but since its inefficiency sub-model was simpler as well, the frontier hypothesis that the data is ade-
quately represented by the mean response function was rejected for this group as well. The func-
tional form for all the group frontiers was Cobb Douglas because the hypothesis that the
coefficients on the squared and cross products introduced in the more general translog function
were jointly zero in the case of Williston, and this determined the group frontier specification in
all four cases.

The Beaufort West frontier model produced a reasonable fit with significant positive coefficients
on three of the five inputs. In extensive livestock, production livestock is usually the most important
factor of production, but in this case the coefficient on fuel and mechanisation was 68% larger than
the coefficient on stock sheep. The labour input produced a commonly encountered coefficient of
0.05–0.10. The two inputs that failed to explain any of the variation in output were feed and remedies
and estate repairs and maintenance. Excluding these coefficients, the sum of significant coefficients
of 0.929 indicated mildly decreasing returns to scale, a typical finding in this production system (Con-
radie, Piesse, and Stephens 2019). In the inefficiency sub-model, the coefficients on all three Z-vari-
ables were significant, with all three factors contributing significantly to farm efficiency. The mean
group efficiency for Beaufort West was 0.435 with 12% of the estimates above 0.800 and 23%
below 0.200.

Table 2. Specification tests by group.

Beaufort West Laingsburg Swellendam Williston

Test 1
Hypothesis g = di = 0 g = di = 0 g = di = 0 g = di = 0
Lambda 252.22 378.37 9.73 22.28
Restrictions 5 5 3 5
Critical value (p < 0.05) 10.371 10.371 7.045 10.371
Test 2
Hypothesis bij = 0 ∀ i, j
Lambda 16.97
Restrictions 15
Critical value (p < 0.05) 24.384

24 N. MATTHEWS ET AL.



Three of the inputs had significant coefficients in the frontier model for Laingsburg, but output was
not related to farm expenditure on fuel and mechanisation and hired labour. Smaller farms in the
Laingsburg group, and extreme frugality during the drought, explain the small coefficient on fuel
and mechanisation, while more use of family labour accounts for the lack of correlation between
output and wages. In this case, part-time farming contributed to inefficiency. The largest input elas-
ticity was on stock sheep, followed by feed, but at 0.72 the sum of the coefficients indicated even stron-
ger decreasing returns to scale than for Beaufort West. The mean group efficiency of 0.497 varied
between zero and 0.916 and there were 14% of observations each below 0.200 and above 0.800.

It is clear from Table 3 that other factors drive the success of sheep farming in Swellendam than
mere livestock numbers, although efficiency was still positively correlated with rainfall. This could
include more emphasis on optimal feeding to minimise inter-lamb periods and ewes’ lifetime repro-
ductive performance. In this model, labour was the dominant input followed by fuel and mechanis-
ation and the sum of significant coefficients pf 0.577 indicated strongly decreasing returns to scale. In
this group efficiency varied from 0.285 to 1.000 around a mean value of 0.512. There were only three
observations above 0.800 and none below 0.200.

The model for Williston had an extraordinarily good fit for its small sample size. It is the only group
frontier in which four of the five inputs were significant in the production function and the coeffi-
cients on these four variables suggest mildly increasing returns to scale of 1.069. The number of
ewes in the flock was the most important input, followed by fuel and mechanisation and the
labour input. The coefficient on feed and animal remedies of 0.087 had the highest value on this vari-
able of the four groups, suggesting that feeding is a key feature of the Williston production system.
The signs on the inefficiency terms (Z-variables) were as expected. At 0.532, mean efficiency in Will-
iston was slightly higher than in Swellendam and the range was similar, varying from 0.139 to 1.000.
There were two observations below 0.200 while almost 10% of the observations had efficiencies of
>0.800, which suggests high levels of technical change in this group supporting increased efficiency.

3.2 Poolability

Pooling observations from all four groups produced a sample of 579 observations and estimating the
common group frontier model generated a log likelihood value of −833.36. These results appear in
the last two columns of Table 4 below. The only unexpected aspect of the results from this model
was that the dummy variable for part-time farming produced a positive and significant coefficient,
as in the Beaufort West model, but counter to the results for Williston and Laingsburg. The sum of the
five input coefficients in this model indicated practically constant returns to scale.

The sum of log likelihood values of the four group models reported on in Table 3 was −598.62.
This gave a test statistic on the LR pooling test of l = −2× [−833.36− (−598.62)] = 508.72. Since
pooling imposed 31 restrictions on the system, the critical value for rejecting this hypothesis was
x20.05 = 43.773. Thus, pooling was rejected and the metafrontier model was estimated in which
the values from the group models replaced actual observations in the pooled sample.

3.3 The metafrontier model

The parameters from the metafrontier model are shown in the first two columns of Table 4. The large
sample size is consistent with a good fit and the parameters obtained for the frontier variables were
significant with the expected signs and relative magnitudes. However, they were much smaller than
those obtained in the group model applied to the pooled data or in previous pooled models esti-
mated on the Karoo Management Panel data (e.g., Conradie 2019). These results indicate an
average estimate of returns to scale of just 0.48, which means that most of the sheep farms in
this sample are substantially too large and/or too intensive. The inefficiency sub-model generated
four significant coefficients, all with the expected signs. Although significant, the rainfall effect
was smaller than anticipated and together with the unspecified institutional differences between
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Table 3. Parameter estimates for the group stochastic frontier models.

Beaufort West Laingsburg Swellendam Williston

n = 163 n = 248 n = 93 n = 75

Coefficient Std error Coefficient Std error Coefficient Std error Coefficient Std error

Production function
Constant 5.324 0.917*** 8.120 0.478*** 8.439 1.901*** 4.778 0.857***
ln(stock sheep) 0.326 0.033*** 0.579 0.064*** 0.000 0.038 0.547 0.134***
ln(feed & remedies) −0.005 0.022 0.108 0.026*** 0.012 0.020 0.087 0.042***
ln(fuel & mechanisation) 0.549 0.083*** 0.018 0.046 0.163 0.085* 0.290 0.090***
ln(estate repairs) −0.014 0.012 0.037 0.013*** 0.005 0.031 0.017 0.017
ln(labour) 0.054 0.016*** 0.005 0.023 0.414 0.126*** 0.145 0.042***
Inefficiency model
Constant 37.106 12.393*** −14.210 3.448*** 2.671 0.645*** 1.592 0.689***
ln(rainfall) −18.098 5.848*** −6.588 2.159*** −0.329 0.121*** −0.139 0.150
D_Grootfontein training −11.110 3.616** −11.804 6.985* −0.434 0.096***
D_parttime farming −2.453 1.129*** 13.871 6.255** 0.081 0.175
Variance and other model statistics
Sigma squared 75.78 21.44*** 52.63 13.34*** 0.083 0.031*** 0.149 0.022***
Gamma 9.99E-01 3.28E-04*** 9.99E-01 5.07E-04*** 1.00E + 00 6.93E-05*** 1.00E + 00 2.11E-08***
Log likelihood statistic −239.74 −325.65 −11.48 −21.75
Note: *** 1% significance level, ** 5% significance level, * 10% significance level.
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districts, gamma, indicated that inefficiency effects account for just 17.4% of the overall error
variation.

3.4 Interpretation of the efficiency estimates from the metafrontier model

The purpose of Table 4 is to generate the performance data that have been reported in Table 5 and
which are the key results of the study. Table 5 summarises overall (meta-) efficiencies per district and
show how these meta-efficiencies are decomposed into within and between group performances. In
each location, estimates for the best and worst case, as well as the average group member, are
reported and these data allow a ranking of the districts relative to each other. Every previous bench-
marking study of productivity in the Karoo have only generated data comparable to column 1, which
measures how well the individual farm compares to the group given the existing technology. In this
paper it is possible to produce a ranking of each district’s best practice relative to that of other dis-
tricts’ best practice and relative to the best available technology in the industry.

Table 4. Parameter estimates for the metafrontier and pooled models.

Metafrontier model Pooled group model

n = 579 n = 579

Coefficient Std error Coefficient Std error

Production function
Constant 11.164 0.243*** 5.468 0.459***
ln(stock sheep) 0.318 0.023*** 0.456 0.039***
ln(feed & remedies) 0.031 0.009*** 0.077 0.012***
ln(fuel & mechanisation) 0.068 0.021*** 0.367 0.047***
ln(estate repairs) 0.023 0.005*** 0.017 0.011
ln(labour) 0.039 0.008*** 0.043 0.015***
Metafrontier inefficiency
Constant 1.645 0.145***
ln(rainfall) −0.065 0.028**
D_Beaufort West −0.561 0.044***
D_Swellendam −2.482 0.132***
D_Williston −0.928 0.052***
Group inefficiency model
Constant 10.033 3.347***
ln(rainfall) −7.872 0.407***
D_Grootfontein training −12.055 1.279***
D_parttime farming 5.646 1.288***

Variance and other model statistics
Sigma squared 0.134 0.009*** 36.90 4.06***
Gamma 0.174 0.032*** 9.97E-01 6.33E-04***
Log likelihood statistic −221.01 −833.36
Note: *** 1% significance level, ** 5% significance level, * 10% significance level.

Table 5. A summary of group efficiencies and technology gaps by district.

District Group efficiency Technology gap ratio Meta technology efficiency

Beaufort West Mean 0.444 0.474 0.212
Minimum 0.000 0.364 0.000
Maximum 0.925 0.617 0.503

Laingsburg Mean 0.497 0.264 0.132
Minimum 0.000 0.230 0.000
Maximum 0.916 0.302 0.255

Swellendam Mean 0.512 0.982 0.503
Minimum 0.285 0.971 0.279
Maximum 1.000 1.000 0.982

Williston Mean 0.532 0.677 0.359
Minimum 0.139 0.534 0.103
Maximum 1.000 0.781 0.723
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As anticipated from the group stochastic frontier model results, Swellendam was the best per-
forming metafrontier sheep-producing district overall with a mean meta-efficiency of 0.503 with a
range of 0.279-0.982. The TGR data shows that when setting aside individual group inefficiency,
the maximum gap between the Swellendam frontier and the metafrontier is 3% while the
average technology gap between Swellendam and the metafrontier is around 2%. The lower end
of the meta-efficiency range reveals significant room for improvement within the group. This is
confirmed by the modest mean group efficiency score of 0.512 reported for Swellendam. On the
other hand, the maximum meta-efficiency value of 0.982 recorded for Swellendam indicates that
Swellendam sets the standard in sheep production in the Western and Northern Cape, and
perhaps in the country. Innovations that originate in the Overberg spread to the Karoo, but this is
unfortunate since the two regions have such different natural resource endowments and thus it is
unlikely there is much to be gained by followers imitating benefit best practices used by the
leaders (Conradie, Piesse, and Thirtle 2009).

Williston is by far the most efficient of the groups in the Karoo. The mean meta-efficiency is 0.359,
which is almost 70% higher than in Beaufort West, which has a mean meta-efficiency of 0.212, and
172% better than mean meta-efficiency in Laingsburg. The difference in performance within groups
is similar in all three Karoo districts and in terms of within group performance Williston ranks 7%
ahead of Laingsburg and Laingsburg 12% ahead of Beaufort West. Thus, it is not particularly
useful to benchmark simply locally as the real problem is the huge degree of separation between
what the best farmers in Laingsburg are doing compared to the best farmers in Williston.

The technological gap between Williston and the metafrontier is 32%, which places Williston on
average 30% ahead of Beaufort West whose mean TGR indicates a 53% gap between that group and
the metafrontier. As suggested above, the technology in Laingsburg was found to be furthest behind
the frontier, on average more than 70%. This implies that with a given input bundle, sheep farmers in
Laingsburg produce on average only 26% of the output achieved by the best sheep farmers in the
country. There is clearly an urgent need for the Laingsburg agricultural association or the local coop-
erative, Koup Produsente Kooperasie, to partner with the public extension service to improve pro-
ductivity in the area. If these two producer organisations fail to improve the quality of the local
production technology, individual producers will fail and with them the local organisations and
eventually the village will not be economically viable. This can happen extremely rapidly, especially
during a drought (Conradie, Piesse, and Stephens 2019). The leadership of Williston Vleis
Kooperasie must be commended for the initiative they have shown during the past few years of
extreme drought leading its members to innovate. It is imperative that other Karoo districts
follow the example of best practice areas and build resilience to climate change in their own
communities.

This paper has shown the importance of allowing for sources of variation in group-specific TGR
like environmental variables beyond the control of farms in comparative studies between districts.
Ng’ombe (2017) considered two plausible explanations for heterogeneous technological diversity in
Zambia. The first was a rainfall gradient that increases in a north-easterly direction and the second
were technological spill-ins from neighbouring countries that increase in a south-westerly direction.
Results showed spill-ins to be more important than rainfall. In that paper, in Southern Province and
Lusaka Province, smallholders are better connected to regional supply chains and infrastructure but
have the lowest rainfall. However, these farms operated within 11–12% of the metafrontier. On the
other hand, Northern and Luapula Provinces, which are remote but receive higher rainfall, are at a
distance of between 83% and 92% from the national level metafrontier, due to the scarcity of
modern inputs in these regions. In the present study, while rainfall was significant and explains
the high levels of technical performance in Swellendam, when this is combined with the overall
affluence of the region and the influence this has on technology adoption, it is clear that innovation
is the most important factor increasing efficiency in this farming community. However, at the same
time, rainfall does not explain the larger performance difference between Williston and Laingsburg
as precipitation levels are the same.
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3.5 Limitations

There are some limitations to this study. The most important are based on the randomness of the
districts included and the size of some of the groups, which are a function of missing data.
However, given these constraints, the results are surprisingly informative and it would be helpful
to test the robustness of the results with more data. Since the study was restricted to only the
western half of the country, it is not possible to make any general inferences about how the
Karoo compares to the rest of the country and that what technological spillovers might exist
between regions. A broader database compiled from nationally representative surveys would be
hugely helpful. Another concern raised by this analysis is that existing geographical boundaries
may be a poor proxy for real underlying differences that could be revealed for example by cluster
analysis.

4. Conclusion

This study investigates the added value of stochastic metafrontier analysis compared with previous
group frontier models. This is a relatively new approach and this paper is only the fifth metafrontier
paper using regional data and the third focussing on South African data. The Karoo has been the
subject of benchmarking studies before, but farm-level performance has never been compared
with that of sheep farming in other regions. The technology gaps between the Karoo and the rest
of the industry and even within the Karoo recommend that these insular communities look
further afield if they are to benefit from spillovers in innovation elsewhere.

Of course, there are many applications that could be done replicating this approach. Individual
studies of key agricultural industries would provide insights into which institutional factors create
pockets of local excellence to determine the best way to allow best practices to migrate from inno-
vators to other regions. This used to be the purview of the public extension service although in
recent years this has lapsed or ceased altogether. If the public extension service fails to do so, the
private sector should be encouraged to take over the role, perhaps following the example of
Trace and Save in the dairy industry (Conradie, Galloway, and Renner 2022; Galloway et al. 2018).
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