
Give to AgEcon Search

The World’s Largest Open Access Agricultural & Applied Economics Digital Library

This document is discoverable and free to researchers across the 
globe due to the work of AgEcon Search.

Help ensure our sustainability.

AgEcon Search
http://ageconsearch.umn.edu

aesearch@umn.edu

Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only. 
No other use, including posting to another Internet site, is permitted without permission from the copyright 
owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C.

No endorsement of AgEcon Search or its fundraising activities by the author(s) of the following work or their 
employer(s) is intended or implied.

https://shorturl.at/nIvhR
mailto:aesearch@umn.edu
http://ageconsearch.umn.edu/


Agrekon
Agricultural Economics Research, Policy and Practice in Southern Africa

ISSN: (Print) (Online) Journal homepage: www.tandfonline.com/journals/ragr20

Rainfall variability and alternative technology
adoption: evidence from Ethiopia

Dambala Gelo

To cite this article: Dambala Gelo (2022) Rainfall variability and alternative
technology adoption: evidence from Ethiopia, Agrekon, 61:3, 314-323, DOI:
10.1080/03031853.2022.2073242

To link to this article:  https://doi.org/10.1080/03031853.2022.2073242

Published online: 01 Jun 2022.

Submit your article to this journal 

Article views: 162

View related articles 

View Crossmark data

Citing articles: 2 View citing articles 

Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalInformation?journalCode=ragr20

https://www.tandfonline.com/journals/ragr20?src=pdf
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/03031853.2022.2073242
https://doi.org/10.1080/03031853.2022.2073242
https://www.tandfonline.com/action/authorSubmission?journalCode=ragr20&show=instructions&src=pdf
https://www.tandfonline.com/action/authorSubmission?journalCode=ragr20&show=instructions&src=pdf
https://www.tandfonline.com/doi/mlt/10.1080/03031853.2022.2073242?src=pdf
https://www.tandfonline.com/doi/mlt/10.1080/03031853.2022.2073242?src=pdf
http://crossmark.crossref.org/dialog/?doi=10.1080/03031853.2022.2073242&domain=pdf&date_stamp=01%20Jun%202022
http://crossmark.crossref.org/dialog/?doi=10.1080/03031853.2022.2073242&domain=pdf&date_stamp=01%20Jun%202022
https://www.tandfonline.com/doi/citedby/10.1080/03031853.2022.2073242?src=pdf
https://www.tandfonline.com/doi/citedby/10.1080/03031853.2022.2073242?src=pdf
https://www.tandfonline.com/action/journalInformation?journalCode=ragr20


Rainfall variability and alternative technology adoption: evidence
from Ethiopia
Dambala Gelo

School of Economics and Finance, University of the Witwatersrand, Johannesburg, South Africa

ABSTRACT
This paper investigates the effects of rainfall variability on agricultural input
demand while controlling for risk preference and other covariates. For the
empirical analysis, rural household survey data, which was matched with
rainfall variability data and experimentally generated measures of risk
preference, was used. The results show that increased rainfall variability
prompts households to reduce the application of productivity-enhancing
inputs, such as fertiliser, but bolsters the application of low-risk inputs
such as manure. These results are robust to alternative specifications and
support the theoretical predictions developed. The findings suggest the
following policy implications for chemical fertiliser use among risk-averse
smallholder farmers in areas characterized by rainfall variability. First,
developing more weather-resilient crop varieties and irrigation could
stimulate higher use of chemical fertiliser by producing more stable
yields. Secondly, weather index insurance (WII) could incentivize higher
chemical fertiliser use by reducing income risk and easing liquidity
constraints. Thirdly, social protection such as cash transfer programmes
could lead to a higher use of chemical fertiliser by serving as insurance
against income risks (i.e., through providing regular and predictable
financial resources).
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1. Introduction

Internationally, there is a vast and fast-growing body of literature concerning the economic impacts of
climate change. One main focus area is the potential impact of climate change on agriculture (Salinger
et al. 1997; Dixson and Sergerson 1999; Blignaut et al. 2009). Unlike other sectors such as trade and indus-
try, agriculture is directly impacted by climatological variables such as temperature and precipitation,
and their impact on the length and quality of growing seasons. Not only are the mean values important,
as well as any changes in those values; so are the range in variability and predictability of these clima-
tological variables. Climate change, defined as the long-run change in the mean and variability of clima-
tological variables (Hassan and Nhemachena 2007), prompts a change in the choice of agricultural
inputs, production, and methods of production in agricultural systems (Kane and Shogren 2000).

It has been shown that farmers adapt readily to rainfall variability (Hassan and Nhemachena 2007;
Alem et al. 2010). In adapting to more complex and prolonged changes in climate, farmers have to rely
on the efficacy of the interaction between a list of farm-level input decisions.1 Inter alia, these input
decisions include the increased use of irrigation, the shift to early-maturing crop varieties, the use
of pesticides, chemical and/or organic fertilisers, diversification of crop portfolio, and the allocation
of the land under production for each crop (Hassan and Nhemachena 2007; Kurukulasuriya and
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Mendelssohn 2007; Deressa et al. 2009). In short, farmers’ adaptation to climate changemanifests itself
mainly through a shift in the demand for and the use of inputs such as fertilisers, specific crop varieties,
pesticides, irrigation water, and arable land and labour use and allocation to specific crops. It is worth
noting that each of these inputs has a direct and meaningful interaction with the magnitude of vari-
able climate. Inputs are either risk-increasing, risk decreasing, or risk-neutral (Just and Pope 1978). The
use of chemical fertilisers, for example, reduces yield when rain fails, since they “burn” the roots of
plants, but it increases yield during a normal or better-than-average-rain year. Thus, the use of fertilisers
increases both the first (mean) and the second (variance) moments of yield determination, affecting
the yield distribution. However, apart from maintaining soil fertility, the use of manure helps conserve
water in the soil (Sesmero et al. 2018) and hence reduces yield variance.

For the most part, micro-level studies on the link between agriculture and climate in Africa have
focused on the determinants of adaptation to climate change (Hassan and Nhemachena 2007; Kuru-
kulasuriya and Mendelssohn 2007; Deressa et al. 2009), the impact of climate change on a household’s
farm income (Deressa et al., 2009), the impact of adaptation to climate change on food security, the
impact of rainfall variability on crop diversification (Bezabih and Sarr 2012), the impact of climate
change adaptation on farm households’ downside risk exposure (Di Falco and Veronesi 2013) and
climate uncertainty and demand for chemical fertiliser (Alem et al. 2010). Although these studies
have contributed to the knowledge and understanding of this modern-day phenomenon, evidence
on whether the behavioural response to climate change (in terms of demand for agricultural
inputs) varies with an input’s risk profile, i.e. its risk-increasing, risk-decreasing, and risk-neutral prop-
erties. Particularly, although Alem et al. (2010) confirmed that rainfall variability as measured by rainfall
coefficient of variation reduces demand for chemical fertiliser, the question remains whether the same
relation holds for an alternative input demand, such as that for organic manure. Moreover, the study
referenced did not control for risk preference in its empirical specification.

This study extends Alem et al. (2010) in two ways. First, it accounts for individual risk preferences
in the demand decision for agricultural inputs, while controlling for climate risk in the form of rainfall
variability. Secondly, in investigating this relationship it account for the typology of the inputs owing
to the implication of their use for yield variability. The key hypothesis of this study is that the impacts
of rainfall variability (yield risk) are input-type-differentiated, for the following reasons. First,
although both manure and fertiliser are used to improve soil fertility and bolster crop production,
they have differential interaction with extreme weathers conditions; if the rains fail, fertiliser is
more likely to burn soil than manure is and hence will result in varied distributions of crop yield,
all other variables remaining constant. Secondly, alternative inputs have different intertemporal
farm-income distributions. In particular, current fertiliser use bolsters crop yield in the short run,
but gradually imposes a detrimental effect on soil fertility (through soil mining) and hence
reduces crop yield in the long run. Current manure application, on the other hand, has the opposite
implications for intertemporal farm-income distribution. Thirdly, whereas fertiliser is a tradable input,
manure is non-tradable, due to the missing market. This may have implications for how input
demand responds to rainfall variability and risk preference. Accounting for input typology in
terms of its demand’s response to rainfall risk would enable us to extract specific policy implications
for managing risk and poverty-reduction measures.

In the interest of deriving and testing these implications, this study first developed a theoretical
model that formalizes farmers’ input-demand responses to rainfall variability (yield risk) thereby
informing empirical specifications. The model accounts for farmers’ risk preferences and the risk
properties of agricultural inputs by drawing on the standard framework of choice under uncertainty
(Pratt 1964).2 As a related stylized fact to this outcome, Ellis (1998) established that risk aversion
results in sub-optimal resource allocation, and that the extent of this outcome increases with the
degree of risk. This is mainly because peasant households cannot transfer risks partly or wholly to
other parties; in the developing countries where the great majority of peasants live and farm, insur-
ance and credit markets are often malfunctioning, poorly developed, or absent altogether. This is of
particular importance when it comes to rainfall uncertainty, which is a covariate in nature. A second
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stylized fact is an evidence that risk-averse peasant farmers’ resource allocation is also affected by the
interaction of these resources with risks, i.e., whether they are risk-increasing, risk-decreasing, or risk-
neutral (Grepperud 2000).

2. Theoretical frameworks

In this section, a comparative static analysis of input demand for risk-averse peasant farmers using
the Just and Pope (1978) production function and a linear mean-variance utility function was
derived. For ease of exposition, Constant Absolute Risk Aversion (CARA) of farmers’ attitudes to
risk, as opposed to Decreasing Absolute Risk Aversion (DARA) or Increasing Absolute Risk Aversion
(IARA) was assumed. The comparative statics were derived from the extended Coyle (1992) model
that introduces production uncertainty, which is germane for the analysis of climate change
impact in the context of farming behaviour.

In what follows, in the interest of exposition, a review of the Just and Pope (1978) production
function and the optimisation problem of a risk-averse peasant farmer was presented. This is fol-
lowed by a derivation of the comparative static results from a static model of a utility-maximizing
peasant farming household in an environment characterized by production risk. To start with, the
production function is given by the Just and Pope’s (1978) specification:

y = q(x)+ h(x)u (1)

where x is a vector of n variable inputs. Note also that the stochastic variable u is defined as
u = 4+ 1, 1 � (0, s2

1), where 4 is the average annual or seasonal rainfall and 1 is a shock
around this average value. The Just and Pope production function consists of two components;
namely the deterministic component represented by the first term, and the stochastic component
represented by the second term. The arguments of both components are assumed to remain the
same. By assumption, more input use increases average product at decreasing rate; fx + hx . 0,
fxx + hxx , 0 where hx . 0, hx = 0 and hx , 0 for risk-increasing, risk-neutral and risk-decreasing
inputs, respectively. Risk-increasing inputs are those that increase both the mean and the variance
of the crop yield. For example, as stated earlier, the application of chemical fertilisers increases yield
when rainfall is adequate, but also decreases yield when rainfall is inadequate and chemical burning
occurs (Just and Pope 1979).

On the other hand, inputs such as early maturing crop varieties, manure, and irrigation water are
risk-reducing variables. The use of manure, for example, increases yield when rain failure occurs but
does not affect yield when a good rain year occurs. Thus, by eliminating the lower tail of the yield
distribution, the use of manure increases the mean yield and reduces the variance of the yield,
and hence is a risk-reducing input. In the same way, irrigation increases yield when the rain fails
but does not affect yield when the rain is adequate, and hence also reduces risk, by eliminating
the lower tail of the yield distribution. A peasant farmer’s household chooses x to maximise the
expected utility of income;

MaxxEU(p(x)) (2)

where U is a continuously differentiable utility function defined on crop production income π. The
solution to the optimisation problem in (1) is equivalent to a solution to the following mean-variance
utility function in the sense of Leathers and Quiggin (1991);

MaxxV(m, s) (3)

Where m = pq(x)+ ph(x)4− wx and s = ph(x)s1, Vm . 0, Vmm , 0, Vs , 0 and Vss , 0 . The
first-order condition of optimisation of (3) yields:

∂V
∂x

= Vmmx + Vssx = Vm( pq′ + ph′4− w)+ Vs( ph
′su) = 0 (4)
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Note that one can re-arrange (4) as;

c = pq′ + ph′4− w − L(m, s)ph′s1 = 0 (5)

where L = Vs/Vm.
3 Note also that Lm . 0, Lm = 0, and Lm = 0 respectively for DARA, CARA, and

IARA whereas Ls . 0 for DARA or CARA.
In what follows, implicit function differentiation was applied to (5) to derive comparative static

results.

Proposition 1 An exogenous increase of production risk in terms of rainfall variability, holding
mean yield constant, increases the demand of risk-reducing inputs, but decreases the demand for
risk-increasing inputs.

Proof: The parameter of interest is s1. Differentiation of the implicit function c with respect to s1 is
given by

∂x
∂su

= − ∂c

∂su
/
∂c

∂x
(6)

Concavity of V i.e., Vmm , 0 implies that ∂c/∂x , 0 for interior solution of x. It then follows that the
sign of ∂x/∂s1 is the same as the sign of ∂c/∂s1 = −Lph′ − Lsph∗ph′∂s1 = −ph′(L+ Lsphs1),
which in turn depends on the sign of ph′. For risk-reducing inputs; ∂c/∂s1 . 0 as ph′ , 0 and for
risk-increasing input; ∂c/∂s1 , 0 as ph′ . 0 ▪

3. Econometric framework

By virtue of being observational rather than experimental, our dataset poses several econometric
challenges; first, from production economics, that fertiliser and manure are substitute inputs
of production, with the econometric implication of endogeneity bias arising from reverse causality.

Secondly, one stylised fact in Sub-Saharan Africa is that many farmers use fertiliser rather than
manure, or manure rather than fertiliser, or neither (Gilbert et al. 2011). Many farmers choose not
to use fertiliser owing to market and agronomic conditions. Not using fertiliser, in fact, signifies a
farmers’ optimal choice (corner solution) rather than representing a missing value. However, mass
zero observation has implications for the selection of the functional form of the econometric
model. However, unlike with fertiliser, there is no clear evidence as to why farmers choose not to
use manure. Following Beckman and Livingston (2012) this study, therefore, assumes that missing
observation for manure use results from incidental truncation, i.e., there is at least one latent variable
the threshold of which drives the decision as to whether a farmer uses a positive or zero quantity of
manure. If the latent variable is related to manure demand, parameter estimation for the manure
demand equation thus suffers from sample selection bias (Heckman 1979).

Thirdly, the assumption of the normality distribution of the data-generating process (DGP) for
both manure and fertiliser, as suggested by the early literature, may not be warranted. These
econometric challenges were addressed as follows: first, a corner-solution model as being appro-
priate to model fertiliser demand was chosen. Let the system of demand equations be given by:

Fi = aMi + Xib+ 1i if Fi . 0

= 0 otherwise
(7)

Mi = aFi + Xib+ vi if M∗ . 0

Mi not observed otherwise
(8)

Equations (4) is a Tobit model proposed by Tobin (1958); Equation (5) is a sample-selection model
of Heckman (1979). These equations were used to model farmers’ fertiliser and manure demands,
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respectively, where Mi is manure quantity, Fi is fertiliser quantity, M∗ is the latent variable that
determines the manure application decision, Xi is the matrix of the covariates, and 1i is the
error term. Endogeneity implies that Mi⊥1i and Fi⊥vi do not hold. To control for the endogeneity
bias arising from the correlation between 1i and vi, the Control function (CF) method was
employed. To implement the CF model, residual from a fertiliser Tobit of fertiliser demand func-
tion in (1) and using it as one covariates in the structural model of the manure demand equation
in (2) was derived. Statistical significance of the coefficient on the residual confirms both endo-
geneity of the fertiliser variable, and controls for correlation between it and the error term of
the manure equation (Papke and Wooldridge 2008).

The CF approach requires an instrumental variable (IV) to be used in the reduced form model that
is not in the structural model of manure demand. Fertiliser was considered as the endogenous vari-
able and its demand equation was specified as the first-stage Tobit model.

Total expenditure on variable inputs was used as the excluded variable. This variable reflects the
liquidity constraint that farmers have, which impacts the demand for tradable inputs such as fertili-
ser. However, manure is non-tradable; the liquidity constraint has no direct effect on its use other
than through affecting the demand for substitute or complementary tradable inputs; leftover endo-
geneity, if any, after using the CF approach was expected to be uncorrelated with the other covari-
ates in the structural model.

To control for sample selection bias in manure demand in equation (2), the Heckman two-step
selection estimator was implemented. Finally, to relax distributional assumptions and check robust-
ness, the Censored Least Absolute Deviations (CLAD) estimator in both manure and fertiliser demand
equations was implemented.

4. Data

The data collected by the Sustainable Land Management Survey project carried out by the Environ-
mental Economics Policy Forum for Ethiopia and the Department of Economics, Addis Ababa Univer-
sity was employed for the analysis in this study.

The survey was conducted in 14 villages selected from two zones of the Amhara National
Regional State of Ethiopia; East Gojjam Zone and South Wollo Zone. 4 The survey selected 120 house-
holds from each of these villages using a stratified sampling technique. East is located on a relatively
high production-potential plateau; Gojjam zone receives bountiful rainfall whereas South Wollo only
receives erratic and insufficient rainfall (Alem et al. 2010). Although the survey was conducted in
2002, 2005, and 2007 as part of a longitudinal study, we only used the data from the 2005 wave.
The dataset included variables such as household characteristics, farm physical characteristics, and
risk preferences.

Risk-preference data was generated from a framed field experiment. The experiment involved
offering farmers a choice of six pairs of farming systems, wherein each choice consists of a pair of
outcomes, one good and one bad, each outcome occurring with a probability of 50% (Bezabih
and Sarr 2012). Based on the choices made by the farmers, Bezabih and Sarr (2012) classified
farmers into risk-aversion classes, following Binswanger (1980). In this classification, the extreme
risk-aversion category includes households willing to take the smallest spread in gains and losses
followed by severe, moderate, intermediate, and slight risk-aversion categories; while the neutral
risk-aversion category corresponds to respondents willing to take the biggest spread in gains and
losses (ibid).5

Rainfall variability is represented by the coefficient of variation of rainfall, which was calculated as
the ratio of the standard deviation to the mean of monthly rainfall in a given season, and/or annual
average. This variable pertains only to the rainy season because the agricultural production in ques-
tion is seasonal, and the effective rainfall variability applies only over the rainy season (Bezabih and
Sarr 2012). In the Ethiopian context, particularly in regions where this survey was carried out, farmers
experience two rainy seasons: the Belg (spring) or minor rainy season, which lasts from February to
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May; and the Meher (summer) or major rainy season which runs from June to September (Alem et al.
2010; Bezabih and Sarr 2012).

Table 1 presents the descriptive statistics of variables used for the analysis. Average fertiliser and
manure use rates are 70 kg/ha and 128.9/ha, respectively, among the sample farmers.

Average annual rainfall for the production year 1008.312 and its coefficient of variation is 0.356. In
practice, these statistics vary across seasons: summer and winter.

In addition to rainfall variability and risk preferences, a range of household and farm character-
istics were controlled for. These include the household head’s age and sex, asset holdings, farm
size, livestock holdings, male labour endowment, and the ability to cope with risk proxied by the
interaction of rainfall variability and livestock holdings, a liquidity measure, total expenditure on vari-
able inputs, physical characteristics, number of fertile plots and number of flat plots. Average house-
hold has a labour force of 2.0153 adult male members and 2.013 female adult members, respectively.
Regarding households measure of wealth, the average household has 1.73 oxen, 0.555 ha of land per
adult member and 4.35 livestock excluding oxen.

Table 1. Descriptive statistics of variables used in the analysis.

Dependent variables Description
Expected
sign Mean St.Dev

Fertilize Fertiliser application per hectare, in kilograms 56.102 803.67
Manor Manure application per hectare, in kilograms 128.91 957.12
Risk preference
Neutral risk aversion Household classified as neutral in risk aversion (dummy) ? 0.492 0.500
Slight risk aversion Household classified as slightly risk-averse (dummy) ? 0.2456 0.4306
Intermediate risk
aversion

Household classified as intermediately risk-averse (dummy) 0.1637 0.3702

Moderate risk
aversion

Household classified as moderate risk-averse (dummy) +/- 0.0927 0.2902

Severe risk aversion Household classified as severely risk-averse (dummy) +/- 0.0179 0.1326
Extreme risk aversion Household classified as severely risk-averse (dummy) +/- 0.0108 0.1037
Rainfall variables
Annual mean rainfall Average annual rainfall for the production year. +/+ 1008.312 223.7697
Rainfall variability Coefficient of variation of the annual rainfall observations. +/- 0.356 0.0661
Summer means
rainfall

Average seasonal rainfall for the summer season. It is
measured for the year before the observed planting season

+/+ 192.2015 26.115

Summer rainfall
variability

Coefficient of variation of the summer rainfall +/-
+/ -

0.4900 0.05976

Spring means rainfall Average seasonal rainfall for the spring season. +/+ 93.044 9.786
Spring rainfall
variability

Coefficient of variation of the spring rainfall observations. - .4900 .059768

Household
characteristics

49.625 16.757

Age Household head’s age(years)
Gender A dummy variable representing the gender of the household

head (1 = female; 0 = male)
0.1625 0.369

Adult male labour The number of male working-age members of the household 2.0153 1.249
Adult female labour The number of female working-age members of the household 2.013 1.097
Input expenditure Total expenditure on variable inputs during the year. + 131.548 292.20
Livestock holding Total number of livestock (excluding oxen) 4.35 3.4641
Landarea_10 Land holding per adult _- 0.555 0.679
Oxen Number of oxen owned and used by the household + 1.73 1.41
Ability Measure of ability to cushion risk. It is the interaction of

rainfall variability with livestock holding
+ 1.546 1.2611

Zone South Wollo = 1, East Gojjam = 0, ? 0.431 0.495
Illiteracy 0.548 0.497
Farm
characteristics

Fertile plots number of fertile plots _- 2.431 2.535
Flat plots number of flat slopped plots +/- 3.705 2.7359
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5. Results and discussion

This section presents the results of the empirical investigation into the role of climate risk and risk
preference on manure and fertiliser demands in rural Ethiopia (see Table 2).

In the interest of relaxing the distributional assumption, the results from the CLAD model were
preferred to those from theTobit model. Starting with the model specification test, the coefficients
on residuals and the inverse Mills ratio were found to be statistically significant, suggesting that,
respectively, biases due to simultaneity between manure and fertiliser demand equations, and
sample selection in the decision of manure demand exist. The coefficient of fertiliser in the
manure demand equation is negative and statistically significant supporting our prior hypothesis
that fertiliser is a substitute input for manure.

The results also show that the coefficient of rainfall variability is positive and statistically signifi-
cant in the manure demand equation. However, this coefficient turns out to be negative and stat-
istically significant in the fertiliser demand equation. These results show that rainfall variability
increased manure demand, but attenuated that of fertiliser on intensive margins supporting our
theoretical prediction in proposition 1. The finding of the inverse relationship between rainfall varia-
bility and fertiliser demand lends support to Alem et al. (2010), and Sesmero et al. (2018). Moreover,
the coefficients of the risk-preference variables (risk-aversion and risk-neutral preferences) are posi-
tive and statistically significant in the manure equation, but turn out to be negative fertiliser and stat-
istically significant in the fertiliser equation.

The positive relationship between risk-aversion and rainfall variability on the one hand and
manure use on the other, suggests that the latter is a risk-reducing input. If this is the case, one
can claim that in the interests of smoothing income, risk-averse farmers self-insure by applying
more manure (the risk-reducing input), but less, (or none) of the risk-increasing inputs, given the
missing crop insurance markets. Conversely, the negative association between rainfall variability
and risk aversion, on the one hand, and the demand for fertiliser on the other, suggests that fertiliser
is a risk-increasing input, lending support to our prior expectations. The results also show that the
previous year’s rainfall levels negatively affect manure demand, but are positively associated with
fertiliser demand with the latter result being in line with Alem et al. (2010).

In addition to risk-aversion and rainfall variability, which are our key variables of interest, it was
found that the illiteracy of the household head has negative and statistically significant coefficient
in both manure equation and fertiliser demand. Moreover, the land holding is negatively associated
with manure use suggesting the intensification and extensification trade-off: large landholders can
increase production by using more land, compared to small landholders. The latter can only increase
production through applying more inputs; shortages of land constrain them from increasing pro-
duction through bringing more land into production.

The age of the household head is positively related to manure demand, suggesting that older
farmers are likely to have accumulated knowledge on the pros and cons of manure use from various
sources, and thus are likely to use this input. However, increased age decreased fertiliser demand,
partly because older farmers have accumulated discouraging experiences (repeated observation) on
the risk of the interaction of fertiliser with the downside risk of rainfall failure – unlike young farmers.
The alternative explanation is that the youth are targeted more by the government offering extension
packages, as they seem to pick up information more quickly than their elderly counterparts.

The zone variable has a statistically significant coefficient, suggesting that the demand for either
input is location-specific. The measure of the liquidity constraint (total expenditure on variable
inputs) variable is significantly and positively associated with fertiliser demand. This result implies
that fertiliser is a tradable input. Moreover, the coefficient on the measure of farmers’ ability to
cope with downside risk (shocks) as measured by the interaction between livestock holdings and
the rainfall coefficient of variation is positive, supporting our prior expectation. It shows that live-
stock holdings have cushion against the downside risk, meaning that farmers with larger livestock
holdings are willing to use more fertiliser ceteris paribus.
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In terms of farm characteristics, the proportion of fertile plots was found to be positively associated
withmanure demand, but this relationship turns out to be negative for fertiliser demand. From the cor-
relation coefficient between the error terms of the two equations, which is negative and statistically sig-
nificant, it can be inferred that manure and fertiliser are substitute inputs for the sampled households.

6. Conclusion

In this study, the link between manure and fertiliser demand and climate risk (measured as rainfall
variability) was investigated. To formalise these linkages, the behaviour of risk-averse smallholder

Table 2. CLAD and Tobit estimates of determinants of manure and fertiliser demands.s

VARIABLES
Manure Manure Fertiliser Fertilizer
CLAD Tobit CLAD Tobit

fertiliser −0.310* −16.97***
(0.169) (6.297)

residuals −1.715*** 12.73**
(0.149) (6.186)

inverse Mills ratio 12.98***
(1.498)

Rainfall −0.00173*** 0.0180 0.000118*** 0.000752***
(0.000228) (0.0110) (1.69e-05) (0.000187)

Rainfall variability 5.220*** 6.787 −0.382*** −3.159***
(0.672) (31.99) (0.0566) (0.598)

input_exp 0.00102*** 0.00100***
(8.62e-06) (9.17e-05)

extreme 1.041*** −11.05 −0.107*** −0.0438
(0.268) (17.51) (0.0224) (0.263)

severe 1.041*** −2.561 0.138*** −0.201
(0.268) (13.31) (0.0156) (0.239)

intermediate 0.729** 42.78*** −0.0672*** 0.155
(0.285) (12.27) (0.0190) (0.233)

moderate 0.00683 49.10*** −0.0324* 0.311
(0.282) (12.60) (0.0194) (0.238)

slight 0.452* 40.10*** −0.0883*** 0.0648
(0.271) (11.73) (0.0189) (0.229)

neutral 0.274 42.10*** −0.0622*** 0.0766
(0.271) (11.61) (0.0186) (0.227)

illiterate −0.456*** 4.289 −0.0222*** 0.0863
(0.0936) (4.382) (0.00543) (0.0631)

Male adult 0.0340 0.730 −0.0230*** −0.00356
(0.0319) (1.521) (0.00237) (0.0269)

landarea_10 −5.411*** −4.673 −0.0505*** −0.143
(0.486) (5.577) (0.00529) (0.131)

zone −1.055*** −3.087 0.0638*** 0.590***
(0.119) (5.115) (0.00576) (0.0661)

age 0.0268*** −0.132 −0.000368** −0.00751***
(0.00273) (0.119) (0.000161) (0.00198)

sex 0.826*** −1.360 −0.0252*** −0.218**
(0.112) (5.054) (0.00873) (0.0934)

livestock −0.0849***
(0.0179)

oxen 0.00494* −0.0707**
(0.00269) (0.0320)

ability 0.0372*** 0.227***
(0.00309) (0.0361)

fertile 0.0554*** −0.333 0.00609*** −0.0211
(0.0149) (0.826) (0.00116) (0.0132)

Flat slip 0.107*** −1.015 −0.00174* 0.0501***
(0.0160) (0.768) (0.000973) (0.0113)

Constant 0.945* −91.29*** 0.0501 −0.536
(0.498) (22.87) (0.0352) (0.413)

Observations 1,101 1,511 730 1,511

Standard errors in parentheses *** p < 0.01, ** p < 0.05, * p < 0.1
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farmers was modelled, using the assumptions of the Just and Pope (1979) production function and
the linear mean-variance utility function. The comparative static analysis results based on this model
enabled us to hypothesise that an increase in rainfall risk – the variability of rainfall, ceteris paribus –
increases the use of risk-reducing inputs such as manure, but reduces the use of risk-increasing
inputs, including chemical fertilisers. Through the implementation of control function (CF) Tobit
and CLAD models, we tested these hypotheses for risk-averse peasant farmers in Ethiopia. Empirical
results obtained strongly support the prediction of our theoretical model. Specifically, after control-
ling for risk preferences, we found that among risk-averse peasant farmers, rainfall variability spurs
demand for manure, but attenuates demand for fertiliser.

It follows that in areas where rainfall is less erratic, demand for manure falls, but the use of ferti-
liser increases among smallholder farmers.

Several policy implications emerge from these findings. First, a subsidy on fertiliser use will not
cause all risk-averse farmers to increase fertiliser use or expected output in areas characterised by
rainfall variability coupled with a common phenomenon of crop insurance non-existence. Secondly,
developing drought-tolerant crop varieties and irrigation, subsidising the adoption of improved
methods of cultivation to reduce soil moisture loss, and promoting smallholder livelihood diversifi-
cation strategies, ceterus parbus encourages the application of chemical fertiliser and hence increase
production and productivities in areas characterised by rainfall variability. Secondly, weather index
insurance (WII) could incentivize higher chemical fertiliser use by reducing income risk and easing
liquidity constraints. Thirdly, social protection such as cash transfer programmes could lead to a
higher use of chemical fertiliser by serving as insurance against income risks (i.e., through providing
regular and predictable financial resources).6

However, these instruments (production risk – reducing measures) discourage manure use and
hence undermine sustainable land management. This means that such measures pose trade-offs
between intensifying short-term crop production through increased chemical fertiliser use, and com-
promising the sustainability of land through reduced manure use.

Notes

1. The terms “input” and “innovation are used” interchangeably.
2. Many empirical studies have been based on the risk preference assumptions of Pratt (1964) model. (See for

example, Hansen and Singleton 1983; Yesuf and Buffstone 2009; Bezabih and Sarr 2012).
3. Note thatL is considered as reservation price (willingness to pay) often referred to as risk-premium eliminate risk

(crop income risk arising from rainfall variability). It forms the basis of a household’s demand for crop insurance.
4. Zone is a 1st level subdivision of state (province) in Ethiopia.
5. For a detailed exposition, see Bezabih and Sarr (2012), as they used the same data and offer a fairly good descrip-

tion of this variable.
6. Apart from insurance channel, cash transfers may promote higher use of chemical fertiliser through its effect on

farmers’ risk preferences. To be specific, by altering/increasing total farm household wealth, it reduces farmers’
risk-aversion (increased willingness to assume more risk), which in turn may lead to an increase in fertiliser use
under income risk (Serra et al. 2006; Daidone et al., 2019).
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