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ABSTRACT
Agricultural intensification has been encouraged through the promotion
of various agricultural technologies, but the synergies between different
technologies have not been fully explored among various specific
crops. Using the multinomial endogenous switching regression model
complemented with the multivalued inverse probability regression
model, this study determines the impacts of the adoption of
combinations of chemical fertiliser, improved rice seeds, and herbicides
on household welfare. Data were collected from 900 farm households in
Northern Ghana. Our results indicate that the adoption of combinations
of agricultural technologies is affected by various socio-economic
attributes, resource constraints, institutional factors, and production
shocks. We find that adopting multiple technologies improves rice
yields, gross rice income, and per capita consumption expenditure. The
results point out the crucial synergistic effects of the adoption of
agricultural technologies on household welfare. We suggest that
policies aimed at strengthening farm household welfare should
encourage adopting multiple agricultural technologies in rice-producing
farm households to realise the most welfare.
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1. Introduction

African countries are faced with numerous developmental challenges that have culminated in sig-
nificantly low living standards (Barrios, Bertinelli, and Strobl 2010). Notwithstanding, the continent
has made meaningful strides macro-economically over the years, resulting in stable economic
growth (Rodrik 2018). Since 2000, Africa’s Gross Domestic Product (GDP) has increased at an
average yearly rate of 5.2%. Additionally, as of 2017, six out of the 13 fastest-growing economies
in the world were in Africa. Although there has been some improvement in economic performance,
poverty and food insecurity in sub-Saharan Africa (SSA) remain high. About two out of three of SSA’s
population resides in rural areas, most of which depend on agriculture for their livelihood (Diao,
Hazell, and Thurlow 2010). These gains in macroeconomic performance in the continent have
hardly been felt in the agricultural sector and rural areas. The agricultural sector in SSA continues
to underperform. Continental crop yields lag behind other world regions, while productivity
growth continues to be sluggish (Julien, Bravo-Ureta, and Rada 2019; Sheahan and Barrett 2017).
Between 1961 and 2000, average cereal yields have fluctuated around 0.8 ton/ha and only experi-
enced a modest increase afterward to reach 1.3 ton/ha in 2014 (Fao 2018). The low crop yields
and high levels of food insecurity can be explained by low adoption of new agricultural technologies,
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climate change, pests and diseases, and low soil fertility (Kassie et al. 2015; Khonje et al. 2018).
However, to mitigate these challenges, most farmers in SSA have resorted to crop diversification
which helps to improve their resilience (Mzyece and Ng’ombe 2020).

As part of crop diversification and consumption patterns, rice has unsurprisingly become the
second staple food consumed in Ghana after maize (Lu, Addai, and Ng’ombe 2021). For example,
rice production in Ghana increased from 48,800 tons in 1970–925,000 tons in 2019, growing at an
average annual rate of 9.03% (Taylor 2020). Despite high rice consumption levels and the crop’s
potential to boost the country’s economic prospects, rice remains a food crop that Ghana is not
self-sufficient in, with consumption exceeding domestic production (Lu, Addai, and Ng’ombe
2021). Thus, increasing rice yields through the increased adoption of improved technologies is criti-
cal to reducing food insecurity and poverty. However, the debate about which type of technology is
more appropriate to foster sustainable development among smallholder farmers still remains. While
others consider low-external input strategies as most appropriate (Altieri and Toledo 2011), others
suggest input intensification (Borlaug 2007; Pingali 2014). On one hand, low-external input strategies
involve different agronomic practices such as conservation tillage, other soil and water management
techniques, and organic manure (Wainaina, Tongruksawattana, and Qaim 2018). On the other hand,
the input intensification approach emphasises the use of improved seeds, chemical fertiliser, irriga-
tion, and other productivity-enhancing external inputs. Proponents of the low-external inputs
approach often argue that the use of improved crop varieties and agrochemicals would negatively
impact the environment and create farmer dependencies with negative implications on food secur-
ity (Holt-Giménez et al. 2012). The other side of the debate has it that the use of improved seeds and
increased chemical fertiliser is essential for boosting food security, especially in SSA, where the Green
Revolution did not take off at the same level as other world regions (Jhamtani 2011; Juma 2013). As
an alternative to the search for an all-purpose system, Kassie et al. (2018) and Wainaina, Tongruksa-
wattana, and Qaim (2016) suggest that appropriate approaches may vary from one country to
another, contingent on agro-ecological zones, different crops, social, economic, and market settings.

Moreover, recent studies suggest that farmers sometimes adopt a combination of these technol-
ogies (Danso-Abbeam and Baiyegunhi 2018; Kassie et al. 2015). Wainaina, Tongruksawattana, and
Qaim (2018) indicated that a synergistic relationship among agricultural technologies could posi-
tively impact productivity and incomes. While this is possible, there is little evidence about crop-
specific synergetic relationships of agricultural technologies in diverse smallholder environments,
especially in SSA. This is primarily as a result of the fact that most impact studies focus on single tech-
nologies (Becerril and Abdulai 2010; Khonje et al. 2015; Lu, Addai, and Ng’ombe 2021) or compare
the effect of similar types of technologies (Biru, Zeller, and Loos 2019; Teklewold et al. 2013; Wai-
naina, Tongruksawattana, and Qaim 2018).

Few such studies (e.g., Danso-Abbeam and Baiyegunhi 2018; Khonje et al. 2018; Teklewold et al.
2013) widened their scope to include the impact of selected agricultural technologies in combi-
nations, and more so, most of these analyse their effects mostly on maize production. As an emer-
ging relevant body of literature, more evidence in different crops and settings is needed to guide
future agricultural technology approaches, especially in SSA. Therefore, this study examines the
adoption of multiple agricultural technologies (chemical fertiliser, improved rice seeds, and herbi-
cides) and their effect on farm household welfare (rice yield, gross rice income per hectare, and
per capita consumption expenditure). Specifically, we evaluate the determinants of the adoption
of these combinations of agricultural technologies in rice-producing farm households and determine
the impacts of selected combinations on the outcome variables. Most studies (e.g., Becerril and
Abdulai 2010; Khonje et al. 2015; Lu, Addai, and Ng’ombe 2021) do not unearth the full account
of combinations of agricultural technologies in rice production, and this study fills this gap.

This study contributes the following to the literature. We examine whether agricultural technol-
ogy adoption in combinations yields more benefits to the rice-producing farm household than
adopting them in singles. This is relevant to the research as to whether farmers should apply agri-
cultural technologies individually or as a combination which would be important for effective
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extension policies directed at agricultural technology use in SSA. Wu and Babcock (2006) suggested
that impact analysis of technologies that ignore the synergies between themmay underestimate the
impact of the various determinants of adoption decisions and the effects of multiple technology
adoption. To the best of our knowledge, this study is the first to take such an approach to
analyse the impacts of adopting these unique agricultural technologies (i.e., chemical fertiliser,
improved rice seeds, and herbicides) on household welfare in Northern Ghana.

The rest of the paper proceeds as follows. Section 2 presents the econometric framework and
strategies for the estimations. Section 3 outlines the data employed in the study and its description.
The empirical results and discussions are presented in Section 4. The final section concludes the
study.

2. Econometric framework and estimation strategy

Considering the potential agronomic effects among agricultural technologies, farmers that act
“efficiently” are likely to adopt agricultural technologies complementarily (Gebremariam and
Tesfaye 2018; Wainaina, Tongruksawattana, and Qaim 2018). Conventionally, agricultural tech-
nologies (i.e., input and farm practices) may be adopted in combination due to their comp-
lementary effects. The reason may be that agricultural inputs are frequently provided to
farmers in conjunction with others or handed over collectively through state support programs
(Sheahan and Barrett 2017). In practice, some studies on agricultural technology adoption
choices (e.g., Danso-Abbeam and Baiyegunhi 2018; Wossen et al. 2019a) assume that farmers
consider an array (or package) of possible technologies and select specific technology packages
that maximise expected utility. To untie the real effects of multiple technology adoption, we
model farmer’s choice of combinations of agricultural technologies and their impact using a
multinomial endogenous switching regression framework – a selection bias correction approach
built on the multinomial logit choice model (Bourguignon, Fournier, and Gurgand 2007). A mul-
tinomial endogenous switching regression model generates consistent estimates of the choice
procedure regardless of whether the independence of irrelevant alternatives (IIA) assumption
is satisfied or not (Bourguignon, Fournier, and Gurgand 2007). This method can determine
the impacts of agricultural technology usage in singles and combinations while accounting
for potential selection bias from observed and unobserved confounders and the synergy
among alternative choices of agricultural technologies (Mansur, Mendelsohn, and Morrison
2008).

2.1 Multinomial adoption selection model

Conceptually, the choice of combinations of agricultural technologies is modelled within a random
utility framework. Following Danso-Abbeam and Baiyegunhi (2018), Ng’ombe, Kalinda, and Tembo
(2017) and Teklewold et al. (2013), we hypothesise that rice producers seek to maximise their
returns Ui, by comparing benefits derived by m alternative combinations of agricultural technol-
ogies. A prerequisite for the rice producer i to select any combination, j over an alternative mix
m, is when Uij . Uimm = j, or equivalent DUim = Uij − Uim. 0 m = j. The probable return, U∗

ij ,

that the rice producer obtains from the selection of the combination j is an inherent factor
arrived at through identified household, farm, location-specific characteristics (Xi), and invisible
factors (1ij):

U∗
ij = Xibj + 1ij , (1)

where Xi denotes observed exogenous factors (household, farm, and location-specific character-
istics), bj denotes unknown parameters, and 1ij is a random error. Let I be an indicator that
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designates rice producers’ selection of the combination corresponding to:

I =

1 if U∗
i1 . max

m=j
(U∗

im) or hi1 , 0

..

. ..
. ..

.
for all m = j

j if U∗
i1 . max

m=j
(U∗

im) or hij , 0

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩ (2)

where hij = maxm=j (U∗
im − U∗

ij ) , 0 (Bourguignon, Fournier, and Gurgand 2007). Equation (2)

suggests that the ith rice producer will select a combination j expecting maximum benefit if com-
bination j leads to higher expected economic benefits than any other combination m = j, that is,
if hij = maxm=j (U∗

im − U∗
ij ) . 0.

Assuming that 1 is identically and independently Gumbel distributed, the likelihood that a rice
producer i will select combination j can be modelled using the multinomial logit model (McFadden
1973) as follows:

Pij = Pr (hij , 0 | Xi) =
exp (Xibj)∑j

m=1
exp (Xibm)

(3)

where parameters and variables are as defined before.

2.2 Multinomial endogenous switching regression

The second step of the multinomial endogenous switching regression model involves modelling the
relationship between the outcome variables (hereafter, rice yield, gross rice income, and per capita con-
sumption expenditure) and a set of exogenous factors (household, farm, and location-specific factors) for
the selected combinations. In our agricultural technology combinations (Table 2), the base category is
non-adoption of agricultural technologies (i.e., C0I0H0), which is designated as j = 1 with the rest port-
folios being designated as 2,3,… , n. The outcome model for each likely regime j is specified as:

Regime 1:Qi1 = Zia1 + ui1 if I = 1

..

. ..
.

Regime 1:Qij = Ziaj + uij if I = 1

⎧⎪⎪⎨⎪⎪⎩ (4)

where Q′
i1s are the outcome variables of the ith rice producer in the regime j and error term (u′s) whose

E(uij|X , Z) = 0 and var(uij|X , Z) = s2
j . It is assumed thatQij is identified if, and only if, the combination j is

adopted, which happens when U∗
ij . max

m=j
(U∗

im). If the 1
′s and u′s are not independent, OLS estimations

for Equation (4) will be biased. Consistentmaximum likelihood estimates ofaj necessitate the addition of
the selection correction terms of the selection in Equation (4). The Dubin and McFadden (1984) model

assumes the following linearity hypothesis: E(uij|1i1.....1ij) = sj
∑j
m=j

rj(1im − E(1im)), whereby

∑
m
j = 1rj=0(by construction, the correlation between u′s and 1′s sums to zero). Under this assumption,

the multinomial endogenous switching regression model in Equation (4) can be rewritten as:

Regime 1:Qi1 = Zia1 + s1 l1
+̂
vi1 if I = 1

..

. ..
.

Regime 1:Qij = Ziaj + sj lj
+̂
vij if I = 1

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩ (5)

where sj is the covariance between 1′s and u′s, lj is the inverse Mills ratio computed from the estimated
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probabilities in Equation (3) as lj =
∑j
m=j

rj
P̂im ln (̂Pim)

1− P̂im
+ ln (̂Pij)

[ ]
, where r, is the correlation coefficient

of 1′s and u′s, and v′s are error terms with a possible value of zero. The standard errors estimated in
Equation (5) were bootstrapped using 100 replications to account for potential heteroskedasticity result-
ing from the derived regressor (lj).

According to Lokshin and Glinskaya (2009), the systems of Equations (3) and (5) are identified by
nonlinearities even if vectors of observables X and Z overlap completely. Besides, the all-encompass-
ing nature of our data helps in minimising the identification problem. Instrumental variables have
been proposed in the literature to provide robust estimates, even though finding a suitable one
is non-trivial. However, Chamberlain and Griliches (1975) posited that a system of equations does
not necessarily require instrumental variables for identification. Notwithstanding, various authors
(e.g., Bourguignon, Fournier, and Gurgand 2007; Danso-Abbeam and Baiyegunhi 2018; Teklewold
et al. 2013) have suggested the relevance of instrumental variables in the alternative selection
model in Equation (4). Therefore, in addition to selecting the instruments automatically generated
by the nonlinearity of the selection model, for model identification, we used the variables extension
access and market information as instruments, following literature to identify the selection equation.
These variables are plausible because they affect the adoption of the technologies considered here
but do not affect outcome variables. Most importantly, in checking their validity, we conducted an
admissibility test (Di Falco, Veronesi, and Yesuf 2011) to confirm that these variables jointly
(x2 = 70.07, p = 0.000) affect the adoption of agricultural technologies but not the outcomes.

2.3 Estimation of the counterfactual and treatment effects

Following Danso-Abbeam and Baiyegunhi (2018) and Di Falco and Veronesi (2014), we define how
the multinomial endogenous switching regression model can be utilised to compute the counterfac-
tual and average selection impacts. The counterfactual is specified as the outcome variable of adop-
ters that would have been obtained if benefits (coefficients) on their attributes had remained similar
to the benefits (marginal effects) on the attributes of the non-adopters and vice versa. That is, the
average treatment effect (ATE) is compared to the likely effects on adopters with and without adop-
tion. In addition to tackling selection bias due to unobserved heterogeneity, this procedure likewise
reduces selection bias from observed heterogeneity. From Equation (5), the resulting conditional
expectations for each outcome variable can be specified as follows:

Adopters with adoption (actual adoption observed in the sample):

E(Qi2|I = 2) = Zia2 + s2l2 (6a)

..

. ..
.

E(Qij|I = J) = Ziaj + sjlj (6b)

⎧⎪⎪⎨⎪⎪⎩
Adopters, had they decided not to adopt (Counterfactual):

E(Qi1|I = 2) = Zia1 + s1l2 (7a)

..

. ..
.

E(Qi1|I = J) = Zia1 + s1lj. (7b)

⎧⎪⎪⎨⎪⎪⎩
The values computed in Equations (6a) through (7b) are employed to generate unbiased causal

effects. The ATEs are computed as the difference between Equations (6a) and (7a) or the difference
between Equations (6b) and (7b). For instance, the difference between Equations (6a) and (7a) is
specified as

ATT = E[Qi2| = 2]− E[Qi1|I = 2] = Zi(a2 − a1)+ l2(s2 − s1). (8)
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The initial specification on the right-hand side of Equation (8) would be the difference in adopters’
average outcome if adopters’ attributes had similar benefits as non-adopters, i.e., if adopters had
similar attributes as non-adopters. The second part (lj) is the choice term that considers all the
likely impacts of differences in the unobserved variables.

2.4 Multivalued inverse probability weighted regression adjustment

As mentioned previously, identification of the MESRM requires suitable instrumental variables and
satisfying the exclusion restriction criterion which in empirical work, is not trivial. While we were
able to find suitable instruments (see Section 2.2) following an admissibility test (Di Falco, Veronesi,
and Yesuf 2011) – which has been widely employed to examine the suitability of instruments in
many impact studies (e.g., Di Falco and Veronesi 2014; Ding and Abdulai 2020; Kiwanuka-Lubinda,
Ng’ombe, and Machethe 2021), it does not mean that our instruments are perfect. Therefore, we
complement our MESRM with the multivalued inverse probability weighted regression (MIPWR)
model as a robustness check. The MIPWR model is doubly robust as it allows misspecification of
one of the equations – the treatment status or outcome models. It accounts for selection bias
from observed confounders. Essentially, the MIPWRA model employs the estimated inverse of the
treatment probability weights to compute missing data-corrected regression estimates which are
subsequently used to generate robust ATT estimates.

Following Linden et al. (2016) and Manda et al. (2021), the estimation of the MIPWR model
involves two steps. First, a multinomial logit model is estimated to generate propensity scores for
the adoption of combinations of multiple technologies as considered in this paper. At this point,
the inverse of the probability of treatment weights is computed for each treatment combination.
Second, outcome (hereafter, rice yield, gross rice income, and per capita consumption expenditure)
regression models are estimated via weighted regression using the estimated weights for each treat-
ment combination. It is in this stage where treatment-specific predicted outcomes for each obser-
vation are generated by using the estimated weighted regression coefficients. While these two
steps are required, the empirical model is estimated in one step using generalised method of
moments (GMM) whereby any potential estimation error from the estimated propensity scores is
accounted for during the estimation of the standard errors. The MIPWRA-based ATTs for farm house-
holds that adopted multiple combinations of agricultural technologies are computed as

ATT
J̃i, J
� = E[(ỹ

Ji
− y1i)|j = J

�
], (9)

where J̃i is the ith farm household’s potential outcome (hereafter, rice yield, gross rice income, and
per capita consumption expenditure) from the jth treatment combination (hereafter, chemical ferti-
lisers, improved rice variety, and herbicides), J̃ defines the treatment level of the treated potential
outcome, 0 is the control potential outcome’s treatment level, and j = J

�
is a restriction to

include only those respondents who receive the treatment level J
�

. To conserve space, we do not
present all the details of the MIPWR (see Cattaneo 2010; Cattaneo, Drukker, and Holland 2013;
Linden et al. 2016).

3. Data and descriptive statistics

The study utilises data from a farm household survey undertaken in Northern Ghana from October to
December 2018. The sampled farm households were from the Northern, Upper East, and Upper West
Regions of Ghana. The sample comprises 900 farm households with 300 from each region. A multi-
stage sampling technique was employed in choosing the farm households. The first stage was a pur-
posive selection of the Northern Zone of Ghana. The Northern Ghana was purposively selected
because the zone constitutes the biggest rice-producing area in Ghana. The zone comprises the
former Northern, Upper East and Upper West regions of Ghana. The second stage involved the
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selection of a district from each region based on their high level of rice production. The selected dis-
tricts are Savelugu (Northern Region), Nadowli-Kaleo (Upper West) and Kassena Nankana East (Upper
East). The third stage was a random selection of villages or communities from the operational areas
of the Ministry of Food and Agriculture (MoFA). The final stage involved random selection of rice
farm households from the different communities according to their size or the number of rice
farm households in the various communities. The data collected included various rice production
variables and characteristics of farm households in the study area using a structured questionnaire.

The selection of the variables for our empirical model resulted from reviewing various theoretical
and empirical literature relating to adoption and impact evaluations (e.g., Khonje et al. 2018; Lu,
Addai, and Ng’ombe 2021; Ng’ombe, Kalinda, and Tembo 2017; Teklewold et al. 2013). These
studies identified numerous factors influencing adoption and, consequently, our outcome variables
(rice yield, gross rice income, and per capita consumption expenditure) in their areas of interest. The
factors considered here include household attributes (gender, age, years of schooling, household
size), resource restrictions and market access (farm size, access to credit, land ownership, distance
to market, farm distance, total livestock units), social capital, and network (extension contact), and
production shocks (pest, disease, drought). Our outcome variables are rice yield, gross rice
income, and per capita consumption expenditure. We, at the minimum, expect that adoption of
an improved rice variety increases rice yield (Khonje et al. 2018; Villano et al. 2015), and therefore
gross rice income (Kassie et al. 2015; Manda et al. 2020), and per capita consumption expenditure
(Lu, Addai, and Ng’ombe 2021; Manda et al. 2019). We expect a similar pathway of the impacts
from the use of chemical fertiliser among farmers as fertilisers would add nutrients such as Nitrogen
(N) to the soil to improve plant growth and productivity (Donkor et al. 2016; Liverpool-Tasie 2017).
With regards to the adoption of herbicides, most research focuses on labour savings and health con-
cerns from herbicide use (Jallow et al. 2017; Lee and Thierfelder 2017). However, we expect herbicide
use to reduce weeds on farm fields that would stimulate plant growth (due to reduced crop-weed
competition for soil nutrients) and crop yield and potentially gross rice income (Chao et al. 2015), and
per capita food consumption expenditure (Popp, Pető, and Nagy 2013).

Definitions and summary statistics of variables of the pooled sample are presented in Table 1. It is
observed that the mean rice yield is 1434.78 kg/ha, while the gross rice income per hectare is GHS
3925.25.1 Also, the average consumption expenditure per household is GHS 8.13. The treatment vari-
ables (i.e., agricultural technologies) comprising chemical fertiliser, improved rice variety, and herbi-
cides had averages of 58%, 70%, and 39%, respectively. Of the sampled households, 68% had male
heads, and their average age was 54.45 years. Most (89%) of the household heads were married with
an average household size of 6.12, which is higher than Ghana’s national average of 4.9. The average
number of years of schooling of the household head is 3.02, which is low. This is likely to influence
the adoption of agricultural technologies at the farm level. The average number of years of rice
farming by household heads was 9.7.

The agricultural technologies considered in this study can be used in as many as eight possible
combinations (23), presented in Table 2. Of the 900 farm household heads interviewed, 12.44% did
not apply any agricultural technology (C0I0H0) on their farms, while all the various technologies
(C1I1H1) were concurrently adopted by 21% of them. In all, 58.2% of the total sample adopted mul-
tiples of agricultural technologies during the production season. This reiterates the long adherence
of most farmers to the use of single technologies in farming.

Descriptive statistics showing variable means according to technology combinations of usage
(eight sub-categories of observations) are shown in Table 3. It can be observed that farm households
that adopted agricultural technologies obtained relatively more rice yield and gross rice income and
had higher per capita consumption expenditure than non-adopters. It can also be observed that
most adopters of multiples of agricultural technologies are males, with their ages hovering
between 40 to 45years. Besides, years of schooling of household heads who adopted multiples of
technologies are averagely higher than single adopters and non-adopters. Larger households
adopted all three agricultural technologies during the rice production season. Adopters of multiples
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of agricultural technologies have increased access to market information. Most (65%) landowners
did not adopt any of the agricultural technologies. Thirty-two percent of household heads who
had access to credit did not adopt any technology, while 34% of their counterparts adopted all
the technologies.

Household heads with longer market distances adopted multiples of agricultural technologies.
About 63% of households that had access to extension services adopted all the agricultural technol-
ogies. Adoption of a combination of all the three technologies is higher in households that witnessed
shocks such as pest (50%), disease (50%), and drought (65%). While simple comparisons of differ-
ences in outcome variables between adopters and non-adopters of agricultural technologies
shown in the upper rows of Table 3 are often considered as evidence of causal effects, they are

Table 1. Definition and summary statistics of the pooled sample.

Pooled sample

Variables Description Mean SD

Outcome
Rice yield Rice yield in kg/ha 1434.78 1160.96
Gross rice income Gross rice income in GHS 3925.36 5101.30
Per capita consumption
expenditure

Total food consumption per household member in GHS 8.13 11.44

Treatment/agrochemicals
Chemical fertiliser 1 if household head applies a chemical fertiliser, 0 otherwise 0.58 0.49
Improved rice variety 1 if household head adopted improved rice variety, 0 otherwise 0.70 0.46
Herbicide 1 if household head applies herbicide, 0 otherwise 0.39 0.49
Socio-economic characteristics
Gender 1 if household head is a male, 0 otherwise 0.68 0.47
Age Age of household head in years 42.45 9.82
Marital status 1 if married, 0 otherwise 0.89 0.31
Years of schooling Years of formal education of the household head 3.02 4.50
Household size Number of household members 6.12 2.02
Years of rice farming Years of rice farming 9.70 5.43
Resource constraints/institutional factors
Farm size Total rice farm size in hectares 0.64 0.54
Total livestock Total livestock units 45.00 44.44
Credit access 1 if the household head had access to credit, 0 otherwise 0.33 0.47
Market distance Distance from farm to market in km 4.07 2.05
Farm distance Distance from home to the farm in km 3.99 2.36
Extension access 1 if the household head had access to extension service, 0 otherwise 0.39 0.49
Market information 1 if the household head had access to market information, 0

otherwise
0.72 0.45

Land ownership 1 if household head is the landowner, 0 otherwise 0.54 0.50
Production shocks
Pest 1 if there was a pest outbreak, 0 otherwise 0.46 0.50
Disease 1 if there was disease outbreak, 0 otherwise 0.66 0.47
Drought 1 if there was a drought, 0 otherwise 0.75 0.43

Table 2. Farmers’ agricultural technology usage packages.

Choice (j)
Agricultural technology

usage package

Chemical
fertiliser

Improved
rice variety Herbicides

Frequency PercentC1 C0 I1 I0 H1 H0

1 C0 I0 H0 √ √ √ 112 12.44
2 C1 I0 H0 √ √ √ 50 5.56
3 C0 I1 H0 √ √ √ 147 16.33
4 C0 I0 H1 √ √ √ 67 7.44
5 C1 I1 H0 √ √ √ 242 26.89
6 C1 I0 H1 √ √ √ 45 5.00
7 C0 I1 H1 √ √ √ 48 5.33
8 C1 I1 H1 √ √ √ 189 21.00

Note: Each component in the combination packages entails a binary variable for agricultural technologies combination. Chemical
fertiliser (C), Improved rice variety (I), and Herbicides (H). Where the subscript denotes 1 = if adopted and 0 = otherwise.
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more often than not, misleading as they do not take into account of any potential confounders
(Angrist and Pischke 2015). A more rigorous analysis of these impacts is discussed in Section 4.0.

4. Empirical results and discussion

4.1 Conditional and unconditional probabilities of usage of agricultural technologies

The sample conditional and unconditional probabilities are presented in Table 4. On average, chemi-
cal fertiliser, improved rice variety, and herbicides were used by 58.44%, 69.56%, and 38.78% of the
farm households. The existence of interdependence across the three agricultural technologies is also
emphasised. The conditional probability of improved rice variety adoption by farm households
increased from 69.56% to 80.11% when farm household heads adopted chemical fertilisers. Similarly,
farm household heads’ conditional probability of adopting herbicides rose from 38.78 to 71.22%
when selecting chemical fertilisers and 82% when jointly used with improved rice variety. These
results show complementarity in the adoption of agricultural technologies by farm household heads.

Table 3. Summary statistics by combinations of agricultural technologies.

Mean values of agricultural technology combinations

Variables C0 I0 H0 C1 I0 H0 C0 I1 H0 C0 I0 H1 C1 I1 H0 C1 I0 H1 C0 I1 H1 C1 I1 H1

Outcome
Rice yield 513.73 747.28 857.18 599.30 1953.61 1411.81 967.27 2367.79
Gross rice income 663.08 2142.67 1711 837.24 5777.58 3784.11 1456.53 7436.18
Per capita consumption expenditure 4.85 11.02 6.71 3.79 8.68 9.68 7.35 11.07
Socio-economic factors
Gender 0.69 0.58 0.72 0.82 0.62 0.80 0.67 0.68
Age 45.25 42.10 44.07 45.49 40.84 40.76 43.04 40.86
Marital status 0.81 0.88 0.95 0.90 0.91 0.87 0.79 0.90
Years of schooling 2.69 2.44 3.27 2.81 2.52 2.80 4.27 3.60
Household size 5.96 5.96 6.34 6.06 6.12 5.93 5.73 6.25
Years of rice farming 10.63 9.94 9.02 12.24 9.33 9.67 9.31 9.31
Resource constraints/Institutional factors
Farm size 0.34 0.59 0.51 0.30 0.84 0.68 0.42 0.85
Total livestock 42.26 48.60 47.90 56.58 41.31 45.64 47.65 43.20
Credit access 0.32 0.36 0.31 0.36 0.31 0.38 0.35 0.34
Market distance 2.78 3.60 3.42 2.94 4.83 4.66 3.83 4.80
Farmstead distance 2.54 2.90 3.29 2.27 5.05 3.40 3.71 5.13
Extension access 0.13 0.36 0.23 0.12 0.54 0.36 0.13 0.63
Market information 0.39 0.50 0.66 0.37 0.90 0.86 0.63 0.92
Land ownership 0.65 0.44 0.63 0.61 0.50 0.44 0.64 0.45
Shocks
Pest 0.34 0.58 0.39 0.36 0.54 0.27 0.44 0.50
Disease 0.70 0.68 0.75 0.75 0.70 0.52 0.67 0.50
Drought 0.67 0.80 0.82 0.75 0.82 0.73 0.69 0.65

Note: A means of comparison of the explanatory variables between each agricultural technology combination (adopters) and
non-adopters (C0 I0 H0) under the assumption of equal variance

Table 4. Sample conditional and unconditional adoption probabilities of technologies (%).

Chemical fertiliser (C) Improved rice variety (I) Herbicides (H)

P(Yk = 1) 58.44 69.56 38.78
P(Yk = 1|YC = 1) 100 80.11 71.22
P(Yk = 1|YI = 1) 80.1 100 82
P(Yk = 1|YH = 1) 71.22 82 100
P(Yk = 1|YC = 1, YI = 1) 100 100 65.67
P(Yk = 1|YC = 1, YH = 1) 100 74.56 100
P(Yk = 1|YI = 1, YH = 1) 63.78 100 100

Note: Yk is a binary variable indicating the adoption status of agricultural technologies concerning selection k (Chemical Fertiliser
(C), Improved Rice Variety (I) and Herbicides (H)). The comparison is among unconditional probabilities and conditional prob-
abilities in individual agricultural technologies.
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4.2 Determinants of the choice of selection of combinations of agricultural technologies

The estimates of the multinomial logit model are presented in Table 5. The base category is the non-
adoption of agricultural technologies (C0I0H0). The Wald test to check whether all regression coeffi-
cients are jointly equal to zero is rejected [x2(119) = 429.34; p = 0.000], indicating that the multino-
mial logit model had strong explanatory power and fitted the data reasonably well. Nguyen-Van,
Poiraud, and To-The (2017) asserted that the marginal effects present a good picture and
meaning regarding the magnitudes of impact on individual probability models. The findings
show that the marginal effects vary across the various technology combinations.

Gender of the household heads has a positive and significant effect on the adoption of the com-
bination C1I0H1. More specifically, male-headed farm households are more likely to adopt a combi-
nation of chemical fertiliser and herbicides than female-headed farm households, all other factors
held constant. Plausibly, this could be because male-headed farm households are usually more
resourceful among rural households and have more capacity to acquire chemical fertiliser and her-
bicides. This finding is consistent with Gebre et al. (2019).

Age of a household head has a positive and statistically significant influence on the adoption of
the combination C0I1H0. Specifically, an increase in the household head’s age is associated with
increased likelihood of adopting improved rice seeds, ceteris paribus. This finding corroborates
with the findings of Wordofa et al. (2021) who report similar findings in Eastern Ethiopia. As in
Wordofa et al. (2021), this results could be due to the build-up of farmer experience, knowledge,
and physical and social capital. Marital status has a positive and significant impact on the adoption
of the combination C0I1H0. This finding suggests that farm household heads that are married are
more likely than their unmarried counterparts to adopt improved rice varieties. As expected, mar-
riage is associated with an increase in family size, which implies more household members to
feed and therefore, the need to adopt improved technologies to boost crop productivity and
sufficient food. However, this finding contradicts Ojo et al. (2021), who indicate that single
farmers have fewer responsibilities than married individuals which makes the former to more
likely channel their resources to adopting agricultural technologies.

The variable years of schooling has a negative and statistically significant influence on the house-
hold head’s decision to adopt C1I1H0. Thus, an increase in the number of years that household heads
spent on education by a year is associated with a reduction in the likelihood to use chemical ferti-
lisers and improved seed. This contradicts the findings of Gebremariam and Tesfaye (2018), who indi-
cated that households with better education are expected to be more aware of the benefits of new
technologies. Moreover, years of rice farming have a positive and significant effect on the adoption
of the combination C0 I0 H1 which implies that an additional year of experience in rice farming is
associated with an increased probability of adopting herbicides, everything else held constant.
This may be because an increase in years of rice farming is associated with a wealth of experiences,
lessons, and knowledge gain – which would boost farmer’s confidence in the herbicides and there-
fore, their probability of adopting them. On the contrary, years of rice farming of household heads
negatively impact adopting the combination C0I1H0. Specifically, as the number of years of farming
rice by household heads increases by a year, it leads to a decline in their likelihood to adopt C0I1H0,
ceteris paribus. This is likely to be the situation as most experienced farmers tend to be conservative,
especially when it comes to adopting new agricultural technologies in which they lack experience
(Somda et al. 2002).

Farm size has a positive and significant influence on the probability of adopting the combinations
C1I0H0, C1I1H0, and C1I0H1. More specifically, increasing farm size by a hectare is associated with an
increased likelihood of adopting chemical fertilisers, a chemical fertiliser and improved rice package,
and a combination of chemical fertilisers and herbicides. Plausibly, farmland has sometimes been
used as an indicator of wealth, and households’ having large farm sizes will likely adopt agricultural
technologies. This is consistent with Anang and Amikuzuno (2015) findings, which report a similar
result among rice farmers in Northern Ghana. On the other hand, we find that farm size negatively
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Table 5. Multinomial logit model marginal effects for the selection of various combinations of agricultural technologies.

C1 I0 H0 C0 I1 H0 C0 I0 H1 C1 I1 H0 C1 I0 H1 C0 I1 H1 C1 I1 H1

Variable dy/dx SE dy/dx SE dy/dx SE dy/dx SE dy/dx SE dy/dx SE dy/dx SE

Gender −0.020 0.015 −0.007 0.027 0.032 0.021 −0.041 0.030 0.033* 0.019 0.004 0.017 0.025 0.028
Ln (Age) −0.052 0.035 0.150** 0.057 0.010 0.040 −0.059 0.064 −0.049 0.032 −0.012 0.034 −0.024 0.057
Marital status −0.007 0.024 0.140** 0.051 0.018 0.029 −0.024 0.049 −0.030 0.023 −0.034 0.021 −0.024 0.046
Ln (Years of schooling) −0.011 0.008 0.012 0.012 0.004 0.008 −0.032** 0.014 −0.009 0.007 0.016 0.007 0.019 0.012
Ln (Household Size) −0.014 0.021 0.045 0.034 −0.025 0.024 0.005 0.039 −0.004 0.020 −0.027 0.022 0.042 0.035
Ln (Years of rice farming) −0.007 0.015 −0.062** 0.024 0.036* 0.018 0.043 0.031 −0.007 0.015 −0.009 0.016 0.022 0.028
Ln (Farm size) 0.034** 0.014 −0.002 0.021 −0.048** 0.017 0.055** 0.025 0.034** 0.013 −0.035** 0.014 0.024 0.022
Ln (Total livestock) 0.008 0.011 −0.012 0.015 0.030** 0.013 0.002 0.019 −0.008 0.009 0.015 0.010 −0.030* 0.016
Credit access 0.010 0.015 −0.012 0.026 0.010 0.017 −0.020 0.029 0.012 0.014 0.006 0.015 0.002 0.026
Ln (Market distance) 0.011 0.016 −0.056** 0.027 −0.024 0.021 0.094** 0.030 0.040** 0.016 −0.002 0.017 0.035 0.027
Ln (Farm Distance) −0.061** 0.020 −0.029 0.032 −0.007 0.027 0.070** 0.034 −0.078*** 0.020 0.043** 0.020 0.045 0.030
Land ownership −0.022 0.015 0.040 0.024 0.001 0.017 0.005 0.027 −0.017 0.014 0.006 0.015 −0.039 0.025
Pest 0.027* 0.015 −0.030 0.024 −0.021 0.017 0.098*** 0.028 −0.036** 0.016 −0.001 0.015 0.006 0.026
Disease 0.008 0.017 0.057** 0.028 0.010 0.020 0.041 0.032 −0.025 0.016 0.010 0.017 −0.096** 0.028
Drought 0.002 0.019 0.058* 0.031 0.002 0.020 0.078** 0.038 −0.007 0.018 −0.005 0.017 −0.089** 0.031
Extension access 0.017 0.016 −0.057** 0.028 −0.035 0.025 0.027 0.028 −0.004 0.014 −0.058** 0.022 0.144*** 0.025
Market information −0.055** 0.020 0.003 0.032 −0.0152 0.021 0.038 0.050 0.026 0.023 −0.012 0.020 0.060 0.049

Note: dy/dx and SE designate marginal effect and standard errors respectively; ***, **, and * indicate statistical significance at 1%, 5%, and 10% level; C0 I0 H0 is the reference category of non-
adoption of agricultural technologies
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affects household heads’ likelihood to adopt C0I0H1 and C0I1H1. An increase in farm size by a hectare
is associated with a reduction in the probability to adopt the combinations C0I0H1 and C0I1H1, every-
thing else held constant. This could be due to farmers’ inability to meet the cost of these technol-
ogies, as more capital would be required to invest in these technologies and be used on extra
land available. These results are consistent with Yigezu et al. (2018), who indicate that a key deter-
mining factor of adoption of technologies by smallholders is the high initial investment. This deviates
from the idea that some agricultural technologies are scale-dependent due to the relevance of farm
size in their adoption.

Adoption of C0I0H1 is positively influenced by total livestock unit ownership by the farm house-
hold. A unit increase in the total livestock owned by household heads leads to an increase in the
likelihood of the adoption of herbicides by smallholder farmers in the sample. Livestock is also a
source of draught power for agricultural practices such as ploughing (Ng’ombe et al. 2014), resulting
in increased farmed land. It is possible to use livestock as an instrument for acquiring these technol-
ogies that require cash. For example, Khonje et al. (2015) report that farmers who own assets could
either change them to liquid cash or use them as a guarantee to acquire credit to procure farm
inputs such as chemical fertiliser, insecticides, and herbicides for production. On the contrary,
total livestock units owned by households negatively and significantly influence the adoption of
the combination C1I1H1. Specifically, relative to the base category of non-adoption, a unit increase
in total livestock unit is associated with a decrease in the probability of adopting a combination
of chemical fertilisers, improved rice varieties and herbicides simultaneously, everything else con-
stant. This could result when farm households consider their livestock as sacred animals that need
to be used only for social purposes such as religious celebrations, or in cases when there are no
oxen to use for draught power, among others, instead of being used as an instrument to obtain
credit (Yaro and Hesselberg 2010).

Distance to markets has a positive and significant influence on the adoption of the combinations
C1I1H0 and C1I0H1. This result means that the longer the farmers’ homesteads are from the agricul-
tural market, the more likely farmers would on average adopt chemical fertilisers and improved rice
varieties, and a combination of chemical fertilisers and herbicides. This result is unexpected and con-
tradicts the findings of Anang and Amikuzuno (2015). Anang and Amikuzuno (2015) find that an
increase in market distance is expected to increase the transaction costs due to long- distance
travel – which is likely to decrease technology adoption in agriculture. Moreover, market distance
is associated with a decrease in the likelihood of farmers to adopt the combination C0I1H0. Consistent
with Anang and Amikuzuno (2015), this could be because of the high transaction cost involved in
acquiring improved seeds from a distant market centre.

Our results further show that the distance between farmers’ homesteads and their farmland
negatively influences farmers’ likelihood of adopting the combinations C1I0H0 and C1I0H1. More
specifically, compared with the base category of non-adoption of technology, an increase in
the distance from household heads’ homestead to their farmland reduces the likelihood of the
adoption of chemical fertiliser (C1I0H0) and a combination of chemical fertiliser and herbicides
(C1I0H1). This could plausibly be due to the drudgery involved in carrying such technologies to
a far distance to use them on the farm (Khonje et al. 2018). On the other hand, farm distance
to farmsteads also positively influences the adoption of C1I1H0 and C0I1H1, a finding that indicates
that increased distance between a farmer’s homestead and their farmlands increases the likeli-
hood of adopting a combination of chemical fertilisers and improved rice varieties, and improved
rice varieties and herbicides among smallholder farmers. Plausibly, this may be when farmers con-
sider the returns from the technology use to outweigh the drudgery costs linked with handling
them.

With regard to pest infestation, results show that farm households whose fields experience pest
infestation are more likely to adopt a combination of C1I0H0 and C1I1H0. This is consistent with the
findings of Teklewold et al. (2013), who show that pest stress increases the adoption of such agricul-
tural technologies. However, this may not work across the board, as our results suggest that pest
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stress negatively influences the adoption of C1I0H1, highlighting heterogeneous effects by factors
that affect the adoption of agricultural technologies among smallholder farmers.

Furthermore, weather shocks such as drought exposure negatively influence the adoption of the
combination of C1I1H1. Specifically, we found that farm households exposed to droughts during rice
production seasons are less likely to adopt agricultural technology comprising chemical fertilisers,
improved rice varieties, and herbicides. This result is consistent with Wainaina, Tongruksawattana,
and Qaim (2016), who contend that droughts negatively influence the adoption of agricultural tech-
nologies in Kenya. The reason behind our finding could be that farmers decide not to apply chemical
fertilisers complementary with improve rice varieties and herbicides in a drought-stressed season
because chemical fertilisers require moisture for increased nitrogen use efficiency by plants.
However, further results show that drought positively influences rice farmers’ probability to adopt
C1I1H0 and C1I1H0. This could be because such a mixture of technologies has previously yielded desir-
able payoffs in a drought season. Alternatively, the Northern Ghana is located along the Sahel zone
of Africa and experiences erratic rainfall patterns. Therefore, as a risk-averse mechanism, farmers may
adopt drought-resistant varieties to cushion likely output reduction by adopting nutrient-adding soil
technologies during the farming season.

Access to extension services positively and significantly influences the adoption of C1I1H1 but
negatively affects the adoption of C0I1H0 and C0I1H1. Particularly, smallholder farm households
with access to extension services are more likely to adopt a combination of all agricultural technol-
ogies (i.e., chemical fertiliser, improved rice variety, and herbicides) but do negatively affect the
adoption of C0I1H0 and C0I1H1. These findings are consistent with Khonje et al. (2015) and
Ng’ombe, Kalinda, and Tembo (2017) who contend that farmers who receive extension visits and/
or may be exposed to field events and demonstration trials have a high likelihood to adopt agricul-
tural technologies comprehensively. This could be because they become more informed and aware
of the benefits associated with such technologies. As in Ng’ombe, Kalinda, and Tembo (2017), these
results highlight an important message that government extension services encourage a more com-
prehensive adoption portfolio of agricultural technologies than otherwise. For farmers’ access to
market information, results show that smallholder farm households with access to market infor-
mation are less likely to adopt C1I0H0 than otherwise. This is contrary to our theoretical expectations
but it is worth to mention that if rice producers have access to available market information, it may
reduce the high transaction costs associated with information acquisition on agricultural inputs and
products. This would be expected to increase the likelihood of adopting these agricultural technol-
ogies (Mutenje et al. 2016).

4.3 Impact of multiple agricultural technology combinations on household welfare

Table 6 shows the multinomial endogenous switching regression (MESR)-based causal effects of
adopting multiple agricultural technologies on farm household welfare indicators – rice yield,
gross rice income, and per capita consumption expenditure.2 As a robustness check of causal
effects from the MESR model, we applied the multivalued inverse probability weighted regression
(MIPWR) model. The results in column (3) show technology impacts on rice yield in kilograms per
hectare. The unconditional average effect results indicate that adoption of all agricultural combi-
nations considered here has positive and significant causal effects on rice yields relative to non-
adoption. The agricultural technology combination that results in the lowest rice yield per hectare
(i.e., 284 kg/ha) is adoption of herbicides (i.e., C0I0H1) while adoption of chemical fertilisers and her-
bicides together (i.e., C1I0H1) leads to the highest impacts on rice yields (i.e., 7,172,379 kg/ha). Gen-
erally, these findings are consistent with previous literature on crop yield returns from input
intensification (e.g., Kassie et al. 2018; Wossen et al. 2019b).

Column (4) of Table 6 shows the unconditional average effects of the seven combinations of agri-
cultural technologies on gross rice income in Ghanaian Cedis. The results are similar to those in
column 3. That is, all the technology packages significantly and positively impact gross rice
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income. While the adoption of C1I0H1 results in most gross rice income (in terms of unconditional
average effects) amongst all the possible combinations of technologies, as it is for rice yield per
hectare, C0I1H1 yields the lowest gross rice income rather than C0I0H1 – which demonstrates hetero-
geneous unconditional average effects by outcome variable. Column (5) of Table 6 shows uncondi-
tional average effects of adopting the combinations of agricultural technologies on per capita
consumption expenditure among our sample in Northern Ghana. The unconditional effects indicate
that the combinations C1I0H0, C1I0H1, and C0I1H1 positively and significantly impacts household con-
sumption expenditure, whereas C0I1H0 and C1I1H0 lead to a reduction in per capita consumption
expenditure.

A clearer picture of the impacts of adopting agricultural technologies is one that accounts for
both observed and unobserved factors – the average treated effects on the treated (ATT) findings
shown below the unconditional average effects. Similarly, it can be observed that the adoption of
all the packages positively and significantly impact rice yield. The ATTs confirm the earlier results
with the adoption of a combination of chemical fertiliser and herbicides leading to 3464 kg/ha
while adoption of herbicides leads to the least rice yields (i.e., 102 kg/ha). Regarding the ATT with
respect to gross rice income, results indicate positive causal effects of all technology combinations.
This is consistent with the findings of Khonje et al. (2018) and Teklewold et al. (2013). The ATTs of all
the combinations except C0I0H1 had a positive and significant impact on per capita consumption
expenditure with a combination of chemical fertilisers and herbicides yielding the most payoff in
this category once again.

In general, the ATT results are lower in magnitude than the unconditional average effects shown
in Table 6. Unconditional average effects may be misleading, reason is that effects from observed
and unobserved confounders are unaccounted for. With ATTs, such confounding effects are
accounted for thereby leading to lower values of causal effects than in the case of unconditional
average effects. For example, the impact of adopting a package of chemical fertiliser and herbicides
is overstated by 52.4% under unconditional average effects. This implies that using the MESRM
model was appropriate and that its identification was credible.

4.4 Robustness checks

As discussed before, we used the MIPWR for robustness check of the MESR model results. Our
MIPWR-based ATT results based on Equation (9) are shown in Table 7. It can be observed that the
adoption of all combinations of technologies considered in this study improves rice yields, gross

Table 6. Average treatment effect results based on the multinomial endogenous switching regression model.

Adoption effects Combination Rice yield (kg/ha) Gross rice income (GHS)
Per capita consumption

expenditure

Unconditional average effect C1I0H0 347.632*** (22.213) 895.302*** (68.309) 1.269** (0.508)
C0I1H0 458.307*** (24.107) 1353.135*** (98.627) −2.620*** (0.303)
C0I0H1 283.833*** (22.076) 1062.543*** (121.017) −0.508 (0.342)
C1I1H0 914.275*** (27.319) 2464.65*** (100.473) −0.967** (0.354)
C1I0H1 7171.994*** (2131.567) 14,921.4*** (3711.259) 7.960*** (0.822)
C0I1H1 285.186*** (27.068) 680.901*** (89.271) 3.496*** (0.498)
C1I1H1 1052.727*** (30.941) 3311.377*** (155.488) 0.499 (0.412)

Average treatment effects on
treated (ATT)

C1I0H0 324.880*** (70.407) 435.510** (105.225) 4.905*** (1.053)

C0I1H0 115.907** (36.174) 212.579** (73.235) 1.353** (0.353)
C0I0H1 102.164** (31.139) 292.826* (148.976) 0.453 (0.380)
C1I1H0 332.385*** (54.187) 552.860*** (111.373) 5.820*** (0.639)
C1I0H1 3464.411** (1479.17) 7099.387** (3557.824) 21.868*** (3.612)
C0I1H1 143.501** (51.850) 193.741** (94.074) 2.522***(0.639)
C1I1H1 339.806*** (50.450) 683.046*** (160.788) 9.780*** (1.067)

Note: Standard errors are in parenthesis; ***, ** and * indicate statistical significance at 1%, 5% and 10% level.
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rice income and per capita consumption among farmers in Northern Ghana. Results show that C1I1H1

results in the highest rice yields and gross rice income though the adoption of improved rice var-
ieties leads to highest per capita consumption expenditure. Adoption of herbicides alone leads to
lowest rice yields, gross rice income and per capita consumption expenditure among all the combi-
nations considered. The general take-home message from results in Table 7 is that on average, agri-
cultural technologies adopted in combination result in higher rice yields, gross rice income and per
capita consumption expenditure. Of important notice is that the MIPWR-based ATTs reported in
Table 7 are quantitatively higher than those from MESRM. As in Manda et al. (2021), and Gormley
and Matsa (2014), this is because matching-based estimators merely account for observed hetero-
geneity thereby exposing results to unobserved heterogeneity. Zhou and Xie (2014) also showed
that propensity score-related methods and marginal treatment effects methods of causal inference
might produce different estimates due to how their estimates are derived, which is also a potential
explanation to our results. However, the two findings are generally consistent which provides confi-
dence in our MESRM model specifications.

5. Conclusions and policy implications

The adoption of multiple agricultural technologies and assessing the likely impacts on household
welfare has received considerable attention from various stakeholders in agriculture among
different countries. Due to the adoption of single technologies, poor application rates have been
recorded despite significant investment in promotions to encourage their multiple adoptions.
Using cross-sectional data from rice-producing households in Northern Ghana, we examine the
impacts of adopting unique combinations of agricultural technologies on household welfare out-
comes. We employ the multinomial endogenous switching regression model (MESRM) to correct
for potential selection bias from observed and unobserved confounders. As a robustness check,
we also employed the multivalued inverse probability regression (MIPWR) model – a doubly-
robust model that allows misspecification of one of the equations – the treatment status or
outcome models.

The multinomial logit model results indicated that the likelihood of adopting diverse combi-
nations of agricultural technologies is affected by various socio-economic attributes, resource con-
straints, institutional factors, and production shocks. These findings can be used to make informed
and targeted policies meant to scale up adoption rates of multiple and inter-related rice production
technologies. For instance, farm size significantly influences the adoption of various agricultural
technologies, contributing to the ongoing debate on farm size structural change and technology
use on environmental sustainability. The statistical significance of access to market information at
influencing adoption suggests the need to improve information flow among players and stake-
holders in the agricultural supply and marketing chain. Moreover, while access to extension services
negatively influences the adoption of some of these technology combinations, it strongly and posi-
tively influences the adoption of combinations of all the technologies. The reason could be that
extension services may be more focused on a comprehensive adoption of all the available improved

Table 7. Average treatment effect results from the multivalued inverse probability weighted regression model.

Combination
Treatment
effects Rice yield (kg/ha)

Gross rice income (GHS) per
hectare

Per capita consumption
expenditure

C1I0H0 ATT 971.750*** (125.724) 3447.900*** (441.893) 6.427*** (0.591)
C0I1H0 ATT 1098.118*** (124.055) 2753.897*** (568.217) 11.092*** (0.926)
C0I0H1 ATT 760.630*** (132.791) 1777.916*** (476.601) 6.251*** (0.645)
C1I1H0 ATT 1823.982*** (78.925) 4653.555*** (223.817) 8.032*** (0.510)
C1I0H1 ATT 1678.296*** (142.476) 3951.506*** (406.473) 6.392*** (0.607)
C0I1H1 ATT 858.469*** (103.222) 2935.485*** (158.324) 6.769*** (1.284)
C1I1H1 ATT 2008.992*** (110.933) 5251.320*** (255.762) 7.102*** (0.442)

Note: SE in brackets are robust standard errors; ***, **, and * denote statistical significance at 1%, 5%, and 10% level.
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agricultural technologies to farmers, especially as our results and most previous research (e.g.,
Khonje et al. 2018; Ng’ombe, Kalinda, and Tembo 2017; Teklewold et al. 2013) shows that adoption
of technologies in combination in lieu of adopting them singly results in more economic payoffs.

Regarding household welfare impact of multiple agricultural technology adoption, the conclusion
is that the adoption of agricultural technologies, on average, improves rice yields, gross rice income,
and household per capita consumption expenditure. Most importantly, the adoption of a combi-
nation of chemical fertilisers and improved rice variety, and herbicides significantly improved house-
holds’ rice yields, gross rice income per hectare, and per capita consumption expenditure. Based on
these results, we recommend policies that focus on increased adoption of these agricultural technol-
ogies in combination through increased extension access in Northern Ghana. Most importantly, our
results recommend more adoption of these agricultural technologies in combination rather than
singly to help farm households realise the most benefits from the essential synergistic effects
between agricultural production technologies in Northern Ghana and other developing areas in
Africa.

A limitation of the study is that the data used is at the household level, as plot-level data is non-
existent. Yield regressions are better estimated at the plot level and using separate plot-level and
household-level explanatory variables. Moreover, this study relies on rice production data from
one rice cropping year. Similar analyses but based on aggregate rice production (production over
different rice cropping years) or richer panel data with more agricultural technologies and
outcome variables is an interesting area for future research.

Notes

1. US Dollars (USD) to Ghanaian Cedis (GHS) exchange rate for December 31, 2018. 1USD: 4.9GHS
2. The second step of the regression estimation is not presented to save space. However, these results are available

upon request
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