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Analysis of Selected Vegetables and Fruits in U.S. Market: 

An Application of Demand Systems 

Abstract 

Demand analyses have been known to be quite sensitive to the chosen functional forms.  

Since no one specification fits all data the best, researchers have been preoccupied with finding 

ways to select among various functional forms.  This study addresses this concern by proposing a 

formulation which obviates the need to choose among various functional forms.  The approach is 

tested using four functional forms of direct demand system (RDS, CBS, AIDS, and NBR) and 

four functional forms of inverse demand system (RIDS, Laitinen-Theil, AIIDS, and the hybrid 

RIDS-AIIDS) on wholesale data for selected vegetables and fruits. 

Introduction 

Several studies in the past have considered the issue of how to choose among popular 

functional forms when conducting demand analyses.  Parks (1969) used the average information 

inaccuracy concept.  A relatively high average inaccuracy is taken to be an indicator of less 

satisfactory behavior.  Deaton (1978) applied a non-nested test to compare demand systems with 

the same dependent variables.  However, this procedure is not suitable when comparing models 

with different dependent variables as in the case of comparing the Almost Ideal Demand System 

with the Rotterdam Demand System.  Barten (1993) developed a method that can deal with non-

nested models with different dependent variables.  Briefly, the method starts with a hypothetical 

general model as a matrix weighted linear combination of two or more basic models.  A solution 

is found for one of the dependent variables, followed by estimating consistently the transformed 

matrix weights associated with the other models.  Next, statistical tests are carried out on the 

matrix weights to determine whether they are significantly different from zero.  This matrix 
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weighted linear combination can be considered as a synthetic demand allocation system which 

under appropriate restrictions yields the different forms of the demand system.  The synthetic 

model can therefore be used to statistically test which model best fits a particular data set.  A 

drawback in applying this procedure is that it is necessary to impose a set of restrictions for the 

purpose of estimating.  For example, the differentials need to be replaced by finite first 

differences and the budget shares by their moving averages.  This affects the coefficients of the 

demand system which are functions of the moving average of the budget share.  As a result, each 

functional form produces a different set of elasticities.  In order to address this problem, we 

propose a formulation which greatly simplifies the process. 

Accordingly, the primary objective of this research is to propose a formulation that 

obviates the need to choose among the popular functional forms when conducting demand 

analysis.  Specifically, our goal will be to show that when the proposed system is adopted the 

elasticities across the various functional forms are the same.  Four functional forms of the direct 

demand system and four functional forms of the inverse demand system will be investigated 

using data on selected fruits and vegetables.  A secondary objective of the paper is to analyze and 

discuss the computed elasticities obtained from the direct and inverse demand systems. 

The paper proceeds as follows.  The next section commences with a brief discussion of 

the rationale for our proposed formulation, followed by the detailed derivations of the various 

functional forms for both direct and inverse demand models utilizing our suggested framework.  

Then, we discuss the data and econometric methods employed in our analysis.  Subsequently, the 

results from our empirical application are discussed.  In the final section, we conclude with a few 

brief remarks. 
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Theoretical Framework 

The income and compensated price elasticities can be calculated from the coefficients of 

the direct demand system while the scale and compensated quantity elasticities can be computed 

from the coefficients of the inverse demand system.  Theoretically, every functional form of the 

direct or inverse demand system should have the same price and income elasticities.  However as 

mentioned earlier this situation does not hold when utilizing many of the common functional 

forms.  In this section, we show how it is possible to obtain such a result for each functional form 

of the direct demand system by working with the Marshallian demand function and the cost 

function.  Similar analyses are done for each functional form of the inverse demand system by 

utilizing the distance function. 

Direct Demand System 

 We begin by first considering the case of the Rotterdam Demand System (RDS).  A 

system of the direct demand relationships can be found by working with the utility maximization 

problem.  Under the utility maximization problem, the Marshallian demand function 

demonstrates a unique set of optimal quantities which maximize the utility function subject to the 

budget constraint for any set of given positive prices and income.  Follow Theil (1965), by 

working with the derivative of the Marshallian demand function, we obtained the logarithmic 

version of the Rotterdam Demand System, RDS: 

(1) d(ln qi) = ηi d(ln Q) + Σj εij d(ln pj),  i, j = 1,…, n, 

where d(ln qi) is the derivative of logarithmic of variable qi, qi is the positive quantities bought 

and consumed of good i, pi is the price of good i, ηi is the income (budget, wealth, total 

expenditure) elasticity of demand for commodity i, εij is the Slutsky or compensated price 

elasticity of good i and good j, d(ln Q) is the Divisia volume index, where d(ln Q) =Σi wi d(ln qi), 
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wi is the budget share, where wi = piqi / m, and m is the total budget of the consumer’s allocation, 

where m = Σi piqi. 

For the purpose of the econometric model development, the form of the data forces us to 

work with finite change, and for this purpose we introduce the following explicit time series 

notation.  Write t for any finite period say, a week, which takes the values 1,…, T, where T is the 

total number of weeks for which the relevant data are available.  Let the derivative operator d be 

the log-change operator; that is, if x is any variable, xt is its value in time t, then: 

(2) d(ln xt) = ∆(ln xt) = ln xt – ln xt – 1 = ln (xt / xt – 1). 

Rewriting equation (1) by replacing qi with qit, pi with pit and d(ln Q) with d(ln Qt) where 

d(ln Qt) = Σi *
itw d(ln qit), and w *

it  = (wit + wit – 1) / 2, we get the econometric model development 

for the logarithmic version of the RDS model: 

(3) d(ln qit) = ηi d(ln Qt) + Σj εij d(ln pjt) + vit, 

where vit is the disturbance for the demand equation of good i in time t. 

In order to satisfy the neoclassical restrictions, which include adding-up, homogeneity 

and symmetry restrictions, we premultiply both sides of the logarithmic version of the demand 

system by the budget share.  For the purpose of the econometric model development, we 

proposed a new formulation by premultiplying both sides of the logarithmic version of the 

demand system by the mean of the budget share, iw , where iw  = Σt wit / T, instead of using the 

moving average of the budget share, w *
it .  Then the econometric model development for the RDS 

model can be written as: 

iw d(ln qit) = iw ηi d(ln Qt) + Σj iw εij d(ln pjt) + vit     or more conveniently as 

(4) iw d(ln qit) = ci d(ln Qt) + Σj cij d(ln pjt) + vit, 
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where ci = iw ηi, and cij = iw εij. 

Second, we will consider the Almost Ideal Demand System commonly referred to as the 

AIDS model.  Following Deaton and Muellbauer (1980), the AIDS model can be obtained from 

the cost or expenditure function which defines the minimum expenditure necessary to attain a 

specific utility level at given prices.  The AIDS cost function is written as: 

(5) wi = αi + Σj sij ln pj + βi ln (m / P), 

The logarithmic version of the of the AIDS model is obtained by adding d(ln pi) – d(ln P) 

– d(ln Q), on both sides of the logarithmic version of the RDS model, equation (1), resulting in 

the following equation: 

(6) d(ln wi) = (ηi – 1) d(ln Q) + Σj (εij + δij – wj) d(ln pj), 

where d(ln wi) = d(ln qi) + d(ln pi) – d(ln P) – d(ln Q), d(ln P) is the Divisia price index, where 

d(ln P) = Σi wi d(ln pi), and δij = 1 if i = j, else δij = 0. 

 In order to get the econometric model development for the logarithmic version of the 

AIDS model, we rewrite equation (6), by replacing wi with wit, d(ln Q) with d(ln Qt), and pi with 

pit, resulting in the following equation: 

(7) d(ln wit) = (ηi – 1) d(ln Qt) + Σj (εij + δij – *
jtw ) d(ln pjt) + vit. 

In order to satisfy the neoclassical restrictions, we premultiply both sides of equation (7) 

by iw , then the econometric model development for the AIDS model can be written as: 

 dwit = ( iw ηi – iw ) d(ln Qt) + Σj ( iw εij + iw δij – iw *
jtw ) d(ln pjt) + vit     or 

 dwit + Σj ( iw *
jtw ) d(ln pjt) – Σj ( iw jw ) d(ln pjt) 

 = ( iw ηi – iw ) d(ln Qt) + Σj ( iw εij + iw δij – iw jw ) d(ln pjt) + vit     or 

(8) dwit + iw [d(ln Pt) – d(ln Pt
*)] = βi d(ln Qt) + Σj sij d(ln pjt) + vit, 
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where dwit = iw d(ln wit) = iw [d(ln qit) + d(ln pit) – d(ln Pt) – d(ln Qt)], d(ln Pt) = Σi *
itw d(ln pit), 

d(ln Pt
*) = Σi iw d(ln pit), βi = iw ηi – iw , and sij = iw εij + iw δij – iw jw . 

Third, we will now consider the Dutch Central Bureau of Statistics Demand System 

(CBS).  In 1985, Keller and van Driel created the CBS model which is a hybrid of the AIDS 

model and the RDS model.  This system has the AIDS income coefficients and the RDS price 

coefficients.  By subtracting d(ln Q) from both sides of the logarithmic version of the RDS 

model, equation (1), we get the logarithmic version of the CBS model: 

(9) d(ln qi) – d(ln Q) = (ηi – 1) d(ln Q) + Σj εij d(ln pj). 

Rewriting equation (9), by replacing qi with qit, d(ln Q) with d(ln Qt), and pi with pit, we 

get the econometric model development for the logarithmic version of the CBS model: 

(10) d(ln qit) – d(ln Qt) = (ηi – 1) d(ln Qt) + Σj εij d(ln pjt) + vit. 

In order to satisfy the neoclassical restrictions, we premultiply both sides of equation (10) 

by iw , then the econometric model development for the CBS model can be written as: 

 iw [d(ln qit) – d(ln Qt)] = ( iw ηi – iw ) d(ln Qt) + Σj iw εij d(ln pjt) + vit     or 

(11) iw [d(ln qit) – d(ln Qt)] = βi d(ln Qt) + Σj cij d(ln pjt) + vit. 

Fourth, we will consider the National Bureau of Research Demand System (NBR).  In 

1994, Neves considered another hybrid of the AIDS model and the RDS model.  The NBR 

model has the RDS income coefficients and the AIDS price coefficients.  The logarithmic 

version of the NBR model is obtained by adding d(ln pi) – d(ln P) to both sides of the 

logarithmic version of the RDS model, equation (1), resulting in the following equation: 

(12) d(ln qi) + d(ln pi) – d(ln P) = ηi d(ln Q) + Σj (εij + δij – wj) d(ln pj). 
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Rewriting equation (12), by replacing qi with qit, d(ln P) with d(ln Pt), d(ln Q) with d(ln 

Qt), and pi with pit, we get the econometric model development for the logarithmic version of the 

NBR model: 

(13) d(ln qit) + d(ln pit) – d(ln Pt) = ηi d(ln Qt) + Σj (εij + δij – *
jtw ) d(ln pjt) + vit. 

In order to satisfy the neoclassical restrictions, we premultiply both sides of equation (13) 

by iw , then the econometric model development for the NBR model can be written as: 

 iw [d(ln qit) + d(ln pit) – d(ln Pt)] 

 = iw ηi d(ln Qt) + Σj ( iw εij + iw δij – iw *
jtw ) d(ln pjt) + vit     or 

 iw [d(ln qit) + d(ln pit) – d(ln Pt)] + Σj ( iw *
jtw ) d(ln pjt) – Σj ( iw jw ) d(ln pjt) 

 = iw ηi d(ln Qt) + Σj ( iw εij + iw δij – iw jw ) d(ln pjt) + vit     or 

(14) iw [d(ln qit) + d(ln pit) – d(ln Pt
*)] = ci d(ln Qt) + Σj sij d(ln pjt) + vit. 

 The above derivations show quite clearly that in all cases each of the coefficients of the 

selected functional forms is a function of the mean of the budget share, iw .  As a result, the 

income and compensated price elasticities are unchanged across all the functional forms and can 

be calculated by using the following equations: 

(15) ηi = ci / iw  = (βi / iw ) + 1   for the income elasticity, 

(16) εij = cij / iw  = (sij / iw ) + jw  – δij  for the compensated price elasticity. 

The uncompensated price elasticity can be calculated by using the Slutsky equation: 

(17) µij = εij – ηi jw , 

where µij is the uncompensated price elasticity of good i and good j. 
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Inverse Demand System 

 Following Barten and Bettendorf (1989), a system of compensated inverse demand 

relationships can be found by working with the distance function which is dual to the demand 

function from the utility maximization problem.  The distance function indicates the minimum 

expenditure necessary to attain a specific utility level, u, at given quality, q, and it can be written 

as g(u, q).  Start by first considering the Rotterdam Inverse Demand System commonly referred 

to as the RIDS model.  We can derive the RIDS model by working with the distance function.  

By differentiating the distance function with respect to quantity, we get the compensated inverse 

demands express prices as a function of the quantities and specific utility level.  By totally 

differentiating the system of compensated inverse demand relationships, we obtain the 

logarithmic version of the RIDS model: 

(18) d(ln πi) = ζi d(ln Q) + Σj ξij d(ln qj), 

where πi is the normalized price of good i, ζi is the scale elasticity of good i, and ξij is the 

compensated quantity elasticity of good i and j. 

Rewriting equation (18), by replacing πi with πit, d(ln Q) with d(ln Qt), and qi with qit, we 

get the econometric model development for the logarithmic version of the RIDS model: 

(19) d(ln πit) = ζi d(ln Qt) + Σj ξij d(ln qjt) + vit. 

In order to satisfy the neoclassical restrictions, we premultiply both sides of equation (19) 

by iw , then the econometric model development for the RIDS model can be written as: 

 iw d(ln πit) = iw ζi d(ln Qt) + Σj iw ξij d(ln qjt) + vit     or 

(20) iw d(ln πit) = hi d(ln Qt) + Σj hij d(ln qjt) + vit, 

where hi = iw ζi, and hij = iw ξij. 
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Second, we will now consider the Almost Ideal Inverse Demand System (AIIDS) which 

can be obtained by working with the distance function.  The AIIDS model represents the budget 

shares as a function of quantities: 

(21) wi = αi + Σj γij (ln qj) + bi Σi wi (ln qi). 

The logarithmic version of the AIIDS model is obtained by adding d(ln qi) on both sides of the 

logarithmic version of the RIDS model, equation (18), resulting in the following equation: 

(22) d(ln wi) = d(ln πi) + d(ln qi) = (ζi + 1) d(ln Q) + Σj (ξij + δij – wj) d(ln qj). 

 Rewriting equation (22), by replacing wi with wit, d(ln Q) with d(ln Qt), and qi with qit, we 

get the econometric model development for the logarithmic version of the AIIDS model: 

(23) d(ln wit) = (ζi + 1) d(ln Qt) + Σj (ξij + δij – *
jtw ) d(ln qjt) + vit. 

In order to satisfy the neoclassical restrictions, we premultiply both sides of equation (23) 

by iw , then the econometric model development for the AIIDS model can be written as: 

 iw d(ln wit) = ( iw ζi + iw ) d(ln Qt) + Σj ( iw ξij + iw δij – iw *
jtw ) d(ln qjt) + vit     or 

 dwit + Σj ( iw *
jtw ) d(ln qjt) – Σj ( iw jw ) d(ln qjt) 

 = ( iw ζi + iw ) d(ln Qt) + Σj ( iw ξij + iw δij – iw jw ) d(ln qjt) + vit     or 

(24) iw [d(ln πit) + d(ln qit) + d(ln Qt) – d(ln Qt
*)] = bi d(ln Qt) + Σj γij d(ln qjt) + vit, 

where dwit = iw d(ln wit) = iw [d(ln πit) + d(ln qit)], d(ln Qt
*) =Σi iw d(ln qit), bi = iw ζi + iw , and 

γij = iw ξij + iw δij – iw jw . 

Third, we will now consider the Laitinen and Theil’s Inverse Demand System (Laitinen-

Theil).  Following Laitinen and Theil (1979), by using Antonelli matrix, which is identical to the 

reciprocal Slutsky matrix under homothetic preferences, we can obtain the logarithmic version of 

the Laitinen-Theil: 
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(25) d(ln pi) – d(ln P) = d(ln πi) + d(ln Q) = (ζi + 1) d(ln Q) + Σj ξij d(ln qj).  

This inverse demand model has the AIIDS scale coefficients and the RIDS quantity coefficients. 

We also get the logarithmic version of the Laitinen-Theil model by adding d(ln Q) to both sides 

of the logarithmic version of the RIDS model, equation (18). 

Rewriting equation (25), by replacing πi with πit, d(ln Q) with d(ln Qt), and qi with qit, we 

get the econometric model development for the logarithmic version of the Laitinen-Theil model: 

(26) d(ln πit) + d(ln Qt) = (ζi + 1) d(ln Qt) + Σj ξij d(ln qjt) + vit. 

In order to satisfy the neoclassical restrictions, we premultiply both sides of equation (26) 

by iw , then the econometric model development for the Laitinen-Theil model can be written as: 

 iw [d(ln πit) + d(ln Qt)] = ( iw ζi + iw ) d(ln Qt) + Σj iw ξij d(ln qjt) + vit     or 

(27) iw d[ln (pit/Pt)] = bi d(ln Qt) + Σj hij d(ln qjt) + vit, 

where iw d[ln (pit/Pt)] = iw [d(ln pit) – d(ln Pt)] = iw [d(ln πit) + d(ln Qt)]. 

Fourth, we will now consider the Rotterdam Almost Ideal Inverse Demand System 

(RAIIDS) which has the RIDS scale effects and the AIIDS quantity effects.  By adding d(ln qi) – 

d(ln Q) to both sides of the logarithmic version of the RIDS model, equation (18), we get the 

logarithmic version of the RAIIDS model: 

(28) d(ln wi) – d(ln Q) = ζi d(ln Q) + Σj (ξij + δij – wj) d(ln qj). 

Rewriting equation (28), by replacing wi with wit, d(ln Q) with d(ln Qt), and qi with qit, we 

get the econometric model development for the logarithmic version of the RAIIDS model: 

 (29) dwit – d(ln Qt) = ζi d(ln Qt) + Σj (ξij + δij – *
jtw ) d(ln qjt) + vit 

In order to satisfy the neoclassical restrictions, we premultiply both sides of equation (29) 

by iw , then the econometric model development for the RAIIDS model can be written as: 
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 dwit – iw d(ln Qt) = iw ζi d(ln Qt) + Σj ( iw ξij + iw δij – iw *
jtw ) d(ln qjt) + vit      or 

 dwit – iw d(ln Qt) + Σj ( iw *
jtw ) d(ln qjt) – Σj ( iw jw ) d(ln qjt) 

 = iw ζi d(ln Qt) + Σj ( iw ξij + iw δij – iw jw ) d(ln qjt) + vit     or 

(30) dwit – iw d(ln Qt
*) = hi d(ln Qt) + Σj γij d(ln qjt) + vit. 

The scale and compensated quantity elasticity can be calculated from the coefficients of 

each functional form of the inverse demand system by using the following equations: 

(31) ζi = hi / iw  = (bi / iw ) – 1   for the scale elasticity,  

(32) ξij = hij / iw  = (γij / iw ) + jw  – δij  for the compensated quantity elasticity. 

The uncompensated quantity elasticity can be calculated by using the Antonelli equation: 

(33) ψij = ξij + ζi jw , 

whereψij is the uncompensated quantity elasticity of good i and good j. 

Data and Methods 

Empirical application of the model was carried out for four (n = 4) selected fruits and 

vegetables utilizing weekly data covering the period the period 1994 to 1998.  Weekly wholesale 

prices and quantity unloads were collected from the Market News Branch of the Fruit and 

Vegetable Division, Agricultural Marketing Service of the United States Department of 

Agriculture.  In this study, there are 208 observations of quantities and prices for each 

commodity in each market, T = 208.  The selected commodities are tomatoes, bell peppers, 

cucumbers, and strawberries.  The markets include Atlanta, New York, Los Angeles, and 

Chicago. 

In conducting our analysis the system of equations for each functional form is estimated 

by the seemingly unrelated regressions (SUR) method.  In order to get the estimation with 
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homogeneity and symmetry condition, following Barten (1969), we employ the maximum 

likelihood estimation with homogeneity and symmetry constraints imposed.  Mathematical and 

statistical software, GAUSS, was used to perform the estimation. 

Empirical Results and Discussion 

The results from Table 1 and 2 show that, by using the new formulation, the income 

coefficients in the RDS model are the same as the income coefficients in the NBR model and the 

income coefficients in the AIDS model are the same as the income coefficients in the CBS 

model.  Consequently, the income elasticity calculated from the income coefficient is unchanged 

across these four functional forms.  In addition, the price coefficients are the same between the 

RDS model and the CBS model, and between the AIDS model and the NBR model.  The price 

elasticity calculated from the price coefficient is also the same across all functional forms. 

The results from Table 3 and 4 show that, by using the new formulation, the RIDS has 

the same scale coefficients as the RAIIDS model and the AIIDS model has the same scale 

coefficients as the Laitinen-Theil model.  The quantity coefficients are the same between the 

RIDS model and the Laitinen-Theil model, and between the AIIDS model and the RAIIDS 

model.  Consequently, the scale elasticity, and the quantity elasticity are unchanged across all 

functional forms of the inverse demand system. 

The results from Table 5 show that the log-likelihood value from the system using the 

mean of the budget share, iw , to multiply the logarithmic version of the demand system is higher 

than the log-likelihood value from the econometric demand model which replace every budget 

share in the system by its moving average, w *
it (Theil, 1971).  By multiplying the logarithmic 

version of the demand system by the mean of the budget share, each coefficient of the demand 

systems is a function of iw  instead of a function of w *
it .  The log-likelihood value from the 
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system using the mean of the budget share is also the same across all functional forms.  These 

empirical results support the theory that the elasticity should be the same across all functional 

forms. 

The results from Table 6 show that all of the elasticities for all markets have the correct 

sign according to theory.  Tomato has the highest absolute value of the own substitution 

elasticity for every market.  In contrast, strawberry has the lowest absolute value of the own 

substitution elasticity for every market except the New York market.  The scale and quantity 

elasticities of the inverse demand system are closer between the Atlanta and Los Angeles market 

and between the Chicago and New York market. 

Conclusions 

Demand analyses have been known to be quite sensitive to the chosen functional forms.  

Since no one specification fits all data the best, researchers have been preoccupied with finding 

ways to select among various functional forms.  In this study we proposed a formulation which 

obviates the need to choose among various functional forms.  In order to get the demand system 

that satisfy the neoclassical restrictions, we multiply the budget share to the logarithmic of 

demand system.  From both a theoretical as well as empirical point of view our analysis suggests 

that it is important to use the mean of the budget share, iw , instead of the moving average of the 

budget share, w *
it , to multiply the logarithmic of the demand system.  By using the mean of the 

budget share to multiply the logarithmic of the demand system, we can obviate the need to 

choose among various functional forms. 
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Table 1.  The Estimation of the Coefficients of the Direct Demand System for Chicago and New 
York Market 

  Chicago New York 
RDS 

Tomato 
Bell 

Pepper 
Cucum 

ber  
Straw 
berry Tomato 

Bell 
Pepper 

Cucum 
ber  

Straw 
berry 

ci 0.453 0.201 0.275 0.065 0.608 0.061 0.190 0.137 
  (0.030) (0.020) (0.023) (0.013) (0.025) (0.014) (0.018) (0.011) 

cii -0.030 -0.021 -0.024 -0.024 -0.052 -0.047 -0.061 -0.034 
  (0.021) (0.012) (0.016) (0.007) (0.025) (0.014) (0.015) (0.010) 

σi 0.081 0.053 0.064 0.036 0.117 0.065 0.083 0.052 
R2  0.539 0.353 0.413 0.129 0.748 0.124 0.386 0.450 

CBS 
                

βi 0.016 -0.003 0.015 -0.034 0.170 -0.135 -0.063 0.024 
  (0.030) (0.020) (0.023) (0.013) (0.025) (0.014) (0.018) (0.011) 

cii -0.030 -0.021 -0.024 -0.024 -0.052 -0.047 -0.061 -0.034 
  (0.021) (0.012) (0.016) (0.007) (0.025) (0.014) (0.015) (0.010) 

σi 0.081 0.053 0.064 0.036 0.117 0.065 0.083 0.052 
R2 0.008 0.019 0.023 0.086 0.205 0.346 0.135 0.074 

AIDS 
                

βi 0.016 -0.003 0.015 -0.034 0.170 -0.135 -0.063 0.024 
  (0.030) (0.020) (0.023) (0.013) (0.025) (0.014) (0.018) (0.011) 

sii 0.216 0.141 0.169 0.065 0.194 0.110 0.128 0.066 
  (0.021) (0.012) (0.016) (0.007) (0.025) (0.014) (0.015) (0.010) 

σi 0.081 0.053 0.064 0.036 0.117 0.065 0.083 0.052 
R2 0.328 0.419 0.358 0.304 0.310 0.412 0.255 0.189 

NBR 
                

ci 0.453 0.201 0.275 0.065 0.608 0.061 0.190 0.137 
  (0.030) (0.020) (0.023) (0.013) (0.025) (0.014) (0.018) (0.011) 

sii 0.216 0.141 0.169 0.065 0.194 0.110 0.128 0.066 
  (0.021) (0.012) (0.016) (0.007) (0.025) (0.014) (0.015) (0.010) 

σi 0.081 0.053 0.064 0.036 0.117 0.065 0.083 0.052 
R2 0.605 0.533 0.569 0.385 0.747 0.318 0.488 0.486 

Standard errors are shown in parentheses below the parameter estimates 
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Table 2.  The Estimation of the Coefficients of the Direct Demand System for Atlanta and Los 
Angeles Market 

   Atlanta Los Angeles 
RDS 

Tomato 
Bell 

Pepper 
Cucum 

ber  
Straw 
berry Tomato 

Bell 
Pepper 

Cucum 
ber  

Straw 
berry 

ci 0.676 0.114 0.127 0.047 0.690 0.123 0.085 0.055 
  (0.024) (0.016) (0.015) (0.011) (0.022) (0.014) (0.011) (0.009) 

cii -0.070 -0.027 -0.036 -0.018 -0.061 -0.018 -0.018 -0.008 
  (0.015) (0.008) (0.010) (0.006) (0.012) (0.007) (0.006) (0.005) 

σi 0.053 0.036 0.033 0.024 0.055 0.034 0.028 0.023 
R2 0.804 0.223 0.303 0.129 0.829 0.295 0.264 0.166 

CBS 
                

βi 0.111 -0.056 -0.056 -0.036 0.114 -0.059 -0.061 -0.040 
  (0.024) (0.016) (0.015) (0.011) (0.022) (0.014) (0.011) (0.009) 

cii -0.070 -0.027 -0.036 -0.018 -0.061 -0.018 -0.018 -0.008 
  (0.015) (0.008) (0.010) (0.006) (0.012) (0.007) (0.006) (0.005) 

σi 0.053 0.036 0.033 0.024 0.055 0.034 0.028 0.023 
R2 0.187 0.114 0.153 0.090 0.202 0.126 0.215 0.112 

AIDS 
                

βi 0.111 -0.056 -0.056 -0.036 0.114 -0.059 -0.061 -0.040 
  (0.024) (0.016) (0.015) (0.011) (0.022) (0.014) (0.011) (0.009) 

sii 0.176 0.114 0.113 0.059 0.184 0.131 0.107 0.078 
  (0.015) (0.008) (0.010) (0.006) (0.012) (0.007) (0.006) (0.005) 

σi 0.053 0.036 0.033 0.024 0.055 0.034 0.028 0.023 
R2 0.427 0.428 0.468 0.403 0.526 0.622 0.631 0.563 

NBR 
                

ci 0.676 0.114 0.127 0.047 0.690 0.123 0.085 0.055 
  (0.024) (0.016) (0.015) (0.011) (0.022) (0.014) (0.011) (0.009) 

sii 0.176 0.114 0.113 0.059 0.184 0.131 0.107 0.078 
  (0.015) (0.008) (0.010) (0.006) (0.012) (0.007) (0.006) (0.005) 

σi 0.053 0.036 0.033 0.024 0.055 0.034 0.028 0.023 
R2 0.817 0.509 0.540 0.398 0.843 0.668 0.673 0.568 

Standard errors are shown in parentheses below the parameter estimates 
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Table 3.  The Estimation of the Coefficients of the Inverse Demand System for Chicago and 
New York Market 

  Chicago New York 
RIDS 

Tomato 
Bell 

Pepper 
Cucum 

ber  
Straw 
berry Tomato 

Bell 
Pepper 

Cucum 
ber  

Straw 
berry 

hi -0.449 -0.223 -0.232 -0.081 -0.458 -0.197 -0.239 -0.112 
  (0.025) (0.019) (0.019) (0.012) (0.019) (0.013) (0.016) (0.009) 

hii -0.022 -0.019 -0.019 -0.019 -0.025 -0.028 -0.043 -0.016 
  (0.014) (0.011) (0.011) (0.005) (0.012) (0.008) (0.010) (0.005) 

σi 0.067 0.052 0.051 0.032 0.079 0.051 0.067 0.036 
R2 0.629 0.403 0.439 0.198 0.796 0.585 0.588 0.537 

Laitinen -Theil 
                

bi -0.011 -0.018 0.028 0.018 -0.020 -0.001 0.014 0.001 
  (0.025) (0.019) (0.019) (0.012) (0.019) (0.013) (0.016) (0.009) 

hii -0.022 -0.019 -0.019 -0.019 -0.025 -0.028 -0.043 -0.016 
  (0.014) (0.011) (0.011) (0.005) (0.012) (0.008) (0.010) (0.005) 

σi 0.067 0.052 0.051 0.032 0.079 0.051 0.067 0.036 
R2 0.023 0.014 0.016 0.079 0.033 0.056 0.095 0.059 

AIIDS 
                

bi -0.011 -0.018 0.028 0.018 -0.020 -0.001 0.014 0.001 
  (0.025) (0.019) (0.019) (0.012) (0.019) (0.013) (0.016) (0.009) 

γii 0.224 0.143 0.174 0.070 0.222 0.129 0.146 0.084 
  (0.014) (0.011) (0.011) (0.005) (0.012) (0.008) (0.010) (0.005) 

σi 0.067 0.052 0.051 0.032 0.079 0.051 0.067 0.036 
R2 0.521 0.474 0.565 0.476 0.657 0.657 0.497 0.602 

RAIIDS 
              

hi -0.449 -0.223 -0.232 -0.081 -0.458 -0.197 -0.239 -0.112 
  (0.025) (0.019) (0.019) (0.012) (0.019) (0.013) (0.016) (0.009) 

γii 0.224 0.143 0.174 0.070 0.222 0.129 0.146 0.084 
  (0.014) (0.011) (0.011) (0.005) (0.012) (0.008) (0.010) (0.005) 

σi 0.067 0.052 0.051 0.032 0.079 0.051 0.067 0.036 
R2 0.722 0.610 0.660 0.574 0.754 0.846 0.756 0.683 

 Standard errors are shown in parentheses below the parameter estimates 
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Table 4.  The Estimation of the Coefficients of the Inverse Demand System for Atlanta and Los 
Angeles Market 

  Atlanta Los Angeles 
RIDS 

Tomato 
Bell 

Pepper 
Cucum 

ber  
Straw 
berry Tomato 

Bell 
Pepper 

Cucum 
ber  

Straw 
berry 

hi -0.543 -0.178 -0.191 -0.096 -0.522 -0.188 -0.152 -0.116 
  (0.029) (0.018) (0.017) (0.011) (0.031) (0.021) (0.019) (0.013) 

hii -0.076 -0.041 -0.032 -0.011 -0.112 -0.038 -0.037 -0.018 
  (0.018) (0.010) (0.010) (0.005) (0.021) (0.014) (0.012) (0.007) 

σi 0.060 0.038 0.036 0.022 0.068 0.048 0.043 0.029 
R2 0.702 0.343 0.384 0.322 0.701 0.289 0.222 0.280 

Laitinen -Theil 
                

bi 0.022 -0.008 -0.009 -0.013 0.053 -0.006 -0.005 -0.021 
  (0.029) (0.018) (0.017) (0.011) (0.031) (0.021) (0.019) (0.013) 

hii -0.076 -0.041 -0.032 -0.011 -0.112 -0.038 -0.037 -0.018 
  (0.018) (0.010) (0.010) (0.005) (0.021) (0.014) (0.012) (0.007) 

σi 0.060 0.038 0.036 0.022 0.068 0.048 0.043 0.029 
R2 0.062 0.128 0.025 0.049 0.134 0.044 0.066 0.055 

AIIDS 
                

bi 0.022 -0.008 -0.009 -0.013 0.053 -0.006 -0.005 -0.021 
  (0.029) (0.018) (0.017) (0.011) (0.031) (0.021) (0.019) (0.013) 

γii 0.170 0.100 0.117 0.065 0.132 0.111 0.088 0.068 
  (0.018) (0.010) (0.010) (0.005) (0.021) (0.014) (0.012) (0.007) 

σi 0.060 0.038 0.036 0.022 0.068 0.048 0.043 0.029 
R2 0.308 0.330 0.388 0.484 0.235 0.219 0.183 0.323 

RAIIDS 
              

hi -0.543 -0.178 -0.191 -0.096 -0.522 -0.188 -0.152 -0.116 
  (0.029) (0.018) (0.017) (0.011) (0.031) (0.021) (0.019) (0.013) 

γii 0.170 0.100 0.117 0.065 0.132 0.111 0.088 0.068 
  (0.018) (0.010) (0.010) (0.005) (0.021) (0.014) (0.012) (0.007) 

σi 0.060 0.038 0.036 0.022 0.068 0.048 0.043 0.029 
R2 0.628 0.541 0.614 0.619 0.588 0.471 0.417 0.511 

Standard errors are shown in parentheses below the parameter estimates 



20 

Table 5.  The Log-likelihood Value (LV) of the Direct and Inverse Demand System by Using 
the Mean and Moving Average of the Budget Share 

Direct Demand LV( iw ) LV(w *
it ) 

System  RDS CBS AIDS NBR
Atlanta 1297.388 1280.276 1292.382 1278.007 1254.068
Los Angeles 1350.614 1329.698 1339.734 1305.874 1279.178
Chicago 993.237 959.299 973.739 966.903 949.128
New York 812.169 786.229 807.706 794.366 773.513

Inverse Demand LV( iw ) LV(w *
it ) 

System  RIDS Laitinen-Theil AIIDS RAIIDS
Atlanta 1282.237 1254.501 1260.174 1237.487 1223.637
Los Angeles 1162.507 1122.705 1143.139 1124.520 1097.929
Chicago 1081.366 1033.537 1052.444 1034.765 1015.744
New York 1002.924 962.034 994.543 953.065 918.743

 

Table 6.  The Elasticity of the Direct Demand and Inverse Demand System 
Elasticity Direct Demand Inverse Demand 

 ηi εii µii ζi ξii ψii 
Atlanta       
Tomato 1.1972 -0.1247 -0.8002 -0.9617 -0.1352 -0.6778 
Bell Pepper 0.6681 -0.1592 -0.2727 -1.0460 -0.2426 -0.4204 
Cucumber 0.6945 -0.1969 -0.3235 -1.0485 -0.1754 -0.3665 
Strawberry 0.5648 -0.2149 -0.2621 -1.1526 -0.1328 -0.2291 
Los Angeles       
Tomato 1.1979 -0.1054 -0.7951 -0.9075 -0.1953 -0.7178 
Bell Pepper 0.6749 -0.0986 -0.2221 -1.0302 -0.2086 -0.3971 
Cucumber 0.5834 -0.1252 -0.2106 -1.0365 -0.2500 -0.4018 
Strawberry 0.5801 -0.0859 -0.1410 -1.2194 -0.1915 -0.3073 
Chicago       
Tomato 1.0364 -0.0677 -0.5211 -1.0259 -0.0502 -0.4990 
Bell Pepper 0.9864 -0.1047 -0.3061 -1.0905 -0.0938 -0.3165 
Cucumber 1.0591 -0.0912 -0.3666 -0.8920 -0.0726 -0.3045 
Strawberry 0.6571 -0.2390 -0.3036 -0.8188 -0.1896 -0.2701 
New York       
Tomato 1.3886 -0.1180 -0.7260 -1.0453 -0.0560 -0.5138 
Bell Pepper 0.3120 -0.2406 -0.3017 -1.0040 -0.1447 -0.3416 
Cucumber 0.7498 -0.2423 -0.4321 -0.9438 -0.1709 -0.4097 
Strawberry 1.2116 -0.2992 -0.4361 -0.9910 -0.1451 -0.2571 

 


