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Risk efficiency of optimal water allocation within a single- and
multi-stage decision-making framework
Primrose Madende and Bennie Grové

Department of Agricultural Economics, University of the Free State, Bloemfontein, South Africa

ABSTRACT
The South African government has put legislation in place to exercise
better control over irrigation water usage. Thus, proper planning of
irrigation areas and scheduling of irrigation events in order to stay
within water quotas has become more important. Currently, the
available methodologies to assist irrigation farmers overlook the
complexities and interrelated relationships between crop-area planning
and the multi-stage nature of irrigation-scheduling decisions within a
stochastic dynamic environment. This paper contributes to knowledge
through the development of a bio-economic model that uses
evolutionary algorithms to optimise water use, taking cognisance of the
complex interrelationships between crop-area planning, the multistage
decision-making nature of irrigation-scheduling decisions, and the
stochastic dynamic environment under conditions of limited water
supply. The results show that gross margin variability is reduced and the
expected outcomes are improved due to improved irrigation-scheduling
decisions made sequentially in multiple stages. Multi-stage decisions
tend to make the impact of risk aversion less profound because taking
account of unfolding weather information is risk reducing. Ignoring the
risk-reducing impact of sequential decision-making will over-estimate
the cost of water restrictions. Caution is hence necessary when
formulating agricultural water-allocation policies based on crop water
optimisation models that overlook the complex nature of irrigation
decisions.
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1. Introduction

The agricultural sector is the largest consumer of water in developing countries, with South Africa (SA)
being no exception. The recurring droughts in the region, coupled by erratic rainfall patterns, have
aggravated the dire crisis of a scarcity of water resources in SA, specifically water for agricultural pur-
poses (Department of Water and Sanitation [DWS] 2018). The dwindling water resources hence
render the improvement of irrigation water management decisions greater priority in an effort to alle-
viate the extent of the problem. Furthermore, the newly gazetted legislation requires irrigation
farmers to measure and report their water use on a regular basis (DWS 2017). Most irrigation
schemes measure water use through indirect measurements based on planned irrigation area and
crop water-use factors. The mere fact that direct measurements will prevail in the future emphasises
the importance of proper planning of irrigation areas and scheduling of irrigation events in order to
stay within water quotas. Crop water-use computer models play an important role in assisting irriga-
tion farmers with irrigation planning (Van Heerden et al. 2009). The effectiveness of irrigation

© 2019 Agricultural Economics Association of South Africa

CONTACT Primrose Madende madendep@ufs.ac.za Department of Agricultural Economics, University of the Free State, PO
Box 339, Bloemfontein 9300, South Africa

AGREKON
2020, VOL. 59, NO. 1, 78–92
https://doi.org/10.1080/03031853.2019.1636668

http://crossmark.crossref.org/dialog/?doi=10.1080/03031853.2019.1636668&domain=pdf&date_stamp=2020-02-05
mailto:madendep@ufs.ac.za
http://www.aeasa.org.za/
http://www.tandfonline.com


planning, however, is vastly dependent on the ability of such models to represent the complex nature
of irrigation decisions.

Within irrigation water management systems, decision-making complexities are aggravated by
the dynamic nature of irrigation water, combined with day-to-day, seasonal and inter-annual climatic
variabilities (Kusunose and Mahmood 2016). The interaction between different decisions made at
different times during the growing season, such as crop, area and water-scheduling decisions,
hence complicates the proper planning of irrigation water use. Many farm management decisions
are thus formulated within a multi-stage decision-making process characterised by a sequence of
decisions made to meet farmer’s objectives. Accordingly, decisions on irrigation water allocation
are considered complicated decisions that are made sequentially in multiple stages, taking into con-
sideration the stock nature of field water supply dynamically throughout the growing season (Dai and
Li 2013; Robert et al. 2016, 2017). By implication, the amount of irrigation water applied in one period
affects the availability of extractable water by crops in the next time period, since water can be stored
in the soil. The time periods that divide the decision-making process are referred to as stages and
represent the moments when decisions must be made (Robert et al. 2016). The sequential nature
of irrigation decisions is thus independent of the scale of production. The farmer will decide when
and how to irrigate in one stage, given the influence the decision made in the previous stage had
on soil–water status.

Crop-area decisions made at the beginning of the growing season, when the climatic conditions of
the entire growing season are still unknown to the decision-maker, are essential for agricultural water
management as they facilitate irrigation strategy decisions, given the amount of water available
(Karrou and Oweis 2012; Zeng et al. 2010). Within the South African context, the Water Administration
System (WAS) is used efficiently to facilitate water supply management within canal water-distri-
bution systems to ensure that all users along a canal are supplied with sufficient water (Benadé
2011). For a given water-availability scenario, the area decisions determine the irrigation strategy
that will be followed, given the amount of water that could be applied on a per hectare basis as
guided by the area decision. In contrast, irrigation water-scheduling decisions are made sequentially
throughout the growing season as the uncertain weather conditions unfold, given the crop-area
decision already made. The sequential decisions made by irrigation farmers facilitate the adjustment
of irrigation water schedules for each consecutive stage, depending on the currently prevailing
weather conditions. Thus, the decision-maker is able to manage production risk by taking cognisance
of new information from unfolding weather states. Modelling farmers’ decision-making processes by
including adaptations when representing farmers’ practices is thus considered an important chal-
lenge for the agricultural research community (Robert et al. 2016).

Substantial progress has been made internationally with the development and application of
techniques that acknowledge the multi-stage, dynamic and uncertain nature of irrigation decisions
to solve irrigation water-allocation problems (Bryant, Mjelde, and Lacewell 1993; Chen et al. 2017;
Li and Huang 2011; Parsinejad et al. 2012; Robert et al. 2017). Nonetheless, modelling adaptation
to uncertainty as a representation of farmers’ practices and decision-making processes has been
addressed on different temporal and spatial scales due to the curse of dimensionality associated
with dynamic programming. As a result, limited decision stages were included in the models, result-
ing in models failing to explicitly incorporate the sequential nature of irrigation water-allocation
decisions. The association of dynamic programming with the curse of dimensionality results in inte-
grating the timing scope of farmers’ adaptive behaviour within a solution procedure difficult to over-
come when designing farming systems. A recursive stochastic solution procedure that solves
problems through forward recursion was explored in this research, hence providing an alternative
solution procedure to solve complex dynamic problems without the limitation of the curse of dimen-
sionality (Blanco and Flichman 2002).

Considerable research efforts have also been made in South Africa on crop water-use manage-
ment for both limited and full water quota supply conditions (Botes 1990; Botes, Bosch, and Oosthui-
zen 1996; Gakpo et al. 2005; Grové and Oosthuizen 2010; Haile 2017; Haile et al. 2014; Venter, Grové,
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and Van der Stoep 2017). Research efforts have explored the concept of modelling the interdepen-
dency of water applications between irrigation applications in different time periods. The crop water-
use models, however, focused primarily on the depth of irrigation amounts without explicitly consid-
ering the timing of irrigation events. Hence, only four research efforts have accounted for the
dynamic, intertemporal nature of irrigation decisions through mathematical programming and simu-
lation optimisation (Botes 1990; Grové and Oosthuizen 2010; Haile 2017; Venter, Grové, and Van der
Stoep 2017). Dynamic models with complex inter-actions are difficult to solve with linear program-
ming, hence the application of simulation and non-linear programming models. Recent research
by Haile (2017) successfully developed an integrated bio-economic simulation optimisation model
that is able to solve complex stochastic water-allocation optimisation problems under salinity,
while also considering production risk. Seven states of nature were included in the simulation
model. However, water was assumed to be a state-general input. Thus, the optimal irrigation strategy
was determined such that it would maximise utility irrespective of the state of nature that unfolds.
Therefore, no adaptive decision-making was included in the model. Overall, none of the research
efforts considers the sequential nature of irrigation decisions and the fact that irrigation farmers
could manage production risk through sequential decision-making. In all cases, the crop-area
decision and the irrigation-scheduling decisions are made within a single stage. The interaction
between crop, area planted and water availability on the ability to supply enough irrigation water
on a per hectare basis to produce a non-stressed crop, was disregarded.

Considering the studies identified in this review, the association of dynamic programming
with the curse of dimensionality limits the applicability of the identified solution procedures to
complex dynamic problems when area-planted and irrigation-scheduling decisions need to be
considered in multiple stages when allocating limited water supplies. None of the researchers con-
sidered recursive solution techniques that enable one to solve complex water-allocation models
that represent the actual manner in which irrigators make irrigation water-allocation decisions
in reality. The question, hence, is not whether irrigators should adopt a sequential decision-
making framework or not. Rather, the problem is that the methodologies that are currently
applied to model irrigation water-allocation decisions do not explicitly represent the aforemen-
tioned decision-making processes. Currently, no unified framework exists within a South African
context to model the interaction between water availability, irrigation area and irrigation-schedul-
ing decisions as multi-stage sequential decisions. The currently available crop water-use optimis-
ation solution techniques lack complexity, resulting in dynamics of irrigation water use and the
associated production risk being only approximated, if not overlooked. Consequently, decision
support under limited water supply conditions is hampered. A new line of solution techniques
that utilises evolutionary algorithms to optimise complex simulation models offers an alternative
technique to solve complex multi-stage irrigation decisions. Evolutionary algorithms are capable of
solving complex dynamic models without the complexity of the model rendering the solution
infeasible.

Therefore, the main objective of this research is to formulate a multi-stage decision-making fra-
mework and compare the results obtained when modelling irrigation water-allocation decisions
under such a framework with those obtained within a single-stage decision-making framework
under a full water quota and a restricted water quota. Comparing the results of the two
decision-making frameworks for the two alternative water quotas will allow for the determination
of the impact of modelling irrigation water-allocation decisions within a multi-stage sequential
manner on:

. Total gross margin risk and irrigation management decisions.

. The monetary value that will result from the improved modelling of irrigation water-allocation
decisions for risk-averse decision-makers.

. The monetary cost of valuing the impact of restricted water use resulting from ignoring the
improved modelling of irrigation water-allocation decisions for risk-averse decision-makers.
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The paper proceeds with a description of procedures that were followed to develop and solve the
bio-economic risk simulation model within both a single-stage and a multi-stage decision-making fra-
mework, and the results thereof.

2. Procedures and data

Achieving the main objective of this research required some form of agricultural water-use optimis-
ation. The optimisation procedure used in this research deviates from the normal mathematical pro-
gramming approaches typically used in SA as it uses the evolutionary algorithms embedded in Excel®
to optimise water use. Evolutionary algorithms use random realisations of the decision variables as a
basis to evolve to a better solution. Thus, the “optimal” solution is not achieved when optimality con-
ditions are satisfied, and therefore only near-optimal solutions are possible. Applying the evolutionary
algorithm to optimise agricultural water requires the development of a bio-economic model that is
able to simulate the economic consequences resulting from changes to the key decision variables
that need to be optimised. The methods and procedures adopted in this research are mainly
based on the research done by Venter, Grové, and Van der Stoep (2017) on the sustainable manage-
ment of electricity and water use in irrigation farming systems. This research was initiated, managed
and funded by the Water Research Commission of South Africa (WRC).

2.1 Bio-economic risk simulation model

A bio-economic model was developed to simulate the impact of different irrigation schedules on
crop yield while considering centre pivot technology. The pumping rate of the irrigation system pro-
vides a direct link between the water application and the pumping hours necessary to calculate elec-
tricity costs. Firstly, to determine the impact of the timing and amount of irrigation on crop yield, the
Stewart multiplicative yield response function was used to calculate the resulting yield of maize and
wheat for a given irrigation schedule in each state of nature. The Stewart multiplicative formula rep-
resents a simple heuristic multiplicative form of a crop water production function model that rep-
resents the complex functional relationship between crop yield and consumptive water use
estimated by the actual evapotranspiration (ETa) (Stewart et al. 1977). The complexity of the relation-
ship between crop yield and ETa stems from the fact that the independent effects of crop water stress
in different periods (weekly, monthly or crop-growth stages) of the growing season differ (Doorenbos
and Kassam 1979; Jensen 1968; Rao, Sarma, and Chander 1988). The multiplicative crop water pro-
duction function hence suggests that crop water deficits in different crop-growth stages may
reduce the resulting crop yield in a multiplicative manner. The function is presented by the following
equation (De Jager 1994):

Yc,s = ymc,s × p4
g=1 1− kyc,g 1−

∑
teg ETac,i,s∑
teg ETmc,i,s

( )( )( )
(1)

where Yc,s is the actual yield for crop c in state of nature s (t/ha); ymc,s represents the maximum
(potential) yield for crop c in state of nature s (t/ha); kyc,g is the yield response factor for crop c in
growth stage g; ETac,i,s is the daily actual crop evapotranspiration for crop c on day i in state of
nature s (mm); and ETmc,i,s represents the daily maximum crop evapotranspiration for crop c on
day i in state of nature s (mm).

The effect of crop water stress on yields can be evaluated through the quantification of the relative
evapotranspiration deficit (1 − (ETa/ETm)), as shown in the Stewart multiplicative yield response func-
tion. Estimating crop evapotranspiration (ET) is hence necessary to determine the relationship
between soil moisture stress and crop yield. ET is useful for estimating crop water requirements,
as the actual amount of water lost through evapotranspiration represents the amount of water
required by the crop to compensate for water deficits through rainfall or irrigation. Subsequently,
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the scheduling of irrigation events to avoid crop water stress is facilitated. ETa is determined by
measuring various components of the soil–water balance through the computation of a daily
water budget (Allen et al. 1998). The actual evapotranspiration rate of the crop in each state of
nature for a given day was calculated according to the following equation:

ETac,i,s = min|ETmc,i,s

ETmc,i,s

RWCc,i,s

TAWc,i ,s − RAWc,i,s

( ) (2)

where ETmc,i,s is the maximum crop evapotranspiration for crop c on day i under standard condition
for state in nature s (mm); RWCc,i,s is the actual root-water content for crop c on day i in state of nature
s (mm); TAWc,i,s is the total available water for crop c on day i in state of nature s (mm); and RAWc,i,s is
the readily available water for crop c on day i in state of nature s (mm).

ETa retains the minimum value generated between the ETm value and the ETa value under water-
stress conditions when the root-zone depletion exceeds the RAW. After the root-zone depletion
exceeds RAW, ETa is limited to less than the potential or maximum values, as it begins to decrease
in proportion to the amount of water remaining in the root zone. The minimum function hence indi-
cates that ETa cannot exceed the potential or maximum evapotranspiration of a given crop gener-
ated under standard conditions. Water deficits in soils, and the resulting water stress on plants,
thus influence crop evapotranspiration and, subsequently, crop yield (Kallitsari, Georgiou, and Baba-
jimopoulos 2011). The reduction in ETa below ETm due to soil–water deficits consequently affects the
resulting crop yield. Determining the yield-moisture stress relationship hence facilitates the effective
scheduling of timing and the amount of irrigation water. Under non-standard conditions, one should
hence determine the RWC level where crops do not experience water stress to successfully simulate
the timing and amount of irrigation events. The RWC is determined in the daily water budget using
the following equation:

RWCc,i,s = RWCc,i−1,s − ETac,i,s + Rc,i,s + IRc,i,s + DPc,i,s (3)

where RWCc,i−1,s represents root-water content in the root zone at the end of the previous day, i − 1
for crop c in state of nature s (mm); Rc,i,s is the rainfall received on day i for crop c for state of nature s,
taking surface runoff into account (mm); IRc,i,s represents the net irrigation depth on day i that infil-
trates the soil for crop c in state of nature s (mm); and DPc,i,s is the water draining below the root zone
by deep percolation on day i for crop c in state of nature s (mm).

The RWC accounts for all the water fluxes within the root zone on a daily basis. The actual capacity
of the soil–water cannot exceed the root-zone water-holding capacity (RWCAP). Otherwise, the soil
drains the water from below the roots by deep percolation (DP). For a detailed description of the
necessary equations to compute DP through a daily soil–water budget, the reader is referred to
Grové and Oosthuizen (2010).

Given the irrigation amount determined in the daily water budget and the resulting crop yield for
each state of nature, the number of hours required daily to pump the irrigation water is determined,
taking the design properties of the irrigation system into consideration. The simulation model
assumes that irrigation events could occur every consecutive day. Thus, the model implicitly
assumes that the irrigation hours could be spread over a two-day period to make better use of
the time-differentiated electricity tariff structure of Ruraflex. The crop yields and the pumping
hours thus provide the link in the economics module to quantify the economic implications of
different irrigation schedules. Thus, any adjustments in the water budget will alter the gross
margin, depending on the response of crop yields and total pumping hours. The following equation
was used to calculate the distribution of gross margins:

GMc,s =
∑
c,s

pc × Yc,s × Ac −
∑
c,s

Ac × YDCc,s −
∑
c,s

Ac × ADCc −
∑
c,s

kWPHc,s × IDCc,s (4)

where pc is the contracted price for crop c (R = South African rand); Yc,s is the actual yield for
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crop c in state of nature s (ton/ha); Ac is the area under production of crop c (ha); YDCc,s is the
total yield-dependent costs for crop c in state of nature s (R); ADCc is the total area-dependent
costs for crop c (R); PHc,s represents the required pumping hours to irrigate crop c in state of
nature s (hours); and IDCc,s is the total irrigation-dependent costs for crop c for state of nature
s (R/h).

The crop yield estimations determined in the water budget influence the gross margin through
the production income. Yield-dependent costs entail all production costs that change as the yield
produced changes, while costs that change subject to a change in the size of the area under pro-
duction are referred to as area-dependent costs. IDCc,s is a function of total electricity costs, total
labour costs, total water costs and total repair and maintenance costs incurred during the production
of a crop for a specific irrigation system with a specific kilowatt. The total pumping hours are
accounted for within the total electricity costs, which influence the irrigation-dependent costs. For
a detailed description of the equations used to calculate area and yield costs, the reader is referred
to Venter, Grové, and Van der Stoep (2017).

2.2 Model setup

Secondary economic, agronomic and irrigation-dependent data was used to set up the bio-econ-
omic model. All economic data was standardised to conform to the 2016/2017 production
season. The research was conducted in Douglas, a town situated close to the convergence of
the Vaal and Orange Rivers in the Northern Cape province of SA. Douglas provides a typical
location of an irrigation farm where farmers source irrigation water from the Vaal River and
the Orange River.

2.2.1 Agronomic data
Agronomic input data includes weather-related, soil, water-allocation, root-growth and yield
response factors data. The agronomic data was used for water budget calculations in the model.
The economic impact of irrigation water-allocation decisions within single and multi-stage
decision-making frameworks was determined for an intra-sessional crop production of maize and
wheat. Weather- or climate-related input parameters, such as the reference evapotranspiration
(ETo), crop coefficient (Kc) and rainfall, were obtained from SAPWAT3 (South African procedure for
estimating irrigation water requirements) (Van Heerden, pers. comm.). Weather data extracted
from the V13D weather station was used in SAPWAT3 to estimate the daily ETo, Kc and rainfall for
each crop for a growing period of 120 and 148 days for maize and wheat respectively over a
period of 49 years. ETm was calculated as a function of the ETo and Kc for each state of nature. A
soil with a water-holding capacity (WHC) and a depth of 130 mm/m and 1.2 m respectively was
used in the model. The yield response factors (Ky factors) and the length of growth stages (Ky
days) proposed by Doorenbos and Kassam (1979) were used in the model.

Weather data was available to define 49 states of nature. However, only 12 states of nature were
included in the simulation model to quantify the impact of weather risk on irrigation management
decision-making to reduce the dimensionality of the simulation model. The 49 possible weather
states were reduced to 12 representative states using cluster analysis (CA). The Ward’s hierarchical
cluster method proposed by Ward (1963), which generates clusters by minimising the within-
group sum of squares, was applied. In each cluster, the state of nature with the minimum sum of
squared differences was chosen as a representative state for that cluster. For a detailed description
of the CA procedure, the reader is referred to Madende (2017).

2.2.2 Economic data
Some of the economic data utilised in the model was obtained from the cost guide published by the
Griekwaland-Wes Korporatief (GWK) (2016). Input data such as the crop price, area and target yield for
both maize and wheat was extracted from the enterprise budgets of the cost guide. The maximum
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potential yield for each crop in each state of nature was calculated using the yield index method. The
cost-reduction method developed by Grové (1997) forms the basis of the yield-dependent cost cal-
culations. A scaling factor was used to calculate the actual yield-dependent costs according to a
method proposed by Venter, Grové, and Van der Stoep (2017).

2.2.3 Irrigation-dependent input data
The electricity tariffs, water tariff, labour wage rate, irrigation system design, and repair and mainten-
ance data were important inputs in the model for the calculation of irrigation-dependent costs. The
Ruraflex tariffs obtained from Eskom (2016/17) were used to calculate the electricity costs given the
total pumping hours and the kilowatt usage. The Ruraflex tariff option chosen is based on the trans-
mission zone, ranging between 300 and 600 km, a voltage of less than 500 V, and a monthly utilised
capacity ranging between 100 and 500 kVA. A minimum wage determined by the Department of
Labour ([DOL] 2016), of R13.37 per hour, was used in the model, accounting for 0.58 labour hours
for every 24 h. A repair and maintenance tariff of R0.413217 was used, expressed per 1000 h
pumped and based on a method proposed by Meiring (1989).

2.3 Solution procedure

The objective of the model was to optimise the certainty equivalent (CE) of the distribution of gross
margins associated with changes in irrigation area and irrigation schedules. The negative exponential
utility function was used to calculate CE, assuming constant risk aversion (CARA) (Babcock, Choi, and
Feinerman 1993).

The absolute risk-aversion coefficient (ra) was calculated according to the relationship between
ra(x) and a standardised measure of risk aversion (rs(xs)). The minimum and maximum levels of
rs(xs) according to the plausible range for rs(xs) of between 0 and 2.5, as determined by Grové and
Oosthuizen (2010), were used to calculate the risk-aversion coefficient. The plausible range was
adopted, given that most research has reported that the majority of farmers within the South
African context are risk averse in nature, rather than risk seeking (Ferrer 1999).

A genetic algorithm (GA) was employed in Visual Basic for Applications (VBA) in Excel® to facilitate
the recursive optimisation of the model according to the methodology developed by Blanco and
Flichman (2002). Two macros were programmed in Excel® VBA, with one solving the risk model
within a single-stage decision-making framework and the other solving within a multi-stage decision
framework for both a full water quota and a restricted water quota supply scenario for a risk-neutral
and risk-averse decision-maker. The water budget calculations were replicated for each state of
nature to simulate the impact of changes in the irrigation schedule on the key output variables
and to determine an irrigation schedule that would maximise utility, irrespective of the state of
nature that unfolds. Figure 1 depicts the single- and multi-stage decision-making.

Within a single-stage decision-making framework, the assumption is that decisions on both the
area irrigated and the irrigation schedule are made for the whole season at the beginning of the
season, when the weather for the rest of the season is unknown. As a result, a single optimisation
will determine the optimal area and irrigation schedule that will maximise the CE, irrespective of
the state of nature occurring, as indicated by the single optimisation in Figure 1.

Within a multi-stage decision-making framework, the area decision is made in the first stage and
the irrigation-scheduling decisions are made sequentially as more information becomes available on
a weekly basis, as illustrated in Figure 1. The first stage of decision-making within a multi-stage
decision-making framework is the same as the first stage within a single-stage decision-making fra-
mework where an optimal area and irrigation schedule is generated irrespective of state of nature
unfolding. Thereafter, irrigation decisions are made sequentially in multiple stages, taking into cog-
nisance additional weather and soil–water information (ETm and rainfall) as it unfolds.

Excel® Solver implements a genetic algorithm (GA) technique to achieve a near-optimal solution.
During the second decision-making stage, denoted by I2 in Figure 1, the irrigation decision
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determined during the first week (I1) is fixed and the consecutive irrigation decisions are optimised
after updating the ETm and rainfall data of all the other states with that of the state assumed to occur.
For instance, if state of nature s1 is assumed to occur, all states of nature are updated with the ETm
and rainfall data of s1, with the irrigation decision I1 fixed before optimising decisions of the current
week (I2s1 ), as shown in Figure 1. The resulting optimised irrigation decisions for that week are hence
the same in each state, regardless of s1 occurring. If s2 is assumed to occur, all states of nature are
updated with the ETm and rainfall data of s2, with the irrigation decision I1 fixed before optimising
decisions of the current week (I2s2 ), as shown in Figure 1. The recursive updating procedure occurs
on a weekly basis after each optimisation as commanded by the multi-stage updating macro. It is
important to note that the optimised irrigation decision from the previous stage is fixed for each con-
secutive optimisation. Twelve different optimisations were hence carried out, with each optimisation
assuming that one of the twelve states would occur.

The initial solutions generated from the initial optimisations were poor approximations of the
global optimal, hence the optimisation is repeated for as long as the subsequent solution is
greater than the previous solution. The optimal solution is achieved when the CE generated in the
subsequent optimisation is equal to that achieved in the previous solution. In addition, the model
was also solved with a different mutation rate to ensure that the solutions that were generated
were the best possible solutions.

3. Results

The results for a combined inter-seasonal production of maize and wheat are presented in three sec-
tions. The first section presents the results of the gross margin variations and the responses of a
decision-maker within a single-stage decision-making framework (SSDF) and a multi-stage
decision-making framework (MSDF). Cumulative distribution functions (CDF) are used to quantify
the level of gross margin risk faced by a risk-neutral (RN) and a risk-averse (RA) decision-maker
within the two alternative decision-making frameworks for both a full water quota (FQ) and a
restricted water quota (RQ) scenario. The optimised gross margins (GMs) for each of the 12 states

Figure 1. Schematic representation of decision-making within a single-stage and multi-stage decision-making framework, where
represents fixed decisions, represents possible events to unfold, represents optimised decisions, represents the

outcome, A represents the area, I represents the irrigation decisions, T represents the decision stage and S represents the possible
state of nature to unfold.
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of nature under each water-supply scenario are used to graph the CDF. The second section presents
the results of the estimated value or benefit of considering a multi-stage decision-making framework
within the two alternative water-supply scenarios and risk preferences of the decision-maker, as indi-
cated by the optimised certainty equivalents. The final section presents the results of the cost of a
water restriction.

3.1 Gross margin variability

3.1.1 Single-stage decision-making framework
Figure 2 illustrates the resulting gross margin variations within a single-stage decision-making frame-
work and how these variations alter under a full water quota and a restricted water quota water-
supply scenario, taking the risk preferences of the decision-maker into cognisance. The resulting vari-
ations of the GMs within an SSDF are attributed to the response of the decision-maker with regard to
areas planted, irrigation water use and the resulting crop yields under the two alternative water-
supply scenarios and risk preferences. A single average best irrigation schedule is applied over all
12 states of nature. As highlighted in Figure 2, a similar distribution of GMs results under both
water-supply scenarios and risk preferences, with a notably lower tail. Irrigation decisions made
within an SSDF under an RQ scenario resulted in a similar full area production of 30.1 ha for maize
for both an RN and an RA decision-maker, as generated within an FQ scenario. However, wheat pro-
duction is reduced to 20 and 20.7 ha for a risk-neutral and risk-averse decision-maker respectively,
given the restricted irrigation water under an RQ scenario resulting in lower GMs. Hence, a shift of
the CDFs to the left is noted within an RQ scenario within both risk preferences. The extreme level

Figure 2. Gross margin variability for a risk-neutral (RN) and risk-averse (RA) decision-maker within a single-stage decision-making
framework for a full water quota (FQ) and a restricted water quota (RQ) scenario.
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of risk aversion considered in the study resulted in a reduction in average crop yields and irrigation
water use when an RA decision-maker was considered within both water-supply scenarios, regardless
of water being considered a risk-reducing input.

The positive impact on GMs resulting from lower irrigation-dependent costs was greater than the
negative impact owing to lower crop yields for states of nature within the lower tail of the CDFs. A
distribution of higher minimum and lower maximum GMs is thus generated for both water-supply
scenarios when RA is considered, reflecting the substantial emphasis placed on an improved lower
tail of the CDF under RA. Nevertheless, almost maximum, if not maximum potential yields were
achieved in each state of nature for both crops for an RN and an RA decision-maker, regardless of
the reduced water use under risk aversion.

3.1.2 Multi-stage decision-making framework
The resulting gross margin variations within a multi-stage decision-making framework, and how
these variations alter under an FQ and an RQ water-supply scenario taking risk preferences into con-
sideration, are depicted in Figure 3. As aforementioned, the resulting variations in the GMs are attrib-
uted to the response of the decision-maker with regard to area planted, irrigation water use and the
resulting crop yields under the two alternative water-supply scenarios and risk preferences. A state-
specific optimal irrigation schedule was applied in each state of nature.

A similar distribution of expected GMs is noted for both an FQ and an RQ scenario within an
MSDF, as depicted in Figure 3. Similar to the results generated within an SSDF, a shift of the
CDFs to the left results under risk aversion. It is important to note that the areas under production

Figure 3. Gross margin variability for a risk-neutral (RN) and risk-averse (RA) decision-maker within a multi-stage decision-making
framework (MD) for a full water quota (FQ) and a restricted water quota (RQ) scenario.
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for both maize and wheat generated within an SSDF correspond to those generated within an
MSDF, as the first stage of the MSDF is the same as a single stage within an SSDF. However, a
state-specific irrigation schedule is generated for each state of nature within MSDF. Consequently,
irrigation-dependent costs and the successive yields have a significant impact on the resulting GM
for each state of nature. As expected under risk aversion, a distribution of slightly higher minimum
GMs and lower maximum GMs is generated for a risk-averse decision-maker. A significant reduction
in irrigation water applied for each state of nature resulted under risk aversion. A noteworthy trend
of relatively higher GMs resulting from reduced irrigation water use, coupled with slight variations
in crop yields in each state between the two risk preferences and water-supply scenarios under risk
aversion, was hence deduced for states of nature within the lower tail of the CDFs. In contrast, the
negative effect of reduced GMs due to lower yields was greater than the positive impact of
reduced irrigation-dependent costs due to reduced water use for states of nature within the
upper tail of the CDFs.

The positive and negative impacts of the decision-maker’s responses on the gross margins for
the states of nature within the lower and upper tails of the CDFs respectively when risk aversion is
taken into account, are relatively trivial in comparison to those under an SSDF. The slight shift of
the lower and upper tails of the CDFs when an RA decision-maker is considered within an MSDF
in comparison to that noted within an SSDF elucidates the abovementioned. Thus, the impact of
risk aversion indicated by the shifts in the CDF to left is more visible within an SSDF, implying a
less significant impact of risk aversion within an MSDF. By implication, decisions made within an
MSDF already account for risk.

3.2 The value of a multi-stage decision-making framework

The value of switching to a multi-stage decision-making framework is estimated by comparing the
certainty equivalents (CE) of a single-stage decision-making framework to that of a multi-stage
decision-making framework for both a risk-neutral and a risk-averse decision-maker under a full
and a restricted water quota, as presented in Table 1. As indicated in Table 1, under an FQ the
value of an MSDF is R4 261 and R11 149 for a risk-neutral and a risk-averse decision-maker
respectively. The value is determined by subtracting the CE generated within an SSDF from
that generated within an MSDF. The value represents the minimum sure amount that has to
be paid to a decision-maker to justify a switch from making irrigation decisions within an SSDF
to within an MSDF. The gain realised within an MSDF under an FQ is attributed to improved irri-
gation water management from taking additional water budget information into account as
sequential irrigation decisions are made over the course of the production season. With the
improved risk management within an MSDF as highlighted in Section 3.1.2, the certain
minimum amount that both a risk-neutral and a risk-averse decision-maker can receive increases
within an MSDF.

The resulting value of an MSDF for the extreme level of risk aversion considered is R6 888 (R11
149− R4 261) more than that generated under risk neutrality under an FQ. The noteworthy
increase in the value of an MSDF is due to the risk-reducing nature of the decision-making frame-
work, hence more favourable for a risk-averse decision-maker. The rand value of switching from an
SSDF to an MSDF is R7 019 and R14 413 for a risk-neutral and a risk-averse decision-maker

Table 1. The value of a multi-stage decision framework for a risk-neutral and risk-averse decision-maker under full and restricted
water quota scenarios, 2016.

Full water quota Restricted water quota

Risk neutral Risk averse Risk neutral Risk averse

Single-stage framework certainty equivalent (R) 2,291,835 2,077,144 2,073,516 1,864,631
Multi-stage framework certainty equivalent (R) 2,296,097 2,088,293 2,080,535 1,879,044
Value (R) 4261 11,149 7019 14,413
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respectively under a restricted quota water-supply scenario. In other words, the minimum amount
of money that a risk-neutral and a risk-averse decision-maker has to receive to consider an MSDF is
R7 019 and R14 413 respectively. Nonetheless, irrigation decisions made within an MSDF have a
greater value if water supply is restricted compared to a full quota scenario for both a risk-
neutral and a risk-averse decision-maker, as highlighted in Table 1. In addition, the value of an
MSDF for a risk-averse decision-maker under an RQ is R7 394 (R14 413 − R7 019) greater than
that generated under risk neutrality, and is also greater than the difference between the value
under risk neutrality and risk aversion of R6 887, as noted under an FQ. Generally, efficient and
effective irrigation management is more beneficial under restricted water conditions, as the
responses of the decision-maker will have an impact on the resulting GMs, hence the greater
value of an MSDF under a restricted water quota.

3.3 The cost of a water restriction

To determine the cost of a water restriction, the certainty equivalents generated within the two
alternative decision-making frameworks under a full quota and a restricted quota water-supply scen-
ario are compared for a risk-neutral and a risk-averse decision-maker. The results of the cost of a water
restriction are presented in Table 2. Given that the certain amount that a risk-neutral decision-maker
receives reduces significantly when a water restriction is enforced, the cost of a water restriction is
represented by the difference between the CE generated under a full water quota and that under
a restricted water quota for each decision-making framework. Table 2 indicates the cost of a water
restriction for an SSDF of R218 319, which is greater than that of R215 561 faced within a multi-
stage decision-making framework for a risk-neutral decision-maker. By implication, the cost of a
water restriction is over-estimated within an SSDF. The true quantification of risk is hence imperative
if the true cost of a water restriction is to be determined.

Likewise, a greater cost of a water restriction of R212 513, results within an SSDF in comparison to
the R209 249 generated within an MSDF under risk aversion, as depicted in Table 2. An over-esti-
mation of the cost of a water restriction is hence also noted for a risk-averse decision-maker. None-
theless, the costs of a water restriction when risk aversion is considered are lower than under risk
neutrality for both an SSDF and an MSDF. The lower costs can be attributed to the fact that risk-
averse decision-makers already make conservative decisions, hence a water restriction will have a
relatively lesser impact on such a decision-maker.

The cost differences between the SSDF and the MSDF are small because the weather states
included in the model were assumed to be constant between both water quotas. Consequently,
the impact of water restrictions might be under-estimated, since the weather states were not corre-
lated with the prevailing conditions associated with water restrictions.

4. Conclusion

Higher gross margins resulted when irrigation decisions were modelled within a multi-stage decision-
making framework in comparison to that under a single-stage decision-making framework. The
overall increase in gross margins for each state of nature within a multi-stage decision-making

Table 2. Certainty equivalents for each water-supply scenario for the two alternative decision-making frameworks for a risk-neutral
and a risk-averse decision-maker, 2016.

Risk neutral Risk averse

Full
quota

Restricted
quota Cost (R)

Full
quota

Restricted
quota Cost (R)

Single-stage framework
certainty equivalent (R)

2,291,835 2,073,516 218,319 2,077,144 1,864,631 212,513

Multi-stage framework
certainty equivalent (R)

2,296,097 2,080,535 215,561 2,088,293 1,879,044 209,249
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framework is attributed to the lower irrigation-dependent costs incurred, given the reduced per-state
irrigation water use. The updating of additional water budget information as it becomes available
with irrigation decisions made sequentially reflects the true risk that a decision-maker faces, and
hence the higher expected gross margins resulting from improved irrigation water scheduling.

Risk aversion does not significantly affect the resulting area and yields under a full water quota.
However, irrigation water use is significantly reduced in an effort to increase the minimum outcomes.
Although water is considered a risk-reducing input, the extreme level of risk aversion used resulted in
a reduction in irrigation water applied in an effort to improve the minimum expected values as irriga-
tion-dependent costs decreased. Under a restricted water quota, significant differences are noted
between yields generated for a risk-neutral and a risk-averse decision-maker, hence implying the
noteworthy impact of risk aversion on the responses of a decision-maker when water supply is
restricted. The interaction between crop, area planted and water availability facilitated during
multi-stage decision-making is hence more significant when water supply is restricted.

In the light of the noted responses of decision-makers and the corresponding variations in gross
margins, the conclusion is that modelling irrigation decisions within a multi-stage decision-making
framework is worthwhile considering its resulting value when the certainty equivalents of the two
alternative decision-making frameworks are compared. Also, the utility weighted risk premium of a
multi-stage decision-making framework is more significant under restricted water supply, hence it
is imperative to consider such a framework given the worsening problem of water scarcity. Modelling
of irrigation decisions within a multi-stage decision-making framework also provides a true reflection
of the value of the certainty equivalents and can significantly guide irrigation-scheduling decisions.

The results of the costs of a water restriction confirm the notion under which the aim of this study
was constructed, namely that modelling irrigation decisions within a single-stage decision-making
framework, considering area and irrigation-scheduling decisions as one decision, will lead to an
over-estimation of the cost of a water restriction.

In this case, the cost of a water restriction is over-estimated within a single-stage decision-making
framework, which might result in imprecise modelling of irrigation decision tools, especially under
restricted water scenarios taking risk preferences into account. Caution is hence necessary when for-
mulating agricultural water-allocation policies based on crop water optimisation models that ignore
the multi-stage decision-making framework within which irrigation decisions are made. Ignoring
modelling irrigation decisions as sequential dynamic decisions results in over-estimating the
impact of any given policy on water-use management. It is therefore critical to analyse farm-level
profitability within a framework that better represents farmers’ decision-making to provide policy
decision-makers with improved decision-making tools.

The characterisation of weather risk was done using historical data. The results could be further
improved by integrating the multi-stage decision-making framework MSDF with weather forecasts
that take cognisance of the prevailing weather conditions when the actual decisions are made.
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