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We examine the interdependence of high-yielding variety (HYV) technology 

adoption and farm and farmer characteristics to achieve almost self-sufficiency in 

rice production in Bangladesh. We use data collected by the International Rice 

Research Institute (IRRI), Bangladesh, from an Area-Based Farm Household 

Survey to estimate yield differentials, return differentials, and risk. We find that 

HYV rice varieties contributed to 61.34 percent, plot-specific attributes contributed 

to 3.08 percent, and farmer-specific characteristics contributed to 35.58 percent 

toward rice productivity. Additionally, adopting HYV technology resulted in a base 

return increase of about 154.03 percent. However, land, labor, fertilizer, irrigation, 

and insecticide costs had combined negative effects of approximately 49.05 percent 

on the return model. Plot-specific attributes had more effects on the return model 

than on the differential yield model, while farmer-specific characteristics had a 

negative effect on HYV return gain. Results also show that HYV technology is less 

risky compared to the traditional variety (TV) technology. 

Key words: farm/farmer characteristics, restricted/unrestricted yield gain, rice 

production, self-sufficiency 

Introduction 

Food security and food self-sufficiency are interrelated concepts, although food self-sufficiency 
is not required for food security. The FAO (1996) defines food security as a situation when people 

have physical and economic access to sufficient, safe, and nutritious food to meet their dietary 

needs and food preferences for active and healthy lives all of the time. Food self-sufficiency is the 

concept where a country produces a sufficient amount of food to feed its population. Producing 
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food to achieve self-sufficiency may not be in the best interest of a country or its farmers, as 

production depends on input availability, the policy environment, and comparative advantage. 

Yet, food self-sufficiency has been the goal for staple food crops (e.g., rice self-sufficiency goal 

in the Philippines, Indonesia, and China) in many countries (Warr and Yusuf, 2014). These 

countries aim to be self-sufficient in staple food crop production by increasing agricultural 

productivity, increasing crop areas with high-yielding varieties (e.g., Bangladesh), output price 

support, imposing import tariffs, or providing fertilizer subsidies (e.g., Indonesia, China). The 

emergence of self-sufficiency in food production after the end of colonialism and re-emergence 

after the wake of the international food crisis of 2007-2008 is particularly worth noting (Clapp, 

2017).  

The environmental impacts of agricultural production can be both positive and negative (Ball 

et al., 2004). Previous studies have highlighted several benefits of adopting modern technologies, 

including increased productivity (Chandino et al., 2022; Fuglie & Echeverria, 2024; Souza et al., 

2020), economic gains (Walton et al., 2008), social advantages (Boyer et al., 2016; Fuglie & 

Echeverria, 2024), and environmental improvements (Huffman et al., 2017; Chandino et al., 

2022). For instance, mechanization in agriculture has significantly increased rice productivity in 

China (Chandino et al., 2022). Fuglie and Echeverria (2024) find that various agricultural 

technologies led to higher crop productivity, reduced costs, increased profits, and provided 

cheaper products to the population. Walton et al. (2008) show that adopting precision soil 

sampling techniques is associated with increased productivity and income among cotton farmers. 

Boyer et al. (2016) find a positive link between adopting variable-rate nutrient management and 

participation in cost-sharing programs for social benefits. Busdieker-Jesse et al. (2016) find that 

genetically modified (GM) apple breeds improved profitability and reduced production costs for 

U.S. apple producers. Similarly, adopting GM corn has been shown to increase productivity and 

reduce environmental degradation by improving soil moisture content (Huffman et al., 2017). It 

is also worth noting that the Green Revolution and high-yielding crop varieties have made many 

Asian and Latin American countries food secure or food self-sufficient in some crops (Sonnenfeld, 

1992; Hazell, 2009; Dawson, Martin, and Sikor, 2016) despite their long-term adverse 

environmental impacts (Tilman, 1998).  

The agricultural sector is essential for achieving overall economic growth, development, and 

sustainability, thereby enhancing food security, producing employment opportunities, and 

alleviating poverty in many developing countries (Gollin et al., 2002; Awokuse and Xie, 2015). 

Advanced agricultural technologies have been considered drivers of economic growth with the 

potential to alleviate poverty and reduce food insecurity (Barrett et al., 2004; Moreno and 

Sunding, 2005). Studies have long examined the introduction of improved varieties of seeds and 

agricultural inputs that increase yield in developing countries where farming by small landholders 

is predominant (Barrett et al., 2004; Moreno and Sunding, 2005; Kabunga, Dubois, and Qaim, 

2014). 

Nevertheless, there are limitations in the applicability (or application) and diffusion of these 

technologies. These limitations are related to the nature of economic and financial markets and 

the existence of information networks and information diffusion. Market-related attributes include 

credit constraints (Dercon and Krishnan, 1996; Fletschner, Guirkinger, and Boucher, 2010), 

information constraints (Kabunga, Dubois, and Qaim, 2014), social networks and social learning 

(Foster and Rosenzweig, 1995; Conley and Udry, 2010), and price risk (Liu, 2013; Ward and 

Singh, 2013). Besides, the extent to which these technologies could be adopted depends on farm 

and farmer characteristics. Farm-related attributes include farm size and plot biophysical 

conditions. Farmer-relevant variables examined are education and social network (Huffman, 

2001; Skinner and Staiger, 2007), input utilization (Duflo et al., 2008), risk preferences (Sunding 

and Zilberman, 2001; Dercon and Christiansen, 2011), and seed trait preferences (Useche et al., 

2009).   

The process of establishing whether the adoption of new or improved technology is favorable 

compared to the old or traditional one proves challenging. The attributes that may deter the 
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adoption of a new technology, let alone diffusion, need to be identified. A particular difficulty 

arises when the adoption of the new technology is more prominent, not due to the features of the 

new technology (for example, seed traits, fertilizer, machinery), but rather due to the farmers' 

attributes (for example, farmer's education, farmer's training on new technologies) and farmer 

cultivation practices (for example farmers being early adopters, farmers selecting labor-saving 

technologies) (Huffman, 2001; Barrett et al., 2004; Useche et al., 2009). Studies have also reported 

that regional heterogeneity can affect technology adoption (Useche et al., 2009), which may lead 

to selection bias. We should expect farmers to apply that knowledge and technology to the fields 

they would most benefit from. 

Our paper examines the interdependence of technology adoption decisions. Adoption based 

on technology, plot attributes, and farmer characteristics is important for smallholders where 

adoption conditions are heterogeneous. We use data from a Bangladeshi rice grower survey 

conducted by the International Rice Research Institute in 2015. The survey includes information 

on adopters and nonadopters of the HYV technology. We employ differential yield and 

differential return function procedures (Barrett et al., 2004). We examine two rice-growing 

seasons, and document changes in the yield and return differentials of farmers adopting the HYV 

technology for one season and using traditional rice varieties for the other season. This way, we 

control to a larger extent for plot and farmer heterogeneity, allowing us to gain further insight into 

what drives these differentials. In addition, we quantify differential returns and cost functions.  

Improved high-yielding varieties of rice seeds, subsidized fertilizer, infrastructural 

developments, and improved management practices accompanied by government interventions 

liberalizing trade and agreements to lower tariffs for imported agricultural equipment ushered in 

the Green Revolution in Bangladesh in the mid-1980s, although quite late compared to India or 

Mexico (Sonnenfield, 1992; Hossain, Bose, and Mustafi, 2006). Despite an increase in population 

and a decrease in arable land, adopting these technologies over the last decade helped accelerate 

the production of food grains in the country, with Bangladesh almost achieving self-sufficiency 

in rice production (FAOSTAT, 2015). This is why Bangladesh is ideal for researching the role of 

improved farming technologies in achieving food self-sufficiency. Furthermore, considering that 

Bangladesh relies on agriculture, particularly rice production, to feed its population, food 

insecurity would increase if there were insufficient domestic production (Timsina et al., 2018). It 

is worth noting that the country had a population of 168 million in 2022, which is expected to 

increase to 186 million by 2030. Therefore, it is crucial to identify both the factors affecting rice 

production technologies and their role in food sufficiency in Bangladesh. 

The empirical results indicate that the HYV technology application generated an estimated 

increase in rice yield by 61.34 percent. An estimated 35.58 percent was attributed to individual 

rice grower characteristics adding to the literature that highlights the interrelation of farmer 

characteristics and technology adoption decisions. Lastly, an estimated yield increase of 3.08 

percent was attributed to plot attributes. Similarly, our analysis of differential return function 

estimates showed that the return increase was caused by HYV adoption (78.68 percent), plot 

attributes (31.63 percent), and farmer characteristics (-10.31 percent). By quantifying the role of 

high-yielding varieties (HYV), plot attributes, and farmer characteristics, we can better 

understand each component's role in achieving rice self-sufficiency in Bangladesh.  

We organize the remainder of the paper as follows. We describe the rice-growing system in 

Bangladesh and introduce the HYV technology in section II. In section III, we present the 

empirical framework and the econometric specification. We describe the data used in the study in 

section IV. The later sections report our findings, main observations, and concluding remarks. 

Country Background 

Bangladesh is a deltaic country in South Asia with a land area of about 147,550 square kilometers. 

It is one of the most populous countries in the world, ranking 13th in population density, with 

approximately 1,077 people per square kilometer (Timsina et al., 2018; Mottaleb et al., 2019). 
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Rice is a staple food item in Bangladesh. Rice varieties are planted in three seasons: aman, which 

is cultivated during the "wet" season beginning from mid-July to mid-November; boro, which is 

cultivated during the "dry" season beginning from mid-November to mid-March; and aus, the 

spring season variety cultivated from mid-March to mid-July (FAO, 2019). Aman season rice 

consists of mainly traditional rice varieties that are rainfed and require less fertilizer; those rice 

varieties are susceptible to drought as well as flood (Asaduzzaman et al., 2010). High-yielding 

boro rice varieties rely on improved management practices, including transplanting in well-spaced 

rows, heavy use of chemical fertilizers, and groundwater irrigation (Ruane et al., 2013; Timsina 

et al., 2018; Mottaleb et al., 2019). The last variety, aus, has been sparsely cultivated during the 

last few decades (Asaduzzaman et al., 2010). 

With trade liberalization on importing small-scale irrigation equipment (Mottaleb et al., 2017; 

Mottaleb et al., 2019) and intensive use of chemical fertilizer HYV/ modern varieties (MV) 

covered about 85 of the total rice area in 2016-17, while it was only about 15 percent in 1981-82 

(BRRI, 2018; Mottaleb et al., 2019). With the increase in population, per capita cultivable area 

has been declining since the 1960s (Mottaleb et al., 2019). In 2013, per capita arable land was 

about 0.005 hectares, while it was 0.17 hectares in 1961 (World Bank, 2017; Mottaleb et al., 

2019). In 1982, the net cultivable area was about 9.83 million hectares. It declined dramatically 

to 8.7 million hectares by 1992-93, and the total cultivable land was 7.77 million hectares by 

2008-2009 (Alam and Islam, 2013).  

Changes in government policies, which favored privatization in the procurement and 

distribution of small-scale irrigation equipment and chemical fertilizers, liberalization of trade, 

and reduction in tariff for imported agricultural equipment, were also factors that complemented 

the HYV adoption (Mottaleb et al. 2017; Mottaleb et al., 2019). Private investment in small-scale 

irrigation equipment was considered a dominant factor in facilitating the diffusion of HYVs 

(Asaduzzaman et al., 2010; Mottaleb et al., 2017; Mottaleb et al., 2019). As a result, farmers 

invested substantially in shallow tube wells and power pumps, contributing to rapidly expanding 

irrigation facilities. The diffusion of HYV boro rice is strongly related to the expansion of 

groundwater irrigation (Asaduzzaman et al., 2010; Mottaleb et al., 2019). Moreover, beginning in 

1986, the government removed the ban on private sector imports of agricultural equipment. As a 

result, the cost of tube wells was reduced substantially, and a market for irrigation services was 

developed (Hossain et al., 2003).  

The upward trends in rice cultivation area, yield, and production volume in Bangladesh have 

been noticeable since adopting HYVs (Ricepedia, 2019). In terms of productivity, the average 

rice yield increased from 2.15 tons/ha in 1984 to 4.42 tons/ha by 2014, a 2.4 percent per year 

growth rate (Alam and Islam, 2013; Ricepedia, 2019). Bangladesh almost achieved self-

sufficiency in 2016, but extreme weather events in 2017 (such as heavy monsoon that led to the 

flooding of major rice areas Dhaka and Rajshahi) resulted in a lower total (USDA, 2017; USDA 

2018) production, though in 2018, the country produced a surplus amount of rice.1  The yield of 

traditional varieties (TVs) has also increased from 1.52 tons/ha in 1965 to 2.14 tons/ha by 2009, 

a growth rate of 0.9 percent per year (Hossain et al., 2003; Alam and Islam, 2013). Major factors 

leading to an increase in the yield of TVs include the increase in the use of chemical fertilizers 

and a reduction in the share of rice grown in the lowest-yielding season aus (Hossain et al., 2003).  

 
1 In 2018, total rice production in Bangladesh exceeded by seven million tons than the domestic needs. 

USDA forecasts rice harvested area and production in Bangladesh for the marketing year 2021/2022 to be at 

11.62 million hectares and 3.59 million metric tons, slightly up from the previous marketing year. The 

government of Bangladesh continues to import rice to make it affordable. It is estimated that Bangladesh  

will import 1.5 million metric tons of rice in MY 2021/2022.  Source:  

https://www.fas.usda.gov/data/bangladesh-grain-and-feed-update-22 
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Method 

Several studies examined the adoption of agricultural innovation, considering the diverse 

characteristics of farmers, farms, and farming regions in an empirical setting. For example, Abay 

et al. (2016) explored the adoption of fertilizer, seed, and extension services, considering farm 

household-level unobserved heterogeneity such as risk-taking and technology preferences. Tran-

Nam and Tiet (2022) determined the socio-demographic determinants of organic farming 

adoption accounting for individual heterogeneity in environmental belief. Varshney et al. (2022) 

examined the adoption of hybrid mustard in India, considering the heterogeneity across different 

casts of farm producers. Barnes et al. (2019) considered regional heterogeneity while examining 

the internal and external determinants of adopting precision agricultural technologies and nitrogen 

technologies in EU farming systems. Similarly, Shahzad and Abdulai (2021) examined the 

adoption of climate-smart agricultural technology in Pakistan, empirically accounting for 

unobserved household characteristics. Further, several past studies have summarized agricultural 

technology adoption literature and discussed heterogeneity mainly in the context of developing 

countries (Feder and Zilberman, 1985; Ruzzante et al., 2021; Oyetunde-Usman, 2022).  

In this study, the empirical model estimates a differential yield function and a differential 

return function controlling for farmer characteristics and plot attributes (Barrett et al., 2004). We 

observe the same individuals cultivating the same plots in two consecutive seasons within a year. 

This allows us to capture the true productivity gains and risks of the HYV technology by 

identifying the effects of technology adoption and the marginal productivity of land and labor 

inputs. Depending on whether one chooses a production or profit/cost approach, there is a need to 

address the endogeneity problem.2  

Production systems are affected by seasonality and are susceptible to stress factors (extreme 

weather events, pests, diseases) during the production period. Grain producers likely respond to 

seasonal conditions by adjusting the input mix under some production decision rigidity or by 

adjusting the output mix (Tozer and Villano, 2013). Tsiboe et al. (2017) argue that improving rice 

varieties, making them more disease-resistant, has the potential to increase both rice production 

and overall consumer surplus. The limited resources used in rice cultivation in Bangladesh may 

deter farmers from reallocating resources considering that the seasons for cultivating rice varieties 

succeed one another. Moreover, due to the country's dependence on agriculture for food security 

concerns and high population density, the fields are seldom left uncultivated. However, that does 

not necessarily mean those producers can easily switch between crop production or alter their 

production practices.  

To proceed, for each of the technologies (𝑦) examined HYV and TV, we define the respective 

yield function; 𝑦𝑓 = 𝑦𝑓(𝑥, 𝑧)  for HYV and 𝑦𝑔 = 𝑦𝑔(𝑥, 𝑧)  for TV. Each technology is 

characterized by a vector of production inputs (𝑥) controlled by the farmer and a vector of 

exogenous characteristics related to farm, farmer, and environmental conditions (𝑧). For our 

study, vector 𝑥 contains information on land use, labor usage and labor cost, fertilizer application 

and fertilizer cost, pesticide cost, herbicide cost, and irrigation cost. Vector 𝑧 contains information 

on environmental conditions, plot attributes, and farmer characteristics. Environmental conditions 

are proxied by days of water shortage; plot attributes include average plot size and soil quality; 

farmer characteristics include farmer age, experience with HYV, gender, and education.3 Rice 

cultivation in Bangladesh is prone to production risk. To account for the production risk, we allow 

inputs to have either positive or negative marginal effects on production. 

 
2 Estimating a production or yield function is the primal approach whereas estimating profit or cost function 

is the dual approach. In the dual approach, the selection of inputs and respective quantities are endogenous. 

There are advantages and disadvantages in using either of the two approaches and based on the scenario we 

examined we believe that the best approach is to employ a primal model. Dual is not efficient because it fails 

to utilize all the available information (Mundlak, 1996).  
3 Vector 𝑧 could also include unobservable farmer characteristics, such as farmer health, energy level, work 

ethic, farming aptitude (Barrett et al., 2004). 
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The two technologies can be represented by the general functional forms, following Just and 

Pope's formulation (1978): 

HYV: 𝑦𝑓 = 𝑓(𝑥, 𝑧) + ℎ𝑓(𝑥, 𝑧)
1

2𝜉𝑓 . . . . . . . . . . . . . . (1) 

TV: 𝑦𝑔 = 𝑔(𝑥, 𝑧) + ℎ𝑔(𝑥, 𝑧)−
1
2𝜉𝑔. . . . . . . . . . . . . . (2) 

where    is a shock with mean zero and variance 𝜎𝑖
2(𝑖 = 𝑓, 𝑔) that is independent across the 

cross-sectional observations. The conditional expectation functions for 𝑦𝑓 and 𝑦𝑔are 𝑓(𝑥, 𝑧) and 

𝑔(𝑥, 𝑧), respectively.  

Following Barrett et al. (2004), we employ a first-order approximation with interaction 

effects to the true conditional expectation function for each technology:4   

𝐸[𝑦𝑓] = 𝛼𝑓0 + ∑ 𝛼𝑓𝑖

𝑟

𝑖=1

𝑥𝑓𝑖 + ∑ ∑ 𝛽𝑓𝑖𝑗𝑥𝑓𝑖𝑥𝑓𝑗

𝑟

𝑗=1≠𝑖

𝑟

𝑖=1

+ ∑ 𝛾𝑓𝑖

𝑡

𝑖=1

𝑧𝑓𝑖 + ∑ ∑ 𝜂𝑓𝑖

𝑡

𝑗=1≠𝑖

𝑡

𝑖=1

𝑧𝑓𝑖𝑧𝑓𝑗

+ ∑ ∑ 𝜏𝑓𝑖𝑗𝑥𝑓𝑖

𝑡

𝑗=1

𝑟

𝑖=1

𝑧𝑓𝑗 . . . . . . . . . . . (3) 

𝐸[𝑦𝑔] = 𝛼𝑔0 + ∑ 𝛼𝑔𝑖

𝑟

𝑖=1

𝑥𝑔𝑖 + ∑ ∑ 𝛽𝑔𝑖𝑗𝑥𝑔𝑖𝑥𝑔𝑗

𝑟

𝑗=1≠𝑖

𝑟

𝑖=1

+ ∑ 𝛾𝑔𝑖

𝑡

𝑖=1

𝑍𝑔𝑖 + ∑ ∑ 𝜂𝑔𝑖

𝑡

𝑗=1≠𝑖

𝑡

𝑖=1

𝑧𝑔𝑖 𝑧𝑔𝑗

+ ∑ ∑ 𝜏𝑔𝑖𝑗 𝑥𝑔𝑖

𝑡

𝑗=1

𝑟

𝑖=1

𝑧𝑔𝑗 . . . . . . . . . . . (4) 

To estimate the effect of the technology adoption on yield, we subtract equation (4) from 

equation (3).   

𝑑𝑦 = 𝛼0 + ∑ 𝛼𝑖

𝑟

𝑖=1

𝑑𝑥𝑖 + ∑ ∑ 𝛽𝑖𝑗𝑑𝑥𝑖𝑑𝑥𝑗

𝑟

𝑗=1≠𝑖

𝑟

𝑖=1

+ ∑ 𝛾𝑖

𝑡

𝑖=1

𝑑𝑧𝑖 + ∑ ∑ 𝜂𝑖𝑗

𝑡

𝑗=1≠𝑖

𝑡

𝑖=1

𝑑𝑧𝑖𝑑𝑧𝑗

+ ∑ ∑ 𝜏𝑖𝑗𝑑𝑥𝑖

𝑡

𝑗=1

𝑟

𝑖=1

𝑑𝑧𝑗 + 𝑑𝜀 … . . . . . . . . (5) 

where 𝑑𝑦 = 𝐸[𝑦𝑓] − 𝐸[𝑦𝑔] is the difference in expected output or return,  𝑑𝑥 =  x𝑓-x𝑔  reflects 

the difference in input application rates or input costs on plots using the two different technologies, 

𝑑𝑧 =  z𝑓-z𝑔 reflects exogenous differences in the plots, e.g., soil type and 𝑑𝜀 =  𝜀𝑓 − 𝜀𝑔  is a 

mean zero, independent error term. The parameters 𝛼𝑖, 𝛽𝑖𝑗, 𝛾𝑖, 𝜂𝑖𝑗, and 𝜏𝑖𝑗 directly estimate the 

marginal productivity differences between the two technologies.  

By differencing the characteristics of vectors 𝑥 and 𝑧, we can remove potential bias from 

omitted but similar unobserved characteristics. Hence, when estimating equation (5), i.e., the 

difference in expected output or return, we obtain consistent and unbiased estimates of the 

marginal productivity differences (gains) attributable to the HYV technology. These productivity 

gains can be decomposed into gains from switching to a better technology, gains related to plot 

quality, or gains attributed to farmer characteristics. The gains from the marginal productivity of 

inputs are calculated as the product of the slope parameter estimates from equation (5) and the 

sample mean of the vector 𝑥  variables. The same approach is used to calculate plot-attribute 

specific gains (vector 𝑧 variables).  

 
4 Equations (3) and (4) can be converted into a standard regression model by adding a zero mean of normally 

distributed i.i.d. error term. 
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Unconditional productivity and gross return gains from the new technology equal the 

corrected base productivity change estimate plus the estimated direct effects of experience with 

the new technology times the sample mean experience level. Any farmer-specific gains are the 

residual production or portion of the yield differential not attributed to input-, plot-, and 

unconditional-productivity gains.  

Return Risk Estimation 

As mentioned before, managing production risks related to production practices and stress factors 

affecting production is important to farmers. Risk in this framework is the variation from expected 

output across farms. Following Barrett et al. (2004), we define the differential production risk 

function to be the difference in output variance attributable to changing technologies as  

𝑆2 = 𝑉[𝑦𝑓] − 𝑉[𝑦𝑔] = 𝐸[𝜀𝑓
2 − 𝜀𝑔

2] = ℎ(𝑥, 𝑧). . . . . . . . . . . . . . . . . . . (6) 

which can be estimated by differencing the squared residuals from the two-technology specific 

production and gross return functions. The variance will be regressed on the 𝑥 and 𝑧 vectors. 

Notice that the variance is a function of the 𝑥 and 𝑧 vectors, i.e., the observable farmer-specific 

(e.g., age, education) or plot-invariant effects (e.g., days of water shortage). Following the method 

on production differentials, we take the first-order approximation with interaction effects to the 

true conditional variance function (h function). The differential production risk function can be 

estimated as:  

𝑠2 = 𝜃0 + ∑ 𝜃𝑖

𝑟

𝑖=1

𝑥𝑖 + ∑ ∑ 𝜆𝑖𝑗𝑥𝑖𝑥𝑗

𝑟

𝑗=1≠𝑖

𝑟

𝑖=1

+ ∑ 𝜑𝑖

𝑡

𝑖=1

𝑧𝑖 + ∑ ∑ 𝛿𝑖𝑗

𝑡

𝑗=1≠𝑖

𝑡

𝑖=1

𝑧𝑖𝑧𝑗 + ∑ ∑ 𝜔𝑖𝑗𝑥𝑖

𝑡

𝑗=1

𝑟

𝑖=1

𝑧𝑗

+ 𝜓. . . . . . . . (7) 

where   is a mean zero i.i.d. error term on the differential conditional variance regression, the 

parameters will be interpreted similarly with respect to production risk. The slope coefficients 

estimate the marginal risk effects of the new technology as physical input or cost input application 

rates vary. The net mean changes in risk due to farm and farmer-specific (excluding plot variant) 

characteristics as well as the true unconditional change in production and return risks are captured 

by 𝜃0.  

Given the limitation of cross-sectional data, it is crucial to determine the effects associated 

with technology separately from those due to the unobserved farm or plot attributes; otherwise, 

the estimated effects of new technology will be overestimated (Barret et al., 2004). The method 

used, including the estimation of the production function instead of the profit function, as 

indicated by (Barret et al., 2004), "permits proper attribution of observed gains between the 

technology and underlying farmer characteristics and plot attributes associated with the adoption 

of the new technology." Thus, our approach appropriately assigns the observed yield due to 

technology accounting for those due to producer characteristics or plot attributes. 

Chen and Yen (2006) argued that Barrett et al. (2004) approach "provides a biased estimate 

of the true base productivity gains associated with the new technology." It is because the 

parameter in equation 6, without correction, "incorporates output gains associated with adopters' 

observable and unobservable attributes that may not be replicable in the broader population of 

nonadopters" (Chen and Yen, 2006). Thus, we considered the corrections for equal slope 

coefficient and cross-product terms in Barrett et al. (2004), as suggested by Chen and Yen (2006). 

Chen and Yen (2006) suggest three ways to overcome the problems: differencing, fixed effects, 

and random effects. We assume the first one of equal slope coefficients, treating each interaction 

term as a regressor and taking the difference of corresponding interaction terms instead of using 

the product of differences. Base productivity gains found from the resulting intercept term 

provided consistent estimates, which are free from the bias caused by farm- or farmer-specific 
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unobserved heterogeneity (Chen and Yen, 2006). We expect higher productivity, more labor 

hours, more years of experience, richer soils, high fertilizer application, and fewer water shortages 

to be positively correlated with higher yields and returns. 

Data 

We use data collected by the International Rice Research Institute (IRRI) office in Bangladesh. 

IRRI conducted an Area-Based Farm Household Survey in Bangladesh in 2015 for rice cultivation 

in 2014. IRRI randomly selected the samples and collected information on rice production from 

3,000 farmers. A pre-tested survey questionnaire was used, and data collection was conducted by 

the trained enumerators covering 18 districts of Bangladesh.  

Our dataset comprises 659 observations based on farmers who cultivated both HYV and TV 

rice varieties in 2014. Initially, there were 740 observations, and after data cleaning to remove 

outliers and incorrect/inconsistent data entries, we used 659 observations in the analysis. Due to 

a relatively small dataset and to keep up consistency with Barrett et al. (2004), we did not consider 

regional (district) variations. We isolate responses from farmers (household heads) who cultivated 

both HYV and TV rice varieties during the boro and aman seasons, respectively. As mentioned 

earlier, HYVs are mostly cultivated during the boro season, while TVs are mostly cultivated 

during the aman season. The dataset reports information on cultivation details, irrigation practices, 

ownership of farm machinery, training, and plot and farmer characteristics. Table 1 presents the 

summary statistics of our sample. 

The first panel in Table 1 describes key farmer and farm characteristics from the sample. The 

average age of farmers was about 47 years, with a minimum of 17 years and a maximum of 86 

years. Farming is a way of life in Bangladesh, and operators start farming at an early age. About 

88 percent of the farm operators were male, and 81 percent of farm operators received training in 

HYV rice cultivation methods through local extension agents. About 34 percent of the farmers 

had no formal education, while 22.75 percent had received at least a high school education. The 

average education level of the farm operators was about five years; that is, up to the level of 

primary education in Bangladesh. Moser and Barrett (2003) find that adopters of new technology 

are relatively well-educated, more involved in farmer organizations, and own more rice land 

compared to nonadopters. These characteristics for adopters were also true for Bangladeshi 

farmers. 

Bangladeshi rice farmers cultivated small plots (mostly marginal <1 acre) with a cropped area 

of 0.98 acres (2.47 acres = 1 hectare). Considering two major rice-growing seasons, about 52 

percent of the total area under rice production was done using HYVs. About 44 percent of the 

farmers own a tractor/power tiller and/or diesel or electricity-operated tube wells.   

The second panel presents information on the two rice cultivation practices examined in this 

study, namely HYV and TV. On average, the farm size used for rice cultivation was about 0.49 

acres each season (two seasons, so the effective area was 0.49*2 = 0.98 acres). On average, 0.49 

acres were cultivated with HYV in the boro season with a minimum of 0.04 and a maximum of 

2.70 acres. For TVs, on average, 0.48 acres were cultivated in the aman season with a minimum 

of 0.05 and a maximum of 2.97 acres. This shows that an average Bangladeshi farmer owns a 

small land plot and allocates the maximum share of this land for rice production. More 

importantly, Bangladeshi farmers use the same land or plot to cultivate different crops in different 

seasons.  

The surveyed farmers had, on average, about nine years of experience with the HYV 

technology, with a minimum of 2 years and a maximum of 22 years. For TVs, on average, farmers 

had about 28 years of experience cultivating TVs, with a minimum of 2 years and a maximum of 

76 years. Taking into consideration the age profile of rice growers in the sample, we expect to see 

a difference regarding the years of experience in the respective technologies. As mentioned 

earlier, the HYVs were introduced in the mid-1980s in Bangladesh, and based on our sample, we  
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Table 1. Farm and Farmer Characteristics (n=659) 

Farmer Characteristics Mean Min Max    

Mean age of farmer (years) 

(Standard Deviation) 

Percent male operators 

Percent of farmers trained about 

HYV 

Percent of farmers with no 

education 

Percent of farmers with high 

school education or better 

46.86 

(12.45) 

88.01 

81.18 

34.29 

 

22.75 

17 

 

 

 

 

 

86 

 

 

 

 

 

   

Farm Characteristics       

Mean total rice area (acre) 

(Standard Deviation) 

Percent of rice land in HYV 

(Standard Deviation) 

Percent of farmers own tractors 

and tube wells 

0.98 

(0.57) 

51.79 

(20.47) 

 

43.85 

0.16 

 

 

 

 

4.47 

 

 

 

 

   

 

Rice Cultivation Methods 

HYV  TV 

Mean Min Max Mean Min Max 

Mean area of plot (acre) 

(Standard Deviation) 

Mean years of experience with 

method 

(Standard Deviation) 

Mean days of water shortage in 

field 

(Standard Deviation) 

Percent of fields on rich soils 

Percent using chemical fertilizer  

Mean yield (kg/ac) 

(Standard Deviation) 

0.49 

(41.55) 

8.51 

(3.69) 

1.90 

(0.30) 

70.23 

100 

2155 

(432) 

 

0.04 

 

2 

 

1 

 

 

 

420 

 

2.70 

 

22 

 

2 

 

 

 

3,800 

 

0.48 

(35.82) 

28.40 

(12.22) 

1.74 

(0.43) 

70.23 

100 

931 

(436) 

 

0.05 

 

2 

 

1 

 

 

 

222 

 

2.97 

 

76 

 

2 

 

 

 

2960 

 

Returns and Prices       

Return from HYV rice (tk/ac) 

(Standard Deviation) 

Price of rice (tk/kg) 

(Standard Deviation) 

37040.23 

(10754) 

17.16 

(3.41) 

6062 

 

10 

108771 

 

39 

31909 

(21184) 

34.34 

(13.58) 

4380 

 

10 

184800 

 

73 

Note: TV and HYV respectively refer to "traditional varieties" and "high-yielding varieties." 
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Table 2. Productivity of Land and Labor 

 HYV TV Mean Difference 

(percent) 

Yield 

(kg/ac) 

Return 

(tk/ac) 

Yield 

(kg/ac) 

Return 

(tk/ac) 

 

Yield 

 

Return 

Output/Return 2,154 

(432) 

37,040 

(10,754) 

931 

(436) 

31,909 

(21,184) 

131 16 

Labor productivity 146 

 

11.22 

 

128 

 

17.90 

 

14 -37 

Non-harvest labor  14.75 

(15.06) 

3,299 

(2,059) 

7.24 

(10.18) 

1,782 

(1,432) 

103 85 

Note: Figures in the parentheses represent standard deviation. TV and HYV refer to "traditional varieties" 

and "high-yielding varieties," respectively. Returns are measured in taka (US$1 = 116.42 Bangladeshi taka 

(tk) as of 08/04/2024).  

see that the adoption of HYVs is a continuous and ongoing process. Despite the introduction of 

the HYVs, the average area under HYV rice plots and TV rice plots are found to be almost the 

same. Both varieties are predominately cultivated in Bangladesh based on the season. 

Bangladesh is rich in alluvial soil as a result of major rivers such as the Ganges and 

Brahmaputra flowing through the country.5 The alluvial land is highly fertile and suitable for rice 

cultivation. The surveyed farmers reported that 70 percent of the land allocated to rice production 

under both methods was of high quality. Nevertheless, all surveyed farmers applied chemical 

fertilizer in the production process. No use of manure was reported for the cultivation practices. 

We observe the main differences regarding rice yield under the two technologies. The average 

HYV yield was about 2,155 kilogram (kg) per acre (ac), while it was about 931 kg/ac for the TV. 

The maximum HYV yield was 3,800 kg/ac, while it was 2,960 kg/ac for TV.  

The last panel of Table 1 represents returns and prices of rice yields in Bangladesh for both 

technologies and seasons. The average return on HYV rice production was about 37,040 taka per 

acre (tk/ac)6 , with a maximum of 108,771 tk/acre and a minimum of 6,062 tk/acre. On average, 

the return on TV rice production was about 31,909 tk/acre, with a maximum of 184,800 tk/acre 

and a minimum of 4380 tk/acre. The average returns were almost similar because of the prices. 

The average price for HYV rice was about 17 tk/kg, while it was about 34 tk/kg for TV rice. This 

price difference is attributed to rice quality; that is, HYVs are mostly coarse grain and are used 

for home consumption by farmers year-round. TVs are mostly aromatic with fine grains, and as a 

result, farmers earn a higher price compared to the price of HYVs. Moreover, Bangladeshi farmers 

sell rice just after harvesting, except for a few large farmers who may have storage facilities and 

can sell rice later in the season. This explains why prices range from 10 tk to over 70 tk per 

kilogram within a year. There is no operating futures market in the country, but the farmers can 

get higher prices if they sell outside of the immediate harvesting time. It's worth noting that the 

international rice markets are integrated with efficient pricing mechanisms (Chen and Saghaian, 

2016).   

Table 2 reports unconditional land and labor productivity. Output, labor productivity, and 

non-harvest labor are measured in terms of both physical and monetary terms. Physical output is 

measured in kilogram per acre (kg/ac) and returns are measured in taka per acre (tk/ac). Labor 

productivity is calculated by dividing the outputs and returns by non-harvest labor days and the 

cost of non-harvest labor. Non-harvest labor is measured in both man-days and taka per acre.  
 

 
5 These two rivers are known as Padma and Jamuna, respectively, in Bangladesh. 
6 Note: US$1 = 116.42 Bangladeshi taka (tk) as of 08/04/2024, Source:  

https://www.xe.com/currencyconverter/convert/?Amount=1&From=USD&To=BDT 
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Figure 1. Median and span of labor use ratio 
 

Results show that HYV plots have a 231 percent higher yield than TV plots, while in terms of 

returns, it is only about 16 percent higher. A t-test confirms that there are significant differences 

in yield and returns between these two varieties (t-value: 49.80 with p = 0.000; and t-value 5.60 

with p = 0.000, respectively). Physical output varies more under TV than under HYV, while it is 

the opposite for returns based on the standard deviation (SD) value shown inside parentheses. 

This increased yield risk under TV practices may be attributed to a lack of timely availability of 

fertilizer, labor to transplant seedlings, and a shortage of groundwater. Increased return risk may 

be attributed to the farmers' needs and desires, specifically whether they sell immediately after 

harvesting or store rice for future sales. The use of non-harvest labor days for HYV is almost 

double that of the non-harvest labor days for TVs. In Bangladesh, farmers use tractors to cultivate 

land for seedbed preparation, land preparation, harvesting, and threshing. Only a limited number 

of laborers are employed in transplanting, fertilizer application, and insecticide application, which 

are mostly family labor tasks.   

Figure 1 illustrates the median and span of labor use ratio in physical terms. We find that in 

the early adoption stage (experience), labor demand increases for HYV compared to TV then the 

ratio of (HYV/TV) labor utilization decreases and remains slightly above 1 for the remaining 

periods. With increased experience with HYV, after about four years, the ratio of HYV and TV 

early season labor utilization becomes parallel to the horizontal axis. This could be attributed to 

the farmers' learning by doing. When adopting a new technology, farmers tend to utilize more 

labor inputs. As time passes, they tend to adopt similar management practices for both 

technologies. As a result, after a few years of experience, labor input utilization becomes almost 

similar.   
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Table 3. Estimated Difference in Mean Rice Yields under HYV 

 

 

Mean Yield (kg/ac) 

Model 

Unrestricted 

Random Effects 

Differential 

Yield 

Restricted 

Random Effects 

Base productivity change 2,235*** 

(132.54) 

1,230*** 

(69.33) 

1,230.52*** 

(24.33) 

Marginal yield changes land (ac) 48.18 

(103.67) 

98.11 

(79.34) 

98.11 

 

Non-harvest labor (days/ac) -2.04 

(2.95) 

-3.48 

(4.40) 

-3.48 

 

Experience (years) -2.92 

(9.26) 

0.94 

(2.47) 

0.94 

 

Rich soils (dummy) 54.39 

(37.40) 

53.89 

(55.27) 

53.89 

 

Fertilizer application (kg/ac) 0.06 

(0.36) 

0.03 

(0.39) 

0.03 

 

Days of water shortage -40.53 

(49.15) 

-123.62*** 

(47.36) 

-123.62*** 

 

Land × experience -12.05 

(13.29) 

0.95 

(3.63) 

0.95 

 

Labor × experience 0.26 

(0.37) 

-0.12 

(0.19) 

-0.12 

 

R-squared 

N 

0.02 

659 

0.02 

659 

- 

 

 

Note: *, **, and *** indicate statistical significance at the 10%, 5%, and 1% levels, respectively. Columns 2, 

3, and 4 of Table 3 show the regression results for mean rice yield (kg/ac), respectively, associated with the 

unrestricted random effects model, differential yield model, and restricted random effects model. The 

common independent variables in these models include base productivity change, marginal yield changes 

land (ac), non-harvest labor (days/ac), experience (years), rich soils (dummy), fertilizer application (kg/ac), 

days of water shortage, interaction of land and experience, and interaction of labor and experience. The 

unrestricted random effects model fails to control for farm and farmer specific characteristics. Therefore, 

these estimates are biased and inconsistent. Differential yield estimates the model (5) and considers the 

difference in yield between high-yielding varieties (HYVs) and traditional varieties (TVs). Restricted 

random effects provide a consistent estimate of base productivity change and other parameters. 

Results and Discussions 

Tables 3-6 report the regression results for rice yield (kg/ac) and returns (tk/ac), respectively. In 

both tables, the left-hand column shows the coefficient estimates of the unrestricted random 

effects regression model, which fails to control for farm- and farmer-specific effects. Therefore, 

these estimates are biased and inconsistent. The middle columns display the differential yield 

function estimates from equation (5). The marginal yield effect estimates are consistent, but the 

base productivity gain is not consistent. That is, the parameter estimates of each explanatory 

variable (land, labor, experience, etc.) are consistent, while the constant (base productivity 

change) is not consistent. The right-hand columns report the corrected base productivity change 

estimate from the restricted random effects. For the restricted random effects, the slopes are  
 



Hasan et al. Rice Self-Sufficiency in Bangladesh 13 

Table 4. Estimated Difference in Variance of Rice Yields under HYV 

 

 

Variance of Yields 

Model 

Unrestricted 

Random Effects 

Differential 

Yield 

Restricted 

Random Effects 

Base productivity change 89.53 

(156.11) 

-42.70 

(118.47) 

-42.72 

(34.53) 

Marginal yield changes land (ac) -269.91** 

(105.54) 

240.14*** 

(91.99) 

240.14*** 

 

Non-harvest labor (days/ac) 0.93 

(5.05) 

0.87 

(6.61) 

0.87 

 

Experience (years) -8.69 

(13.51) 

4.85 

(3.67) 

4.85 

 

Rich soils (dummy) 32.69 

(40.60) 

163.55** 

(86.46) 

163.55** 

 

Fertilizer application (kg/ac) 0.09 

(0.46) 

0.69 

(0.46) 

0.69 

 

Days of water shortage 100.16** 

(49.10) 

19.06 

(65.97) 

19.06 

 

Land × experience 36.61*** 

(13.86) 

5.29 

(4.75) 

5.29 

 

Labor × experience 0.13 

(0.68) 

0.01 

(0.27) 

0.01 

 

R-squared 

N 

0.02 

659 

0.02 

659 

- 

 

 

Note: *, **, and *** indicate statistical significance at the 10%, 5%, and 1% levels, respectively. Columns 2, 

3, and 4 of Table 4 show the regression results for the variance of rice yield, respectively, associated with 

the unrestricted random effects model, differential yield model, and restricted random effects model. The 

common independent variables in these models include base productivity change, marginal yield changes 

land (ac), non-harvest labor (days/ac), experience (years), rich soils (dummy), fertilizer application (kg/ac), 

days of water shortage, interaction of land and experience, and interaction of labor and experience. The 

unrestricted random effects model fails to control for farm and farmer specific characteristics. Therefore, 

these estimates are biased and inconsistent. Differential yield estimates the model (5) and considers the 

difference in yield between high-yielding varieties (HYVs) and traditional varieties (TVs). Restricted 

random effects provide a consistent estimate of base productivity change and other parameters. 

restricted to equal the estimates generated by the preceding differential yield function (the middle 

columns of Tables 3-6, respectively). 

Tables 3 and 4 show the estimated difference in mean and variance of yields of high-yielding 

varieties. Results indicate that base productivity gains are almost two times higher under the 

unrestricted model than in the restricted random effects model. Note that the restricted model is 

estimated with proper controls for observable accounting unobservable characteristics. The 

differential yield model's base productivity gains are also almost similar, differing from Barrett et 

al. (2004), who found the estimate to be 84 percent higher. This could imply that the farmers use 

similar inputs for both varieties. Once we difference away farm- and farmer-specific effects, the 

only statistically significant marginal productivity effect of HYV is days of water shortage. This 

implies that the unavailability of irrigation in times of need adversely affects rice yield. 

Bangladeshi farmers generally use diesel or electrically operated irrigation pumps. Thus, the  
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Table 5. Estimated Difference in Mean Returns under HYV 

 

 

Mean Returns (tk/ac) 

Model 

Unrestricted 

Random Effects 

Differential 

Returns 

Restricted 

Random 

Effects 

Base productivity change 44,704*** 

(2693) 

7,904.6** 

(3118) 

7,903.5*** 

(908) 

Marginal yield changes land (taka/ac) -1,269.86 

(1106) 

2,577 

(1710) 

2,577 

 

Non-harvest labor cost (taka/ac) -0.08 

(0.21) 

-0.20 

(0.41) 

-0.20 

 

Experience (taka/yr) -263.25** 

(103.4) 

67.85 

(84.32) 

67.85 

 

Rich soils (dummy) 275.37 

(1046) 

2319.8 

(2170) 

2319.8 

 

Fertilizer application cost (taka/ac) 0.19 

(0.18) 

-0.38 

(0.34) 

-0.38 

 

Days of water shortage -2,537.81** 

(1179) 

-3,573.9** 

(1676.7) 

-3,573.9** 

 

Irrigation cost (taka/ac) -0.02 

(0.14) 

-0.13 

(0.30) 

-0.13 

 

Insecticide/pesticide cost (taka/ac) -0.89 

(0.88) 

-1.83 

(1.75) 

-1.83 

 

R-squared 

N 

0.02 

659 

0.02 

659 

- 

Note: *, **, and *** indicate statistical significance at the 10%, 5%, and 1% levels, respectively. Columns 2, 

3, and 4 of Table 5 show the regression results for average returns (tk/ac), respectively, associated with the 

unrestricted random effects model, differential yield model, and restricted random effects model. The 

common independent variables in these models base productivity change, marginal yield changes land 

(tk/ac), non-harvest labor cost (taka/ac), experience (taka/yr), rich soils (dummy), fertilizer application cost 

(tk/ac), days of water shortage, irrigation cost (taka/ac), and insecticide/pesticide cost (tk/ac). The 

unrestricted random effects model fails to control for farm and farmer specific characteristics. Differential 

return estimates a model similar to (5) for return and considers the difference in return between high-

yielding varieties (HYVs) and traditional varieties (TVs). Restricted random effects provide consistent 

estimates of base productivity change and other parameters. 

power failure or unavailability of diesel could limit timely irrigation. The other marginal yield 

effects of HYV are not statistically significantly different from zero. Marginal yield gain from 

land area under HYV has a positive impact; that is, an increase in land area would increase the 

yield. The marginal yield gain of non-harvest labor days is negative, suggesting higher labor days 

application for HYV. However, since experience has a positive estimated effect on the marginal 

labor productivity of HYV, this could probably be interpreted as a learning-by-doing effect. Rich 

soil estimate implies an additional expected yield of 53.89 kg per acre. The fertilizer estimate 

implies that one additional kilogram of fertilizer application would increase the expected HYV 

yield by about 0.03 kilograms per acre (Table 3).7  

 
7 Although these values are not significant, we have reported them based on the recent article in Nature by 

Amrhein, Greenland and McShane (2019).  See https://www.nature.com/articles/d41586-019-00857-9 
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Table 6. Estimated Difference in Variance of Returns under HYV 

 

 

Variance of Returns 

Model 

Unrestricted 

Random Effects 

Differential 

Returns 

Restricted 

Random 

Effects 

Base productivity change 69,896 

(117,951) 

-571,585 

(444,262) 

-571,580*** 

(88,182) 

Marginal yield changes land (taka/ac) 20,418 

(45,779) 

150,243 

(122,470) 

150,243 

 

Non-harvest labor cost (taka/ac) -4.68 

(9.33) 

26.63 

(26.13) 

26.63 

 

Experience (taka/yr) -4645.95 

(3556) 

8,537.43 

(9879.78) 

8,537.43 

 

Rich soils (dummy) -60,847 

(47,651) 

285,498 

(259,553) 

285,498 

 

Fertilizer application cost (taka/ac) 4.42 

(8.90) 

-9.82 

(24.70) 

-9.82 

 

Days of water shortage 61,234 

(54731) 

-176,894 

(154223) 

-176,894 

 

Irrigation cost (taka/ac) 5.13 

(5.89) 

8.30 

(22.80) 

8.30 

 

Insecticide/pesticide cost (taka/ac) 65.85* 

(36.61) 

172.63 

(131.1) 

172.63 

 

R-squared 

N 

0.02 

659 

0.02 

659 

- 

Note: *, **, and *** indicate statistical significance at the 10%, 5%, and 1% levels, respectively. Columns 2, 

3, and 4 of Table 6 show the regression results for the variance of gross returns, respectively, associated 

with the unrestricted random effects model, differential yield model, and restricted random effects model. 

The common independent variables in these models base productivity change, marginal yield changes land 

(tk/ac), non-harvest labor cost (taka/ac), experience (taka/yr), rich soils (dummy), fertilizer application cost 

(tk/ac), days of water shortage, irrigation cost (taka/ac), and insecticide/pesticide cost (tk/ac). The 

unrestricted random effects model fails to control for farm and farmer specific characteristics. Differential 

return estimates a model similar to (5) for return and considers the difference in return between high-

yielding varieties (HYVs) and traditional varieties (TVs). Restricted random effects provide consistent 

estimates of base productivity change and other parameters. 

Tables 5 and 6, respectively, report the estimated difference in mean and variance of gross 

returns under HYV. Here, we considered all the cost and return variables for the estimates. Base 

returns change was about 44,704 tk—more than five times higher than the restricted random 

effects model. The only statistically significant variables were experience and days of water 

shortage. Farmers cultivate the same land following the same repeated production practices, and, 

as a result, experience does not help increase yield. Days of water shortage show negative effects 

on returns. Higher land area under HYV rice production would not significantly improve the 

returns. Non-harvest labor costs, irrigation costs, and insecticide costs have negative effects on 

HYV returns. These findings might be attributable to the high input prices. Nonetheless, rich soil 

positively contributes to the returns of HYV rice.    

The differential yield and restricted random effect models' base productivity change shows a 

yield about 45 percent lower than the unrestricted random effects model. The differential return 

and restricted random effects models provide about 82 percent lower returns than the unrestricted  
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Table 7. Decomposition of Expected Output and Return Gains by Source 

Percent of Mean HYV Output Gains Due to (Percent) 

HYV method, of which 

Unconditional productivity gains from  

Base productivity effect 

Experience with HYV 

Marginal yield gains from  

Land 

Labor  

Fertilizer 

Plot specific characteristic (soil) 

Farmer-specific effects 

61.34 

 

100.6 

-30.47 

 

0.008 

8.74 

0.04 

3.08 

35.58 

  

Percent of Mean HYV Return Gains Due to  

HYV method, of which 

Unconditional gains in gross returns from  

Base net returns effect 

Experience with HYV 

Marginal gross returns gains from  

Land  

Labor cost 

Fertilizer cost 

Irrigation cost 

Insecticide cost 

Plot specific characteristic (soil) 

Farmer-specific effects 

78.68 

 

154.03 

-26.3 

 

0.05 

5.62 

13.98 

12.14 

17.26 

31.63 

-10.31 

Note: Productivity gain is calculated by adding the experience effect with base productivity change and 

subtracting the marginal yield gains from different inputs as well as the plot specific characteristics. 

random effects model. As explained previously, the restricted random effects estimates 

decompose the unconditional observed yield and return gains.  

Table 7 presents the contributions of each variable to the changes in yield and returns. The 

base productivity effect was 100.6 percent due to the adoption of HYV. HYV cultivation 

experience has a 30.47 percent negative effect. Moreover, land, labor, and fertilizer have a 

combined 8.79 percent negative effect, 61.34 percent of total base productivity gains. This is 

mainly because of the lack of proper information. Mottaleb et al. (2019) found that farmers who 

rely on the recommendations of the government extension agents and their own experience and 

peer suggestions applied more fertilizer than the suggestions received from fertilizer traders. Peer 

farmers and pesticide sellers are key sources of pest management information in Bangladesh 

(Alam and Wolf, 2016). In our analysis, it seems reasonable that the farmers received information 

from the government agents and/or utilized inputs from their own experience. As a result, 

experience, education, and training negatively affect the differential gain. Plot-specific 

characteristics, such as rich soil, have a 3.08 percent effect on productivity gain, while farmer-

specific characteristics, such as education and training, have a total effect of 35.58 percent. 

Training on HYV technology adoption has positive effects. These results are consistent with 

Barrett et al. (2004) findings. On the lower panel of Table 5, we find a base return increase of 

about 154.03 percent due to the adoption of HYV technology. This finding is consistent with 

previous literature, which suggested that modern rice varieties result in increased profit compared 

to conventional varieties (Nalley et al., 2009; Mishra et al., 2016; Rahman and Conner, 2022). 



Hasan et al. Rice Self-Sufficiency in Bangladesh 17 

HYV experience has a 26.3 percent negative effect. The combined effects of land, labor, fertilizer, 

irrigation, and insecticide costs add up to about negative 49.05 percent. Interestingly, plot-specific 

characteristics (rich soil) have more effect in the returns model (31.63 percent) than in the 

differential yield model. However, farmer-specific characteristics have a negative (10.31 percent) 

effect on HYV return. Our return model included cost and return variables for respective yield 

and inputs. Farmers' being input/output price takers and the timing of output sales might have 

contributed to the negative gain from HYV.  

The Production and Return Risk Implications of HYV 

All of the regression results suggest yield risk and returns risk decline with the adoption of HYV 

technologies (see the bottom panel of Tables 3 and 4, respectively). Further, consistent with 

previous studies (Abay et al., 2016; Shahzad and Abdulai, 2021; Varshney et al., 2022), farm 

household heterogeneity has been found to play a significant role in the pattern of technology 

adoption. Differenced and restricted random effects models' base risk change parameters suggest 

that HYV technology is less risky than TV technology. Our results differ from previous results in 

which researchers have indicated HYV is riskier than traditional varieties (Barrett et al., 2004; 

Cavatassi et al., 2011). Our justification is that when useful information is available, farmers use 

caution and their experience in planting, fertilizer, and water application for HYV technology. In 

the case of TV, farmers depend on good weather conditions for high yields. This may be due to 

the fact that the farmers are well-experienced in adopting the HYV technology and use similar 

improved management practices for the TV technology as well. In this regard, more research is 

needed to understand the risk management attitude or behavior of farmers fully. In fact, Carpenter 

(2010) indicates that some GM technologies are also less risky than TV.   

Conclusions 

We examined the interdependence of HYV technology adoption and the attributes of the farm and 

the farmer in meeting rice self-sufficiency in Bangladesh. We used data collected by IRRI 

Bangladesh from an Area-Based Farm Household Survey. Farmers cultivated the same plot using 

the high-yielding varieties in the boro season and traditional varieties in the aman season. This 

allowed us to control for plot-specific attributes and observed farmer characteristics. Regional 

heterogeneity was found to play a significant role in the pattern of technology adoption. Farmers 

applied best-yield practices in the most fertile parcels as they cultivated the same plot using two 

different seed varieties. We acknowledge that the unobserved plot and farmer characteristics could 

shape the adoption decision, but the differential function approach addresses those similar but 

unobserved characteristics.  

We used a method to estimate yield differentials, return differentials, and risk following the 

methodology and estimation procedure introduced by Barrett et al. (2004). In contrast to Barrett 

et al. (2004), we also analyzed the base return change estimates, including the costs and returns 

variables. The unrestricted model implied that base productivity gains were almost twice as high 

as the restricted random effects model that controlled for observable and unobservable variables. 

The only statistically significant marginal productivity effect of HYV was days of water shortage. 

The differential yield and restricted random effect models' base productivity change was found to 

be 45 percent lower than that of the unrestricted random effect model. Base returns change was 

about 44,704 taka, more than five times higher than obtained from the restricted random effects 

model. Statistically significant variables were experience and days of water shortage. The 

differential return and restricted random effect models provided about 82 percent lower returns 

than the unrestricted random effects model.  

The restricted random effects estimates were used to decompose the unconditional observed 

yield and return gains. The base productivity gain was 61.34 percent. Plot-specific attributes, such 
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as rich soil, had a 3.08 percent effect on productivity gain, while farmer-specific characteristics, 

such as education and training, had a total effect of 35.58 percent. On the other hand, we found a 

base return increase of about 154.03 percent due to HYV technology adoption. Land, labor, 

fertilizer, irrigation, and insecticide costs had combined effects of about -49.05 percent. 

Interestingly, plot-specific attributes (rich soil) had more effects (31.63 percent) on the return 

model than the differential yield model. However, farmer-specific characteristics had negative (-

10.31 percent) effects on HYV return gain. We acknowledged that the accuracy of these effects 

is likely to improve when analyzing recent data, while the overall findings can be expected to 

remain the same.  

The differenced and restricted random effects models' base risk change parameters suggest 

HYV technology is less risky than TV technology. These results contradict the findings of Barrett 

et al. (2004), who studied rice cultivation situations in Madagascar. Our results might be due to 

the fact that the farmers were experienced in adopting the HYV technology and had similar 

improved management practices for TV technology.  

This study has several practical implications. First, we found that farmers' characteristics 

(education, training) were responsible for an unconditional yield gain of about 36 percent. In this 

aspect, the findings of this study could be helpful in promoting the adoption of other agricultural 

technologies, such as HYV for wheat, and improved varieties of fish, cattle, fruits, and vegetables 

in Bangladesh to ensure farmers' food security. Second, the gains in unconditional returns from 

farmer-related characteristics were negative, while these characteristics positively related to yield 

changes. This may suggest that the increased labor required to learn and adapt to new farming 

technologies limited their adoption. Additionally, farmers are price takers and do not control the 

prices of their inputs and outputs. Due to a lack of proper storage facilities and immediate 

household needs, Bangladeshi farmers typically sell rice immediately after the harvest to cover 

debt obligations and household expenses. If institutional credit availability increases and the 

government sets a price floor, farmers may store agricultural products and benefit from better 

timing of sales. Setting up a price floor could help rice producers overcome the low prices that 

are prevalent immediately after the harvest. 

[First submitted January 2024; accepted for publication December 2024.] 
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