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Toward Rice Production Self-Sufficiency
in Bangladesh: The Role of Plot Attributes,

Farmer Characteristics, and Technology

Mohammad R. Hasan, Krishna P. Paudel, Madhav Regmi,
Maria Bampasidou, Humnath Bhandari, and Stephen Devadoss

We examine the interdependence of high-yielding (HY) variety adoption and farm and farmer
characteristics to achieve almost self-sufficiency in rice production in Bangladesh. We use data
collected by the International Rice Research Institute (IRRI), Bangladesh, to estimate yield
differentials, return differentials, and risk. We find that HY rice varieties contributed 61.34%,
plot-specific attributes contributed 3.08%, and farmer-specific characteristics contributed 35.58%
toward rice productivity. Additionally, adopting HY varieties resulted in a base return increase
of about 154.03%. Plot-specific attributes had larger effects on the return model than on the
differential yield model, while farmer-specific characteristics adversely impacted HY return gains.

Key words: farm characteristics, restricted/unrestricted yield gain

Introduction

Food security and food self-sufficiency are interrelated concepts, although food self-sufficiency is
not required for food security. The Food and Agriculture Organization of the United Nations (1996)
defines food security as a situation in which people have physical and economic access to sufficient,
safe, and nutritious food to meet their dietary needs and food preferences for active and healthy lives
all of the time. Food self-sufficiency is defined as a country producing a sufficient amount of food
to feed its population. Producing food to achieve self-sufficiency may not be in the best interest of
a country or its farmers, as production depends on input availability, the policy environment, and
comparative advantage. However, food self-sufficiency has been the goal for staple food crops in
many countries (Warr and Yusuf, 2014). These countries aim to be self-sufficient in staple food
crop production (e.g., a goal of rice self-sufficiency in the Philippines, Indonesia, and China) by
increasing agricultural productivity, increasing crop areas with high-yielding (HY) varieties (e.g.,
Bangladesh), output price support, imposing import tariffs, or providing fertilizer subsidies (e.g.,
Indonesia, China). The emergence of self-sufficiency in food production after the end of colonialism

Mohammad R. Hasan is a professor of economics at Hajee Mohammad Danesh Science and Technology University,
Bangladesh. Krishna P. Paudel (krishna.paudel@usda.gov) is the deputy director for research and communications in the
Resource and Rural Economics Division at the US Department of Agriculture Economic Research Service. Madhav Regmi
is an assistant professor in the Department of Agricultural Economics and Agricultural Business at New Mexico State
University. Maria Bampasidou is an associate professor in the Department of Agricultural Economics and Agribusiness at
Louisiana State University (LSU) and the LSU Agricultural Center. Humnath Bhandari is an agricultural and environmental
economist at the International Rice Research Institute, Bangladesh. Stephen Devadoss is an Emabeth Thompson Endowed
Professor in the Department of Agricultural and Applied Economics at Texas Tech University.
The findings and conclusions in this paper are those of the authors and should not be construed to represent any official
USDA or US government determination or policy. The initial draft of this paper was completed before Paudel joined the
USDA Economic Research Service. The authors declare no conflicts of interest.
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Review coordinated by Vardges Hovhannisyan.

mailto:krishna.paudel@usda.gov
https://creativecommons.org/licenses/by-nc/4.0/
https://creativecommons.org/licenses/by-nc/4.0/


352 May 2025 Journal of Agricultural and Resource Economics

and reemergence after the wake of the international food crisis of 2007–2008 is particularly worth
noting (Clapp, 2017).

The environmental impacts of agricultural production can be both positive and negative (Ball
et al., 2004). Previous studies have highlighted several benefits of adopting modern technologies,
including increased productivity (Chandio et al., 2022; Fuglie and Echeverria, 2024), economic
gains (Walton et al., 2008), social advantages (Boyer et al., 2016; Fuglie and Echeverria, 2024),
and environmental improvements (Huffman, Jin, and Xu, 2018; Chandio et al., 2022). For instance,
agricultural mechanization re has significantly increased rice productivity in China (Chandio et al.,
2022). Fuglie and Echeverria (2024) find that various agricultural technologies have led to higher
crop productivity, reduced costs, increased profits, and provided cheaper products to the population.
Walton et al. (2008) show that adopting precision soil sampling techniques is associated with
increased productivity and income among cotton farmers. Boyer et al. (2016) find a positive link
between adopting variable-rate nutrient management and participation in cost-sharing programs
for social benefits. Busdieker-Jesse et al. (2016) find that genetically modified (GM) apple breeds
improved profitability and reduced production costs for US apple producers. Similarly, adopting GM
corn has been shown to increase productivity and reduce environmental degradation by improving
soil moisture content (Huffman, Jin, and Xu, 2018). It is also worth noting that the Green Revolution
and HY crop varieties have made many Asian and Latin American countries food secure or food self-
sufficient in some crops (Sonnenfeld, 1992; Hazell, 2009; Dawson, Martin, and Sikor, 2016) despite
HY varieties’ long-term adverse environmental impacts (Tilman, 1998).

The agricultural sector is essential for achieving overall economic growth, development, and
sustainability, thereby enhancing food security, producing employment opportunities, and alleviating
poverty in many developing countries (Gollin, Parente, and Rogerson, 2002; Awokuse and Xie,
2015). Advanced agricultural technologies have been considered drivers of economic growth with
the potential to alleviate poverty and reduce food insecurity (Barrett et al., 2004; Moreno and
Sunding, 2005). Studies have long examined the introduction of improved varieties of seeds and
agricultural inputs that increase yield in developing countries where farming by small landholders is
predominant (Barrett et al., 2004; Moreno and Sunding, 2005; Kabunga, Dubois, and Qaim, 2014).

Nevertheless, there are limitations in the applicability (or application) and diffusion of these
technologies. These limitations are related to the nature of economic and financial markets and the
existence of information networks and information diffusion. Market-related attributes include credit
constraints (Dercon and Krishnan, 1996; Fletschner, Guirkinger, and Boucher, 2010), information
constraints (Kabunga, Dubois, and Qaim, 2014), social networks and social learning (Foster and
Rosenzweig, 1995, 2010; Conley and Udry, 2010), and price risk (Liu, 2013; Ward and Singh,
2014). Besides, the extent to which these technologies could be adopted depends on farm and farmer
characteristics. Farm-related attributes include farm size and plot biophysical conditions. Farmer-
relevant variables include education and social network (Huffman, 2001; Skinner and Staiger, 2007),
input utilization (Duflo, Kremer, and Robinson, 2008), risk preferences (Sunding and Zilberman,
2001; Dercon and Christiaensen, 2011), and seed trait preferences (Useche, Barham, and Foltz,
2009).

The process of establishing whether the adoption of new or improved technology is favorable
compared to the old or traditional one proves challenging. The attributes that may deter the adoption
of a new technology, let alone diffusion, need to be identified. A particular difficulty arises when the
adoption of the new technology is more prominent due not to features of the new technology (e.g.,
seed traits, fertilizer, machinery) but rather to farmer attributes (e.g., education, training on new
technologies) and cultivation practices (e.g., farmers being early adopters or selecting labor-saving
technologies) (Huffman, 2001; Barrett et al., 2004; Useche, Barham, and Foltz, 2009). Studies have
also reported that regional heterogeneity can affect technology adoption (Useche, Barham, and Foltz,
2009), which may lead to selection bias. We should expect farmers to apply that knowledge and
technology to the fields they would most benefit from.



Hasan et al. Rice Self-Sufficiency in Bangladesh 353

Our paper examines the interdependence of technology adoption decisions. Adoption based on
technology, plot attributes, and farmer characteristics is important for smallholders where adoption
conditions are heterogeneous. We use data from a Bangladeshi rice grower survey conducted by the
International Rice Research Institute in 2015 that includes information on adopters and nonadopters
of HY technology. We use differential yield and differential return function procedures (Barrett
et al., 2004). We examine two rice-growing seasons and document changes in the yield and return
differentials of farmers adopting HY technology for one season and using traditional rice varieties
for the other season. This allows us to control for plot and farmer heterogeneity to a larger extent,
allowing us to gain further insight into what drives these differentials. In addition, we quantify
differential returns and cost functions.

Improved HY varieties of rice seeds, subsidized fertilizer, infrastructure developments, and
improved management practices accompanied by government interventions liberalizing trade and
agreements to lower tariffs for imported agricultural equipment ushered in the Green Revolution in
Bangladesh in the mid-1980s, quite late compared to India or Mexico (Sonnenfeld, 1992; Hossain,
Bose, and Mustafi, 2006). Despite an increase in population and a decrease in arable land, adopting
these technologies since the Green Revolution has helped accelerate the production of food grains
in the country. As a result, Bangladesh has almost achieved self-sufficiency in rice production (Food
and Agriculture Organization of the United Nations, 2015), making the country an ideal subject for
researching the role of improved farming technologies in achieving food self-sufficiency. Further,
considering that Bangladesh relies on agriculture, particularly rice production, to feed its population,
food insecurity would increase if there were insufficient domestic production (Timsina et al., 2018).
Bangladesh’s population of 168 million in 2022, which is expected to increase to 186 million by
2030, makes it crucial to identify both the factors affecting rice production technologies and their
role in food sufficiency in Bangladesh.

The empirical results indicate that the application of HY technology generated an estimated
61.34% increase in rice yield. An estimated 35.58% was attributed to individual rice grower
characteristics adding to the literature that highlights the interrelation of farmer characteristics
and technology adoption decisions. Last, an estimated yield increase of 3.08% was attributed to
plot attributes. Similarly, our analysis of differential return function estimates showed that the
return increase was caused by HY variety adoption (78.68%), plot attributes (31.63%), and farmer
characteristics (−10.31%). By quantifying the role of HY varieties, plot attributes, and farmer
characteristics, we can better understand each component’s role in achieving rice self-sufficiency
in Bangladesh.

We organize the remainder of the paper as follows. We describe the rice-growing system in
Bangladesh and introduce the HY technology in section II. In section III, we present the empirical
framework and the econometric specification. We describe the data used in the study in section IV.
The later sections report our findings, main observations, and concluding remarks.

Country Background

Bangladesh is a deltaic country in South Asia with a land area of about 147,550 square kilometers.
It is one of the most populous countries in the world, ranking 13th in population density, with
approximately 1,077 people per square kilometer (Timsina et al., 2018; Mottaleb, Rahut, and
Erenstein, 2019). Varieties of rice—a staple food item in Bangladesh—are planted in three seasons:
Aman season varieties are cultivated during the “wet” season (mid-July to mid-November), Boro
season varieties are cultivated during the “dry” season (mid-November to mid-March), and Aus
varieties are cultivated in the spring (mid-March to mid-July) (Food and Agriculture Organization
of the United Nations, 2019). Aman season rice varieties consist of mainly traditional rice varieties
that are rainfed and require less fertilizer; these varieties are susceptible to drought as well as flood
(Asaduzzaman et al., 2010). High-yielding Boro season rice varieties rely on improved management
practices, including transplanting in well-spaced rows, heavy use of chemical fertilizers, and



354 May 2025 Journal of Agricultural and Resource Economics

groundwater irrigation (Ruane et al., 2013; Timsina et al., 2018; Mottaleb, Rahut, and Erenstein,
2019). Aus season rice varieties have been sparsely cultivated in the last few decades for various
reasons such as high cost of production and higher incidence of weeds and pests associated with
those varieties (Asaduzzaman et al., 2010). According to data from the USDA Foreign Agricultural
Service (2025), Aman season rice varieties accounted for 39% of total rice production in the country,
Aus season varieties contributed 8% and Boro season varieties contributed 54% between 2018 and
2020.

Following trade liberalization on importing small-scale irrigation equipment (Mottaleb et al.,
2017; Mottaleb, Rahut, and Erenstein, 2019) and intensive use of chemical fertilizer, HY/modern
rice varieties covered about 85% of total rice area in 2016–2017, up from only about 15% in 1981–
1982 (Bangladesh Rice Research Institute, 2018; Mottaleb, Rahut, and Erenstein, 2019). With the
increase in population, per capita cultivable area has been declining since the 1960s (Mottaleb,
Rahut, and Erenstein, 2019). In 2013, per capita arable land was about 0.005 hectares, down from
0.17 hectares in 1961 (World Bank, 2017; Mottaleb, Rahut, and Erenstein, 2019). In 1982, the net
cultivable area was about 9.83 million hectares. It had declined dramatically to 8.7 million hectares
by 1992–1993 and 7.77 million hectares by 2008–2009 (Alam and Islam, 2013).

Changes in government policies (which had favored privatization in the procurement and
distribution of small-scale irrigation equipment and chemical fertilizers), trade liberalization, and
reduction in tariffs for imported agricultural equipment were also factors that contributed to HY
adoption (Mottaleb et al., 2017; Mottaleb, Rahut, and Erenstein, 2019). Private investment in
small-scale irrigation equipment was considered a dominant factor in facilitating the diffusion of
HY varieties (Asaduzzaman et al., 2010; Mottaleb et al., 2017; Mottaleb, Rahut, and Erenstein,
2019). Beginning in 1986, the government removed the ban on private sector imports of agricultural
equipment. As a result, the cost of tube wells was reduced substantially, and a market for irrigation
services was developed (Hossain et al., 2003). As a result, farmers invested substantially in shallow
tube wells and power pumps, contributing to rapidly expanding irrigation facilities. The diffusion
of HY Boro rice is strongly related to the expansion of groundwater irrigation (Asaduzzaman et al.,
2010; Mottaleb, Rahut, and Erenstein, 2019).

The upward trends in rice cultivation area, yield, and production volume in Bangladesh have
been noticeable since adopting HY varieties (Ricepedia, 2019). In terms of productivity, the average
rice yield increased from 2.15 tons/ha in 1984 to 4.42 tons/ha by 2014, a 2.4% annual growth rate
(Alam and Islam, 2013; Ricepedia, 2019). Bangladesh almost achieved self-sufficiency in 2016, but
extreme weather events in 2017 (including heavy monsoons that led to flooding in the major rice-
growing areas of Dhaka and Rajshahi) resulted in lower total (US Department of Agriculture, 2017,
2018) production; in 2018, the country produced a surplus of rice.1 Yields of traditional varieties
(TV) have also increased, from 1.52 tons/ha in 1965 to 2.14 tons/ha by 2009, an annual growth rate
of 0.9% (Hossain et al., 2003; Alam and Islam, 2013). Major factors leading to an increase in the
yield of TVs include the increase in the use of chemical fertilizers and a reduction in the share of
land cultivated with Aus season rice varieties (Hossain et al., 2003).

Method

Several studies have examined the adoption of agricultural innovation while considering the
diverse characteristics of farmers, farms, and farming regions in an empirical setting. Abay et al.
(2016) explore the adoption of fertilizer, seed, and extension services while considering farm
household-level unobserved heterogeneity (e.g., risk-taking and technology preferences). Tran-Nam

1 In 2018, total rice production in Bangladesh exceeded domestic needs by 7 million tons. The USDA forecast 11.62
million hectares of rice harvested area and 3.59 million metric tons produced in Bangladesh for the marketing year 2021/2022,
slightly up from the previous year. The government of Bangladesh continues to import rice to make it affordable. It was
estimated that Bangladesh would import 1.5 million metric tons of rice in marketing year 2021/2022 (US Department of
Agriculture, 2022).
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and Tiet (2022) determine the sociodemographic determinants of organic farming adoption while
accounting for individual heterogeneity in environmental belief. Varshney et al. (2022) examine
the adoption of hybrid mustard in India while considering heterogeneity across different castes of
farm producers. Barnes et al. (2019) consider regional heterogeneity while examining the internal
and external determinants of adopting precision agricultural technologies and nitrogen technologies
in EU farming systems. Similarly, Shahzad and Abdulai (2021) examine the adoption of climate-
smart agricultural technology in Pakistan while empirically accounting for unobserved household
characteristics. Further, several past studies have summarized agricultural technology adoption
literature and discussed heterogeneity, mainly in the context of developing countries (Feder, Just,
and Zilberman, 1985; Ruzzante, Labarta, and Bilton, 2021; Oyetunde-Usman, 2022).

In this study, the empirical model estimates a differential yield function and a differential return
function controlling for farmer characteristics and plot attributes (Barrett et al., 2004). We observe
the same individuals cultivating the same plots in two consecutive seasons within a year. This
allows us to capture the true productivity gains and risks of HY technology by identifying the
effects of technology adoption and the marginal productivity of land and labor inputs. Depending on
whether one chooses a production or profit/cost approach, there is a need to address the endogeneity
problem.2

Production systems are affected by seasonality and are susceptible to stress factors (e.g., extreme
weather events, pests, diseases) during the production period. Grain producers likely respond to
seasonal conditions by adjusting the input mix under some production decision rigidity or by
adjusting the output mix (Tozer and Villano, 2013). Tsiboe et al. (2017) argue that improving rice
varieties, making them more disease resistant, has the potential to increase both rice production and
overall consumer surplus. The limited resources used in rice cultivation in Bangladesh may deter
farmers from reallocating resources, given that the seasons for cultivating rice varieties succeed one
another. Moreover, due to the country’s dependence on agriculture for food-security concerns and
high population density, fields are seldom left uncultivated. However, that does not necessarily mean
those producers can easily switch between crop production or alter their production practices.

To proceed, for each of the technologies (y) examined, HY and traditional varieties, we define
the respective yield functions:

HY: y f = y f (x, z)(1)

TV: yg = yg (x, z)(2)

Each technology is characterized by a vector of production inputs (x) controlled by the farmer
and a vector of exogenous characteristics related to farm, farmer, and environmental conditions
(z). For our study, vector x contains information on land use, labor usage and cost, fertilizer
application and cost, pesticide cost, herbicide cost, and irrigation cost. Vector z contains information
on environmental conditions, plot attributes, and farmer characteristics. Environmental conditions
are proxied by days of water shortage; plot attributes include average plot size and soil quality;
farmer characteristics include farmer age, experience with HY varieties, gender, and education.3
Rice cultivation in Bangladesh is prone to production risk. To account for the production risk, we
allow inputs to have either positive or negative marginal effects on production. The two technologies

2 Estimating a production or yield function is the primal approach, whereas estimating profit or cost function is the dual
approach. In the dual approach, the selection of inputs and respective quantities are endogenous. There are advantages and
disadvantages in using either of these approaches; based on the scenario we examined, we believe that the best approach is
to employ a primal model. The dual is not efficient because it fails to utilize all the available information (Mundlak, 1996).

3 Vector z could also include unobservable farmer characteristics, such as farmer health, energy level, work ethic, farming
aptitude (Barrett et al., 2004).
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can be represented by the general functional forms, following Just and Pope’s (1978) formulation:

HY : y f = f (x, z) + h f (x, z)
1
2 ξ f ;(3)

TV: yg = g(x, z) + hg (x, z)
1
2 ξg ;(4)

where ξ is a shock with mean zero and variance σ2
i (i = f ,g) that is independent across the cross-

sectional observations. The conditional expectation functions for y f and yg are f (x, z) and g(x, z),
respectively.

Following Barrett et al. (2004), we employ a first-order approximation with interaction effects
to the true conditional expectation function for each technology:4

E
[
y f
]

= α f 0 +

r∑
i=1

αfixfi +

r∑
i=1

r∑
j=1,i

β f i j xfixfj +

t∑
i=1

γfi zfi

+

t∑
i=1

t∑
j=1,i

ηfi zfi zfj +

r∑
i=1

t∑
j=1

τf i j xfi zfj ;

(5)

E
[
y f
]

= α f 0 +

r∑
i=1

αfixfi +

r∑
i=1

r∑
j=1,i

β f i j xfixfj +

t∑
i=1

γfi zfi

+

t∑
i=1

t∑
j=1,i

ηfi zfi zfj +

r∑
i=1

t∑
j=1

τf i j xfi zfj ;

(6)

To estimate the effect of the technology adoption on yield, we subtract equation (6) from
equation (5):

(7)

dy = α0 +

r∑
i=1

αidxi +

r∑
i=1

r∑
j=1,i

βijdxidx j +

t∑
i=1

γidzi

+

t∑
i=1

t∑
j=1,i

ηijdzidz j +

r∑
i=1

t∑
j=1

τijdxidz j + dε ,

where dy = E
[
y f
]
− E

[
yg
]

is the difference in expected output or return, dx = x f − xg reflects the
difference in input application rates or input costs on plots using the two different technologies,
dz = z f − zg reflects exogenous differences in the plots (e.g., soil type), and dε = ε f − εg is a mean
0, independent error term. The parameters αi , βij, γi , ηij, and τij directly estimate the marginal
productivity differences between the two technologies.

By differencing the characteristics of vectors x and z, we can remove potential bias from omitted
but similar unobserved characteristics. Hence, when estimating equation (7) (i.e., the difference in
expected output or return), we obtain consistent and unbiased estimates of the marginal productivity
differences (gains) attributable to HY technology. These productivity gains can be decomposed into
gains from (i) switching to a better technology, (ii) plot quality, or (iii) farmer characteristics. The
gains from the marginal productivity of inputs are calculated as the product of the slope parameter
estimates from equation (7) and the sample mean of the vector x variables. The same approach is
used to calculate plot-attribute specific gains (vector z variables).

Unconditional productivity and gross return gains from the new technology are equal to the
corrected base productivity change estimate plus the estimated direct effects of experience with the

4 Equations (5) and (6) can be converted into a standard regression model by adding a zero mean of normally distributed
i.i.d. error term.
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new technology multiplied by the sample mean experience level. Any farmer-specific gains are the
residual production or portion of the yield differential not attributed to input, plot, and unconditional
productivity gains.

Return Risk Estimation

As mentioned previously, managing production risks related to production practices and stress
factors affecting production is important to farmers. Risk in this framework is the variation from
expected output across farms. Following Barrett et al. (2004), we define the differential production
risk function to be the difference in output variance attributable to changing technologies as

(8) S2 = V
[
y f
]
− V

[
yg
]

= E
[
ε2
f − ε

2
g

]
= h(x, z) ,

which can be estimated by differencing the squared residuals from the two technology-specific
production and gross return functions. The variance will be regressed on the x and z vectors. Notice
that the variance is a function of the x and z vectors; that is, the observable farmer-specific (e.g.,
age, education) or plot-invariant effects (e.g., days of water shortage). Following the method on
production differentials, we take the first-order approximation with interaction effects to the true
conditional variance function (h function). The differential production risk function can be estimated
as

(9) s2 = θ0 +

r∑
i=1

θi xi +

r∑
i=1

r∑
j=1,i

λijxi x j +

t∑
i=1

ϕi zi +

t∑
i=1

t∑
j=1,i

δij zi z j +

r∑
i=1

t∑
j=1

ωijxi z j + ψ ,

where ψ is a mean zero i.i.d. error term on the differential conditional variance regression, the
parameters will be interpreted similarly with respect to production risk. The slope coefficients
estimate the marginal risk effects of the new technology as physical input or cost input application
rates vary. The net mean changes in risk due to farm- and farmer-specific (excluding plot-variant)
characteristics and the true unconditional change in production and return risks are captured by θ0.

Given the limitation of cross-sectional data, it is crucial to determine the effects associated
with technology separately from those due to the unobserved farm or plot attributes; otherwise, the
estimated effects of new technology will be overestimated (Barrett et al., 2004). The method used,
including the estimation of the production function instead of the profit function, as indicated by
(Barrett et al., 2004, p. 881), “permits proper attribution of observed gains between the technology
and underlying farmer characteristics and plot attributes associated with the adoption of the
new technology.” Thus, our approach appropriately assigns the observed yield due to technology
accounting for those due to producer characteristics or plot attributes.

Chen and Yen (2006, p. 764) argue that the Barrett et al. (2004) approach with “additional
cross-product terms causes specification errors and potentially biased parameter estimates.” This
is because the parameter in equation (7), without correction, “incorporates output gains associated
with adopters’ observable and unobservable attributes that may not be replicable in the broader
population of nonadopters” (Barrett et al., 2004, p. 881). We considered the corrections for equal
slope coefficient and cross-product terms, as suggested by (Chen and Yen, 2006). Chen and Yen
(2006) suggest three ways to overcome the problems: differencing, fixed effects, and random effects.
We use the first-differenced model that assume equal slope coefficients, treating each interaction
term as a regressor and taking the difference of corresponding interaction terms instead of using
the product of differences. Base productivity gains found from the resulting intercept term provided
consistent estimates, which are free from the bias caused by farm- or farmer-specific unobserved
heterogeneity (Chen and Yen, 2006). We expect higher productivity, more labor hours, more years
of experience, richer soils, high fertilizer application, and fewer water shortages to be positively
correlated with higher yields and returns.
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Table 1. Farm and Farmer Characteristics (N = 659)
Panel A. Farmer and Farm Characteristics Mean Min. Max.
Farmer Characteristics

Mean age of farmer (years) 46.86 17 86
(12.45)

Percentage male operators 88.01

Percentage of farmers trained about HY varieties 81.18

Percentage of farmers with no education 34.29

Percentage of farmers with 22.75
high school education or better

Farm Characteristics
Mean total rice area (acre) 0.98 0.16 4.47

(0.57)

Percentage of rice land in HY varieties 51.79
(20.47)

Percentage of farmers own tractors and 43.85
tube wells

High-Yielding Varieties Traditional Varieties
Panel B. Rice Cultivation Methods Mean Min. Max. Mean Min. Max.
Mean area of plot (acre) 0.49 0.04 2.70 0.48 0.05 2.97

(41.55) (35.82)

Mean years of experience with method 8.51 2 22 28.40 2 76
(3.69) (12.22)

Mean days of water shortage in field 1.90 1 2 1.74 1 2
(0.30) (0.43)

Percentage of fields on rich soils 70.23 70.23

Percentage using chemical fertilizer 100 100

Mean yield (kg/acre) 2,155 420 3,800 931 222 2,960
(432) (436)

High-Yielding Varieties Traditional Varieties
Panel C. Returns and Prices Mean Min. Max. Mean Min. Max.
Return from HY variety rice (TK/acre) 37,040.23 6,062 108,771 31,909 4,380 184,800

(10,754) (21,184)

Price of rice (TK/kg) 17.16 10 39 34.34 10 73
(3.41) (13.58)

Notes: Values in parentheses are standard deviations. Returns and prices are measured in Bangladeshi taka. (US$1 = Tk
116.42 as of August 4, 2024.)

Data

We use data collected by the International Rice Research Institute (IRRI) office in Bangladesh. IRRI
conducted an Area-Based Farm Household Survey in Bangladesh in 2015 for rice cultivation in
2014. IRRI randomly selected the samples and collected information on rice production from 3,000
farmers. A pretested survey questionnaire was used, and data collection was conducted by trained
enumerators covering 18 districts of Bangladesh.
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Our dataset comprises 659 observations based on farmers who cultivated both HY and traditional
rice varieties in 2014. Initially, there were 740 observations; after data cleaning to remove outliers
and incorrect/inconsistent data entries, we used 659 observations in the analysis. Due to a relatively
small dataset and to maintain consistency with Barrett et al. (2004), we did not consider regional
(district) variations. We isolate responses from farmers (household heads) who cultivated both
HY and traditional rice varieties during the Boro and Aman seasons, respectively. As mentioned
earlier, HY varieties are mostly cultivated during the Boro season, while TVs are mostly cultivated
during the Aman season. The dataset reports information on cultivation details, irrigation practices,
ownership of farm machinery, training, and plot and farmer characteristics. Table 1 presents the
summary statistics of our sample.

Panel A of Table 1 describes key farmer and farm characteristics from the sample. The average
age of farmers was about 47 years, with a minimum of 17 years and a maximum of 86 years. Farming
is a way of life in Bangladesh, and operators start farming at an early age. About 88% of the farm
operators were male, and 81% of farm operators received training in HY rice cultivation methods
through local extension agents. About 34% of the farmers had no formal education, while 22.75%
had received at least a high school education. The average education level of the farm operators
was about 5 years; that is, up to the level of primary education in Bangladesh. Moser and Barrett
(2003) find that adopters of new technology are relatively well-educated, more involved in farmer
organizations, and own more rice land compared to nonadopters. These characteristics for adopters
were also true for Bangladeshi farmers. Bangladeshi rice farmers cultivated small plots (mostly
marginal < 1 acre) with an average cropped area of 0.98 acres (2.47 acres = 1 hectare). About 52%
of the total area under rice production was done using HY varieties. About 44% of the farmers own
a tractor/power tiller and/or diesel or electricity-operated tube wells.

Panel B of Table 1 presents information on the two cultivation practices examined in this study,
namely HY and traditional rice varieties. On average, the farm size used for rice cultivation was
about 0.49 acres in each season (two seasons, so the effective area was 0.49*2 = 0.98 acres). On
average, 0.49 acres were cultivated with HY varieties in the Boro season, with a minimum of 0.04
and a maximum of 2.70 acres. For TVs, on average, 0.48 acres were cultivated in the Aman season,
with a minimum of 0.05 and a maximum of 2.97 acres. This shows that an average Bangladeshi
farmer owns a small land plot and allocates the maximum share of this land for rice production.
More importantly, Bangladeshi farmers use the same land or plot to cultivate different crops in
different seasons.

The surveyed farmers had, on average, about 9 years of experience with HY technology, with a
minimum of 2 years and a maximum of 22 years. For TVs, on average, farmers had about 28 years
of experience cultivating TVs, with a minimum of 2 years and a maximum of 76 years. Taking into
consideration the age profile of rice growers in the sample, we expect to see a difference regarding
the years of experience in the respective technologies. As mentioned earlier, HY varieties were
introduced in the mid-1980s in Bangladesh, and based on our sample, we see that the adoption of HY
varieties is a continuous and ongoing process. Despite the introduction of HY varieties, the average
areas under HY and traditional rice cultivation are found to be almost the same. Both varieties are
predominately cultivated in Bangladesh based on the season.

Bangladesh is rich in alluvial soil as a result of major rivers—such as the Ganges and
Brahmaputra—flowing through the country.5 This alluvial land is highly fertile and suitable for rice
cultivation. The surveyed farmers reported that 70% of the land allocated to rice production under
both methods was of high quality. Nevertheless, all surveyed farmers applied chemical fertilizer in
the production process. No use of manure was reported for the cultivation practices. We observe the
main differences regarding rice yield under the two technologies. The average yield was about 2,155
kg/acre for HY varieties and about 931 kg/acre for TVs. The maximum yield was 3,800 kg/acre for
HY varieties and 2,960 kg/acre for TVs.

5 These rivers are known as Padma and Jamuna, respectively, in Bangladesh.
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Table 2. Productivity of Land and Labor
High-Yielding Varieties Traditional Varieties Mean Difference (%)

Yield
(kg/acre)

Return
(TK/acre)

Yield
(kg/acre)

Return
(TK/acre) Yield Return

Output/return 2,154 37,040 931 31,909 131 16
(432) (10,754) (436) (21,184)

Labor productivity 146 11.22 128 17.9 14 −37

Nonharvest labor 14.75 3,299 7.24 1,782 103 85
(15.06) (2,059) (10.18) (1,432)

Notes: Values in parentheses are standard deviations. Returns are measured in Bangladeshi taka. (US$1 = Tk 116.42 as of
August 4, 2024.)

Panel C of Table 1 represents returns and prices of rice yields in Bangladesh for both
technologies and seasons. The average return on HY rice production was about Tk 37,040/acre,6
with a maximum of Tk 108,771/acre and a minimum of Tk 6,062/acre. On average, the return on
TV rice production was about Tk 31,909/acre, with a maximum of Tk 184,800/acre and a minimum
of Tk 4,380/acre. The average returns were almost similar because of average prices: about Tk 17/kg
for HY rice and about Tk 34/kg for TV rice. This price difference is attributed to rice quality; that
is, HY varieties are mostly coarse grain and are used for home consumption by farmers year-round.
TVs are mostly aromatic with fine grains; as a result, farmers earn a higher price compared to the
price of HY varieties. Moreover, Bangladeshi farmers sell rice just after harvesting, except for a few
large farmers who may have storage facilities and can sell rice later in the season. This explains why
prices range from Tk 10/kg to over Tk 70/kg within a year. There is no operating futures market in
the country, but farmers can get higher prices if they sell outside of the immediate harvesting time.
It is worth noting that the international rice markets are integrated with efficient pricing mechanisms
(Chen and Saghaian, 2016).

Table 2 reports unconditional land and labor productivity. Output, labor productivity, and
nonharvest labor are measured in terms of both physical and monetary terms. Labor productivity is
calculatedbydividing theoutputs and returns bynonharvest labordays and thecostofnonharvest labor.
Nonharvest labor is measured in both man-days and taka per acre. Results show that HY plots have a
231% higher yield than TV plots but only 16% higher returns. A t-test confirms that there are significant
differences in yield and returns between these two varieties (t-value: 49.80 with p = 0.000, and t-value
5.60with p=0.000, respectively).Basedonstandarddeviations,physicaloutputvariesmoreunderTVs
than under HY varieties, and returns vary more under HY varieties than under TVs. This increased yield
risk under TV practices may be attributed to a lack of timely availability of fertilizer, labor to transplant
seedlings, and a shortage of groundwater. Increased return risk may be attributed to farmers’ needs and
desires (specifically, whether they sell immediately after harvesting or store rice for future sales). The
use of nonharvest labor days for HY varieties is almost double that of the nonharvest labor days for
TVs. In Bangladesh, farmers use tractors to cultivate land for seedbed preparation, land preparation,
harvesting, and threshing. Only a limited number of laborers are employed in transplanting, fertilizer
application, and insecticide application, which are mostly family labor tasks.

Figure 1 illustrates the median and span of labor use ratio in physical terms. We find that in the early
adoption stage (experience), labor demand increases for HY varieties compared to TVs; then, the ratio
of (HY variety/TV) labor utilization decreases and remains slightly above 1 for the remaining periods.
With increased experience with HY varieties, after about 4 years, the ratio of HY varieties and TV early
season labor utilization becomes parallel to the horizontal axis. This could be attributed to the farmers’
learning by doing. When adopting a new technology, farmers tend to utilize more labor inputs. As time
passes, they tend to adopt similar management practices for both technologies. As a result, after a few
years of experience, labor input utilization becomes almost similar.

6 Prices are measured in Bangladeshi taka. US$1 = Tk 116.42 as of August 4, 2024.
See: https://www.xe.com/currencyconverter/convert/?Amount=1&From=USD&To=BDT

https://www.xe.com/currencyconverter/convert/?Amount=1&From=USD&To=BDT
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Figure 1. Median and Span of Labor Use Ratio
Notes: HYV = high-yielding varieties of rice, TV = traditional varieties of rice.

Table 3. Estimated Difference in Mean Rice Yields Under High-Yielding Varieties (N = 659)
Unrestricted

Random Effects
Model

Differential Yield
Model

Restricted Random
Effects Model

Variables 1 2 3
Base productivity change 2,235∗∗∗ 1,230∗∗∗ 1,230.52∗∗∗

(132.54) (69.33) (24.33)

Marginal yield changes land (acre) 48.18 98.11 98.11
(103.67) (79.34)

nonharvest labor (days/acre) −2.04 −3.48 −3.48
(2.95) (4.40)

Experience (years) −2.92 0.94 0.94
(9.26) (2.47)

Rich soils (dummy) 54.39 53.89 53.89
(37.40) (55.27)

Fertilizer application (kg/acre) 0.06 0.03 0.03
(0.36) (0.39)

Days of water shortage −40.53 −123.62∗∗∗ −123.62∗∗∗

(49.15) (47.36)

Land × experience −12.05 0.95 0.95
(13.29) (3.63)

Labor × experience 0.26 −0.12 −0.12
(0.37) (0.19)

R2 0.02 0.02

Notes: Single, double, and triple asterisks (*, **, ***) indicate statistical significance at the 10%, 5%, and 1% levels,
respectively. Values in parentheses are standard errors. Columns 1, 2, and 3 show the regression results for mean rice yield
(kg/acre) associated with the unrestricted random effects model, the differential yield model, and the restricted random
effects model, respectively. The unrestricted random effects model fails to control for farm- and farmer-specific
characteristics. Therefore, these estimates are biased and inconsistent. The differential yield model estimates Model 5 and
considers the difference in yield between high-yielding (HY) and traditional varieties (TV). The restricted random effects
model provides a consistent estimate of base productivity change and other parameters.



362 May 2025 Journal of Agricultural and Resource Economics

Table 4. Estimated Difference in Variance of Rice Yields Under High-Yielding Varieties (N =

659)
Unrestricted

Random Effects
Model

Differential Yield
Model

Restricted Random
Effects Model

Variables 1 2 3
Base productivity change 89.53 −42.7 −42.72

(156.11) (118.47) −34.53

Marginal yield changes land (acre) −269.91∗∗ 240.14∗∗∗ 240.14∗∗∗

(105.54) (91.99)

nonharvest labor (days/acre) 0.93 0.87 0.87
(5.05) (6.61)

Experience (years) −8.69 4.85 4.85
(13.51) (3.67)

Rich soils (dummy) 32.69 163.55∗∗ 163.55∗∗

(40.60) (86.46)

Fertilizer application (kg/acre) 0.09 0.69 0.69
(0.46) (0.46)

Days of water shortage 100.16∗∗ 19.06 19.06
(49.10) (65.97)

Land × experience 36.61∗∗∗ 5.29 5.29
(13.86) (4.75)

Labor × experience 0.13 0.01 0.01
(0.68) (0.27)

R2 0.02 0.02 −

Notes: Single, double, and triple asterisks (*, **, ***) indicate statistical significance at the 10%, 5%, and 1% levels,
respectively. Values in parentheses are standard errors. Columns 1, 2, and 3 show the regression results for the variance of
rice yield associated with the unrestricted random effects model, the differential yield model, and the restricted random
effects model, respectively. The unrestricted random effects model fails to control for farm- and farmer-specific
characteristics. Therefore, these estimates are biased and inconsistent. The differential yield model estimates Model 5 and
considers the difference in yield between high-yielding varieties and traditional varieties . The restricted random effects
model provides a consistent estimate of base productivity change and other parameters.

Results and Discussions

Tables 3–6 report the regression results for rice yield and returns. In these tables, column 1 shows
the coefficient estimates of the unrestricted random effects regression model, which fails to control
for farm- and farmer-specific effects. Therefore, these estimates are biased and inconsistent. Column
2 in these tables displays the differential yield function estimates from equation (7). The marginal
yield effect estimates are consistent, but the base productivity gain is not consistent. That is, the
parameter estimates of each explanatory variable (e.g., land, labor, experience) are consistent, but
the constant (base productivity change) is not consistent. Column 3 in each table reports the corrected
base productivity change estimate from the restricted random effects. For the restricted random effects,
the slopes are restricted to equal the estimates generated by the preceding differential yield function
(column 2).

Tables 3 and 4 show the estimated difference in mean and variance of yields of HY varieties. Results
indicate that base productivity gains are almost twice as high under the unrestricted model than in the
restricted random effects model. Note that the restricted model is estimated with proper controls for
observable accounting unobservable characteristics. The differential yield model’s base productivity
gainsarealsoalmost similar, differing fromBarrett et al. (2004),whofind theestimate tobe84%higher.
This could imply that farmers use similar inputs for both varieties. Once we difference away farm- and
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Table 5. Estimated Difference in Mean Returns Under High-Yielding Varieties (N = 659)
Unrestricted

Random Effects
Model

Differential Yield
Model

Restricted Random
Effects Model

Variables 1 2 3
Base productivity change 44,704∗∗∗ 7,904.6∗∗ 7, 903.5∗∗∗

(2,693) (3,118) (908)

Marginal yield changes land (Tk/acre) −1, 269.86 2,577 2,577
(1,106) (1,710)

Nonharvest labor cost (Tk/acre) −0.08 −0.20 −0.20
(0.21) (0.41)

Experience (years) −263.25∗∗ 67.85 67.85
(103.40) (84.32)

Rich soils (dummy) 275.37 2, 319.8 2, 319.8
(1,046) (2,170)

Fertilizer application cost (Tk/acre) 0.19 −0.38 −0.38
(0.18) (0.34)

Days of water shortage −2, 537.81∗∗ −3, 573.9∗∗ −3, 573.9∗∗

(1,179) (1, 676.7)

Irrigation cost (Tk/acre) −0.02 −0.13 −0.13
(0.14) (0.30)

Insecticide/pesticide cost (Tk/acre) −0.89 −1.83 −1.83
(0.88) (1.75)

R2 0.02 0.02

Notes: Single, double, and triple asterisks (*, **, ***) indicate statistical significance at the 10%, 5%, and 1% levels,
respectively. Values in parentheses are standard errors. Columns 1, 2, and 3 show the regression results for average returns
(Tk/acre) associated with the unrestricted random effects model, the differential yield model, and the restricted random
effects model, respectively. The unrestricted random effects model fails to control for farm- and farmer-specific
characteristics. Therefore, these estimates are biased and inconsistent. The differential yield model estimates Model 5 and
considers the difference in yield between high-yielding (HY) and traditional varieties (TV). The restricted random effects
model provides a consistent estimate of base productivity change and other parameters. Returns are measured in
Bangladeshi taka. (US$1 = Tk 116.42 as of August 4, 2024.)

farmer-specific effects, the only statistically significant marginal productivity effect of HY varieties
is days of water shortage. This implies that the unavailability of irrigation in times of need adversely
affects rice yield. Bangladeshi farmers generally use diesel or electrically operated irrigation pumps.
Thus, a power failure or unavailability of diesel could limit timely irrigation. The other marginal yield
effects of HY varieties are not statistically significantly different from 0. Marginal yield gain from land
area under HY varieties has a positive impact (i.e., an increase in land area would increase yield). The
marginal yield gain of nonharvest labor days is negative, suggesting more labor days are used for HY
varieties, contributing to lower yield gains and diminishing returns. However, since experience has a
positive estimated effect on the marginal labor productivity of HY varieties, this could probably be
interpreted as a learning-by-doing effect. The rich soil estimate implies an additional expected yield
of 53.89 kg/acre. The fertilizer estimate implies that one additional kilogram of fertilizer application
would increase the expected yield of the HY variety by about 0.03 kg/acre (Table 3).7

Tables 5 and 6 report the estimated difference in mean and variance of gross returns, respectively,
under HY varieties. Here, we considered all the cost and return variables for the estimates. Base returns
change was about Tk 44,704—more than 5 times higher than the restricted random effects model. The
only statistically significant variables were experience and days of water shortage. Farmers cultivate

7 Although these values are not significant, we have reported them based on the recent study by Amrhein, Greenland, and
McShane (2019).
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Table 6. Estimated Difference in Variance of Returns Under High-Yielding Varieties (N =

659)
Unrestricted

Random Effects
Model

Differential Yield
Model

Restricted Random
Effects Model

Variables 1 2 3
Base productivity change 69,896 −571,585 −571,580∗∗∗

(117,951) (444,262) (88,182)

Marginal yield changes land (Tk/acre) 20,418 150,243 150,243
(45,779) (122,470)

Nonharvest labor cost (Tk/acre) −4.68 26.63 26.63
(9.33) (26.13)

Experience (years) −4, 645.95 8,537.43 8,537.43
(3,556) (9,879.78)

Rich soils (dummy) −60,847 285,498 285,498
(47,651) (259,553)

Fertilizer application cost (Tk/acre) 4.42 −9.82 −9.82
(8.90) (24.70)

Days of water shortage 61,234 −176,894 −176,894
(54,731) (154,223)

Irrigation cost (Tk/acre) 5.13 8.3 8.3
(5.89) (22.80)

Insecticide/pesticide cost (Tk/acre) 65.85∗ 172.63 172.63
(36.61) (131.10)

R2 0.02 0.02

Notes: Single, double, and triple asterisks (*, **, ***) indicate statistical significance at the 10%, 5%, and 1% levels,
respectively. Values in parentheses are standard errors. Columns 1, 2, and 3 show the regression results for the variance of
gross returns associated with the unrestricted random effects model, the differential yield model, and the restricted random
effects model, respectively. The unrestricted random effects model fails to control for farm- and farmer-specific
characteristics. Therefore, these estimates are biased and inconsistent. The differential yield model estimates Model 5 and
considers the difference in yield between high-yielding (HY) and traditional varieties (TV). The restricted random effects
model provides a consistent estimate of base productivity change and other parameters. Returns are measured in
Bangladeshi taka. (US$1 = Tk 116.42 as of August 4, 2024.)

the same land following the same repeated production practices; as a result, experience does not help
increase yield. Days of water shortage show negative effects on returns. Higher land area under HY
rice production would not significantly improve returns. Nonharvest labor costs, irrigation costs, and
insecticide costs have negative effects on HY returns. These findings might be attributable to the high
input prices. Nonetheless, rich soil positively contributes to HY rice returns.

The differential yield and restricted random effect models’ base productivity change show a yield
about 45% lower than the unrestricted random effects model. The differential return and restricted
random effects models provide about 82% lower returns than the unrestricted random effects model. As
explained previously, the restricted random effects estimates decompose the unconditional observed
yield and return gains.

Table 7 presents the contributions of each variable to the changes in yield and returns. The base
productivity effect was 100.6% due to the adoption of HY varieties. HY cultivation experience has
a −30.47% effect. Moreover, land, labor, and fertilizer have a combined −8.79% effect, 61.34% of
total base productivity gains. This is mainly because of the lack of proper information. Mottaleb,
Rahut, and Erenstein (2019) find that farmers who rely on the recommendations of the government
extension agents and their own experience and peer suggestions applied more fertilizer than the
suggestions received from fertilizer traders. Peer farmers and pesticide sellers are key sources of pest
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Table 7. Decomposition of Expected Output and Return Gains by Source

Variable
Mean Gains Attributable

to Variable (%)
Mean HY variety output gains due to HY variety method, of which 61.34

Unconditional productivity gains from
Base productivity effect 100.60
Experience with HY varieties −30.47

Marginal yield gains from
Land 0.008
Labor 8.74
Fertilizer 0.04
Plot-specific characteristic (soil) 3.08
Farmer-specific effects 35.58

Mean HY variety return gains due to HY variety method, of which 78.68
Unconditional gains in gross returns from

Base net returns effect 154.03
Experience with HY varieties −26.30

Marginal gross returns gains from
Land 0.05
Labor cost 5.62
Fertilizer cost 13.98
Irrigation cost 12.14
Insecticide cost 17.26
Plot-specific characteristic (soil) 31.63
Farmer-specific effects −10.31

Notes: Productivity gain is calculated by adding the experience effect with base productivity change and subtracting the
marginal yield gains from different inputs as well as plot-specific characteristics. HY refers to high-yielding varieties.

management information in Bangladesh (Alam and Wolff, 2016). In our analysis, it seems reasonable
that the farmers received information from the government agents and/or utilized inputs from their own
experience. As a result, experience, education, and training negatively affect the differential gain. Plot-
specific characteristics (e.g., rich soil) have a 3.08% effect on productivity gain, while farmer-specific
characteristics (e.g., education and training) have a total effect of 35.58%. Training on HY technology
adoption has positive effects. These results are consistent with findings from Barrett et al. (2004). On
the lower panel of Table 5, we find a base return increase of about 154.03% due to the adoption of HY
technology. This finding is consistent with previous literature, which has suggested that modern rice
varieties result in increased profit compared to conventional varieties (Nalley et al., 2009; Mishra et al.,
2016; Rahman and Connor, 2022). HY varieties experience has a−26.3% effect. The combined effects
of land, labor, fertilizer, irrigation, and insecticide costs add up to about −49.0%. Interestingly, plot-
specific characteristics (rich soil) have more effect in the returns model (31.63%) than in the differential
yield model. However, farmer-specific characteristics have a−10.31% effect on HY return. Our return
model included cost and return variables for respective yield and inputs. Farmers’ being input/output
price takersand the timingofoutput salesmighthavecontributed to thenegativegain fromHYvarieties.

Production and Return Risk Implications of High-Yielding Varieties

All of the regression results suggest yield risk (see Tables 3–4) and returns risk (see Tables 5–6) decline
with the adoption of HY technologies. Further, consistent with previous studies (Abay et al., 2016;
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Shahzad and Abdulai, 2021; Varshney et al., 2022), farm household heterogeneity has been found to
play a significant role in the pattern of technology adoption. Differenced and restricted random effects
models’ base risk change parameters suggest that HY technology is less risky than TV technology. Our
results differ from previous results in which researchers have indicated HY is riskier than traditional
varieties (Barrett et al., 2004; Cavatassi et al., 2011). Our justification is that when useful information
is available, farmers use caution and their experience in planting, fertilizer, and water application for
HY technology. In the case of TVs, farmers depend on good weather conditions for high yields. This
may be due to the fact that the farmers are experienced with HY technology and use similar improved
management practices for TV technology as well. More research is needed to fully understand farmers’
risk-management attitudes or behaviors, as Carpenter (2010) notes that some GM technologies have
lower yield risks than traditional varieties.

Conclusions

UsingdatacollectedbyIRRIBangladeshfromtheirArea-BasedFarmHouseholdSurvey,weexamined
the interdependence of HY technology adoption and the attributes of the farm and the farmer in meeting
rice self-sufficiency in Bangladesh. Farmers cultivated the same plot using the high-yielding varieties
in the Boro season and traditional varieties in the Aman season. This allowed us to control for plot-
specific attributes and observed farmer characteristics. Regional heterogeneity was found to play a
significant role in the pattern of technology adoption. Farmers applied best-yield practices in the most
fertile parcels as they cultivated the same plot using two different seed varieties. We acknowledge
that unobserved plot and farmer characteristics could shape the adoption decision, but the differential
function approach addresses those similar but unobserved characteristics.

We used a method to estimate yield differentials, return differentials, and risk following the
methodology and estimation procedure introduced by Barrett et al. (2004). In contrast to Barrett et
al., we also analyzed the base return change estimates, including the costs and returns variables. The
unrestricted model implied that base productivity gains were almost twice as high as the restricted
random effects model that controlled for observable and unobservable variables. The only statistically
significant marginal productivity effect of HY varieties was days of water shortage. The differential
yield and restricted random effect models’ base productivity change was found to be 45% lower than
that of the unrestricted random effect model. Base returns change was about Tk 44,704, more than 5
times higher than obtained from the restricted random effects model. Statistically significant variables
were experience and days of water shortage. The differential return and restricted random effect models
provided about 82% lower returns than the unrestricted random effects model.

The restricted random effects estimates were used to decompose the unconditional observed yield
and return gains. The base productivity gain was 61.34%. Plot-specific attributes (e.g., rich soil) had a
3.08% effect on productivity gain, while farmer-specific characteristics (e.g., education and training)
had a total effect of 35.58%. On the other hand, we found a base return increase of about 154.03%
due to HY technology adoption. Land, labor, fertilizer, irrigation, and insecticide costs had combined
effects of about −49.05%. Interestingly, plot-specific attributes had a higher effect (31.63%) on the
return model than the differential yield model. However, farmer-specific characteristics had negative
(−10.31%) effects on HY return gain. We acknowledged that the accuracy of these effects is likely to
improve when analyzing recent data, while the overall findings can be expected to remain the same.

The differenced and restricted random effects models’ base risk change parameters suggest HY
technology is less risky than TV technology. These results contradict the findings of Barrett et al.
(2004), who studied rice cultivation situations in Madagascar. Our results might be due to the fact
that the farmers were experienced in adopting HY technology and had similar improved management
practices for TV technology.

This study has several practical implications. First, we found that farmers’ characteristics (e.g.,
education, training) were responsible for an unconditional yield gain of about 36%. The findings of
this study could be helpful in promoting the adoption of other agricultural technologies (e.g., HY
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varieties for wheat and improved varieties of fish, cattle, fruits, and vegetables) in Bangladesh to ensure
farmers’ food security. Second, the gains in unconditional returns from farmer-related characteristics
were negative, but these characteristics positively related to yield changes. This may suggest that
the increased labor required to learn and adapt to new farming technologies limited their adoption.
Additionally, farmers are price takers and do not control the prices of their inputs and outputs. Due to a
lack of proper storage facilities and immediate household needs, Bangladeshi farmers typically sell rice
immediately after the harvest to cover debt obligations and household expenses. If institutional credit
availability increases and the government sets a price floor, farmers may store agricultural products and
benefit from better timing of sales. Setting up a price floor could help rice producers overcome the low
prices that are prevalent immediately after the harvest.

[First submitted January 2024; accepted for publication December 2024.]
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