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An Ex Ante Analysis of the Effects of
Climate on Agricultural Production Risk

Jean-Paul Chavas and Wei Zhang

We investigate the dynamic and spatial determinants of the distribution of agricultural productivity
around the world, with a focus on the effects of climate on production risk. We treat weather
shocks as part of the error term and proceed evaluating the probability distribution of agricultural
productivity conditional on climate. The adverse effects of higher temperature are found to be
more severe in countries exhibiting low agricultural productivity. The negative codependence
across countries means that spatial diversification tends to reduce food insecurity at the world
level. This effect contributes to dimming the adverse effects of rising temperatures on world food
insecurity.
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Introduction

Climate and weather affect agricultural production: They both influence the ability of agroecological
systems to produce food. Distinguishing between climate and weather effects is important: Climate
reflects long-term meteorological patterns (e.g., 30-year temperature or precipitation) in a region; in
contrast, weather reflects the fluctuating outcomes of climate in a given place and time (e.g., frost,
heatwave, drought, flood). While climatic factors can vary a lot across regions, they change slowly
over time. In contrast, weather effects can fluctuate a lot over time (e.g., a drought or a heat wave)
and are difficult to predict, thus exposing agricultural production to significant risk (e.g., Just and
Pope, 2002).

The effects of climate and weather on agricultural production and food security have been the
subject of much research (e.g., Mendelsohn, Nordhaus, and Shaw, 1994; Deschênes and Greenstone,
2007; Groom et al., 2008; Ray et al., 2012; Wheeler and Von Braun, 2013; Lobell et al., 2014; Nelson
et al., 2014; Gammans, Mérel, and Ortiz-Bobea, 2017; Mendelsohn and Massetti, 2017; Liang
et al., 2017; Ortiz-Bobea, Knippenberg, and Chambers, 2018; Ortiz-Bobea et al., 2021; Arora et al.,
2020; Anderson et al., 2023). This research has typically focused on ex post analyses evaluating
how specific weather conditions during the growing season affect agricultural production. But the
complexities of weather effects make ex post analyses of weather shocks difficult for at least four
reasons: (i) weather shocks are often location specific and can vary over time in unpredictable ways;
(ii) there are many weather shocks (e.g., drought, heat wave), making it difficult to estimate their
separate effects; (iii) the effects of weather shocks vary depending on their timing and severity,
on soil conditions, and on the crops grown (e.g., Adamopoulos and Restuccia, 2022); and (iv) the
impacts of weather shocks can be mitigated through management (e.g., using irrigation or planting
drought-resistant crops can reduce the effects of a drought).
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This article takes a different approach: It presents an ex ante analysis of the effects of climate on
agricultural productivity. While an ex post analysis treats weather shocks as explanatory variables,
an ex ante approach treats them as unobserved shocks that generate production risk (as they affect
the distribution of agricultural production). An ex ante approach amounts to putting ourselves
in the situation of a farmer or policy maker at the beginning of a growing season: At planting
time, one knows the climate but does not know what weather conditions will develop during the
growing season. As such, an ex ante analysis of the effects of climate on agricultural productivity
treats weather shocks as production risk and proceeds by evaluating the probability distribution
of agricultural productivity conditional on climate. In our risk assessment, we are also interested
in evaluating the evolving prospects of facing extreme events (e.g., the case of crop failure). This
indicates a need to go beyond simple mean-variance analysis and to assess risk exposure based
on the whole distribution of agricultural outputs. This is the ex ante approach used in this article:
Treating weather shocks as random variables, we evaluate the probability distribution of agricultural
productivity under alternative agroclimatic conditions.

How can we measure agricultural productivity under risk? Two measures have been commonly
used: crop yield (e.g., Lobell et al., 2014; Asseng et al., 2015; Powell and Reinhard, 2016; Gammans,
Mérel, and Ortiz-Bobea, 2017; Alidoost, Su, and Stein, 2019; Ramsey, 2020; Chavas et al., 2022;
Schmitt et al., 2022; Anderson et al., 2023) and total factor productivity (TFP) (e.g., Ortiz-Bobea,
Knippenberg, and Chambers, 2018; Ortiz-Bobea et al., 2021). Both measures can capture the effects
of production uncertainty (including weather shocks) on agricultural outputs. But we see crop yield
(measuring production per hectare for a given crop) as a deficient measure: It is a partial productivity
measure that focuses on land productivity and neglects the role of adaptation.1 Our analysis relies
instead on TFP measures, which do not suffer from these limitations. First, applied to a multi-input,
multi-output production process, TFP measures the effectiveness of inputs used in the production of
multiple outputs (e.g., Ball et al., 1997). It means that TFP can capture the role of management and
adaptation (e.g., as farmers choose different output mix under different agroclimatic conditions).
Second, as TFP captures the effects of production risk (e.g., TFP declines when adverse weather
conditions have negative impacts on farm production). Third, TFP captures the role of technological
progress in agriculture (e.g., Ball et al., 1997; Fuglie, 2015, 2018; Ortiz-Bobea et al., 2021). To the
extent that the adoption of technology is a slow process, this stresses the need to present our analysis
of productivity in a dynamic context.

This article presents a dynamic spatial analysis of the probability distribution of agricultural
productivity, with a focus on the effects of climate on production risk. Using data from Fuglie (2015,
2018), the standard deviation of agricultural TFP across countries is reported in Figure 1, showing
much variability in agricultural TFP across countries. This article explores how climate affects risk
exposure in agriculture around the world. This includes addressing the following key questions:
What are the effects of higher average temperatures on agricultural production risk? How do these
effects vary across countries? And how does the spatial distribution of production risk affect world
food security?

The article makes two main contributions. Its first contribution is methodological: We develop
a general econometric approach to specify and estimate the evolving distribution of productivity
both over time and across countries. The analysis involves a two-step approach: First, specify and
estimate a quantile autoregression (QAR) model representing the determinants and dynamics of the
probability distribution of productivity; second, rely on a copula to evaluate the spatial distribution of
productivity across countries. Note that these methods are not new: The QAR analysis builds on the

1 Note that this argument is not new. The inability of crop yield to capture the role of farmers’ adaptation across outputs has
been used to motivate the “Ricardian approach” in the analysis of climate change effects on agriculture (e.g., Mendelsohn,
Nordhaus, and Shaw, 1994; Mendelsohn and Massetti, 2017). This argument gains relevance as previous literature has
stressed the importance of agricultural adaptations to climate change Groom et al. (e.g., 2008); Reidsma et al. (e.g., 2010);
Kaminski, Kan, and Fleischer (e.g., 2013); Sesmero, Ricker-Gilbert, and Cook (e.g., 2018); Adamopoulos and Restuccia
(e.g., 2022); Bareille and Chakir (e.g., 2024).
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Figure 1. Standard Deviation of TFP Across Countries, 1961–2016
Notes: Total factor productivity (TFP) indexes across countries are from Fuglie (2015, 2018).

seminal work by Koenker (2005) and Koenker and Xiao (2006), and the copula approach has been
developed to support a flexible investigation of joint probability distributions (Sklar, 1959; Nelsen,
2006; Joe, 2014). These methods have been used before in the investigation of climate change and
agricultural risk. For example, Conradt, Finger, and Bokusheva (2015) have used quantile regression
to evaluate risk exposure in agricultural production. Alidoost, Su, and Stein (2019) have used a
copula to assess the effects of climate extreme in potato production. Chavas (2021) and Goodwin
et al. (2024) have relied on copula to estimate the nature of price risk in agricultural markets. And
Chavas et al. (2022) have used a joint quantile-copula approach to estimate the spatial distribution
of production risk in Italian agriculture. To identify the contributions made by this article, note that
our analysis goes beyond Chavas et al. (2022) in three important ways. First, the TFP measures used
in this article are arguably better than the yield approach used in Chavas et al. (2022). Second, this
article examines agricultural productivity around the world, much broader than the Italian focus in
Chavas et al. (2022). Third, this article proposes a different modeling of the copula in the second
stage of the analysis. Our copula modeling of codependent risk across countries appears to be new.
It supports the specification and estimation of spatial effects of production risk across countries and
of the role of climate in agricultural production.

The second contribution of the article is empirical: We apply our approach to investigate the
evolution of the probability distribution of agricultural productivity in the world, with an application
to TFP covering 160 countries over the period 1961–2016. Our empirical analysis documents how
agricultural productivity has changed over time and across countries. It provides useful information
on the linkages between climate and farm production risk and on the evolving nature of world food
security.

Our ex ante approach treats weather shocks as random variables affecting agricultural
productivity and investigates how climate (measured by long-term averages of temperature and
precipitation) affects the evolving probability distribution of productivity. Our approach has several
attractive features. First, it relies on TFP measures, which have the advantage of capturing the role
of management and adaptation as farmers change inputs and farm outputs in response to changes in
agroclimatic and economic conditions. Second, our analysis relies on a reduced-form specification
of the determinants of agricultural productivity. Our reduced-form approach avoids endogeneity
issues related to the joint determination of agricultural productivity and management. Third, our
analysis makes use of the large variations in climate across countries to estimate how climate
affects the evolving distribution of agricultural productivity. Our reduced-form analysis provides
a valid framework to evaluate the effects of climate (as measured by long-term temperature and
precipitation) on productivity. Finally, our investigation provides some new and useful information
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on the dynamic effects of climate on the probability distribution of agricultural productivity and on
production risk.

Our analysis shows that dynamic productivity adjustments are sluggish, reflecting the slow
process of adopting new technology and adaptation in agriculture. Our evidence shows that higher
temperatures have moderate impacts on the mean or median of agricultural productivity, but that
their dominant effects are to contribute to large increases in production risk in agriculture, including
tail risk (i.e., the risk of facing rare events located in the tail of the productivity distribution). The
adverse effects of higher temperatures are also found to be more severe in countries exhibiting
low agricultural productivity. Our analysis shows that the spatial transmission of production risk
differs between latitude and longitude: Spatial codependence is stronger for positive shocks across
longitude, and it is stronger for negative shocks across latitude. In the presence of negative
codependence across countries, spatial diversification helps reduce exposure to production risk at
the world level. We find that the adverse effects of higher temperatures on world food security are
muted for two reasons: (i) spatial diversification generates risk-reducing benefits, and (ii) countries
that are less sensitive to the adverse effects of temperature tend to account for a large share of world
food production.

Model

Consider an agricultural production system in location i at time t, where inputs I it = (Iit,1, Iit,2, . . .)
are used to produce food as an output Oit.2 The production technology is represented by the
production frontier Oit = Git(I it,vit), where vit are random variables representing the effects of
production uncertainty. For a given I it and vit, Git(I it,vit) is the largest amount of food that can
be produced in location i at time t. Besides capturing the effects of inputs I it, the production frontier
Git(I it,vit) reflects the role of agroclimatic conditions specific to the ith location, of technological
change taking place over time t, and of weather shocks vit affecting agricultural outputs during the
growing season. For a small change in t (with dt = t1 − t0 > 0 ) and assuming that Oit = Git(I it,vit) >
0, the differentiation of log[Git(I it,vit)] with respect to t gives d log(Oit)

dt =
∑

k
∂ log(Git)
∂Iit,k

dIit,k
dt + yit,

where yit ≡
∂ log(Git)

∂t +
∂ log(Git)

dvit

dvit
dt . It follows that

(1) yit =
d log (Oit)

dt
−

∑
k

∂ log (Git)
∂Iit,k

dIit,k

dt
,

where yit is the proportional change in output d log(Oit)
dt not due to changes in input use (as captured by∑

k
∂ log(Git)
∂Iit,k

dIit,k
dt ). Note that yit can be alternatively written as yit = log(TFPit), where TFPit is a total

factor productivity index defined as TFPit ≡
OQit
IQit

, OQit ≡ exp( d log(Oit)
dt ) being an output quantity

index, and IQit ≡ exp(
∑

k
∂ log(Git)
∂Iit,k

dIit,k
dt ) being an input quantity index. In the absence of production

risk, yit in equation (1) reduces to a standard total factor productivity (TFP) measure reflecting the
rate of technological progress between time t0 and t1 (e.g., Ball et al., 1997). In the presence of
production risk, the TFP measure yit in equation (1) is a random variable capturing two effects: the
effects of technological change and the effects of production risk. As noted in the introduction, yit
in equation (1) has the advantage of evaluating agricultural productivity while controlling for the
effects of all input/output decisions.

Let n be the number of locations around the world, with N = {1, . . . , n}. Food production can
be added across all locations to obtain world food production Ot =

∑
i∈N Oit. Noting that d log(Ot )

dt =

2 Extending the analysis to a multiple output technology can be done by treating Oit as an output quantity index capturing
the effects of changing output mix on agricultural productivity.
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∑
i∈N

Oit
Oi

d log(Oit)
dt , define aggregate agricultural productivity as

(2) yt ≡
∑
i∈N

wi yit ,

where wi =
Oit
Ot

is the share of food production coming from the ith location, i ∈ N . Equations (1) and
(2) make it clear that the analysis of agricultural productivity and risk can be applied at any level of
aggregation, going from farm level to national level to the world level. Our empirical analysis will
rely on national level data, with yit being an index of agricultural productivity in country i ∈ N =

{1, . . . , n} at time t ∈ T = {1, . . . , τ}, where n is the number of countries and τ is the number of time
periods. In this context, yt in equation (2) has two interpretations: (i) yt is a TFP measure of world
agricultural productivity; and (ii) under production risk, yt is a random variable with distribution
reflecting the effects of production risk on world food production at time t. We use this second
interpretation below to evaluate the extent of world food insecurity.

Equation (1) defines yit as a static measure of agricultural productivity in location i at time
t. But there are several reasons why yit would exhibit dynamics. First, when technology changes,
the adoption of a new technology is typically slow. Second, producers are often slow adapting to
changes in their agroecological and environmental conditions, leading to technical inefficiency that
can evolve over time. Third, under production risk, the term yit is expected to exhibit stochastic
dynamics. Fourth, the process of agricultural productivity growth is complex and involves many
factors (e.g., soil fertility) that change over time. Thus, we expect agricultural productivity to exhibit
significant dynamics.

We start with a general representation of the evolution of agricultural productivity both over time
and across space. In the presence of dynamics, assume that agricultural productivity is determined
by the mth order stochastic difference equation:

(3) yit = f i
(
yi, t−1, . . . , yi, t−m ,xit,eit

)
,

where xit is a vector of explanatory variables and eit is a vector of random variables (including
production risk) affecting productivity in country i ∈ N at time t ∈ T . As discussed in the
introduction, a key issue in equation equation (3) is the distinction between weather and climate.
Our ex ante analysis proceeds as if we were at the beginning of the growing season: We know the
climate but do not know weather conditions during the growing season. As a result, we include in xit
climatic variables reflecting country-specific agroclimatic conditions (including average temperature
and precipitation in location i ∈ N ), thus providing a basis to evaluate the effects of climate on
agricultural productivity. And we treat weather shocks as random variables that are included in the
error term eit in equation (3). Treating weather shocks as random variable is consistent with the
fact that weather conditions (including temperature and precipitation) are not fully predictable at
the beginning of each growing season. This has two implications: (i) it avoids the difficult issue
of assessing interactions between weather effects and management, and (ii) it stresses the need
to expand the analysis to examine the probability distribution of agricultural productivity. In this
context, we interpret the error term eit in equation (3) as capturing all uncertainties (including
weather shocks) affecting agricultural productivity.

Equation (3) provides a general reduced form representation of agricultural productivity in
country i at time t. This reduced form has an associated structural model in which agricultural
productivity is jointly determined with agroecological system dynamics, management, and
technology change. As noted in Zellner and Palm (1974, p. 22), the reduced-form representation
given in equation (3) is consistent with such a structural model. This reduced-form approach allows
us to evaluate the dynamics of agricultural productivity without an explicit modeling of processes
associated with the functioning of agroecological systems, their management and technology
adoption, with an understanding that the effects of such processes are all captured implicitly in
equation (3). This has four significant advantages: (i) the reduced form model in equation (3) avoids
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endogeneity issues related to the joint determination of agricultural productivity and management,
(ii) it reduces the data requirements for our empirical analysis, (iii) it provides a valid representation
of the spatial and dynamic determinants of agricultural productivity under general conditions, and
(iv) climate effects can be captured by the exogenous variables xit while the effects of climate
change (e.g., due to GHG accumulation in the atmosphere) are captured through the dynamics in
equation (3). This last point is as attractive feature of our approach given that climates change slowly
over time. For example, the average temperature on earth has increased from 14°C in the 1960s to
14.7°C in the 2010s (an increase of only 0.7°C), which contrasts with average temperatures across
countries covering a range exceeding 30°C (at least 40 times greater). This means that, as far as
climate is concerned, observing average temperature is a lot more informative across countries than
over time.

Finally, as discussed in Zellner and Palm (1974), any variable (besides yit) exhibiting dynamics
has been implicitly substituted away in the reduced-form specification (3). When applied to
unobserved variables, it means that the error terms et = (e1t , . . . , ent) can be assumed to exhibit
no dynamics. On that basis, we assume that et = (e1t , . . . , ent) are serially independent across time
periods t ∈ T , with et having a given joint distribution. However, we allow the error terms eit to
be spatially dependent, with eit being correlated across countries, i ∈ N . In this context, we will
investigate below the spatial dependence in the stochastic determination of agricultural productivity
across countries.

Equation (3) is a dynamic model applied to panel data. It is consistent with panel data models
commonly found in the econometric literature (e.g., Arellano and Bonhomme, 2017; Baltagi, 2021).
Standard panel data models typically focus on the regression estimation of the conditional mean
in equation (3): Eit[ f i (yi, t−1, . . . , yi, t−m ,xit,eit)], where Eit is the expectation operator based on the
information set available at time t,i ∈ N,t ∈ T . But a conditional mean is typically not a sufficient
statistic for the distribution. As noted above, we are interested in estimating the evolution of the
probability distribution of agricultural productivity.

Assuming that et = (eit, . . . , ent) are serially independent in equation (3), our analysis will
examine the joint probability distribution function:

(4) F
(
y t | z t

)
≡ Prob

{
f i

(
yi, t−1, . . . , yi, t−m ,xit,eit

)
≤ yit,i ∈ N

}
,

where y t = (yit, . . . , ynt) and z t = {yi, t−1, . . . , yi, t−m ,xit : i ∈ N }, t ∈ T . Below, we will assume that
F (y t | ·) is absolutely continuous. Applied to one country at a time, consider the marginal
distribution of yit for the ith country:

(5) Fi (yit | zit) ≡ Prob
{

f i
(
yi, t−1, . . . , yi, t−m ,xit,eit

)
≤ yit

}
,

where zit = {yi, t−1, . . . , yi, t−m ,xit}, i ∈ N , t ∈ T . The associated quantile function Qi (qi | zit) is

(6) Qi
(
qi | zit

)
≡ inf

yit
{yit : qi ≤ Fi (yit | zit)} , i ∈ N, t ∈ T ,

where qi ∈ [0,1] is the ith quantile for yit, i ∈ N . From Sklar’s theorem (1959), the following
relationship exists between joint and marginal distributions:

(7) F (yit, . . . , ynt | z t ) = C
[
F1 (y1t | z1t ) , . . . , Fn (ynt | znt)

]
,

where C(F1, . . . , Fn ) is a copula (Sklar, 1959; Nelsen, 2006; Joe, 2014).3 The copula function
C : [0,1]n→ [0,1] is nondecreasing and satisfies C(1, . . . , 1,Fj ,1, . . . , 1) = Fj , j ∈ N . When F (y t | ·)
is absolutely continuous, the copula function is unique and can be written as C(q1, . . . , qn ) =

F[Q1(q1 | zit), . . . ,Qn (qn | znt)], where Qi (qi | zit) is the quantile function defined in equation (6).

3 Note that, conditional on z t , equation (7) implicitly assumes that the copula C (F1, . . . , Fn ) is the same for all time
periods t ∈ T .
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Equation (6)–(7) provide all the information needed to evaluate the joint probability distribution of
agricultural productivity F (yit, . . . , ynt | z t ) and to assess production risk.

Below, we propose a two-step econometric approach to estimate this joint distribution. As
suggested in equations (6)–(7), the two steps are, first, to specify and estimate the quantile function
Qi (qi | zit) in equation (6), and, second, to specify and estimate the copula C(F1, . . . , Fn ) in (7). As
noted in the introduction, Chavas et al. (2022) used a similar two-step approach, with three important
differences: (i) TFP is a better measure of agricultural productivity than is yield, as used in Chavas
et al. (2022); (ii) our analysis of agricultural productivity around the world is much broader than
the focus on Italy in Chavas et al. (2022); (iii) we propose a different modeling of the copula in the
second stage of the analysis. Our copula modeling in stage two appears to be new and provides a
flexible representation codependent risk across countries.

Our two-step approach proceeds as follows. In the first step, consider the specification for the
quantile function Qi (qi | zit) in equation (6):

(8) Qi
(
q | zit

)
= a(q) +

m∑
j=1

bj (q)yi, t− j + c(q)xit + d(q)xityi, t−1 ,

where {a,bj ,c,d} are parameters conditional on quantile q ∈ [0,1], i ∈ N , t ∈ T .4 Equation (8) is
a quantile autoregression (QAR) model (Koenker, 2005; Koenker and Xiao, 2006). The lagged
variables in equation (8) reflect the process of technology adoption as well as the evolution
of agroecological systems as they adjust to environmental and economic changes. Equation (8)
provides a flexible representation of the probability distribution of agricultural productivity. Indeed,
the term [c(q)xit] allows productivity to vary across countries. And equation (8) allows the variables
xit to affect both productivity level (when c(q) , 0 ) and productivity growth (when d(q) , 0 ). Of
special interest is the case where the vector xit includes agroclimatic conditions in country i ∈ N .
It follows that [c(q)xit] in equation (8) captures the spatial effects of agroclimatic conditions on
the distribution of agricultural productivity, while [d(q)xityi, t−1] measures the spatial effects of
agroclimatic conditions on the dynamics of this distribution. As these measures can vary across
quantiles q, they provide useful information on the spatial and temporal patterns in the probability
distribution of agricultural productivity. This illustrates how the QAR model in equation (8) provides
a good basis to evaluate the spatial and temporal impacts of climate on agricultural productivity and
on production risk around the world.

Importantly, note that equation (8) goes beyond simple mean regression: It represents the whole
distribution of agricultural productivity, yit. For example, allowing a(q) to vary across quantiles
can capture the shape of this distribution (including its variance, skewness and kurtosis). And
it can capture the evolution of the productivity distribution both over time and across countries,
as (bj (q),c(q),d(q)) can vary across quantiles. These are attractive features to the extent that
production risk is important in agriculture (Just and Pope, 2002), and there is much interest in
understanding better how exposure to agricultural risk varies over time and across countries (e.g.,
Chavas et al., 2022).

Assuming that the variables x are exogenous, the QAR model in equation (8) can be estimated
using quantile regression (Koenker, 2005; Koenker and Xiao, 2006), yielding consistent estimate of
the parameters as τ→∞. But specification (8) raises an important question: Applied to panel data,
can it capture the effects of country-specific factors affecting agricultural productivity (Canay, 2011;
Galvao, 2011)?5 The answer to this question depends in part on the specification of the variables xit
in equation (8). The variables xit act as intercept shifters (as captured by the parameters c(q)) and

4 Equation (8) assumes that the parameters {a, b j , c, d } are time invariant. It also implicitly assumes that all country-
specific effects are captured by the variables z it; this assumption is further discussed below.

5 In the presence of fixed effects, the standard econometric estimation of equation (8) yields inconsistent parameter
estimates as n→∞ (e.g., Nickell, 1981). As discussed below, this argument would not apply to model (8) when the variables
x it capture all relevant country-specific effects.
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as growth shifters (as captured by the parameters d(q)). We include in xit country-specific climatic
variables (average temperature and average precipitation) and technological change (captured by
time trends).

Note that, while the QAR estimates of the parameters in equation (8) are τ-consistent under
general conditions, their asymptotic distribution depends on the stationarity (or nonstationarity) of
the model (Koenker and Xiao, 2004, 2006). Indeed, under nonstationarity (e.g., under “unit root”),
the standard central limit theorem does not apply: The normality of the asymptotic distribution of the
QAR estimates no longer holds, thus affecting hypothesis testing (Koenker and Xiao, 2004, 2006).
Our hypothesis testing relies on bootstrapping, using “pair bootstrapping” with resampling from the
sample data (Efron and Tibshirani, 1993; Hahn, 1995).

In the second step, we explore the joint distribution F (yit, . . . , ynt | z t ) through the copula
C(F1, . . . , Fn ) given in equation (7). The analysis of spatial codependence becomes more complex
when n is large. A convenient way for us to proceed is to conduct the spatial analysis based on
bivariate copulas. For some j ∈ N and i ∈ N − j, consider the bivariate copula

(9) Cij
(
qi ,qj

)
= C

[
δ1ij

(
qi ,qj

)
, . . . , δnij

(
qi ,qj

)]
,

where

δkij(qi ,qj ) ≡




qi
qj

1




if




k = i

k = j

k ∈ N − i − j




, k ∈ N .

The function Cij : [0,1]2→ [0,1] is a bivariate copula that satisfies Fij(yit,yjt | zit, zjt) = Cij[Fi (yit |

zit),Fj (yjt | zjt)], where Fij(yit,yjt | zit, zjt) = Prob[ f i (zit,eit) ≤ yit, f j (zjt,ejt) ≤ yjt]. The bivariate
copula Cij(qi ,qj ) in equation (9) summarizes all the relevant information about the spatial
codependence between yi and y j . The nature of this codependence can be measured as

(10) Rij
(
qi ,qj

)
= Cij

(
qi ,qj

)
− qiqj .

Indeed, yi and y j being independently distributed corresponds to Rij(qi ,qj ) = 0 for all (qi ,qj ) ∈
[0,1]2. And Rij(qi ,qj ) > 0(< 0) when yi and y j exhibit positive (negative) codependence at quantiles
(qi ,qj ).

Define the conditional distribution associated with the copula Cij(qi ,qj ) as

(11a) Ci | j

(
qi ,qj

)
≡ Prob

[
Ui ≤ qi : Uj = qj

]
= lim
δ→0

cij
(
qi ,qj + δ

)
− Cij

(
qi ,qj

)
δ

=
∂Cij

(
qi ,qj

)
∂qj

where Uk ∼U[0,1], k ∈ N (Nelsen, 2006, p. 41), implying that

(11b) Cij
(
qi ,qj

)
=

∫q j

0
Ci | j

(
qi ,q̄j

)
dq̄j .

To make the analysis of equation (11a)–(11b) empirically tractable, we consider the specification

(12) Ci | j

(
qi ,qj

)
= α

(
qi

)
+

∑
k ∈K

βk
(
qi

)
Dkijqj ,

where {Dkij : k ∈ K } are measures of distance between countries i and j, with Dkii = 0 and Dkij ≥ 0.
As discussed below, the distance measures Dkij can distinguish between latitude and longitude.
For j ∈ N and i ∈ N − j, equation (12) provides a basis to evaluate the spatial codependence
in agricultural productivity between any two countries. The situation in which yi and y j are
independently distributed is obtained as a special case when α(qi ) = qi and βk (qi ) = 0 for all
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qi ∈ [0,1] and all k ∈ K . Alternatively, having βk (qi ) > 0 (< 0) corresponds to a situation in which
Dkij contributes to a positive (negative) codependence between yi and y j .

Equation (12) is a quantile regression model. It has two attractive features: (i) it is flexible, as it
allows the parameters (α(qi ), β(qi )) to vary across quantiles;6 and (ii) it can support an empirical
analysis of the nature of spatial codependence in agricultural productivity across countries. Let qe

it
denote an estimate of qit that solves yit = Qe

i (qit | zit), where Qe
i (q | zit) is consistent estimate of

the quantile function obtained from the first-stage estimation of the QAR model in equation (8),
i ∈ N , t ∈ T . Using the variables qe

it obtained in the first stage and under the absolute continuity
of F (yi | ·), the second-stage quantile estimation of Ci | j (·) in equation (12) generates consistent
estimates of the parameters {α(qi ); βk (qi ),k ∈ K } in equation (12) (Chernozhukov, Fernández-
Val, and Melly, 2013). But relying on the first-stage estimates qe

it affects the distribution of the
second-stage estimator in equation (12) (Murphy and Topel, 1985). On that basis, we will rely on
bootstrapping over both stages to conduct hypothesis testing about the parameters in equation (12).

Finally, combining the QAR model in equation (8) with the conditional copula in equation (12)
provides all the information needed to evaluate world food production risk as represented by the
random variable yt in equation (2). This can be done using the following four steps:

1. Let q̃i ∼U[0,1] denote i.i.d. random variables uniformly distributed in the interval [0,1],i ∈ N .

2. For some j ∈ N , obtain C̃i | j = Ce
i | j

(q̃i ,q̃j ), where Ce
i | j

(qi ,qj ) is a consistent estimate of Ci | j (·)
in equation (12), i ∈ N − j.

3. Obtain ỹjt = Qe
j (q̃j | zjt) and ỹit = Qe

i (C̃i | j | zjt), i ∈ N − j, where Qe
i (q | zit) is a consistent

estimate of the QAR model in equation (8).

4. Using equation (2), obtain the random variable ỹt =
∑

i∈N wi ỹit.

Food production risk at the world level is represented by the distribution of ỹt , which can be used to
evaluate world food security (as discussed below).

Application to Agricultural Productivity

This section presents an application of the model presented previously to the evolution of agricultural
productivity, yit , its probability distribution, and its dynamics, with a focus on linkages between
climate and production risk.

Data

Our analysis of agricultural productivity relies on data over the period 1961–2016 and covering
160 countries around the world. The productivity data are TFP indexes developed by Fuglie (2015).
The climatic data include long-term annual average temperature and precipitation for each country
and were obtained from Ortiz-Bobea et al. (2021).7 Table 1 presents summary statistics of the
sample data. Importantly, the TFP indexes are calculated for each country and each year assuming a
multi-input, multi-output production technology (Ball et al., 1997; Fuglie, 2015).8 It means that the
productivity measures reflect the role of management and adaptation as farmers change inputs and
farm outputs in response to changes in agroclimatic and economic conditions across countries and
over time.

6 As such, our quantile/copula approach is semiparametric and more flexible than the parametric copula approach used in
Goodwin et al. (2024).

7 No attempt was made to measure climate using sub-year season-specific data. The reason is that temperature or
precipitation measurements during sub-year periods (e.g., April–May–June) are not meaningful when comparing countries
across latitudes (e.g., in the Northern Hemisphere vs. equatorial region vs. the Southern Hemisphere).

8 See Fuglie (2018) for a good discussion of the evolution of agricultural productivity across countries and over time.
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Table 1. Summary Statistics
Variables Mean Median Min. Max.
Agricultural TFP index (= 100 in 2015) 91.03 91.93 17.07 254.77
Average temperature (°C) 19.02 22.29 −6.51 28.89
Average precipitation (100 mm) 12.88 11.38 0.21 42.37
Latitude (degree) 18.64 17.85 −40.90 64.96
Longitude (degree) 21.68 24.24 −106.34 179.41

Notes: The dataset covers the period 1961–2016 and 160 countries.

The econometric approach proposed previously is now used to evaluate the evolution of
agricultural productivity and production risk around the world. Letting yit = log(TFPit), i ∈ N , t ∈ T ,9
we proceed investigating the distribution of yit and its determinants.

Evaluating the Determinants of Agricultural Productivity

In a first step, we analyze agricultural productivity by specifying and estimating the QAR model in
equation (8). The specification of equation (8) involved two issues: (i) selecting the number of lags
m and (ii) choosing the specification for the explanatory variables xit. Both issues were evaluated
using the Bayesian information criterion (BIC) to help identify which specification provided the
best fit to the data (Schwarz, 1978). Using BIC, the preferred model involved three lags (m = 3)
and xit, including the effects of both technology and climate on agricultural productivity.10 The
technology effects are captured by time trends specified as linear spline functions: t0 = time trend
starting at 0 in the first sample year; t1 = time trend starting at 0 in 1983, and t2 = time trend
starting at 0 in 2000. The climate effects are captured by country-specific average temperature and
average precipitation both as linear terms (temp and prec) and quadratic terms (temp2 and prec2,
each measured as squared deviations from sample median). Finally, consistent with equation (8),
the variables x = (temp,temp2,prec,prec2,t0,t1,t2) are introduced as interaction effects with yi, t−1,
thus allowing climate and technology to affect productivity growth. To determine whether the
variables xit, (yi, t−1,yi, t−2,yi, t−3) and xit yi, t−1) provide a good representation of country-specific
factors affecting agricultural technology, we add country-specific dummy variables to the model.
Using BIC, we find that adding country-specific dummy variables did not improve the fit. We also
investigate the statistical significance of the coefficients of these additional variables. We test the
significance of country-specific dummy variables: The p-value for the test is 0.18 for dummies
treated as intercept shifters, and the p-value is 0.08 for dummies introduced as slope shifters for the
coefficient of yi, t−1. Thus, we find that the country-specific dummy variables do not have statistically
significant effects on agricultural productivity at the 5% significant level. These results indicate that
there was no strong evidence that country-specific fixed effects need to be included in our analysis. In
other words, we conclude that the variables xit,(yi, t−1,yi, t−2,yi, t−3), and (xityi, t−1) in equation (8)
capture all the relevant country-specific effects in equation (8).

Based on this specification, the QAR estimates of equation (8) are reported in Table 2 for selected
quantiles, with statistical significance obtained from bootstrapping. Table 2 shows that many of the
QAR parameters in equation (8) are statistically significant. This includes the lagged productivity
effects of (yi, t−1,yi, t−2,yi, t−3) either in linear form or in interactions (yi, t−1xit). These lagged
effects reveal slow adjustments in agricultural productivity over time, reflecting agroecosystem
dynamics (e.g., the dynamics of soil nutrients or pest population), the slow process of developing
new technology (as innovations contribute to reducing the evolving patterns of resource scarcity),
and/or the slow adoption of new technology. While documenting the importance of dynamics in
the determinants of agricultural productivity, these results stress the need to distinguish between

9 It follows that exp(y) can be interpreted as a TFP index in our discussion below.
10 We also explored introducing latitude and longitude as well as interaction effects (temp × prec) in x. Using BIC, we

found that doing so did not improve the fit of the QAR model (8).
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Table 2. Parameter Estimates for Selected Quantiles
Quantile

Parameter q = 0.1 q = 0.3 q = 0.5 q = 0.7 q = 0.9
Intercept 0.2946 0.3115∗∗∗ 0.4336∗∗∗ 0.5838∗∗∗ 0.5750∗∗∗

TFP1 0.6817∗∗∗ 0.7069∗∗∗ 0.6986∗∗∗ 0.6721∗∗∗ 0.6371∗∗∗

TFP1 ∗ t0 −0.0003 −0.0003 0.0002 −0.00001 −0.0003
TFP1 ∗ t1 −0.0107∗∗∗ −0.0074∗∗∗ −0.0074∗∗∗ −0.0065∗∗∗ −0.0062∗∗

TFP1 ∗ t2 0.0257∗∗∗ 0.0213∗∗∗ 0.0195∗∗∗ 0.0169∗∗∗ 0.0194∗∗∗

TFP2 0.2160∗∗∗ 0.1999∗∗∗ 0.1702∗∗∗ 0.1920∗∗∗ 0.1732∗∗∗

TFP3 0.0148 0.0164 0.0342∗∗∗ 0.0122 0.0785∗∗∗

t0 0.0006 0.0016 −0.0011 0.0003 0.0016
t1 0.0511∗∗∗ 0.0356∗∗∗ 0.0351∗∗∗ 0.0307∗∗∗ 0.0300∗∗

t2 −0.1186∗∗∗ −0.0992∗∗∗ −0.0907∗∗∗ −0.0785∗∗∗ −0.0903∗∗∗

temp −0.0063 −0.0057 −0.0072∗ −0.0102∗∗ −0.0063
temp2 −0.0006∗ −0.0006∗∗∗ −0.0006∗∗∗ −0.0008∗∗∗ −0.0005
prec 0.0004 −0.0022 −0.0060∗∗ −0.0097∗∗∗ −0.0136∗∗∗

prec2 0.00002 0.0001 0.0002∗ 0.0004∗∗∗ 0.0005∗∗

TFP1 ∗ temp 0.0013 0.0012 0.0016∗ 0.0022∗∗ 0.0016
TFP1 ∗ temp2 0.0001∗ 0.0001∗∗∗ 0.0001∗∗∗ 0.0002∗∗∗ 0.0001
TFP1 ∗ prec 0.0005 0.0007 0.0013∗∗ 0.0020∗∗∗ 0.0024∗∗

TFP1 ∗ prec2 −0.00005 −0.00004 −0.00006∗∗ −0.00009∗∗∗ −0.0001

Notes: Hypothesis testing was conducted using bootstrapping with resampling from the sample data. Single, double, and
triple asterisks (*,**,***) indicate significance at the 10%, 5%, and 1% level, respectively.

short- and long-run effects of these determinants (as further discussed below). Finally, the interaction
effects of (yi, t−1xit) indicate that productivity dynamics can vary significantly across countries (as
further evaluated below).

Table 2 also reports how the time trend variables (t0, t1, t2) affect productivity. Interestingly,
while t0 does not have statistically significant effects, t1 shows strong positive linear effects across
all quantiles, reflecting rapid agricultural productivity growth during the period 1983–2000. Yet the
effects of (t1yi, t−1) are all negative, indicating some slowdown in productivity growth during this
period among countries exhibiting high productivity. Finally, in Table 2, the effects of t2 tends to be
opposite those of t1: t2 has strong negative linear effects across all quantiles, reflecting a decline in
agricultural productivity growth after 2000 (possibly due to the adverse effects of climate change on
agriculture), but the effects of (t2yi, t−1) are all positive, indicating that the post-2000 slowdown in
productivity growth is muted among countries exhibiting high productivity. These results document
the presence of heterogeneity in agriculture productivity growth both over time and across countries.

Table 2 also shows how the climate variables (temp, temp2, prec, prec2) affect the probability
distribution of productivity. The variables (temp, temp2) have negative and statistically significant
effects on agricultural productivity across many quantiles. Table 2 shows that higher average
temperature has adverse impacts on agriculture production and that these adverse effects are
nonlinear (e.g., they become stronger as temperature rises). These results are largely consistent with
previous research documenting the effects of climate and climate change on agriculture (e.g., Ray
et al., 2012; Lobell et al., 2014; Gammans, Mérel, and Ortiz-Bobea, 2017; Mendelsohn and Massetti,
2017; Arora et al., 2020; Ortiz-Bobea et al., 2021). Table 2 also reports that the interaction effects
between (temp, temp2) and yi, t−1 tend to be positive, indicating that the adverse effects of higher
temperature tend to be muted in countries exhibiting high productivity growth. Implications of this
result for world food security are further discussed below.

Finally, Table 2 shows that the effects of precipitation are complex. The variable prec tends to
have negative effects on productivity, while prec 2 has positive effects, especially in the upper tail
of the distribution. But the interactions effects of precipitation with yi, t−1 are opposite: (precyi, t−1)
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tends to have positive effects on productivity, while (prec2yi, t−1) has negative effects. In addition,
these effects are weaker in the lower tail of the variable prec tends to have negative effects on
productivity, while prec2 has positive effects, especially in the upper tail of the distribution. But
the interactions effects of precipitation with yi, t−1 are opposite: (prec yi, t−1) tends to have positive
effects on productivity, while (prec2 yi, t−1 ) has negative effects. In addition, these effects are weaker
in the lower tail of the distribution.

Next, we explore the implications of the QAR estimates reported in Table 2 for the distribution
of agricultural productivity across countries and over time. Noting that the QAR model provides a
flexible representation of the productivity distribution, this raises a question about the shape of this
distribution? To examine this issue, let Qe

i (q | zit) be the predicted quantile function obtained from
the QAR estimation of equation (8), i ∈ N , t ∈ T . Under the absolute continuity of Fi (yit | ·), the
equation Qe

i (qit | zit) = yit can be solved for qit, giving an estimate of qe
it and providing information

about the distribution function, qit = Fi (yit | zit). We test the null hypothesis of a normal distribution
using two tests: the Shapiro–Wilk (SW) test (Shapiro and Wilk, 1965) and the Jarque–Bera (JB) test
(Jarque and Bera, 1980). Applied to each country and each year, both tests uncover strong evidence
against a normal distribution. Using a 5% significance level, the SW test rejects normality for 98.1%
of the observations, and the JB test rejects normality for 99.4% of the observations. This strong JB
rejection of normality reflects that the distributions of productivity exhibit significant skewness and
kurtosis.11 This stresses the need to go beyond a mean-variance analysis and to examine the evolving
patterns of skewness and kurtosis in the distribution of agricultural productivity both over time and
across countries (as further discussed below).

For illustration purpose, Figure 2 reports the estimated distributions of the productivity index
exp(yit ) for six countries: Brazil, China, France, Greece, Togo, and the United States. Figure 2
shows that Brazil, China, France, and the United States exhibited large rightward shifts in
productivity distribution over time, reflecting rapid productivity growth especially after 1996. In
contrast, in Figure 2e, Togo exhibited a leftward shift in its productivity distribution over time,
signifying productivity regress during the sample period. The situation in Greece was somewhere
in between: Figure 2d shows only moderate productivity growth in Greek agriculture, especially
after 1996. These results illustrate the presence of much heterogeneity in agricultural productivity
growth both over time and across countries. Figure 2 also shows temporal changes in the spread of
the distribution. For example, the distribution spread for Brazil (Figure 2a) increases over time, but
the change in spread is less pronounced for Togo (Figure 2e).

These changes are further illustrated in Figure 3, which reports the temporal evolution of three
quantiles (0.05, 0.5, representing the median; and 0.95) of the distribution of the productivity index
exp(yit) for Brazil, China, France, Greece, Togo, and the United States. In general, the spread
between the 0.05 and 0.95 quantiles reflects the magnitude of production uncertainty in agriculture.
Figures 3a and 3b show that, for Brazil and China, this spread has increased sharply over the last few
decades, reflecting a large rise in production uncertainty. This contrasts with Togo, where Figure 3e
shows little change in the spread, indicating that Togo did not see much change in production
uncertainty. Again, these results reflect important differences in agricultural production uncertainty
both over time and across countries.

While Table 2 documents the presence of productivity dynamics, it also raises questions about
the nature of these dynamics: How slow (or fast) are the dynamic adjustments? To answer these
questions, note that the QAR model in equation (8) involves nonlinear dynamics in two ways: (i) the
lagged variables yi, t−1 interact with xit, and (ii) the parameters of the lagged variables vary across
quantiles q ∈ [0,1]. In this context, under differentiability, a first-order Taylor series approximation
of equation (8) with respect to (yi, t−1,yi, t−2,yi, t−3) provides a local approximation to productivity
dynamics in the neighborhood of point (x,q). As a linear difference equation, this approximation has
a dominant root with modulus ρD (x,q). This modulus provides useful information about the nature

11 Skewness reflects asymmetry while kurtosis measures “fat tail” in the probability function. As they are both 0 under a
normal distribution, nonzero skewness or kurtosis reflects departures from normality.
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(a) Brazil (b) China

(c) France (d) Greece

(e) Togo (f) United States

Figure 2. Distributions of Agricultural Productivity Index, Selected Countries
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(a) Brazil (b) China

(c) France (d) Greece

(e) Togo (f) United States

Figure 3. Evolution of Agricultural Productivity Index, Selected Countries
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Table 3. Modulus of the Dominant Root, ρ(x,q), Under Selected Scenarios
Quantile

q = 0.1 q = 0.5 q = 0.9
Year 1970 1990 2010 1970 1990 2010 1970 1990 2010
Low temp, low precip 0.965 0.902 0.930 0.959 0.923 0.963 0.947 0.911 0.954

Med temp, med precip 0.958 0.895 0.923 0.964 0.927 0.967 0.965 0.927 0.972

High temp, high precip 0.966 0.903 0.931 0.978 0.941 0.982 0.985 0.947 0.993

Notes: Hypothesis testing for a unit root was conducted using bootstrapping with resampling from the sample data. All
reported roots were found to be less than 1 at the 5% significance level.

of dynamics (Hasselblatt and Katok, 2003): (i) The dominant root being in the unit circle (with
ρD (x,q) < 1 ) corresponds to stable dynamics of yit in the neighborhood of (x,q) and (ii) ρD (x,q)
measures the speed of dynamic adjustments of yit around point (x,q). In the special case where ρD
is constant, these reduce to standard properties of linear time-series models (e.g., Hamilton, 1994;
Enders, 2010). But the QAR model in equation (8) permits the nature of dynamics to vary with the
exogenous variables x and with the quantile q. This allows us to investigate whether productivity
dynamics varies with climate (through the climatic variables in x) or with the weather shocks (as
reflected by the quantile q).

Using the QAR estimates of equation (8), Table 3 reports the modulus of the dominant root
ρD (x,q) under selected scenarios representing different climatic variables (average temperature and
precipitation), years, and quantiles. Table 3 shows that ρD (x,q) varies across scenarios between
0.902 and 0.993 . Using bootstrapping, we test for local instability (corresponding to the null
hypothesis ρD (x,q) ≥ 1 ). We reject this null hypothesis at the 5% significance level in each
scenario. Thus, we find strong evidence of stability in the dynamics of agricultural productivity
dynamics. In addition, finding that the dominant roots do not change much across scenarios means
that productivity dynamics is not driven by either climate (as average temperature or precipitation
have only small effects on ρD (x,q)) or production shocks (as ρD (x,q) does not change much across
quantiles). We interpret this result as indirect evidence that productivity dynamics are likely driven
by the slow process of creation and adoption of new technology.

Evaluating the Spatial Codependence of Agricultural Productivity

We now examine the codependence in agricultural productivity, reflecting how production shocks
get transmitted across countries. As discussed previously, following the first-stage estimation of
the QAR model in equation (8), the analysis relies on a spatial copula. Our second-stage empirical
analysis of spatial codependence is based on equations (10)–(12), with equation (12) capturing how
spatial codependence can vary with distances Dkij as well as across quantiles. In equation (12), we
use four measures of distance Dkij: Dlat,ij = the difference in latitude between country i and country j;
Dlon,ij = the difference in longitude between country i and country j; Dlat2,ij = the squared difference
in latitude between country i and country j; and Dlon2,ij = the squared difference in longitude
between country i and country j. This specification allows us to distinguish between latitude and
longitude effects in the evaluation of spatial codependence. And the inclusion of the terms Dlat2,ij
and Dlon2,ij allow for spatial effects to be nonlinear. Finally, we estimate equation (12), choosing
France as the jth reference country,12 with i ∈ N − j. The quantile estimates of the parameters in
equation (12) are reported in Table 4 for selected quantiles, with hypothesis testing conducted

12 The choice of France as the reference country in equation (12) was based on two arguments: (i) France has good data
on agricultural productivity; and (ii) France has many “close neighbors,” making it easier to evaluate neighborhood effects.
Conducting the analysis using a different base country gave different estimates but similar qualitative results.
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Table 4. Spatial Conditional Copula Ci| j (qi,qj)

Quartile
Parameter qi = 0.1 qi = 0.3 qi = 0.5 qi = 0.7 qi = 0.9
Intercept 0.088∗∗∗ 0.273∗∗∗ 0.458∗∗∗ 0.663∗∗∗ 0.879∗∗∗

Dlat ∗ q j 1.219∗ 12.516∗∗ 1.557 −0.275 0.003
Dlat2 ∗ q j −17.767∗ −37.457∗∗ −27.219∗ 1.811 −0.046
Dlon ∗ q j −0.038 0.664 2.353∗∗∗ 2.748∗∗∗ 1.166∗∗∗

Dlon2 ∗ q j 0.676 −3.277 −13.954∗∗ −18.137∗∗∗ −8.513∗∗

Notes: The spatial conditional copula Ci | j (qi, q j ) is given in equation (12). The j th country is France, taken as a reference
point in the evaluation of spatial codependence. Hypothesis testing was conducted using bootstrapping with resampling
from the sample data. Single, double, and triple asterisks (*,**,***) indicate significance at the 10%, 5%, and 1% level,
respectively.

using bootstrapping applied to both stages of the approach.13 Table 4 shows that many of the
distance parameters are statistically significant. This provides strong statistical evidence of spatial
dependence. Table 4 also shows differences between latitude effects and longitude effects. For
example, the latitude effects are statistically significant in the lower tail (at qi = 0.1 or 0.3), but the
corresponding longitude effects are not. In contrast, the longitude effects are statistically significant
in the upper tail (at qi = 0.7 or 0.9), but the corresponding latitude effects are not. Thus, spatial
codependence is stronger for negative shocks across latitude; and it is stronger for positive shocks
across longitude. In addition, Table 4 reports that both latitude and longitude effects are nonlinear:
When significant, the coefficients associated with Dlat and Dlon are positive, while the coefficients
associated with Dlat2 and Dlon2 are negative. This indicates a general inverted U-shaped relationship
between distance and codependence. This nonlinear relationship means that spatial codependence
can be positive or negative depending on the evaluation point.

Next, we evaluate the nature of spatial codependence based on equations (10)–(12). Using the
estimates of equation (12) along with equations (11a)–(11b), Table 5 reports selected codependence
measures Rij(qi ,qj ) given in equation (10). When evaluated at quantiles (qi ,qj ), recall that
Rij(qi ,qj ) = 0 corresponds to no codependence between yi and y j , while Rij(qi ,qj ) > 0 (< 0)
corresponds to positive (negative) codependence. Table 5 indicates that the spatial transmission of
production shocks is complex: Codependence can be positive or negative depending on the scenario
considered. For example, Table 5 shows evidence of positive codependence when qi = 0.9 and
qj = 0.1 but of negative codependence when qi = 0.5 and qj = 0.5. As further discussed below, a
negative spatial codependence means that spatial diversification contributes to reducing world food
insecurity. Finally, Table 5 shows that the Rij(qi ,qj ) estimates are not statistically significant when
qi = 0.1 or when distance measures become large. This last result is important: Large productivity
shocks are not likely to be transmitted over long distances. It is consistent with the intuition that
codependence is likely to be nonzero only when distance is relatively small.

Implications

This section explores the implications of our econometric analysis for the evolution of the
distribution of agricultural productivity, including linkages between climate and production risk.
This is done by simulating forward the productivity distribution of the QAR model in equation (8)
under alternative scenarios reflecting climate effects at different time periods. The climate scenarios
involve low, medium, and high levels for average precipitation and temperature, where “medium”
means an evaluation at sample median, while low (high) means a 20% decrease (increase) from
the sample median (corresponding to a change of ±4.51°C for temperature and ±228 mm for
precipitation). The time scenarios involve three evaluation points: 1970, 1990, and 2010. Given

13 We also explored whether spatial codependence varied over time. We introduced a time trend in equation (12), but we
found that its coefficient was not statistically significant.
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Table 5. Spatial Codependence 1,000 × R(qi,qj), Selected Scenarios

Quantiles Scenarios qi = 0.1 qi = 0.5 qi = 0.9
low Dlat −0.18 0.566∗ 6.72∗∗∗

med Dlat −0.45 0.018 6.71
high Dlat −1.74 −2.08 6.71

q j = 0.1
low Dlon −0.27 0.68∗∗∗ 6.81∗∗∗

med Dlon −0.25 1.00∗∗∗ 6.92∗∗

high Dlon −0.18 0.30 6.36

low Dlat −2.82 −13.59 −1.56
med Dlat −9.24 −26.28∗ −1.59
high Dlat −33.04 −74.96∗ −1.67

q j = 0.5
low Dlon −4.94 −11.22∗∗ 0.75∗∗∗

med Dlon −4.62 −3.45∗∗∗ 3.01∗∗∗

high Dlon −3.40 −14.13 −5.97

low Dlat −2.87 −24.68 −9.85
med Dlat −23.35 −65.54∗ −9.92∗

high Dlat −69.04 −221.76∗ −5.17
q j = 0.9

low Dlon −9.69 −17.06∗ −2.40∗∗

med Dlon −8.65 7.88∗∗∗ 4.86∗∗∗

high Dlon −4.75 −26.41 −24.01

Notes: Using equations (10)–(12), the codependence measure is R(qi, q j ) = inf
q j

0 ci | j (qi, q̄ j )dq̄ j − qiq j . Hypothesis
testing about codependence was conducted using bootstrapping with resampling from the sample data. Single, double, and
triple asterisks (*,**,***) indicate significance at the 10%, 5%, and 1% level, respectively.

the importance of dynamics, we focus our attention on long-term effects: Under each scenario,
we evaluate the productivity distribution obtained after 50 years of forward simulation. Table 6
summarizes the results, including the mean, median, standard deviation, skewness, and kurtosis of
the simulated distributions of the productivity index exp(yit ) obtained under the selected scenarios.

Table 6 illustrates how climate and evolving technology affect agricultural productivity. Under
medium precipitation, Table 6 reports the simulated impacts of rising temperatures on productivity.
Table 6 shows that higher temperatures have modest effects on median productivity: Under “med
precip” and going from “low temp” to “high temp,” 1970 median productivity declines slightly from
80.48 to 79.49 (−1.2%), while 2010 median productivity increases from 109.87 to 118.02 (+7.4%).
Table 6 reports that the main impacts of higher temperatures are to contribute to large increases in the
standard deviation, skewness, and kurtosis of agricultural productivity. Under medium precipitation,
going from “low temp” to “high temp” increases the standard deviation from 16.07 to 22.79
(+41.2%) in 1970, from 13.69 to 17.39 (+27%) in 1990, and from 21.83 to 35.82 (+64.1%) in
2010, and it increases the kurtosis from 0.21 to 1.05 (+400%) in 1970, from 0.26 to 0.62 (+138.5%)
in 1990, and from 0.66 to 2.36 (+257.6%) in 2010. These are our key findings:

i. The impacts of higher temperatures are mostly their contribution to a large increase in
production risk in agriculture.

ii. These impacts also include a large increase in kurtosis (i.e., an increased exposure to rare
events located in the tails of the probability function, including catastrophic risk).

iii. These effects have become stronger in the last few decades.
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Table 6. Simulated Agricultural Productivity Index, Selected Scenarios
Scenarios Year Mean Median Std. Dev. Skewness Kurtosis

1970 82.8 80.48 16.07 0.57 0.21
Low temp 1990 95.13 94.09 13.69 0.46 0.26

2010 114.43 109.87 21.83 0.82 0.66

1970 82.89 80.38 18.18 0.69 0.42
Med precip Med temp 1990 95.66 94.24 15.07 0.57 0.42

2010 117.28 111.45 25.81 0.99 1.09

1970 82.81 79.49 22.79 0.89 1.05
High temp 1990 96.94 94.23 17.39 0.71 0.62

2010 125.9 118.02 35.82 1.31 2.36

1970 82.52 79.73 19.60 0.65 0.37
Low precip 1990 95.23 93.76 16.08 0.56 0.42

2010 115.08 94.73 26.37 0.94 0.97

1970 82.89 80.38 18.18 0.69 0.42
Med temp Med precip 1990 95.66 94.24 15.07 0.57 0.42

2010 117.28 111.45 25.81 0.99 1.09

1970 83.41 80.88 17.17 0.73 0.49
High precip 1990 96.18 94.32 14.26 0.59 0.43

2010 118.48 113.74 25.47 1.03 1.20

Notes: The medium scenarios are evaluated at sample medians: 11.38 cm for precipitation and 22.29°C for temperature. The
low (high) scenarios correspond to a 20% decrease (increase) compared to sample medians, thus simulating a change of
±4.51°C for temperature and ±228 mm for precipitation.

These findings document how rising temperatures present a threat to food security around the world.
They stress the importance of developing risk management schemes that can deal with the increased
exposure of agriculture to production risk.

Under medium temperature, Table 6 also reports the simulated impacts of changing
precipitations on productivity. It reveals the complex effects of rainfall: Higher precipitation has
positive impacts on median productivity, negative impacts on standard deviation, and positive
impacts on kurtosis. These effects are found to be relatively small, likely reflecting the fact that
farmers adjust their production practices (e.g., by switching to drought-resistant crops under a drier
climate).

Table 6 documents the evolving role of agricultural technology. For example, under medium
temperature and precipitation, Table 6 reports that median productivity increases from 80.38 in 1970
to 94.24 in 1990, and to 111.45 in 2010. These large rises reflect rapid technological progress made
in agriculture over the last few decades (e.g., Fuglie, 2018). Interestingly, the simulation results
indicate that the patterns of rising agricultural productivity continue to hold in the early part of the
twentieth century.

Finally, we evaluate the implications of our analysis for the distribution of world agricultural
production. We rely on equation (2) to obtain yt , a measure of world food productivity under risk,
with weight wi given by the proportion of the total value of agricultural production generated by
each obtained from the Food and Agriculture Organization of the United Nations (2023). Using our
QAR and conditional copula estimates, we simulate the distribution function of the production index
exp(yt ). Figure 4 reports the estimate distribution evaluated under 2010 conditions. Figure 4 shows
that the distribution is asymmetric and exhibits significant exposure to risk. This provides a basis
to assess the extent of food insecurity in the world. For example, Figure 4 indicates that, in 2010,
there was a 6.8% chance of seeing a 10% drop in world food production (compared to the median);
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Figure 4. Assessing World Food Security: Estimated Distribution Function of World
Agricultural Production in 2010
Notes: World food production is an index normalized so that its median is 100.

Table 7. Moments of Simulated World Agricultural Production Index in 2010, Selected
Scenarios

Scenarios Mean Median Std. Dev. Skewness
Excess

Kurtosis

Spatial
codependence

Base temp and precip 111.83 111.94 7.44 −0.56 2.59

Higher temp, base precip 111.75 111.9 7.88 −0.53 2.57

Higher precip, base temp 111.95 112.02 6.91 −0.51 2.25

Higher temp and precip 111.87 111.99 7.34 −0.49 2.29

Spatial
independence

Base temp and precip 112.48 112.47 7.91 −0.20 2.95

Notes: In the base scenario, the distribution of world agricultural production is evaluated based on conditions present in
2010. The scenarios representing higher temperature (or precipitation) correspond to an increase in mean temperature (or
mean precipitation) equal to 20% of the sample medians (i.e., a rise of 4.51°C for temperature and 228 mm for precipitation).

it also shows a 2% chance of seeing a 15% drop in world food production, and a 1.3% chance of
seeing a 20% drop in world food production. These estimates document the presence of significant
production risk in world agriculture.

We also evaluate the effects of climate on world food insecurity. Using yt in equation (2), we
simulate the distribution of world agricultural production under selected scenarios. The moments of
the world production index exp(yt ) are reported in Table 7. Under a base scenario, we obtain the
distribution of world agricultural production under conditions present in 2010. In other scenarios, we
consider situations of rising temperature and/or precipitation, where each country faces an increase
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in temperature and/or precipitation equal to 20% of the corresponding sample medians (i.e., a change
of +4.51°C for temperature and +228 mm for precipitation). Table 7 shows that the impacts of a
changing climate (as reflected by average temperature or precipitation) on world food insecurity
tend to be small. For example, a higher temperature induces a very small decrease in the median of
world food production, from 111.94 to 111.90. Table 7 reports that a rising temperature increases the
standard deviation of world agricultural production, from 7.44 to 7.88 (or +5.9%). While positive,
this effect is smaller than that reported in Table 6 (+64.1% in 2010). Also, the effects of higher
temperature on tail risk exposure (as measured by kurtosis) differ between Tables 6 and 7. Indeed,
Table 7 shows that a rising temperature induces a small decrease in the kurtosis of world agricultural
production, from 2.59 to 2.57.

These results indicate that the adverse effects of a rising temperature on world food security are
muted when one moves from a country focus to the world level. Why? These findings come from
two sources: (i) spatial diversification generates risk-reducing benefits; and (ii) countries that are
less sensitive to the adverse effects of rising temperature tend to produce a large share of world food
production. The first explanation is documented in Table 7 by comparing the moments of world food
production under spatial codependence versus a scenario that assumes spatial independence. Table 7
shows that negative codependences across countries contribute to reducing risk exposure at the world
level in 2010: The standard deviation of world production declines from 7.91 under independence
to 7.44 under codependence (or −5.9%); and its kurtosis declines from 2.95 under independence to
2.59 under codependence (or −12.2%). These results indicate that spatial diversification helps reduce
the adverse impact of increased temperature on world food security: The increased variability in
agricultural productivity documented in Table 6 is muted when negative shocks in a country are (at
least partially) counteracted by positive shocks in other countries. The second explanation follows
from our finding that climate has heterogeneous effects across countries: The adverse effects of
higher temperatures are smaller in countries with high agricultural productivity. When such countries
contribute a large share of world food production, this tends to reduce the adverse impacts of
climate change on food security at the world level. These findings illustrate the usefulness of our
analysis, showing how a quantile/copula approach can be applied to assess the risk facing agriculture
production in countries around the world and its implications for world food security.

Conclusion

This article has studied the evolution of the probability distribution of agricultural productivity over
time and across countries, with a focus on the effects of climate on production risk. Distinguishing
between climate and weather, the analysis is based on an ex ante approach based on information
available at the beginning of the growing season (when one knows long-term climate but not weather
conditions during the growing season). As a result, we treat weather shocks as part of the error term
and proceed evaluating the probability distribution of agricultural productivity (as measured by TFP)
conditional on climate (as measured by long-term temperature and precipitation). In this context, the
article relies on a two-step econometric approach: (i) specify and estimate a quantile autoregression
(QAR) model representing the dynamic effects of climate and technology on the distribution of
agricultural productivity and (ii) estimate a copula capturing the spatial distribution of productivity
across countries. Applied to data covering 160 countries over the period 1961–2016, the analysis
provides new and useful information about the spatial and temporal determinants of agricultural
productivity and the linkages between climate and production risk. First, it documents the slow
process determining productivity growth, stressing the importance of dynamics in the evaluation of
agricultural productivity. Second, we estimate the effects of higher temperatures on the distribution
of agricultural TFP. We find that higher temperatures have positive and large impacts on production
risk (as measured by standard deviation and kurtosis), documenting that climate change contributes
to significant increases in production risk in agriculture. Third, our analysis documents the presence
of much heterogeneity in the patterns of agricultural productivity and productivity growth, indicating
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that the capacity to produce food and the ability to respond to shocks vary a lot across countries. We
also evaluate the adverse effects of rising temperatures on world food security. We find that such
effects are muted for two reasons: (i) spatial diversification generates risk-reducing benefits and (ii)
countries that are less sensitive to the adverse effects of rising temperature tend to produce a large
share of world food production.

Finding muted effects of climate change on world food security is somewhat reassuring. To some
extent, these results reflect that spatial and temporal adaptations to climate change can help reduce
the adverse effects of climate change on production risk in agriculture. But reducing threats to world
food security remains a significant challenge. First, capturing the risk-reducing benefits of spatial
diversification requires free trade and food aid that can support moving food toward the countries
facing significant food shortages. Second, improved risk management remains an important way
to deal with the adverse effects of evolving climatic conditions. This includes improved farm
management (e.g., planting risk-tolerant crops adapted to local agroclimatic conditions). This
also includes institutions and government policies that can help manage resources in the face of
significant shocks to agricultural production (e.g., effective insurance schemes, buffer stock policies
that can smooth out the spatial and temporal effects of risk, and climate policies that limit greenhouse
gases and their effects on agriculture). Third, while technological innovations have been effective in
increasing agricultural productivity and reducing world food insecurity over the last few decades,
it remains unclear whether technological developments will be fast enough and effective enough to
reduce the adverse effects of rapid climate change over the next few decades. Significant investments
in private and public R&D will be required to help develop technological solutions dealing with the
future effects of climate change on agriculture.

While this article presents new insights into the economics of agricultural productivity, the
analysis could be extended in a number of directions. While our reduced-form approach applies
under general conditions, it would be useful to complement our analysis using a structural approach
to the investigation of productivity and risk (e.g., Kaminski, Kan, and Fleischer, 2013; Yang and
Shumway, 2016; Sesmero, Ricker-Gilbert, and Cook, 2018; Bareille and Chakir, 2024). Additional
research is also needed to explore the implications of climate change for economic policy and the
prospects for future agricultural productivity growth in countries around the world. Finally, while
this article focuses on risk and agricultural productivity, our quantile/copula approach could also be
applied to the investigation of the spatial/temporal attributes of many economic and policy issues
arising around the world. Addressing these questions appears to be good topics for future research.

[First submitted April 2024; accepted for publication October 2024.]
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