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ABSTRACT
Increased frequency of droughts (especially mid-season dry spells), higher
than normal temperatures and altered patterns of precipitation and
intensity are some of the extreme weather events evident in southern
Africa. These extreme weather events present a threat to livelihoods and
sustainability of agricultural production in the region. However, several
climate-smart agricultural technologies (including drought-tolerant
maize) believed to offer adaptation to climate variability in maize-based
farming systems have been widely adopted. Moreover, empirical work
on these technologies is limited. This paper demonstrates how by
adopting drought-tolerant maize, a climate-smart agricultural technology
impacts on the quantities of maize produced, sold and consumed in
Zimbabwe. Using primary data on smallholder farmers collected in 2011
in Zimbabwe’s four districts, we employed propensity score matching
techniques to construct a suitable comparison group and calculate the
average treatment effect on the treated sample. We find that, the
adoption of drought-tolerant maize (DTM) in rural Zimbabwe
significantly enhances overall maize productivity and consequently the
quantities set aside for sale and personal household consumption. Our
study therefore suggests that, systematic expansion of climate-smart
agricultural technologies such as adoption of drought-tolerant maize can
significantly improve maize yields, sales and consumption in rural
Zimbabwe. Our empirical results, robust to sensitivity checks, strongly
point to the overall importance of DTM adoption in Zimbabwe. The
findings from this paper also have very important implications for
overall efforts on the promotion of climate-smart agriculture
technologies in Africa and other developing countries.
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1. Introduction and background

Agriculture in the developing world must undergo a substantial transformation to meet the related
challenges of food security and climate change. The effects of climate change have never been as
obvious and intense as in recent years (Siopongco, 2013).

A wide range of literature has documented many ways through which climate change has
adversely impacted the lives of many people in southern Africa. First, climate variability and
change has mainly manifested itself in the form of higher than average normal temperatures,
altered patterns of precipitation and intensity, increased frequency of extreme events such as
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droughts (especially mid-season droughts) and floods (Archer et al., 2007, Arslan et al., 2014, Field
et al., 2014). These changes are reportedly associated with significant reductions in crop yields, elev-
ated agricultural risks, and subsequent increases in chronic poverty, as well as food and nutrition inse-
curity. Second, climate variability and change pose a huge risk to livelihoods in the region given that
the majority of the population, especially rural households, rely on agriculture as their main source of
livelihood (Archer et al., 2007). In Zimbabwe, for example, agriculture contributes significantly to live-
lihoods especially among the rural dwellers which make up nearly 70% of Zimbabwe’s population
(ZIMSTAT, 2012). Precisely, for these rural dwellers agriculture and farming is an integral part of
their social, economic and environmental well-being. On the macro-economic front, agriculture
also contributes significantly to overall gross domestic product (GDP), livelihoods, food, income
and nutrition security (Juana & Mabugu, 2005). Furthermore climate variability and change also
present a severe threat to livelihoods. This is because many households rely on rain-fed agriculture,
thus making them more vulnerable (Runge et al., 2004). According to Rockstrom (2000) the effects of
climate variability and change are worse in southern Africa, including Zimbabwe. These risks are
made worse because of weak institutional capacities, limited know-how, inadequate technical
skills and financial resources necessary for disaster management. Also poor production techniques
including incompetent policies regarding the use of agricultural chemicals such as fertilisers has
further exacerbated the situation (Clay et al., 2003).

With the recognition of climate variability and change effects on farming and livelihoods, many of
the programmes from the government, non-governmental organisations and research institutions
have been initiated that specifically target smallholder agriculture. In Zimbabwe and other southern
African countries, suchprogrammeshavebeen targeted tobuilding resilience in significant agricultural
value chains such as staple cereal maize. Maize is the staple cereal and most important crop for Zim-
babwe. However, production and productivity of the crop are largely influenced by severe fluctuations
in climate in southern African (Fisher et al., 2015). Frequent droughts have often been cited as the cause
of deterioration in yield and production outputs in Zimbabwe (Abate et al., 2015). According to the
International Maize and Wheat and Improvement Centre (CIMMYT), approximately 25% of the maize
crop suffers frequent drought, with losses of up to half the harvest (Abate et al., 2015). However,
programmes are continuously being developed to improve household adaptive capabilities to the
ever-changing climatic conditions. Agricultural experts and policy makers among other stakeholders
concerned with rural livelihoods, poverty alleviation and food security have recommended the adop-
tion of climate-smart agriculture1 (CSA) and its associated technologies as a means of diminishing the
likely effects of climate change on smallholder farming practices (Nhemachena &Hassan, 2007; Hassan
& Nhemachena, 2008; FANRPAN, 2012; Lipper et al., 2014; NEPAD, 2014)

One of the most popular climate-smart maize farming system technologies that have become
widespread among smallholder farmers in Zimbabwe is that of improved maize varieties, i.e.,
drought-tolerant maize (DTM). DTM is a product of a project (Drought-tolerant Maize for Africa)
that has released more than 160 drought-tolerant maize varieties between 2007 and 2013. The
project covers Zimbabwe and another 12 African countries (Angola, Benin, Ethiopia, Ghana, Kenya,
Malawi, Mozambique, Nigeria, Tanzania, Uganda and Zambia). More information on DTM can be
found in Abate et al. (2015) and Fisher et al. (2015).

DTM is considered climate-smart since its adoption can potentially improve maize yields, the resi-
lience of maize farming systems and most importantly the promotion of food security in Zimbabwe.
Moreover, DTM is free from genetic modification and has additional traits such as disease resistance
to major maize diseases, high protein content and high efficiency in nitrogen utilization (Fisher et al.,
2015). In addition, DTM varieties are believed to build resilience in maize farming systems through
reducing the need for harmful post-failure coping strategies, such as reducing food consumption,
borrowing, taking children out of school and selling household assets. According to Rovere et al.
(2014) DTM varieties are mostly expected to build resilience through increasing yields and reducing
vulnerability. Numerous DTM seed varieties have been released since 2007 with suitability to different
agro-ecological regions in Zimbabwe (see Abate et al., 2015).
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Since nearly two-thirds of Zimbabwe comprises arid and semi-arid farming land (Abate et al.,
2015), the adaptation to climate variability and change in maize-based farming systems through
the adoption of DTM varieties is a welcome initiative. Farming households are expected to be
more resilient to drought-related crop failures and subsequent effects. Despite, the relevance of
DTM varieties to developing countries like Zimbabwe, which are susceptible to erratic weather pat-
terns, empirical research assessing the impacts and benefits of adopting DTM varieties in smallholder
farming communities is surprisingly scarce. Probably this is due to lack of socio-economic research in
this area as most emphasis is still being put on the biophysical work. Assessing progress made by
farmers who have adopted the technology already and sharing their experiences is one way to
improve adoption and impact. Previous DTM-based studies in Africa have mainly focused on exam-
ining the determinants of DTM adoption (Fisher et al., 2015; Fisher and Carr, 2015). Rovere et al. (2014)
utilised an economic surplus method to predict the size of the impact of DTM technologies in 13
countries in eastern, southern and western Africa. However, none of these studies have examined
the ex-post impact of DTM on maize productivity and household livelihoods.

Against this background, the primary goal of this paper is to examine the impact of DTM adoption
by smallholder farmers in four districts of Zimbabwe; namely, Goromonzi, Mudzi, Hwedza and
Guruve. We focus on inspecting the effect of DTM adoption on selected outcome variables such
as maize productivity, consumption and maize quantities set aside for future sales. Our contribution
is threefold. First we use a unique cross-sectional, household-level dataset collected in the four Zim-
babwe districts named above. Second, we utilise propensity score matching techniques to create a
suitable comparison group and calculate the average treatment effects of adopting DTM seed var-
ieties on maize productivity and consequently, quantities for future sales and personal consumption.
Third, we contribute to the very thin literature on the evaluation of DTM technologies and create
awareness of their importance on farmer livelihoods in Africa. To the best of our knowledge, this
study is one of the first papers to examine the impact of DTM in a country like Zimbabwe which
relies heavily on agriculture and on maize as the main staple crop. The rest of the paper is organised
as follows: section 2 presents the empirical model followed by a description of the study sites in
section 3 while section 4 deals with the research methodology followed by a variable description
and the summary statistics in section 5. Section 6 gives the results and discussions whilst conclusions
and recommendations are presented in section 7.

2. Empirical model

Our empirical model seeks to estimate the impact of adopting climate-smart agriculture (CSA) tech-
nologies such as the growing of drought-tolerant maize seed varieties (DTM) on smallholder farm
productivity measured by per capita maize production and yields per hectare and on livelihood out-
comes measured by quantities of maize set aside for personal consumption and future sales in Zim-
babwe. We seek to estimate the average treatment effect (ATT). Since one can only observe whether
an individual participated or never participated, it is usually the case in observational studies to ran-
domly assign individuals to either treatment (adopters) or control (non-adopters) groups to success-
fully estimate the ATT. However, since we use cross-sectional survey data instead of experimental
data, assignment into treatment is not randomly distributed. This observation implies that the out-
comes for adopters and non-adopters might be systematically different (Smith & Todd, 2005). As
highlighted in Mapila et al. (2012) and Akinola and Sofoluwe (2012), the observed differences
between the two groups in the absence of randomization might be mistaken for the impacts of DTM.

To address the potential self-selection bias mentioned above, we rely on propensity score match-
ing (PSM) techniques to estimate the average treatment effect (ATT). ATT has been shown to be a
better indicator for measuring the appropriateness of intervention strategies on smaller groups of
interest such as smallholder farmers than the population-wide average treatment effects calculated
via probit models (Rosenbaum and Rubin, 1983, 1985; Heckman, 1995; Rosenbaum, 2002). Numer-
ous studies in the agriculture economics literature have relied on PSM to control for self-selection

AGREKON 69



bias (Faltermeier and Abdulai, 2009; Akinola and Sofoluwe, 2012; Amare et al., 2012; Mapila et al.,
2012; Matchaya and Perotin, 2013). In essence, the PSM technique assumes that each farmer
belongs to either the group of DTM adopters (treatment) or group on non-DTM adopters
(control/comparison group) but not both. Borrowing some of the terminologies in Heckman et al.
(1997), let Y1 denote the productivity or livelihood outcome of a farmer iafter adopting DTM (T =
1) and Y0 denoting the productivity or livelihood outcome of the same farmer when they do not
adopt DTM (T = 0). The observed productivity or livelihood outcome Y can thus be calculated as
follows:

Y = TY1 + (1–T )Y0 (1)

where Y1 is the productivity or livelihood outcome of farmer i when they adopt DTM (T = 1); Y0 is
farmer i’s productivity or livelihood outcome when they do not adopt DTM (T = 0). The average treat-
ment effect on the treated (ATT) can be calculated as follows:

ATT = E(Y1 − Y0|T = 1) = E(Y1|T = 1)− E(Y0|T = 1) (2)

In equation (2) above, the only observable productivity or livelihood outcome is for those farmers
who adopted DTM E(Y1 | T = 1) and not the productivity or livelihood outcome of non-adopting
DTM farmers E(Y0 | T = 1). As mentioned earlier, we match DTM adopting farmers to non-
adopting farmers via PSM. Central to PSM is the conditional independence assumption which
assumes random participation conditional on observed covariates×(Wooldridge, 2002). Assuming
that the conditional independence assumption is satisfied, the ATT can then be specified as
follows:

ATT = E(Y1 − Y0|X , T = 1) = E(Y1, |X , T = 1)− E(Y0|X , T = 1) (3)

As suggested in Rosenbaum and Rubin (1983), matching the DTM adopting farmers to the non-
adopting farmers based on the observed covariates X might potentially result in the curse of
dimensionality problem especially when the number of covariates is large (Rosenbaum and
Rubin, 1983). Following Rosenbaum and Rubin (1983) we therefore match the treatment
group participants to the control group based on the propensity score p(X ) and not on the
observed covariates. The propensity score is defined as the conditional possibility that farmer
i implements a climate-smart agriculture technology (i.e. DTM) and is expressed as follows:

p(X) ; prob(T = 1|X) = E(T |X) (4)

where T = {0, 1} is the binary indicator representing the treatment group. One important con-
dition that has to be satisfied in PSM is the balancing property. The balancing property
expressed as T

∐
X|p(X) (Lee, 2011) states that, the conditional distribution of X, given the pro-

pensity score p(X ) is the same in the DTM adopting and non-adopting groups. In our case, the
balancing property is indeed satisfied and the results are shown in Figure 2 later.

Considering the propensity score and the conditional independence assumption, the ATT speci-
fied in equation (2) above can thus be rewritten as follows:

ATT = E(Y1 − Y0|p(X), T = 1) = E(Y1, |p(X), T = 1)− E(Y0|p(X), T = 1) (5)

where the first term on the right-hand side of equation (5) above measures the observable pro-
ductivity or livelihood outcome of the treated farmers (DTM adopters) and the second term E(Y0 |
p(X ), T = 1) measures the productivity or livelihood outcome of the same farmers had they failed
to adopt the climate-smart agriculture technology (DTM), the counterfactual.

The PSM technique is a two-step process that involves estimating a probit or logit regression on
the first step to calculate the probability p(X ) that farmer i is in the DTM adopting group conditional
on observed covariates as given in equation (4) above. The covariates vector X includes all the vari-
ables associated with DTM adoption. After calculating the propensity score in equation (4) above, the
second step involves matching DTM and non-DTM farmers based on the similarities or closeness of
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the propensity scores. At this stage, different matching methods can be utilised each resulting in an
ATT value that gives the effect of DTM technology on the selected farmer productivity and livelihood
outcomes. No specific matching method results in more superior result than the other, but rather it is
possible to utilise more than one method as a robustness check (Becker & Ichino, 2002).

In this paper, we utilise the nearest neighbour matching technique, an algorithm that matches
each DTM farmer to a non-DTM farmer on the basis of closely similar propensity scores (Becker &
Ichino, 2002). To ensure a maximum covariate balance and a low conditional bias, we conduct a
one-to-one matching with replacement (Abadie & Imbens, 2006). As a robustness check of our
results, we also utilise the kernel matching algorithm to calculate the ATT. This algorithm involves
matching all the DTM farmers with a weighted average of all the non-DTM farmers using weights
that are inversely proportional to the distance between the two groups’ propensity scores (Becker
& Ichino, 2002).

PSM methods may be helpful in reducing, but not completely eliminating the potential endo-
geneity bias between the DTM adoption decision and maize productivity or livelihood outcome
measures. Thus, in evaluation studies, estimates from PSM provide insightful information with
respect to the direction and strength of the relationships, but not necessarily implying causality
(Balsa & French, 2010). To further examine the sensitivity of our results to potential unobserved
bias, we computed Rosenbaum bounds (Rosenbaum, 2002). To show their procedure, suppose
all the hidden bias is captured by the single variable B [ {0, 1}. Let γ be the impact of B on the
adoption decision. For the case of two matched individuals, Rosenbaum (2002) shows that the
ratio of their odds of participation is within the bounds 1/eγ and eγ. In the absence of hidden
bias, eγ = 1,2 and that the odds ratios of participation are equivalent for the matched individuals.
Rosenbaum’s bounds evaluate the sensitivity of the computed ATTs to any variations in γ. Since
our outcome measures are all continuous, we follow DiPrete and Gangl (2004) procedure and pro-
gressively increase eγ. We then report the Wilcoxon signed rank tests for the null hypothesis of the
absence of treatment effects. Increasing eγ widens confidence intervals around the ATT, a reflection
of the uncertainty in the ATT in the presence of hidden bias. The level of eγ at which any chosen
c% confidence interval starts including zero is the critical odds ratio. The higher this odds ratio, the
more an unobserved confounder would have to change the odds of adoption to completely
change the ATT3 and the more robust our ATT estimate is.

3. Description of the study sites

The data used in this paper is drawn from surveys of smallholder maize farmers in four Zimbabwe
districts: Goromonzi, Mudzi, Hwedza and Guruve (Figure 1). A brief description of each of the four
districts is given in this sub-section.

Goromonzi district lies on the periphery of Harare. It falls under agro-ecological sub-region IIa that is
characterised by an annual rainfall of 750–1000 mm. The area is at least 1000 m above sea level, with
temperature range of 21°C–32°C (mean 25°C). Frost occurs infrequently in low-lying areas in July and
August. Soil texture ranges from sand to sandy clay. The region is suitable for both intensive cropping
and livestock production. The major crops grown in Goromonzi are maize, groundnuts, soya beans
and common beans.

Mudzi lies in a semi-arid region with very low potential for maize, soya bean and sugar bean pro-
duction. The district is linked by a 250-km highway to Harare (the major input and output market).
Agro-ecologically, the district lies in natural farming region IV which is a low-potential zone, with a
high incidence of droughts and frequent, long mid-season and in-season dry spells (Mango et al.,
2014). The predominant soil type is the Ferric Luvisols. Annual mean rainfall ranges between 450–
500 mm while the average altitude is 500–900 metres above sea level. Mean annual temperature
is 23°C. The staple crops grown in this region are groundnuts and maize in order of importance.
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Hwedza district lies 130 km east of Harare at an average altitude of between 900–1100 metres above
sea level. The predominant soils are luvisols and cambisols while the mean annual rainfall is 700–
800 mm. The major crops grown in Hwedza are maize, groundnuts, tobacco and horticultural
crops, e.g., vegetables. The larger area falls in agro-ecological regions IIa and III (i.e., a transitional
zone between intensive and semi-intensive farming zone).

Guruve lies in an agro-ecological zone with high potential for maize, soya bean and sugar bean pro-
duction. The district lies in natural farming region II that is an intensive farming zone. It is linked to
two major agricultural markets, Chinhoyi (81 km away) and Harare (151 km away), by excellent all
weather tarred roads. The altitude range is 800 metres to 1500 metres above sea level. The main live-
lihood activity is agricultural crop production with maize being the dominant cereal crop while soya
beans and sugar beans constitute the main legume cash crops.

4. Data and sampling

This study utilised cross-sectional household data collected during a survey in four districts of Zim-
babwe between October and December of 2011. The simple random technique was used to selects
wards from a list obtained from the district extension office each of the four districts. Within the
selected wards, the interviewed households were randomly chosen from household lists provided
by resident agricultural extension officers. A total of 601 households (175 from Goromonzi, 187 from
Guruve, 120 from Mudzi and 119 from Hwedza) were then selected for the survey. Data collection
was in the formof face-to-face administration of structured questionnaires. Commissionedby the Inter-
national Centre for Tropical Agriculture (CIAT), the surveys collected data on several characteristics
including household composition, cereal and legume crop production and management, household
market participation, access to infrastructure, household incomes, ownership of land and non-land

Figure 1. Map of Zimbabwe showing Goromonzi, Guruve, Hwedza and Mudzi districts.
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assets, livestock ownership,4 and access to agricultural inputs and technologies, extension services and
market information. Maize production information was elaborately collected as part of the cereal crop
production data and included information on input use in production, land area for growing maize,
maize seed types sown (including drought-tolerant maize varieties and local maize varieties), crop
management methods used, harvesting methods and harvest received, including post-harvest hand-
ling of the maize crop and decisions on use of the harvest at the household level.

5. Variable description and descriptive statistics

Table 1 provides the definitions, means and t-test results for the outcome and explanatory variables
used in the study.

The data shows that about 68% of the sampled smallholder maize farmers adopted and planted
DTM for the period analysed in this study. The initial comparisons ofmeans between theDTM adopters
and non-adopters appear to be significantly different for maize productivity and household livelihood
outcome measures. In particular, maize output per capita, maize output set aside for household’s own
consumption andmaize output set aside for future sale differed significantly between the two groups.
Overall, the t-tests reveal very insignificant differences in the characteristics of covariates between the
two groups of farmers. Significant differences exist with regards to whether the farmer practised con-
servation farming or not, whether the farmer grew maize as the major cash crop or not, dummy for
asset quintile 1 and dummy variables for mean proportions of farmers fromWedza andMudzi districts.

6. Results and discussion

The results of our empirical analysis are summarised in Tables 2 and 3. We start with a discussion of
the results from the DTM adoption equation followed by the propensity score matching results. In
addition, we discuss the results from the sensitivity analysis.

6.1 Factors that influence adoption of drought-tolerant maize varieties

Table 2 presents the results from theDTMadoption equation.Weestimate aprobit regressionmodel to
examine the socioeconomic factors influencing adoption of drought-tolerant maize seed varieties in
Zimbabwe’s smallholder farmers. Overall, the results show that, being a smallholder farmer practicing
conservation agriculture, growing maize, of average wealth and living in drier regions such as Mudzi
are some of the factors that significantly influence the adoption of drought-tolerant maize varieties.
We briefly discuss the results from the probit regression since our central focus is on the evaluation
of the impact of DTM adoption on farm productivity and household livelihood outcome measures.

Smallholder farmers practising conservation agriculture (CA) were found to be among the likely
adopters of DTM varieties possibly because of their enlightenment through massive campaigns by
various supporters of CA agriculture. Since CA is another climate-smart agriculture practice, we
would have expected to see CA farmers to be among the likely adopters of yet another climate-
smart technology in DTM. The ultimate goals of these climate-smart technologies are essentially
similar, i.e., to increase agricultural productivity, incomes, building resilience and adapting to
climate variability and change.

Our results also indicate the importance of wealth as measured by the ownership of the farm and
household assets captured by the asset index on the adoption of DTM seed varieties. In our sample,
wealthier households are more likely to adopt DTM varieties as opposed to their counterparts. The
likelihood associating wealthier households to DTM substantiates well with the usefulness and will-
ingness to invest in appropriate technologies, which is usually a feat for the well-resourced individ-
uals. This result is consistent with the findings of Nkala et al. (2011) who in their studies found
wealthier households to be amongst the likely adopters of CA as opposed to relatively poor
households.
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Finally, we find some of the district dummy variables to be associated with adoption of DTM var-
ieties. More specifically, maize farmers living in Zimbabwe’s drier regions such as Mudzi district were
found to be more likely to adopt DTM as compared to their counterparts. Essentially this is an
expected result since smallholder farmers in these regions realise the need to adopt DTM varieties
to enhance their chances of adapting to erratic and worsening climatic conditions such as
drought (in-season, mid-season and or season-long droughts) by improving yield and reducing vul-
nerability linked to drought-related harvest failure. Intense DTM seed marketing campaigns are,
however, required in all the districts to improve adoption.

6.2 Treatment effects from the propensity score matching methods

The propensity score matching method enables us to investigate how DTM has impacted reported
changes in livelihood outcomes. The method uses propensity scores from the first stage results

Table 1. Descriptive statistics of variables used in the analysis.

Variable Description and measurement DTM
Non-
DTM t-test

Full
sample

Outcome variables
ymaize_percap Maize output per person (kg/person) 275.25 197.08 0.02** 250.80
ymaize_yield Maize yield (kg/ha) 1579.07 1519.39 0.68 1560.40
ymaize_cons Amount of maize grain for consumption (kg) 860.13 670.73 0.00*** 800.88
ymaize_sold Amount of maize grain for sale (kg) 350.16 191.81 0.05* 300.63
treatment_dtma Binary variable = 1 if farmer adopted drought-tolerant maize

(DTM) seed varieties; 0 otherwise
1.00 0.00 0.69

Covariates
househ_age Age of household head in years 51.92 50.36 0.25 51.43
househ_resp_hhead Binary variable = 1 if respondent was the household head; 0

otherwise
0.56 0.58 0.68 0.57

househ_male Binary variable = 1 if gender of household head is male; 0
otherwise

0.76 0.74 0.63 0.76

househ_married Binary variable = 1 if household head is married; 0 otherwise 0.76 0.71 0.17 0.74
househ_size Size of household 5.42 5.31 0.62 5.39
educ_secondary Binary variable = 1 if household head reached at least

secondary school; 0 otherwise
0.48 0.47 0.75 0.48

emp_farmer Binary variable = 1 if household’s main occupation is
farming; 0 otherwise

0.87 0.86 0.74 0.87

ca_farmer Binary variable = 1 if farmer practices conservation
agriculture; 0 otherwise

0.33 0.25 0.04** 0.31

grow_maize Binary variable = 1 if farmer grows maize as major cash crop;
0 otherwise

0.84 0.64 0.00*** 0.78

agric_extension_freq Extension service frequency 3.99 4.41 0.55 4.12
agric_credit Binary variable = 1 if farmer has access to agricultural credit;

0 otherwise
0.11 0.13 0.63 0.12

dist_market Distance to the nearest main maize market in kilometres 99.29 97.52 0.80 98.73
househ_landsize Size of arable land in hectares 2.40 2.23 0.48 2.34
asset_quintile1 Binary variable = 1 if farmer is in asset quintile 1 (poorest); 0

otherwise
0.17 0.27 0.00*** 0.20

asset_quintile2 Binary variable = 1 if farmer is in asset quintile 2; 0 otherwise 0.20 0.20 0.91 0.20
asset_quintile3 Binary variable = 1 if farmer is in asset quintile 3; 0 otherwise 0.20 0.20 0.92 0.20
asset_quintile4 Binary variable = 1 if farmer is in asset quintile 4; 0 otherwise 0.22 0.16 0.15 0.20
asset_quintile5 Binary variable = 1 if farmer is in asset quintile 5 (richest); 0

otherwise
0.22 0.16 0.15 0.20

geo_goromonzi Binary variable = 1 if farmer lives in Wedza district; 0
otherwise

0.29 0.30 0.81 0.29

geo_guruve Binary variable = 1 if farmer lives in Mudzi district; 0
otherwise

0.29 0.35 0.15 0.31

geo_mudzi Binary variable = 1 if farmer lives in Guruve district; 0
otherwise

0.26 0.07 0.00*** 0.20

geo_wedza Binary variable = 1 if farmers lives in Goromonzi district; 0
otherwise

0.16 0.28 0.00*** 0.20

Notes: ***Significant at 1% level; **significant at 5% level; *significant at 10% level.
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presented in Table 2 to generate samples of matched DTM and non-DTM groups using nearest
neighbour and kernel matching methods. We impose the common support condition in the esti-
mation by matching in the region of common support. Figure 2 shows the distribution of propen-
sity scores and the region of common support. The bottom half of the figure shows the propensity
scores distribution for the non-treated, while the upper-half refers to the treated individuals. The
densities of the scores are on the vertical axis. The figure indicates that the common support con-
dition is satisfied as there is overlap in the distribution of the propensity scores of both treated and
non-treated groups. Propensity score matching results are presented in Table 3. Precisely, Table 3
presents impact estimates of adopting DTM seed varieties on changes in maize productivity, maize
quantities set aside for consumption and for sale. Our primary matching method is the nearest
neighbor algorithm. For robustness checks, we also present the results from the kernel matching
algorithm. Both matching methods show a very strong and significant impact of DTM on our
outcome measures. All the reported average treatment effects (ATT) are based on observations
in the region of the common support and bootstrapped standard errors with 500 replications.
For the nearest neighbour method, we utilise a caliper of size 0. 00431 while for the kernel

Table 2. Probit regression estimates for the adoption of drought-tolerant maize.

Maximum likelihood estimates Marginal effects

Coefficient Standard error Coefficient Standard error

househ_age 0.008 0.005 0.002 0.001
househ_resp_hhead –0.051 0.121 –0.016 0.038
househ_male –0.311 0.215 –0.098 0.067
househ_married 0.288 0.215 0.091 0.067
househ_size –0.021 0.024 –0.007 0.008
educ_secondary 0.050 0.140 0.016 0.044
emp_farmer –0.094 0.177 –0.030 0.056
ca_farmer 0.322* 0.130 0.101* 0.040
grow_maize 0.910*** 0.224 0.286*** 0.067
agric_extension_freq –0.001 0.007 –0.000 0.002
agric_credit 0.051 0.184 0.016 0.058
dist_market –0.001 0.001 –0.000 0.000
househ_landsize –0.012 0.025 –0.004 0.008
2.asset_index 0.440* 0.176 0.146* 0.057
3.asset_index 0.366* 0.180 0.123* 0.059
4.asset_index 0.426* 0.185 0.141* 0.060
5.asset_index 0.503** 0.189 0.165** 0.060
geo_goromonzi –0.377 0.259 –0.119 0.081
geo_guruve –0.293 0.251 –0.092 0.079
geo_mudzi 0.583* 0.280 0.183* 0.088
Observations 601 601
Log-likelihood –333.1

Notes: ***Significant at 1% level; **significant at 5% level; *significant at 10% level. All estimates are based on robust standard
errors. Asset quintile 1 and Wedza district are the reference categories for asset index and district respectively.

Table 3. Impact of drought-tolerant maize adoption on selected variables.

Variables

Maize output per
capita Maize consumption Maize sold (kg) Maize yield

NNM KM NNM KM NNM KM NNM KM

Average treatment effect 113.5*** 96.00*** 307.3*** 253.3*** 185.9*** 202.0*** 330.5* 222.7*
(36.47) (27.56) (75.41) (65.20) (71.37) (61.33) (171.1) (124.8)

Mean for outcome variables
DTM farmer 307.59 282.67 941.94 876.40 366.41 366.41 1741 1617
Non-DTM farmer 197.08 197.08 670.73 670.73 191.81 191.81 1519 1519
Observations 532 582 532 582 582 582 532 582

Notes: ***Significant at 1% level; **significant at 5% level; *significant at 10% level. Standard errors for the ATT in parentheses are
calculated using bootstrapping. NNM = nearest neighbour matching method; KM = kernel matching method.
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method we choose a bandwidth of 0.05. It is important to note that, our results are robust to
different caliper and bandwidth sizes.

We estimate the impact of DTM on yield, per capita production and grain set aside for future sale
and consumption. We include per capita output, consumption as well as maize sold to assess the
possible changes in household food security and incomes associated with DTM adoption. Our
results indicate a positive and very strong impact of adopting DTM varieties on maize production
per capita and yield, the amount of maize grain set aside for future sale and amount of maize
grain set aside for future consumption. After controlling for farmer socioeconomic and institutional
characteristics, nearest neighbour matching results, show a positive significant impact of DTM var-
ieties adoption on both maize productivity and household livelihood outcome indicators when com-
pared to non-DTM adopters. More precisely, the nearest neighbour results show that the ATT was:
113.5 kg on maize output per capita, 307.3 kg on amount of maize grain set aside for household’s
own consumption, 185.9 kg on amount of maize grain set aside for future sales and 330.5 kg on
maize yield are all significant at 1 per cent, and 10 per cent respectively.

The results from the kernel matching method are consistent with the nearest neighbour method
and essentially tell the same story. The fact that the results from the two matching methods are not
very different implies the robustness of our findings. Overall, the results obtained demonstrate the
importance of going climate-smart in smallholder agriculture especially with the continuous and
evident effects of climate variability and change. Adoption of drought-tolerant maize being one of
the climate-smart agricultural technologies available for smallholder farmers in Zimbabwe have
shown to have a positive impact on maize productivity and household welfare. Maize output per
capita is a proxy measure of productivity that considers the number of individual members within
each household. It suffices to infer that the adoption of climate-smart agriculture technologies
such as drought-tolerant maize can potentially have significant impacts on maize output per house-
hold capita. Consequently, this increases food security within the household. A positive and statisti-
cally significant impact on maize yield highlights the observation that DTM not only reduces total
harvest failure of the maize crop associated with drought stress, but can also improve its productivity.

Market participation, particularly intensity of market participation (measured by the amount of
grain sold by market participants) amongst maize producers, is also another important aspect as it
has a direct positive bearing on income and distribution of the crop. Our results show a positive

Figure 2. Distribution of propensity scores and the common support condition.
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impact on the amount of grain set aside for future sale by the farmer which signifies that adopters of
DTM varieties are more likely to sell more on the market than non-DTM adopters. This has a positive
bearing on the farmer’s income collected from maize grain sales ceteris paribus. Moreover, it can also
signify the availability of surplus in maize output considering that households usually consider the
household’s food requirements first before deciding which portion of the harvest to sell ceteris
paribus. The significant impact of DTM on the amount of maize grain from harvest set aside for
sale therefore illustrates how important climate-smart agricultural technologies such as DTM can
be on the livelihood implications of the farming household (through anticipated income from the
sale of surplus) and other households through exchange on the maize market.

Maize output set aside for household’s own consumption communicates access, availability and
utilization of the staple cereal (maize) which can be a good proxy for household food security.
Food security is recognised as a composite condition for the four key pillars of food which are
access, availability, utilisation and stability (Clay, 2002; Mango et al., 2014). These dimensions are
closely interlinked and are all considered necessary. This finding means that ceteris paribus, adoption
of climate smart agricultural technologies such as DTM can positively impact food security of the
household. This is possible mainly through the reduced possibility of total crop failures of the
maize crop (in the case of adverse droughts) due to the adoption of drought-tolerant maize. If adopt-
ing DTM varieties increases the amount of food (maize) set aside for future consumption then it also
has important implications for resilience of the household’s food (maize) stocks. All factors being con-
stant, a household with more maize grain stored for future consumption in one season will be in a
better position to adapt to shock in the next season say if the crop is attacked by diseases or
pests. Thus, DTM adoption will have long-term effects on consumption smoothing especially in
these relatively poor and drought-prone regions.

6.3 Propensity score matching (PSM) – balancing properties

To assess the quality of the matching process, we present the results from the balancing properties of
the propensity score matching method in Table 4 as well as the corresponding reductions in obser-
vable differences in the baseline characteristics between the treated farmers (DTM) and non-treated
farmers (non-DTM). These tests are only reported for the nearest-neighbour matching method, our
main matching algorithm. These tests are critical for checking the similarities between the control
and treatment in terms of observable characteristics. Table 4 shows the overall means for the treat-
ment and control groups for the matched and unmatched samples. It is clear that balancing tests
examine the percent reduction in the standardised bias achieved to attain an overall balance in
the distribution of the means of covariates in both groups of DTM variety adopters and non-adopters.
If matching is successful, the differences in means between the two groups should be insignificant
after matching. The results in Table 4 show that nearly all the differences in observable variables
between DTM variety adopters and non-adopters are all statistically insignificant except for frequency
of agriculture extension services variable which is significant after the matching. Overall, the balan-
cing test reveals that the estimated propensity score balanced the observable characteristics
between the treatment and group very well.

Results of the quality assessment of the matching process suggest that the propensity score for
the two groups of farmers (DTM adopters and non-DTM adopters) was balanced. Reduction in the
standardised bias is substantially reduced after the matching process.

6.4 Sensitivity analysis: Rosenbaum bounds

To check the sensitivity of our results, we conducted Rosenbaum bounds analysis to assess the extent
to which an unmeasured covariate would have to influence the adoption of DTM decision to under-
mine the findings of the propensity score matching. The sensitivity analysis results reveal that for
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most of our outcome variables, an unobserved covariate would have to exhibit a gamma (G) between
1.7 and 1.8 for us to question our conclusions of positive and significant ATT effects.

7. Conclusions and recommendations

This paper provides one of the very few assessments of the impact of drought-tolerant maize adop-
tion, a climate-smart technology on livelihood outcomes. More specifically, we examine the extent to
which such a climate-smart agriculture technology influence overall smallholder farmer maize pro-
ductivity and consequently quantities for sale and personal consumption. We utilised the propensity
score matching method based on matched observations to isolate the effect of adopting drought-
tolerant maize on maize productivity, maize sold and maize consumed. Furthermore, we utilised
the Rosenbaum bounds procedures for continuous outcome variables to evaluate the sensitivity of
our results to violations of the conditional independence assumption.

The results from our empirical analysis shows that, adoption of climate-smart agriculture technol-
ogies such as DTM varieties is associated with significant improvements in maize productivity and

Table 4. Balancing tests for all matching covariates.

Mean Standardised bias t–test
Variable Sample DTM Non–DTM % bias % reduction in bias p–values

househ_age Unmatched 51.92 50.36 10.0 0.25
Matched 51.37 51.14 1.5 85.20 0.85

househ_resp_hhead Unmatched 0.56 0.58 –3.6 0.68
Matched 0.56 0.53 5.3 –45.00 0.49

househ_male Unmatched 0.76 0.74 4.2 0.63
Matched 0.77 0.76 1.3 67.80 0.86

househ_married Unmatched 0.76 0.71 12.0 0.17
Matched 0.76 0.78 –3.3 72.50 0.65

househ_size Unmatched 5.42 5.31 4.2 0.62
Matched 5.37 5.45 –3.2 25.30 0.68

educ_secondary Unmatched 0.48 0.47 2.7 0.76
Matched 0.49 0.49 1.2 57.70 0.88

emp_farmer Unmatched 0.87 0.86 2.9 0.74
Matched 0.86 0.88 –7.7 –162.50 0.31

ca_farmer Unmatched 0.33 0.25 18.5 0.04
Matched 0.31 0.35 –9.6 48.20 0.23

grow_maize Unmatched 0.84 0.64 46.7 0.00
Matched 0.82 0.80 4.1 91.20 0.56

agric_extension_freq Unmatched 3.99 4.41 –5.2 0.55
Matched 3.98 2.28 20.9 –302.80 0.00

agric_credit Unmatched 0.11 0.13 –4.2 0.63
Matched 0.13 0.12 4.5 –4.90 0.56

dist_market Unmatched 99.29 97.52 2.1 0.80
Matched 94.55 94.93 –0.4 78.50 0.95

househ_landsize Unmatched 2.40 2.23 5.6 0.48
Matched 2.26 2.11 5.1 8.70 0.43

asset_quintile 2 Unmatched 0.20 0.20 1.0 0.91
Matched 0.20 0.22 –4.4 –319.30 0.57

asset_quintile 3 Unmatched 0.20 0.20 –0.9 0.92
Matched 0.21 0.23 –6.5 –630.70 0.41

asset_quintile 4 Unmatched 0.22 0.16 12.9 0.15
Matched 0.21 0.16 13.3 –3.40 0.08

asset_quintile 5 Unmatched 0.22 0.16 12.9 0.15
Matched 0.21 0.18 8.1 36.80 0.29

geo_goromonzi Unmatched 0.29 0.30 –2.1 0.81
Matched 0.34 0.31 5.1 –138.80 0.52

geo_guruve Unmatched 0.29 0.35 –12.4 0.15
Matched 0.34 0.34 0.6 95.00 0.94

geo_mudzi Unmatched 0.26 0.07 53.0 0.00
Matched 0.13 0.15 –4.9 90.80 0.51
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livelihood outcomes of smallholder farmers through increased maize yields, maize output per capita,
maize quantities set aside for future sale on the market and amount of maize reserved for house-
hold’s own consumption. The sensitivity analysis using Rosenbaum’s bounds approach indicate
that the computed ATTs are not at serious risk of being questionable.

Although this study makes a notable contribution to the current discussions in low-income
countries on the importance of climate-smart technologies such as DTM varieties on the livelihoods
of people, it is not without its limitations. We certainly acknowledge the fact that propensity score
methods fail to balance the unobserved factors and potential confounders (Winkelmayer & Kurth,
2004). Thus, the unmeasured bias may still be present in our estimates. In light of this observation,
future studies may focus on extending the analysis to using other robust casual inference techniques.
Despite the noted limitations, our study still makes an important contribution to the relevant
literature.

Our results thus support the need to push for widespread adoption of climate-smart agricultural
technologies, especially drought-tolerant maize, as an adaptation strategy against undesirable maize
output due to drought in smallholder maize farming areas of Zimbabwe. Adoption of drought-toler-
ant maize varieties will be an important alternative to mitigating the possible effects of season long or
mid-season droughts on rain-fed maize crops. To a certain extent, our results have reaching impli-
cations on food security strategies in Zimbabwe.

Notes

1. Climate-smart agriculture technologies are those technologies that sustainably increases farm productivity, resi-
lience of farming systems, reduces greenhouse gas emissions, and enhance achievement of national and house-
hold food and nutrition security and development goals (Lipper et al., 2014)

2. This is the case when the conditional independence assumption holds.
3. We perform this sensitivity analysis using the user written program in Stata, rbounds (Diprete & Gangl, 2004).
4. We combined information on ownership of land and non-land assets, livestock ownership and household dwell-

ing characteristics to create a living standards measure, the asset index, using principal components analysis
(PCA) (Filmer & Prichet 2001). The first principal component is then used as an overall measure of living standards.
For a detailed and more technical exposition, see McKenzie (2005).
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