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ABSTRACT
The prices of agricultural grain commodities are known to be volatile due to several 
factors that influence these prices. Moreover, different combinations of these 
factors, such as demand, supply and macroeconomic indicators are responsible 
for the price volatility at different times. Big Data presents opportunities to collect 
and integrate datasets from several sources for the purpose of discovering useful 
patterns and extracting actionable insights that can be used to gain competitive 
advantage or improve decision making. Neural Networks presents research 
opportunities for training computer algorithms to model linear and non-linear 
patterns that might exist in datasets for the purpose of extracting actionable 
insights such as making predictions. This article proposes a Big Data and Neural 
Networks approach for predicting prices of grain commodities in South Africa. It 
was identified that disparate data that influence the grain commodities market 
can be acquired, integrated and analysed in real-time to predict future prices of 
grain commodities. By utilising SAP HANA as the enabling Big Data technology, 
data acquired from several sources was used to create an integrated dataset, 
and a predictive model was developed using Backpropagation Neural Network 
algorithms. This model was used to predict the daily spot prices of white maize 
on the Johannesburg Stock Exchange (JSE) at the end of each trading day. 
The initial results indicate that the approach can be scientifically used to predict 
future prices of grain commodities in a real-time environment.
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1.	 INTRODUCTION
The trading of grain commodities is coordinated in South Africa by the Johannesburg 
Stock Exchange (JSE). The implication of trading grain commodities on the stock 
exchange is that the grain commodities market in South Africa is laissez faire in 
nature. In essence, this indicates that the market, and effectively the prices of grain 
commodities are influenced by several local and international economic, political 
and social factors that are rapidly changing. Therefore, stakeholders in the grain 
commodities market are constantly exposed to price-related risks due to the volatility 
of prices of grain commodities (Venter, Strydom and Grové, 2013). The volatility 
of prices of grain commodities and the associated price-related risks suggest that 
stakeholders, specifically grain farmers, will be confronted with important decisions 
when marketing their products.

The volatility in the prices of grain commodities and other agricultural products 
has been a source of concern for academic researchers as well as governmental and 
non-governmental organisations for many decades (Trostle, 2008; Wright, 2011). 
Previous studies have shown that many South African grain commodities farmers 
might be disadvantaged in the market because they do not have the required skills, 
knowledge and time to monitor and interpret several market indicators (Jordaan 
and Grové, 2010; Venter et al., 2013). This has been attributed to the complexities 
associated with determining the grain commodities market intelligence and future 
outlook (Jordaan, Grové, Jooste and Alemu, 2007; Venter et al., 2013).   

In order to optimise income and reduce price risks, it is required that stakeholders 
in the industry sift through volumes of economic, political and social data that has 
to be sourced from various places (Wright, 2011; Trostle, 2008). Moreover, they 
are required to make sense out of the changes in this data as it relates to the grain 
commodities price on a regular basis (Mofokeng and Vink, 2013; Venter et al., 
2013). This is essential for them to devise strategies for selling their produce in order 
to manage price-related risks and increase profitability (Venter et al., 2013). 

Contextually, this could be described as the dilemma of the average grain 
commodities farmer who enjoys farming activities but is unable to get the best price 
for his/her produce. Within the value chain of the grain commodities production and 
trade in South Africa, the grain commodities farmer who is unable to get the best 
value for his/her produce seems to be absolute price-takers. In the long run, this can 
be seen as a threat to the sustainability of the operation of such farms, due to price-
related risks faced annually. 

The grain commodities farming sector contributes significantly to the South 
African economy through job creation, foreign exchange earnings and supply of raw 
materials to other industries. The income from the production of maize, soya beans 
and sunflower seed during the year 2014 was in excess of R36 billion, with maize 
production responsible for more than 75% of that income (DAFF, 2015). Perhaps 
even more important is the role grain commodities production plays in ensuring food 
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security in South Africa. This is because maize meals are considered to be staple 
food for millions of people across the country. Thus, enabling the stakeholders, 
especially the grain commodities farmers, to make the right decisions when selling 
their commodities could make a significant socio-economic impact in the industry 
and the country. Therefore, a system that helps stakeholders, with limited skill and 
experience, in forecasting grain commodities prices so that they can make better 
decisions in managing their price risks and increase profitability will be beneficial to 
all stakeholders.

The factors that influence the grain commodities industry include several 
variables that affect grain prices (Trostle, 2008; Abbott, Hurt and Tyner, 2011; 
Wright, 2011; Venter et al., 2013; Khamis, Nabilah and Binti, 2014). These factors 
can be categorised as:

●● Historical and recent market data;
●● Domestic demand and supply;
●● International demand and supply;
●● Macroeconomics; and
●● Political factors.

Recent developments regarding the concept of Big Data make it easier to gain access 
to datasets on several subjects or areas. Big Data has been described as a concept 
with the potential to influence all aspects of life, including work and play (McAfee 
and Brynjolfsson, 2012). 

Big Data is based on the ability that now exists to collect a large volume of 
datasets compared with what was possible previously. Other characteristics that 
define Big Data include the wide variety of datasets that complement one another, 
the velocity at which data is created and the associated veracity (complexity, 
uncleanness and inaccuracy) of Big Data as a result of the heterogeneity and rate 
at which the data is created (Davenport and Patil, 2012; Mayer-Schonberger and 
Cukier, 2013). However, it could be erroneous to consider large datasets as Big Data 
just because of their volume (Goes, 2014). It is the combination of some of these 
characteristics that makes Big Data different, hence, requiring new thinking and 
approach for storing and processing data (Chen and Zhang, 2014). This uniqueness, 
compared with traditional data, is also what defines the opportunities to generate 
dynamic and real-time insights, support decision making, predict the future and 
facilitate organisational learning from Big Data.

The ability to collect and integrate datasets from several sources, open new 
opportunities in different fields of interest for the purpose of discovering useful 
patterns and extracting actionable insights. Big Data also enables new research 
opportunities to investigate relevant concepts and provide solutions to difficult 
challenges in different fields (Ayankoya, Calitz and Greyling, 2014). This has led 
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to the evolution of several tools, techniques and technologies that make it possible 
to leverage large datasets for innovations both in research and practice (Chen and 
Zhang, 2014).

Predicting the prices of grain commodities will require the collection of the 
market data and data on the external factors that influence grain commodities 
prices. Large volumes of historical data are available, and can be used to understand 
historical relationships. However, there is also the need to collect data as events take 
place in order to be able to provide real-time intelligence and insight. This can be 
achieved by taking advantage of the availability of large datasets, together with new 
technologies, tools and the ability to incorporate all these into a real-time solution 
that provides a platform for better support for decision makers (Power, 2014). Having 
more data available in real-time or near real-time together with sufficient tools, 
techniques and technologies that can be used to extract insight from such data could 
provide valuable support to improved decision making. The financial markets have 
been a generator of large datasets for many years through millions of transactions 
processed daily. However, the availability of relevant datasets in real-time creates 
new opportunities to analyse data from such transactions as they take place, which 
offers improved decision making (Ruta, 2014). The implementation of Big Data 
concepts, tools and technologies makes it possible to capture, store and use such 
torrents of data in a stream as they are created (Chen and Zhang, 2014). 

Neural Networks can be implemented together with Big Data and enabling 
environments for extracting actionable insights from large datasets. It is a branch of 
Artificial Intelligence that is able to learn complex patterns from data for the purpose 
of solving difficult problems and making decisions. The implementation of Neural 
Networks is founded on the biological research into the ability of the neural system 
of the human/animal brain to learn, recognise, store information, generalise and 
make decisions based on prior knowledge. Research on the application of Neural 
Networks for understanding complex time series data indicates that it is suitable for  
making predictions from patterns that can be found in historical time series data (Qi 
and Zhang, 2008; Crone and Kourentzes, 2010) there has been no general consensus 
on how to model the trends in time-series data. 

It has been found that using Neural Networks for modelling and forecasting 
future time series observations is not limited by the constraints of statistical 
approaches such as seasonal trends and stationarity (Qi and Zhang, 2008). Moreover, 
Neural Networks are able to deal with complex patterns and significant changes in 
patterns that might occur in the time series because of the ability to use non-linear 
learning to detect changes and relationships that might exist in the data (Zhang, 
2003; Qi and Zhang, 2008; Bukharov and Bogolyubov, 2015). Neural Networks 
are also considered to be better than statistical techniques in time series analysis 
because they are able to analyse and forecast qualitative and discrete data types 
(Bukharov and Bogolyubov, 2015). Therefore, comparative studies from different 
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areas of application have found Neural Networks to be more efficient than time 
series analysis, which is based on statistical techniques (Co and Boosarawongse, 
2007; Zou, Xia, Yang and Wang, 2007; Bennett, Stewart and Lu, 2014). 

The main research problem identified in this study is that grain farmers do not 
utilise the large volume of datasets available for grain price future prediction in order 
to sell at an optimum price. Based on this problem, the objective of this paper is to 
develop an application that utilises diverse large datasets and neural networks to 
predict future grain commodity prices.

This study explores the use of Neural Network for predicting prices of grain 
commodities in South Africa. The spot prices of white maize will be used as an 
experimental case study. The article is structured as follows: Section 2 will discuss 
the factors that influence prices of grain commodities in South Africa. Section 3 
will provide an overview of scientific grounding, tools, techniques and methodology 
used in this study. This is followed by the experimental results of an implementation 
of the suggestions in this paper in Section 4 and concluding remarks in Section 5.

2.	 FACTORS AFFECTING GRAIN COMMODITIES 
PRICES IN SOUTH AFRICA

Past trading activities on the grain commodities market are known to influence 
future trading and the prices of grain commodities (Jordaan et al., 2007; Wright, 
2011). It is, therefore, important to consider local market transactions of the grain 
commodity of interest, as well as international trade, for the same commodity in 
countries where factors such as prices, demand and supply of grain commodities in 
such countries influence the prices of grain commodities in South Africa. Variables 
to consider should include trade data such as price, volume traded, bidding prices 
and so on, as provided by the stock exchanges. Several of the grain commodities 
can be used for the same purpose, therefore they are considered as substitutes and 
their economics are considered to be interdependent (Wright, 2011). Hence it will be 
important to include the effect of substitutes in studying the factors that affect grain 
commodities prices in South Africa. The following discussion provides an overview 
about the factors that affect grain commodities prices in South Africa.

2.1	 Demand, supply and storage
Economic theories suggest that prices will go up when there is an increase in 
demand for any commodity, especially when the supply of such a commodity 
does not increase with demand (Burda and Wyplosz, 2009). In reverse, the price 
of commodities is forced down when there is over-production, reduced demand or 
a huge stockpile of commodities. This summarises the impact that the local and 
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international utilisation of grain commodities for domestic and industrial purposes 
has on the grain commodities price. 

Variables under this theme include factors that influence the ability of farmers to 
supply or those factors that cause over-supply and the calming or panic effect that the 
level of the grain stockpile has on the volatility of grain prices (Wright, 2011; Abbott 
et al., 2011; DAFF, 2014). The demand for grain commodities as an important source 
of calories for human consumption and industrial demand for animal feeds and 
biofuel also play a role (Wright, 2011; Trostle, 2008). The prominent variables under 
the demand, supply and storage theme that influence grain prices are as follows:

●● Domestic utilisation;
●● Industrial utilisation;
●● Utilisation by major importing countries;
●● Production level in major exporting countries;
●● Influence of weather on production;
●● Input costs;
●● Local stockpile;
●● International stockpile;
●● Price, demand, supply and storage of substitutes; and
●● Level of utilisation compared to stockpile (stock-to-use-ratio).

2.2	 Macroeconomics
Macroeconomic factors have been identified as influencing the changes that occur 
in the price of grain commodities. Similar to the previous theme, there are several 
variables that influence grain prices falling under this theme. Studies show that 
some of the macroeconomic variables influence the prices because they are linked 
directly to the factors of production (Trostle, 2008). On the other hand, the influence 
of the other macroeconomic factors is simply a reflection of the state of the local or 
global economy (Abbott et al., 2011). Although there are suggestions that the use 
of macroeconomic variables for understanding grain commodities prices requires 
further research (Wright, 2011), it remains an important part of the discourse on the 
price of grain commodities (Abbott et al., 2011; DAFF, 2014; Wright, 2014; Trostle, 
2008). The macroeconomic variables that influence the price of grain commodities, 
identified from the literature that has been cited above, include:

●● Currency exchange rates (especially US dollar to other currencies);
●● Price of crude oil; and
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●● Local interest rates. 

The factors explored in Sections 2.1 and 2.2 provide insights into the factors that 
influence the grain commodities prices. These include variables for which data is 
generated and stored monthly, daily, hourly and by the minute in some cases. 

3.	 METHODOLOGY

3.1	 Backpropagation Neural Network for forecasting
Several modelling algorithms exist for the different Neural Network architectures 
for making predictions or classifications. Wilamowski (2009) alluded that the choice 
of algorithm should be based on the type and complexity of the problem for which 
a model is being trained. The Backpropagation Neural Network (BPNN), which is 
based on the feed forward Neural Network, has been found to be widely suitable for 
problems requiring prediction from data such as a time series (Khashei and Bijari, 
2010; Evans, Pappas and Xhafa, 2013; Khamis et al., 2014). 

BPNN follows the multi-layer learning networks system as shown in Figure 1, 
where there is an input layer composed of neurons (1 to n) representing the independent 
variable. A typical BPNN comprises one or more hidden layers with neurons (1 to 
j) that are weighted and they determine the degree of influence during the learning 
process; these hidden layers enable the network to use a non-linear function to model 
complex patterns (Alpaydin, 2010). Finally, the BPNN also contains an output layer 
with neurons (1 to m) representing the estimated variables (dependent variables) 
as shown in Figure 1. During the learning process, the BPNN sends a signal about 
errors from the output layer back to the hidden layer. The connections that exist 
between the neurons from each layer facilitate the learning process through the use 
of mathematical functions depending on the type of Neural Network and its set-up 
(Engelbrecht, 2007). This ensures that subsequent learning produces an output with 
lesser error value until an optimal output is discovered (Alpaydin, 2010).
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Figure 1: Simple Back propagation Neural Networks 
 
 

 
Figure 2: Comparison of actual vs predicted spot prices of white maize (1 month in-sample) 

 
 

 
Figure 3: Comparison of actual vs predicted spot prices of white maize (1 month out-sample) 
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Figure 1:	 Simple Backpropagation Neural Networks

Previous studies have shown that BPNN is suitable for making predictions that are 
based on historical data even when they involve complex patterns (Ghwanmeh, 
Mohammad and Al-Ibrahim, 2013; Tsadiras, Papadopoulos and O’Kelly, 2013)
especially in the rural areas where less support and care, due to lack of advanced 
heart diagnosis equipment. Also, physician intuition and experience are not always 
sufficient to achieve high quality medical procedures results. Therefore, medical 
errors and undesirable results are reasons for a need for unconventional computer-
based diagnosis systems, which in turns reduce medical fatal errors, increasing the 
patient safety and save lives. The proposed solution, which is based on an Artificial 
Neural Networks (ANNs). Hence, many time series-related problems in areas 
such as financial forecasting, engineering and medical research have successfully 
implemented BPNN. Thus, this study adopts BPNN for the implementation of the 
Neural Network modelling and predicting prices of grain commodities.

Zhang (2003) and Qi and Zhang (2008) suggested that the relationship that 
exists between the input variables and the output variables in a feed-forward Neural 
Network can be represented mathematically as:
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where yt is the expected output,  αj (j = 1,2, …, q) and βi(i = 1,2. …, p) represent the weights 

for the connections between the neurons in the hidden layer and the output nodes; p 

represents the number of input nodes and the number of hidden nodes is represented by  q in 
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where yt is the expected output,  αj (j = 1,2, …, q) and βi(i = 1,2. …, p) represent the 
weights for the connections between the neurons in the hidden layer and the output 
nodes; p represents the number of input nodes and the number of hidden nodes is 
represented by  q in the equation. During the learning process, the transmission of 
information between the layers in the network is determined by the activation function 
(Lantz, 2013). Depending on the architecture of the network, transfer of signal from 
the neurons across the different layers could be weighted or not. Available activation 
functions include the linear function, sigmoid function, hyperbolic tangent function 
and Gaussian function. Generally, the selection of the appropriate activation function 
should depend on the type of problem at hand. The sigmoid function is often used in 
financial time-series and business-related problems (Wiles and Enke, 2014). For the 
purpose of this study, in-sample experiments were carried out to decide the choice 
of activation function. Using the available data, the resulting predictions using the 
hyperbolic and tangent and Gaussian function had large variances that were greater 
than R100/ton of white maize in most cases. On the other hand, when the same 
experiments were carried out using the sigmoid function, the recorded variances 
were as low as R1/ton in some cases. Therefore, the sigmoid function was adopted 
for this study. The sigmoid function is expressed as:
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where xrt-1 denotes the observation for the external variable r collected during period t - 1. 
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observations of the past trading days for the factors that influence the price of white maize. 
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where xrt-1 denotes the observation for the external variable r collected during period 
t - 1. This has been included because the predicted outcome, yt, is influenced by past 
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variables. Hence, this implementation will consider the prices of previous trading 
days as input, as well as observations of the past trading days for the factors that 
influence the price of white maize.

By using the model represented in equation (3) to make predictions for a period 
t + n in the time series, where  is the current time and n is a positive integer, there is 
a need to make provision for the fact that data from the period between time t and t 
+ n will not exist. Hence, the Neural Networks model can be built to find the pattern 
between the independent variables at the current time t and the associated past 
observations, for predicting the future time for time t + n. Therefore the equation (3) 
can be written as:
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business day, different models can be retrained based on the historical patterns that 
include the day’s transactions to determine what will happen in the next 1, 2, 3 days 
and so forth. 

3.1.1	 Features selection for model
Selection of the right input variable that optimally captures and explains the patterns 
in a time series model is considered very crucial for the degree of accuracy of the 
model resulting from a Neural Network (Crone and Kourentzes, 2010; Qi and 
Zhang, 2008). The existing literature shows that deciding on the input variable 
for time series modelling, using Neural Networks, might be an art as much as a 
scientific expedition. Several authors conclude that there is generally no accepted 
theoretical background to follow in deciding the input variables in a Neural Network 
based time series modelling (Zou et al., 2007; Khashei and Bijari, 2011; Jabjone and 
Wannasang, 2014). 

In developing a multivariate model, there is a need to consider not only the past 
observations of the variable being modelled but also to examine the influence of 
external variables as denoted in equation (3). Thus, in a multivariate analysis, the 
choice of external variables that will lead to an optimised model is crucial. Several 
studies on multivariate time series modelling used the analysis of correlation to 
support the choice of external variables (Yu and Ou, 2009; Khamis et al., 2014; 
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Jabjone and Wannasang, 2014). However, it is important to highlight that correlation 
analysis does not imply that these variables are, of a certainty, responsible for the 
patterns that exist in the price data (Irwin, Sanders and Merrin, 2009; Bukharov and 
Bogolyubov, 2015). Hence, the choice of external variables can also be supported by 
previous knowledge in the field of  interest (Wiles and Enke, 2014).

In the case of univariate analysis, as well as multivariate time series analysis, 
after the external variables have been selected, there is still a need to decide how far 
back to go in including the effect of past observations in predicting future values. 
One of the major reasons for using the Neural Networks for time series analysis is 
to identify and capture non-linear relationships that might be in the dataset (Qi and 
Zhang, 2008; Bukharov and Bogolyubov, 2015). However, there is empirical and 
theoretical evidence that complex time series data with non-linearity patterns can also 
possess some linear characteristics (Khashei and Bijari, 2011). Qi and Zhang (2008) 
supported the use of techniques such as lagging to include the linear effect of past 
observations in the Neural Network-based time series data. There are no generally 
acceptable foundations for selecting the lag length for a Neural Network based time 
series modelling. However, similar work has made use of random experiments to 
determine the lag length that produced the best model (Zou et al., 2007; Khashei and 
Bijari, 2011). 

The total number of input variables for the Neural Networks will consist of the 
dependent and independent variables that have been selected. These will also include 
the lagged variables for each of the selected variables.

3.1.2	 Additional Neural Network parameters
In addition to other parameters that are required in setting up a BPNN the number 
of hidden layers, learning rate, momentum factor and the activation function are 
included. The learning rate, η, determines the number of steps that is taken in the 
search for the output. If the chosen learning rate is too large, the optimum can be 
missed, and when it is too small, the network can take too long to train (Engelbrecht, 
2007). The momentum factor, α, determines the degree of influence that weights of 
previous learning will have on the current learning. It allows the training process to 
use the identified weights of the previous learning iteration so that the weights of 
the past iteration are introduced as inertia into the current learning iteration (Larose, 
2005).  The momentum factor ranges from 0 to 1, meaning that when the momentum 
term is close to or equal to one, the weight of the current iteration will be essentially 
the same as the previous one.

The learning process in Neural Networks is iterative; therefore, the number 
of iterations for the learning process should be set from the beginning as an exit 
criterion for the network. However, depending on the selected learning rate or the 
momentum rate, it could take much longer to achieve the set number of iterations. 
In such cases, a target error level can also be set for which the learning process will 
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be terminated when it is achieved (Larose, 2005). The selection of the optimum 
learning rate, momentum term and exit criterion is a balancing act considering the 
implication that each of the parameters has on performance of the network. The use 
of experiments is also suggested as the approach for choosing the other network 
topology parameters such as the hidden layer, learning rates and momentum factor 
(Tsadiras et al., 2013; Ghwanmeh et al., 2013; Khamis et al., 2014)but this can be 
difficult, especially for large production lines, because the task is currently highly 
time consuming. Designers would be interested in a tool that would rapidly provide 
the solution to the BAP, even if only a near optimal solution is found, especially 
when they have to make their decisions at an operational level (e.g. hours).

Besides the mentioned network parameters, it is suggested that the input data 
for Neural Network modelling be pre-processed into a normalised format ranging 
between -1 and 1 or 0 and 1 (Engelbrecht, 2007; Khamis et al., 2014). Transforming 
the input data into a range of 0 to 1 can be achieved by using the equation:
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It is further essential to determine how the network will initialise the weights for the 

neurons in the network during each learning process. Engelbrecht (2007) suggested the use of 

random numbers close to zero as weights for each neuron to ensure that learning takes place 

in the network. 

 
3.2 Model evaluation  

The purpose of identifying the correct parameters and topology for training an optimal Neural 

Network for different problems is so that the resulting model can adequately be used to 

estimate future occurrences based on historical data. However, care needs to be taken to 

ensure that the output from a model is not a result of just memorising the historical data 

(Provost and Fawcett, 2013a). In such cases, the model will have high accuracy when used to 

forecast a subset of the data used in training the model, but will not produce a reasonable 

result when used to predict a dataset not seen by the model during training. Hence the model 

has not learned the patterns in the data, but it has only memorised the observations in the 

data. This problem is regarded as overfitting (O’Neil and Schutt, 2014). 
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where yt is an observation for time t, ymin and ymax are the minimum and the maximum 
observed values of all the observations of a given variable.

It is further essential to determine how the network will initialise the weights 
for the neurons in the network during each learning process. Engelbrecht (2007) 
suggested the use of random numbers close to zero as weights for each neuron to 
ensure that learning takes place in the network.

3.2	 Model evaluation 
The purpose of identifying the correct parameters and topology for training an optimal 
Neural Network for different problems is so that the resulting model can adequately 
be used to estimate future occurrences based on historical data. However, care needs 
to be taken to ensure that the output from a model is not a result of just memorising 
the historical data (Provost and Fawcett, 2013a). In such cases, the model will have 
high accuracy when used to forecast a subset of the data used in training the model, 
but will not produce a reasonable result when used to predict a dataset not seen by 
the model during training. Hence the model has not learned the patterns in the data, 
but it has only memorised the observations in the data. This problem is regarded as 
overfitting (O’Neil and Schutt, 2014).

Contrary to just memorising the observations in a training dataset, the desired 
model from a modelling exercise is one that is able to accurately estimate future 
outcomes based on input data that has not been seen by the training model at all. This 
is regarded as generalisation (Provost and Fawcett, 2013b). The level of accuracy of 
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a model can be measured by its ability to generalise even when there is a significant 
change in the input data. There is a risk of overfitting a model to the training data 
when the model becomes too complex, such as having too many hidden nodes or 
too few observations compared with the number of input nodes (Alpaydin, 2010). 
However, the ability of the model is reduced greatly with an overly simple network 
(Co and Boosarawongse, 2007). Hence, there is a need to strike a balance between 
generalisation and overfitting.

A common practice for avoiding overfitting is to split the available dataset into 
a training and a test set (O’Neil and Schutt, 2014; Provost and Fawcett, 2013b; 
Alpaydin, 2010), where the test set is kept completely separate and not used in the 
training process. The performance of the model is then checked by using the model 
to forecast the series in the test set and to compare the results with the actual data. 
Statistical measures such as the Mean Square Error (MSE), Root Mean Square 
Error (RMSE) and Mean Absolute Percentage Error (MAPE) provide quantitative 
measures for comparing the results of predictions from the training set and the test 
set. MSE is a modelling evaluation statistic that gives an indication of how much 
a set of values that has been predicted by using a model varies from the actual 
observations (O’Neil and Schutt, 2014). It represents the loss function between the 
result of a trained model when compared with the actual value, hence it is regarded 
as the training error for Neural Networks (Wilamowski, 2009; O’Neil and Schutt, 
2014). The MSE is defined as:
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where Ft represents the predicted values, Yt the observed actual values and n the total number 

of values. However, a more popular measure of the accuracy of a model is the Root Mean 

Squared Error that is obtained by taking the square root of MSE (Khashei and Bijari, 2011; 

Bennett et al., 2014). RMSE is represented as: 
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The Mean Absolute Percentage Error (MAPE) is another measurement of accuracy 
of a predictive model which presents the predictions error as a percentage of the 
actual observed values. It calculates the absolute value of the ratio of the error to 
actual values (Tofallis, 2015), and calculates it as a percentage by multiplying it by 
100. MAPE is obtained as:
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These statistics are generally used for measuring model accuracy in time series 

forecasting (Enders, 2010; Tsay, 2010) and have also been adopted in measuring the accuracy 

of a Neural Network-based time series model as well (Zou et al., 2007; Crone and 

Kourentzes, 2010; Khashei and Bijari, 2011; Khamis et al., 2014). 

 

4. EXPERIMENTAL RESULTS 

The proposed approach was implemented by setting up experiments for predicting the spot 

price of white maize traded on the Johannesburg Stock Exchange. SAP HANA was adopted 

as the technology of choice to demonstrate the proposed approach because of its ability to 

support Big Data and advance analytics solutions (Chen and Zhang, 2014). It provides the 

required technology to handle real-time acquisition, pre-processing and predictive analytics 

of large datasets.   

 

4.1 Implementation 

For the purpose of this implementation, historical data on spot transactions on grain 

commodities was obtained from the website of the JSE with permission to use the data for 

research purposes. End-of-day data for spot prices was captured directly from the newsfeed 

provided on the website of the JSE while end-of-day data was captured from the website of a 

major grain commodities storage company (www.senwes.co.za). To include the influence of 

other markets outside South Africa, this implementation included the effect of the grain 

commodities market in the USA as a major producer of corn. Data on the corn trade in the 

USA was collected from the Chicago Board of Trade (CBOT) through third party data 

subscription. Moreover, the demand and supply data was collected from a service made 

available by the South African Grain Information Services (SAGIS) website. Data on the 

production and consumption in the USA was also collected through free services offered by 
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These statistics are generally used for measuring model accuracy in time series 
forecasting (Enders, 2010; Tsay, 2010) and have also been adopted in measuring the 
accuracy of a Neural Network-based time series model as well (Zou et al., 2007; 
Crone and Kourentzes, 2010; Khashei and Bijari, 2011; Khamis et al., 2014) artificial 
neural network and the linear combination models for forecasting wheat price in 
Chinese market. Empirical results show that the combined model can improve the 
forecasting performance significantly in contrast with its counterparts in terms of 
the error evaluation measurements. However, as far as turning points and profit 
criterions are concerned, the ANN model is best as well as at capturing a significant 
number of turning points. The results are conflicting when implementing dissimilar 
forecasting criteria (the quantitative and the turning points measurements).

4.	 EXPERIMENTAL RESULTS
The proposed approach was implemented by setting up experiments for predicting 
the spot price of white maize traded on the Johannesburg Stock Exchange. SAP 
HANA was adopted as the technology of choice to demonstrate the proposed 
approach because of its ability to support Big Data and advance analytics solutions 
(Chen and Zhang, 2014). It provides the required technology to handle real-time 
acquisition, pre-processing and predictive analytics of large datasets.  

4.1	 Implementation
For the purpose of this implementation, historical data on spot transactions on grain 
commodities was obtained from the website of the JSE with permission to use the 
data for research purposes. End-of-day data for spot prices was captured directly 
from the newsfeed provided on the website of the JSE while end-of-day data was 
captured from the website of a major grain commodities storage company (www.
senwes.co.za). To include the influence of other markets outside South Africa, this 
implementation included the effect of the grain commodities market in the USA as 
a major producer of corn. Data on the corn trade in the USA was collected from the 
Chicago Board of Trade (CBOT) through third party data subscription. Moreover, 
the demand and supply data was collected from a service made available by the 
South African Grain Information Services (SAGIS) website. Data on the production 
and consumption in the USA was also collected through free services offered by the 
Economic Research Services (ERS) of the United States Department of Agriculture 
(USDA) on its website. Other sources of data include the websites of the Reserve 
Bank, where historical and the current interest rate in South Africa, as well as the 
daily South African Rand-US Dollar currency exchange rates data was collected. 
Finally, historical and current data on the prices of Brent crude oil was accessed 
through open data services on www.quandl.com.
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The data collected was largely unstructured and in various formats. The Big Data 
tools and techniques, however, made it possible to clean and structure the datasets 
into an integrated time series data, by using the date as the integrating factor. Data for 
this experimental analysis was then extracted from the integrated repository of data. 
Historical data of the end-of-day spot price of white maize was taken from 2 January 
2007 till 31 July 2015, resulting in a total of 2 149 observations together with the 
data on factors influencing the prices as independent variables.

For the purpose of this study, datasets from 1 January 2010 was considered 
for the modelling of spot prices of white maize. This is primarily to ensure that the 
knowledge base of the resulting model is based on trends from a reasonable past 
(Ruta, 2014). It is expected that the predicted spot prices of white maize might be 
different using the same BPNN topology but a different subset of the available data. 
However, the trend of the predicted prices should be the same, irrespective of the 
subset of the dataset used, if the selected dataset is a reasonable representation of the 
current trend in the market.

4.2	 Model training
Correlation analysis was carried out between each of the dependent variables (spot 
prices of white maize) and the independent variables in order to decide the input 
variables for the training of the networks. This was carried out with the support of 
extracts from literature on the factors that influence grain commodities prices in 
South Africa. Table 1 presents a list of the variables that were selected for modelling 
the spot prices of white maize.

Table 1:	 Input variables for Neural Network model for WMAZ spot price

No Variables Correlation with spot price of WMAZ

1 Spot price of WMAZ (lagged)

2 Spot price of Wheat 0.6280 (n=2149)

3 USD-Rand exchange rate 0.5885 (n=2149)

4 Spot price of Brent Crude oil 0.3191 (n=2149)

5 Prime interest rate in SA -0.3428 (n=2149)

6 Price of Corn in USA 0.2860 (n=2149)

7 Volume of Corn Trade in USA 0.2848 (n=2149)

8 Demand for WMAZ in SA 0.2474 (n=2149)

9 Demand for Wheat in SA 0.3347 (n=2149)
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Initial experiments were also carried out to determine the other network parameters 
that would produce the best model. The optimal model was identified to have a 
lag length of 5, signifying the inclusion of the effect of the previous 5 trading days 
in the model. Considering the number of variables and lag length, the model with 
7 hidden layers were also found to perform better than the rest. The model was 
found to perform optimally with the learning rate set to 0.4 and the momentum factor 
set to 0.001. SAP HANA provides an option to initialise all the weight for all the 
input neurons to zeros, to use normally distributed weights or a randomly selected 
weights between 0 and 1. The latter option was selected for this study because of the 
expected non-linearity characteristics of the data and it is widely used for business-
related applications (Engelbrecht, 2007; Wiles and Enke, 2014).

4.3	 Cross-validation of model
A BPNN model for spot prices of white maize in South Africa was created. 
Subsequently, a validation process was also carried out to ensure that the model 
was able to generalise and not just to memorise the input data. The model was used 
to make predictions by using subsets of the training dataset and the testing dataset. 
Using a subset of the training data to make predictions is known as the in-sample 
evaluation while predicting with a dataset that is totally separate from the one used in 
training the model is known as the out-sample evaluation (O’Neil and Schutt, 2014). 
The BPNN model for the spot price of white maize in South Africa was trained by 
using historical data of transactions that happened between 1 January 2010 and 31 
December 2014. In-sample evaluations were carried out with subsets of the training 
data while out-of-sample evaluations were carried out with the testing data. For both 
categories, the created model was used to make predictions for 1-month and 3-month 
periods.

The dataset for the trading days in the last month of the training data from 1 
December 2014 to 31 December 2014 was predicted and compared with the actual 
prices. In-sample predictions were also made and compared with actual prices over 
a period of 3 months using data from 1 October 2014 till 31 December 2014. A 
comparison of the predicted and actual spot prices of white maize for in-sample as 
well as out-sample predictions (from 01 January 2015 to 31 January 2015) within 
a 1-month period are presented in Figure 2 and Figure 3, respectively. The graph 
in Figure 2 shows that the in-sample predictions are very close to the actual values 
and it also indicates that the in-sample predictions followed the trend of the actual 
prices quite closely. On the other hand, Figure 3 presents the result of the out-sample 
predictions. The predicted prices were also close to the actual prices, however, not 
as much as they are with the in-sample predictions. A comparison of the results 
of the in-sample and the out-sample predictions suggests that the model is able to 
generalise and the predictions are not a result of the model memorising the data.
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Figure 1: Simple Back propagation Neural Networks 
 
 

 
Figure 2: Comparison of actual vs predicted spot prices of white maize (1 month in-sample) 
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Figure 2:	 Comparison of actual vs predicted spot prices of white maize (1 month 
in-sample).
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Figure 3:	 Comparison of actual vs predicted spot prices of white maize (1 month 
out-sample)

By using the same model, the spot prices of white maize over a period of 3 months 
were also predicted. Figures 4 and 5 show a comparison of the actual spot prices of 
white maize and the predicted prices over a 3-month period for the in-sample and out-
sample predictions, respectively. The 3-month in-sample predictions were done over 
the period of 1 October 2014 to 31 December 2014 and the data for the spot prices 
of white maize over the period of 1 January 2015 to 31 March 2015 was separated 
for the out-sample comparison. The results show that the in-sample predictions over 
the 3-month period were very close to the actual prices of white maize. However, 
the accuracy of the out-sample predictions depreciated significantly from about the 
prediction for the 25th trading day as shown in Figure 5. One of the factors that 
might be responsible for this could be the need to identify and include data on other 
factors that influence the price of white maize in the medium to longer term. 
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Figure 4:	 Comparison of actual vs predicted spot prices of white maize (3 months 
in-sample).
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Figure 5:	 Comparison of actual vs predicted spot prices of white maize (3 months 
out-sample).

To measure the prediction accuracy of the model, the Mean Absolute Percentage 
Error (MAPE) statistic for the in-sample and out-sample predictions for the two 
different periods were compared. The results, as shown in Table 2, indicate that the 
MAPE of the in-sample predictions (1.31%) and that of the out-sample predictions 
(2.26%) over a period of a single month were relatively close. However, for the 
predictions over a 3-month period, the MAPE for the in-sample predictions was 
0.97%, while that of the out-sample predictions was 9.20%. This signifies a 
noticeable difference when compared with the result obtained for predictions over a 
single month. However, the correlation between the predicted prices and the actual 
prices for the 3 months was 0.9709 and 0.9598 for the in-sample and out-sample 
predictions, respectively. This suggests that both the in-sample and the out-sample 
predictions over the 3-month period followed the trend of the actual spot price better 
than the predictions over 1-month period with 0.6568 and 0.1412 correlation for the 
in-sample and out-sample predictions, respectively. These results suggest that the 
model is able to generalise and make predictions for unseen data, although there is 
room for further research into improving the model.
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Table 2:	 Summary of verification of BPNN model for spot prices 

Period In-sample Out-sample

MAPE(%) RMSE R2 MAPE(%) RMSE R2

1 month 1.31 32.97 0.6568 2.26 61.02 0.1412

3 month 0.97 24.61 0.9709 9.20 348.64 0.9598

The predictions depicted by the graphs in Figures 2 to 5 show that the model is 
more accurate with in-sample predictions as expected, especially for predictions 
over 3 months. When the same model is applied for making out-sample predictions 
using the input dataset that was not used for the training process, the model was 
less accurate. However, the results of the out-sample predictions suggest that the 
model was intelligent enough to recognise the market trend, although, the deviation 
between the actual and the predicted price increased significantly with time. This 
result suggests that the identified BPNN topology and architecture could be used for 
predicting spot prices of white maize in South Africa. However, there is a need to 
implement strategies that will improve the accuracy of the predictions. This could 
include the use of other modelling techniques, supplementing the input datasets to 
include other contributing factors or additional pre-processing of the input datasets.

4.4	 Real-time predictions
The cross-validation in Section 4.3 is based on the assumptions that the external 
data is available for the period for which the price of white maize is being predicted. 
However, as proposed in Section 2.2 with the model denoted as equation (4), a model 
can be built based on all the available data for predicting the spot and futures contract 
prices for different days into the future. This model can then be retrained periodically 
as new data becomes available to ensure that new market dynamics are captured in 
the Neural Network. 

Based on the suggestions of Ruta (2014) on the use of Big Data for real-time 
learning for financial assets trading, new BPNN algorithms for building models for 
14 trading days ahead were written. Each of the models was run continuously until 
10 different predictions were recorded for each day. Thereafter, the mean value of 
the 10 predictions captured for each day was taken as the final prediction. 
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Table 3:	 Tables showing the input datasets used for modelling

Training Prediction

Start End Start End Results for

2010-01-01 2015-07-15 2015-07-16 2015-07-31 2015-08-03

2010-01-01 2015-07-18 2015-07-19 2015-08-03 2015-08-04

2010-01-01 2015-07-19 2015-07-20 2015-08-04 2015-08-05

2010-01-01 2015-07-20 2015-07-21 2015-08-05 2015-08-06

2010-01-01 2015-07-21 2015-07-22 2015-08-06 2015-08-07

2010-01-01 2015-07-22 2015-07-23 2015-08-07 2015-08-10

2010-01-01 2015-07-25 2015-07-26 2015-08-10 2015-08-11

2010-01-01 2015-07-26 2015-07-27 2015-08-11 2015-08-12

2010-01-01 2015-07-27 2015-07-28 2015-08-12 2015-08-13

2010-01-01 2015-07-28 2015-07-29 2015-08-13 2015-08-14

2010-01-01 2015-07-29 2015-07-30 2015-08-14 2015-08-17

2010-01-01 2015-08-01 2015-08-02 2015-08-17 2015-08-18

2010-01-01 2015-08-02 2015-08-03 2015-08-18 2015-08-19

2010-01-01 2015-08-03 2015-08-04 2015-08-19 2015-08-20

The experiments were set up to use a rolling subset of data as the input for the training 
and the predictions as shown in Table 3. The experiments made use of datasets 
between 01 January 2010 and 15 July 2015 as the training set for building the model 
for the first trading day in the month of August. New daily data was included in the 
input data for retraining the model at the end of each day. This was also applied to 
the input data for the predictions, by adding data from the previous trading day as 
shown in Table 3.

Besides the use of the measurement of accuracy statistics to measure the technical 
abilities of the models, 8 expert grain commodities traders (referred to experts A 
– H) agreed to voluntarily participate in the evaluation exercise. The experts who 
agreed to participate are from 3 different companies listed on the Johannesburg 
Stock Exchange’s website as registered to trade grain commodities in South Africa. 
Moreover, some of these trading companies also buy and sell grain commodities as 
financial assets on the Johannesburg Stock Exchange. The experts were asked to 
predict the future spot prices of white maize on the Johannesburg Stock Exchange 
for the month of August 2015 before the beginning of the month of August 2015. 

The results in Table 4 indicate that the predictions from the BPNN model had 
lesser deviation from the actual spot prices than the predictions from all the experts. 
The measurement of accuracy statistics shows that the predictions by the BPNN 
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model had the minimum error with the Mean Absolute Percentage Error (MAPE) 
= 1.44% and Root Mean Square Error (RMSE) = 49.91 when compared with the 
predictions of the experts. This is only followed by the predictions of Expert C with 
MAPE = 2.16% and RMSE = 85.78. Figure 6 provides a graphical representation of 
the results, showing that the price predicted by the BPNN model is about the closest 
to the actual prices recorded, although there is more room for improvements.

Table 4:	 Comparison between predictions from experts and implemented DSS 
for spot prices of white maize.

Day Expert 
A

Expert 
B

Expert 
C

Expert 
D

Expert 
E

Expert 
F

Expert 
G

Expert 
H BPNN Actual

1 3045 2950 3165 3250 3250 3200 3150 3190 3161 3131

2 3058 2930 3140 3265 3200 3225 3148 3220 3162 3142

3 3035 2900 3120 3280 3150 3195 3155 3260 3094 3138

4 3021 2930 3000 3350 3080 3196 3160 3230 3093 3125

5 2985 2900 3130 3280 3060 3190 3170 3230 3114 3073

6 2985 2850 2980 3240 3040 3210 3190 3280 3075 3124

7 2912 2820 2982 3190 2980 3200 3200 3330 3075 3074

8 2875 2860 2985 3240 3000 3180 3250 3350 3043 3011

9 2901 2890 2960 3260 2970 3150 3240 3320 3059 2987

10 2915 2850 2940 3295 2940 3153 3230 3330 3013 2969

11 2874 2800 2950 3330 2910 3180 3200 3350 3008 2941

12 2877 2790 2940 3290 2870 3190 3205 3380 3014 2960

13 2908 2750 2900 3210 2890 3185 3200 3400 3000 3024

14 2945 2720 2880 3250 2860 3187 3190 3400 2966 3068

MAPE 3.46% 7.11% 2.16% 6.46% 2.26% 4.20% 4.27% 7.50% 1.44%

RMSE 106.22 212.67 85.78 228.51 87.54 145.40 167.71 280.49 49.91

R-
squared 0.9099 0.5241 0.6454 -0.1554 0.7771 0.7457 -0.7851 -0.7141 0.7153

(n=14) (n=14) (n=14) (n=14) (n=14) (n=14) (n=14) (n=14) (n=14)
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Figure 4: Comparison of actual vs predicted spot prices of white maize (3 months in-sample) 
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Figure 6:	 Prediction of spot prices of white maize by experts and BPNN model.

The calculation of MAPE on Table 4 indicates the difference between each predicted 
value and the actual value that was recorded as the percentage, showing the size of 
error between the predicted value and the actual value. On the other hand, the RMSE 
shows a measurement of how much the predicted prices deviates from the actual 
prices. Figures 7 presents a graphical view of the error statistics, which compares the 
performance of the BPNN model with predictions by experts. The graph shows that 
the BPNN model implemented performed relatively better with minimum deviation 
from the actual prices in terms of value. 
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Figure 7: Error measurements of experts and BPNN model predictions for spot prices 
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Both measurements of accuracy suggest that the predictions by the BPNN model 
performed better than the predictions made by the experts. The practical implication 
of this result is that the acquisition and analysis of data on factors that influence 
the grain commodities market in real-time present opportunities to create Decision 
Support Systems (DSS) for trading in grain commodities in South Africa. Such 
DSS can be used to assist stakeholders, such as the farmers, with limited skills and 
resources, in making decisions about trading their grain commodities.

5.	 CONCLUSIONS
This article sets out to demonstrate that grain commodities prices in South Africa can 
be predicted in real-time or near real-time by using Neural Networks and by taking 
advantage of the evolution in the concept of Big Data. It was identified that the 
grain commodities market data and data on the factors that influence the markets are 
available from different sources. Although the data is scattered in different locations 
and is often available in different formats, the tools and techniques of Big Data 
make it possible to source, acquire and integrate this data, even in real-time. Local 
demand and supply of grain commodities, international grain commodities markets, 
and macroeconomic indicators were identified as some of the factors that influence 
the grain commodities market in South Africa, that is, besides the influence of past 
grain commodities market transactions. However, it should be acknowledged that 
there might be other variables that could influence the price of grain commodities 
not identified by this study. Such variables can be added in the future to improve the 
outcome of the propositions in this study. 

A Backpropagation Neural Network makes it possible to explore patterns in 
datasets regardless of the fact that these patterns might be linear or non-linear. It 
has also found its application in modelling time series problems in fields such as 
medical, econometrics and engineering. It was demonstrated in this article that the 
BPNN can be used to model and predict grain commodities prices. Furthermore, 
by using SAP HANA as a Big Data platform, it was demonstrated that with the 
acquisition of data in real-time or near real-time, a BPNN model can be retrained 
periodically as new data becomes available. This will ensure that changes in the 
market data are captured early enough and used in making predictions about future 
grain commodities prices. Empirical results in this study revealed that this approach 
could provide better predictions than those made by experienced grain commodities 
traders. 

This study is part of a bigger research into how support for a decision can be 
provided for grain commodities trading in South Africa, especially for farmers with 
limited skills and resources for predicting grain commodities prices. The results 
presented provide improved support for short-term prediction of grain commodities 
prices using the Big Data and Neural Networks approach. Further studies will explore 
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creating decision support, such as medium/long-term predictions, recommendations 
and discoveries that can be extracted from relevant datasets in real-time for trading 
grain commodities. Studies will also be carried out to explore how such market 
intelligence can be made available by using mobile technologies for easy access. 
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