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Alternative Methods of Forecasting Agricultural Water Demand:

A Case Study on the Flint River Basin in Georgia

Abstract

Future agricultural water demands are determined by employing forecasts from irrigated crop
acreage models.  Forecasts of prices and yields, and variances and covariances of crop returns
are employed for forecasting crop acreage.  Results provide insights into the value of rational
expectations in forecasting agricultural water demand.  



Alternative Methods of Forecasting Agricultural Water Demand:

A Case Study on the Flint River Basin in Georgia

As population pressures place increasing strain on our limited supply of natural resources,

mechanisms designed for allocating this supply among competing demands are required.  This

limited supply is particularly acute in our demand for water.  In a USDA, Natural Resources

Conservation Service (USDA, NRCS) study, greater pressure on water resources in the tri-state

area of Alabama, Florida and Georgia is the root cause of ensuing water negotiations and law

suits among these states.  According to this study, agriculture within Georgia is the major

consumptive water user.

The recent drought in the Southeast has resulted in greater uncertainty in agricultural

yields.  This uncertainty has accentuated the demand for agricultural water use (irrigation) in the

face of restricted supply.  Attempting to aid in allocating water within the tri-state area the

Georgia Legislature in February 2001 passed the Flint River Drought Protection Act (FRDPA). 

A component of this act was to hold an auction among southwest Georgia agricultural producers,

with water permits, for the withdrawal of acreage from irrigation using perennial surface water

sources in 2001.  On March 17, 2001, bids to suspend irrigation were submitted.  After five

rounds of auction, Georgia’s Environmental Protection Division (EPD) declared the auction

closed with the EPD accepting offers on 209 of the 347 water permits registered at an average

offer price of $135.70 per acre.  This auction withdrew slightly more than 33,000 acres of

farmland from irrigation. 

This estimate of water savings from reduced crop acreage is obtained using the Blaney-

Criddle (BC) formula (USDA, SCSED).  Blaney and Criddle found the amount of water
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consumptively used by crops during their normal growing season was closely correlated with

mean monthly temperatures and daylight hours.  They developed coefficients that can be used to

convert consumptive use data for a given area to other areas for which only climatological data

are available.  The net amount of irrigation water necessary to satisfy consumptive use is found

by subtracting the effective precipitation from the consumptive water requirement during the

growing or irrigation season. 

The actual reduction in water use from reduced irrigated acreage is driven by changes in

the distribution of crops producers choose to irrigate.  This change in crop distribution resulting

from reduced irrigation acreage is determined by the expected profitability of competing crops. 

Considering the possible economic substitution and expansion effects associated with changes in

agricultural prices, will accurately predict this change in crop distribution.  Conventional

physical models do not consider these substitution and expansion effects in determining

agricultural water demand.  The difference in a physical model calculation of change in water

demand and the actual change is called slippage.  In contrast, an econometric model based on a

theoretical model addressing economic substitution and expansion effects will consider these

effects, and thus will directly address this slippage problem.  The research underlying this paper

identifies the presence of slippage and pitfalls associated with not considering economic

substitution and expansion effects in measuring changes in water demand.  Analysis of the

FRDPA indicates a slippage of 18% occurs when disregarding the role of economic

determinants.

Theoretical Model  

The demand for irrigation water is a derived demand evolving from the value of agricultural
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products produced.  Static and deterministic empirical models of water demand indicate adoption

of modern irrigation technologies depends on price of water, labor, output level, output prices,

soil slope, water holding capacity and climate (Caswell and Zilberman; Lichtenberg;

Nieswiadomy; Negri and Brooks; Schaible et al.).  

The deterministic models are effective in assessing seasonal water demand and irrigation

technology choices by risk neutral producers.  However, given risk in yields and prices, there is

uncertainty involved with the profits of an enterprise.  Irrigation is an example of a risk-reducing

technology.  The decision to irrigate by a risk averse producer is appropriately modeled through

techniques allowing the effects of risk in decision making models.  The major analytic tool for

solving decision problems under risk is the expected utility, EU, model.  It is assumed a producer

maximizes expected utility by allocating the total amount of irrigated acreage available among

competing crops.  

Consider a producer in a given county engaged in producing n crops over A acres of

irrigated land.  Let Ai denote acres of the ith irrigated crop with a corresponding yield of Yi per

acre.  Yield Yi is sold at the market price of pi per unit of yield.  The above activity results in the

following revenue, R, function for the representative producer 

        n
R = E piYiAi           i=1

Revenue is a linear function of stochastic prices and yields.  By assumption, the vectors of prices

PP = p1, . . ., pn and yields YP  = Y1, . . ., Yn are unobserved at the time of acreage allocation, the 

vector of acreages AP  = A1, . . ., An is to be determined by the producer given the risky revenue R. 

Let the total variable cost of production, C, be 

C = cP‘AP ,



4

where cP = c1, . . ., cn with ci as the variable cost of production per irrigated acre of the ith crop.  It

is assumed that this total variable cost, C, for production is known with certainty given input

prices and per-acre costs are known at the time of irrigated acreage commitment.

A constraint on the irrigated acreage requires all land be allocated to one of the n crops

and that irrigated acreage does not exceed the total available acreage. 

   n
(1)  E Aiy = Ay, y = 1, 2, . . . ,m. i=1

Variable Aiy denotes the irrigated acres of the ith crop in county y and Ay is the total irrigated

acres available in the yth county.  A producer also faces a technology constraint represented as 

(2) f(AP) = 0, 

where f(AP) = 0 is the production frontier representing the multiproduct multifactor technology of

the firm. 

If the representative firm maximizes expected utility from total profit, B, under

competition, then the decision model is

                                                  
(3) max EU(B) = max EU(BP‘AP),         AP                      AP                  

subject to the acreage constraint (1) and technology constraint (2).  The profit accruing from the

ith crop is 

Bi = (piYi  - ci),

with BP = B1, . . . , Bn.  

Equation (3) indicates that the acreage decision AP is made under both price and

production uncertainty.  Both yields YP  and output prices PP are random variables with given

subjective probability distributions.  Consequently, the expectation operator in (3) over the

stochastic variables YP  and PP  is based on the information available to the firm at planting time. 
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The optimization model in (3) has direct economic implications for the optimal irrigation

acreage allocation, AP*.  If the firm is not risk neutral, the optimal acreage decision will depend

not only on expected profits, but also on higher moments of the profit distributions.  In case of

normally distributed returns, the expected utility criterion is completely specified by the

expected value and variance of returns.  Otherwise, it is a second-order Taylor series

approximation to all risk averse utility functions. 

The solution to (3) results in the irrigated acreage allocation equation.  The optimal

choice of AP  is a function of the following variables and their estimated parameters: expected

profits for each crop, BP, the variance and covariance of these profits, and total irrigated acres Ay

available 

(4) Ai
* = A(BP j, Fjj, Fjk, Ay),  œ i, j, k  = 1, . . . , n, j > k,

where Fjj denotes the variance in profit of the jth crop and Fjk the covariance of profit between the

jth and kth crop.  The covariance between any two crops, j and k, is included to account for the

mechanism of risk-spreading by farmers via the portfolio effect.

The acreage response model (4) may be decomposed into two parts: 

the substitution and expansion effects.    In making decisions about irrigated acreage allocations,

producers may compare the first and second moments of profits of alternative crops. 

Comparison of expected per-acre profits, and the variance and covariances of recent profits  of

alternate crops, are assumed to drive the substitution among crops for expected utility

maximizing producers. 

On the other hand, substitutions between irrigated crops have been accompanied by an

overall increase in irrigated acreage over time.  Changes in irrigation technology, costs of

irrigation, irrigation policy, lender practices relative to irrigation and producer’s assessments of
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future economic conditions in agriculture all may stimulate chances in total irrigated acreage. 

These causes of chances in total irrigated acreage are partly or wholly independent of year to

year variations in relative expected prices, yields, and costs of crops.  Specifically, even if

relative expected profits of crops remain constant, changes in total irrigated acreage may yield

changes in the acreage allocation of crops.  These impacts, representing an expansion effect,  are

captured by the parameters of the total irrigated acreage variable included in each acreage

equation.  

Application

This acreage response model (4) is applied to a 31-county region in Georgia which approximates

the Flint River Basin.  These counties, contain a representative crop mix for the state and in 1995

consumed approximately 51% of the state’s irrigated water.  Based on (4), an agricultural-water

demand model for the principal Georgia crops (corn, cotton, peanuts and soybean) by county

was developed.  Developing such a model required estimating crop irrigated acreage response

based on physical, economic and institutional determinants.  These estimates of crop acreage by

county were then applied to the BC formula for estimating water demand.   

With regards to acreage and yield data, there are two major data sources for the analysis,

University of Georgia - Cooperative Extension Service (UGA-CES) and the U.S. Department of

Agriculture - National Agricultural Statistic Service (USDA-NASS).  The state and county

acreage irrigation data came from the UGA-CES.  A subset of these data is the state irrigated

acreage of the ith crop at time period t,  which includes all commodity and recreational irrigation

groups.  Data interpolation for the missing values assumed irrigation acreage increases or

decreases linearly between two time intervals.  This resulted in a time series of irrigated acreage
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by crop by county from 1970 through 1998.  All harvest data are from NASS.  These data are

available for 1970 through 1998 and were downloaded from the USDA - NASS web-site

http://www.usda.gov/nass/.  The data contain the commodity harvested acreage by year for each

county. 

A major contribution of this analysis is accounting for the influence of economic

variables on water demand.  Incorporating the profitability of competing crops requires

information on prices and costs for a given crop.  Price data are from the CD-Rom “Historical

Futures Data 1959-Present,” 1999 Prophet Financial Systems, Inc.  Following Gardner (1976),

Chavas, Pope and Kao (1983), Eales et al. (1990), Choi and Helmberger (1993), and Holt

(1999), futures prices were used to represent expected prices.  Weighted average prices in March

for harvest-time futures contracts for corn, cotton, and soybeans (December Chicago Board of

Trade contract for corn and cotton, November contract for soybeans) were used as a measure of

expected prices for these commodities.  

A futures market for peanuts does not exist, so price data on seasonal average price for

peanuts were collected from 1970 through 1999 editions of Georgia Agricultural Facts,

published annually by USDA-NASS.  Peanut price forecasts were then based on a linear lag

price regression.  

Yield data were collected for each of the counties from Georgia Agricultural Facts. 

Yield enters the empirical model on a county basis to account for cross-sectional heterogeneity

in terms of irrigated acreage.  Following Holt (1999), an estimate of expected yields per acre by

crop and county was obtained. 

Variable cost of production data were collected from the USDA - Economic Research

Service (USDA-ERS).  The variable cost data are “historical,” based on the actual costs incurred
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by producers in the southeastern U.S. during each year.  These cost figures differ from the

projection-based budgets put forth by land-grant universities to assist producers in planning. 

These actual measures of costs incurred are more relevant to the present analysis in considering

profitability of competing enterprises.  Data were downloaded from the following ERS website:

http://www.ers.usda.gov/briefing/farmincome/costsandreturns.htm.

The expression for expected profit per acre for crop i in county y at time t, Et-1(B2 iyt), is

defined as

Et-1(Biyt) = Et-1(pitYiyt) - cit,

where pit is the supply inducing price for crop i at time t, Yiyt is yield for crop i in county y at

time t and cit is the total variable cost for crop i at time t.  Given covariance between yields and

prices (Bohrnstedt and Goldberger), expected profits are calculated using

Et-1(Biyt) = Et-1(pit)Et-1(Yiyt) + Cov(pi, Yiy) - cit,

where Cov(pi, Yiy) is the covariance between price and yield of the ith crop in county y.

As indicated in (4), variances in profits for the crops were included for capturing the risk

aversion of producers.  The variance associated with profit for the ith crop, Fii, is determined by

the three-year period preceding year t (Chavas and Holt).  Employing variance directly in the

estimation has a limitation of the variable increasing for a random variable with an upward trend

even though its relative risk (variance standardized by the mean) may not be increasing. 

Employing the coefficient of variation eliminates this scaling effect.  Similarly, the covariances

are calculated using the three-year period preceding year t and are standardized for eliminating

the trend effect.

Econometric Model
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Given the hypothesis of expected utility maximization and the functional relationship between

the optimal irrigated acreage and components of expected utility in (4), the empirical model for

optimal irrigated acreage equations is derived as

         4                      4                       4   4                        3                       16                    
(5) A*

iyt = "0+ E $jBjyt+ E&jFjjyt + EE*jkFjkyt + 0iAyt+ E'mGmt + G(2yDyt + MyHyt) + ,iyt,        j=1                   j=1                   j=1 k=1                                       m=1                    y=1

                    k>j

where A*
iyt and Biyt are the number of irrigated acres planted and expected profit per acre,

respectively, of the ith crop in the yth county at time t.  The expected per-acre profits are included

to capture the substitutability in the crops.  Variable Fjjyt is the variance of profit for the jth crop in

the yth county at time t, and is included to account for producer’s risk responsiveness.  Variable

Fjkyt is the covariance of profit between the jth and kth crop at time t, and is included to capture the

portfolio effect relation between the crops.  Both Fjjyt and Fjkyt are standardized for eliminating

the scale effect.  The total irrigated acres in the yth county at time t, Ayt is included for capturing

the expansion effect in irrigated acreage responsiveness.  Variables Gm are government program

variables for the peanut quota, and set-aside programs for corn and cotton.  Dummy variable Dy

is a county specific dummy variable accounting for cross sectional heterogeneity in the data,

variable Hy is a dummy variable indicating post boll weevil eradication.  The last term, ,iyt, is the

error term associated with the ith crop in the yth county at time t.  Parameters to be estimated from

the data are "0, $j, &j, *jk, 0i, 'm, 2y, and My.

Estimation Results

Assuming the error terms are independent and identically distributed allows estimating (5) by

ordinary least squares.  The F-test statistic in all acreage equations is significantly different from

zero at the 1% level.  This suggests a strong rejection of the null hypothesis that all parameters
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except the intercept are zero.  The coefficients of determination, R2, for the cotton, peanuts, corn

and soybean equations are 0.94, 0.93, 0.99 and 0.84, respectively.

Profits of corn are positively related to the irrigated acres of corn.  This relationship is

statistically significant at the 5% level.  As hypothesized, corn profit is positively related to

irrigated peanuts at the 1% significance level.  Corn is rotated with peanuts for nematode control

in peanuts.  Corn profits are also negatively related to irrigated soybeans at the 1% level. 

Soybeans and corn are substitute commodities in crop rotation.  The expected profits of cotton,

peanuts and soybeans reciprocate the same signs in the corn equation which reinforces the effect

of corm profits on irrigated acres of corn, peanuts, and soybeans.  

Profits of cotton and soybean are positively related to irrigated acres of cotton at the 1%

significance level.  This result is consist with the practice of soybeans used in rotation with

cotton.  

Acreage response of peanuts to its own profit is insignificant at the 5% level.  This

insignificance may be explained by the constraining role of government poundage quotas on

peanuts.  Producers of quota peanuts lack the flexibility to adjust their acreage in response to the

changes in profitability.  The positive and significant at the 1% level of corn profit on peanut

irrigated acreage supports the hypothesis of corn used in rotation with peanuts.  

The coefficients for expected profits of corn and cotton are both negative and significant

at the 1% level.  This indicates with enhanced profits of corn and cotton producers will divert

irrigated acreage from soybeans to corn and cotton.

Estimated coefficients of variation (or standardized variances) of expected profits are not

significantly different from zero even at the 10% level of significance for any crops with the

exception of soybeans in the corn equation (at the 5% level) and peanuts in the soybean equation
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(at the 10% level).  Lack of statistical significance on the estimated coefficients of variation

suggests that Georgia producers are not risk-averse with respect to profits and government price

supports enable them to consider only the expected (mean) profits in making acreage allocation

decisions.

Standardized covariances between crops are included to capture the risk-spreading or

diversifying behavior of producers.  Out of 24 (six in each of the four models) associated

coefficients half are significant at the 10% level.  These relationships suggest a portfolio effect

among the crops.  

The coefficient associated with total irrigated acreage in a county, TIAyt, has the expected

positive sign and is significantly different from zero at the 1% level in the corn and peanut

equations, at the 5% level in the soybean equation, and at the 10% level in the cotton equation. 

As far as responsiveness to TIA is concerned, peanuts are the most responsive among the four

crops, with a coefficient estimate of 0.260.  Similarly, an acre increase in TIA induces a 0.177

acre increase in corn, a 0.079 acre increase in cotton, and a 0.046 acre increase in soybeans. 

There were three government program variables considered in the study: corn set-aside,

cotton set-aside, and the peanut quota variable weighted by average peanut acreage per county.

Out of these three variables, only the coefficient associated with corn set-aside, in the corn

irrigated acreage equation, does not have the expected (negative) sign.  However, this estimate is

statistically highly insignificant.  Thus, the corn set-aside program does not seem to affect the

response in irrigated acreage of corn.  This program does seem to affect the acreage allocation in

cotton, as given by the 1%significance level of the coefficient associated with corn set-aside in

the cotton equation.
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The coefficient associated with cotton set-aside is significant at the 1% level and has the

expected (negative) sign in the cotton equation.  Also, the relevant coefficient estimate is high, -

175.22, indicating 175.22 acres of cotton being taken out of production with a one unit increase

in the set-aside requirement.  Corn irrigated acreage is positively affected by the cotton set-aside

program at the 1% significance level.  The relevant coefficient estimate of 77.88 suggests that a

one unit increase in cotton specified by the cotton set-aside program raises corn irrigated acreage

by 77.88 acres. 

Both the set-aside programs have a positive significant effect (at the 1% level) on peanut

irrigated acreage.  However, they have no effect on soybean irrigation acreage.  This indicates a

one unit increase in corn, by the corn set-aside program provision, causes 159.47 acres of cotton

to be taken out of production and replaced with 82.96 acres of peanuts, and the rest 76.51 acres

may be of other crops not included in this analysis.  Similarly, the one unit increase in the cotton

set-aside program provision causes 175.22 acres of irrigated cotton taken out of production and

replaced with 77.88 acres of corn, 57.48 acres of peanuts, and the rest 39.86 acres may be of

other crops not included in this analysis. 

In terms of the dummy variables, there are two such sets of dummy variables. The first

set is included in the econometric model to account for any heterogeneous county effects across

the counties, including differences in soil and environmental conditions.  Each is an indicator

variable contrasted against the county group categorized as Other. Most of these county dummy

coefficients (49 out of 64) are significant at the 10% level.  In particular, soybeans have 14 out

of16 of county dummies significant at the 1% level.  Corn and cotton have 13 significant county

dummy coefficients.  In contrast, peanuts have only 9 out of 16 county dummies statistically
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significant.   Producers of peanuts show the least amount of heterogeneity in production relative

to county group Other as compared to the other three crops. 

The second set of intercept-shifting dummy variables is included to upward jump in

cotton yield, possibly as a result of boll weevil eradication, across counties after 1992. Out of a

total of 64 possible estimates, 38 of the dummies demonstrate statistical significance at the 10%

level – nine each for corn, cotton and soybeans, and 11 for peanuts. 

Slippage

Changes in water demand are driven by changes in the distribution of crops producers

choose to irrigate from year to year.  These changes in crop distribution are in turn affected by

their expected profitability and total available irrigated acreage.  Conventional physical models

do not consider the substitution and expansion effects in determining agricultural water demand. 

In contrast, the econometric model considers these effects.  The difference in the estimates of

water demand is slippage.  This slippage may result in a higher or lower expected water use

depending on the effect of relative profitability.

Slippage is measured by comparing the reduction in estimates of water demand, resulting

from restrictions on total irrigated acreage available in a county, based on the physical model

versus the econometric estimates of (5).  The physical model computations of changes in water

demand are calculated on a county basis.  First, the crop distribution is calculated by dividing

irrigated acreage of each of the four crops in a county by the total irrigated acreage in the county. 

Second, the calculated weights are multiplied by the reduction in total irrigated acreage in a

county in 2001.  Third, the weighted reduction in acreage is multiplied by the region-specific BC

coefficient.  Finally, the changes in water demand in the four crops are summed up over the

counties to give the total 2001 decrease in water demand.  The physical calculations of crop
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distribution are summarized in table 1.

The expected profits and yields are calculated by applying the coefficients from the

estimated econometric model (5) to data for years 2000 and 2001.  Data years 2000 and 2001

were obtained from the same data sources used in data collection for the econometric model. 

While data on market and government prices were available from the sources, cost and yield

used in forecasting maintain the same assumptions as in the estimation of (5).  Yield data for

2000 and 2001 are assumed to remain constant at the average level of 1994 through 1998. 

Variable cost data are extrapolated using the 1999 level of variable cost.  The cost series is

adjusted for inflation by the average cost index for the years 1994 through 1998.

Econometric forecasts for corn, cotton, peanut and soybean irrigated acreage in 2000 and

2001 combined are 528,149 acres.  Under the econometric technique, a change in price results in

altering the distribution of the crop mix.  Changes in irrigated acres and the crop distribution are

listed in table 1.  The change in irrigated acreage and crop distributions estimates are used in

conjunction with the BC coefficients to estimate slippage.  Assuming a normal weather year, the

slippage estimate is calculated in table 2.

In disregarding price effects, the physical model implicitly assumes the irrigated crop

distribution remains constant between 2000 and 2001.  On the other hand, the econometric

model allows an adjustment in acreage distribution to reflect the role of expected profits, risk

aversion and total irrigated acreage in a producer’s irrigated acreage allocation decision.  The

differences in techniques result in a slippage amount of approximately -17.7%.  This amount of

slippage states the physical technique under-predicts water savings by approximately 50.9

million gallons per day.  Thus, failure to consider the economic substitution and expansion

effects has lead to erroneous policy analysis. 
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Conclusion

Incorporating price effects in the acreage allocation decision leads to slippage in the

measurement of water demand.  This study has attempted to identify the presence of slippage

and the pitfalls associated with disregarding it in measuring changes in water demand. 

Considering slippage is a first attempt in determining the effectiveness of water conserving

initiatives such as the Flint River Drought Protection Act.  Currently, policy makers are

assuming a certain level of decrease in irrigation water demand as a result of reducing the total

irrigated acreage.  The decrease in water demand is then in turn assumed to benefit both the

interstate and intrastate allocation of water from the Flint River.  The policy makers indicate

increased water flows will result for Alabama and Florida as well as more water for the

competing users within the state.  In considering the dynamic price effects in acreage allocation,

policy makers may be better equipped to assess the net change in water demand.  Greater

precision in information is beneficial given a larger than expected reduction in water demand

implies decreased government expenditures on payments to farmers to not irrigate in auctions

such as the one used in the FRDPA. 
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Table 1.  Physical and Econometric Estimates of Crop Distribution and Change in Total
Irrigated Acres 2000 - 2001

                  Irrigated Acreage (1,000's)                         
Crop 2000                    2001a                                  Crop Distributionb         

Physical         Econometric     Physical Econometric

Corn 119 112 125 0.212 0.237
 (-7)   (6)

Cotton 237 223 198 0.422 0.375
(-14) (-39)

Peanuts 177 167  161 0.315 0.305
(-10) (-16)

Soybeans   29   27    44 0.052 0.083
 (-2)  (15)

Total 562 529 528
(-33) (-34)

a Numbers in parentheses are the difference in 2001 and 2000 irrigated acreage.  

b Crop Distribution = Irrigated Acresi / Total Irrigated Acres, i = corn, cotton, peanut and
soybeans.
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Table 2. Slippage in Measuring Change in Water Demand 2000 - 2001a

                   BC                          Change in Water Demand (1,000 acre-feet)c

Crop                    Coefficientb.   Physical     Econometric   Slippaged

Corn    11.20     -78.4     67.2               

Cotton 11.77 -164.8   -459.0

Peanuts   6.37     -63.7          -101.9

Soybean    7.59     -15.9           113.9

Total    -322.8        -379.8 -0.177

a Slippage measure assumes a normal weather year.

b Blaney-Criddle (BC) formula.

c Water demand is calculated by multiplying a crop’s change in total irrigated acreage by the BC

coefficient.

Note, one acre foot equals 325,800 gallons.

d Slippage is equal to one minus the ratio of the econometric to the physical decrease in total

water demand


