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ABSTRACT

Within the marketing window for perishables such as food products, demand uncertainty is complicated by price
sensitivity and propensity to postpone purchase that is heterogeneous across consumers. These features pose
substantial challenges to retailers when pricing multiple products over time and across consumer segments. Getting
the dynamic profile of prices right has implications for performance of vertical food chains ranging from revenues to
food waste. This paper proposes an approach to dynamic pricing that is demonstrated to improve performance
within this setting.
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1 Introduction

Perishability of products follows from physical and functional obsolescence. While the former may
predictable, the latter depends on uncertain demand as consumers switch to substitute products.
Uncertainty faced by firms is further complicated by postponement of purchase by consumers. A key
management control within this context is pricing. As demand and product characteristics are dynamic,
pricing must also be recognized as a dynamic problem. Setting the wrong intertemporal price profile can
result in inventory accumulation or stock-outs, as well as inefficient profiles of product deterioration, or
ending stocks. Suboptimal pricing may leave ending stocks and waste disposal cost. In each case, these
implications can imply high costs associated with uncertainty. Setting the wrong prices across a set of
substitute products may result in unintended changes in demand as consumers switch products.

A further complication results from heterogeneity of consumers that compose the demand faced by the
firm. We consider two types of heterogeneity. Consumers differ with respect to price sensitivity, see e.g.
Narasimhan (1984), Levedahl (1988), Vilcassim et al. (1987), and Gerstner et al. (1994). Second,
consumers may differ by the timing of their purchase within the product life. Postponement of purchase
may be strategic based on anticipated price discounts or may reflect a willingness to trade-off quality for
price. By setting price directly or indirectly using segment directed discounts or coupons, uniform posted
prices can be differentiated across consumer segments. To manage these costs and resulting profitability
of perishables, firms must establish a pricing policy that defines the intertemporal price profile, as well as
prices across substitute products and heterogeneous consumers.

The stochastic properties demand for perishables are difficult to characterize. From this perspective, our
approach is to treat demand as uncertain and, following Knight’s suggestion, to distinguish this
uncertainty from risk where stochastic properties of demand can be characterized by a particular
distribution and optimal pricing derived from a risk neutral optimization problem. Further, our approach
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presumes the retailer has market power. As argued in the applied 1/0 literature, spatial separation of food
retailers often establishes spatial local pricing power. Even when competitive conditions may set price,
mark-downs or discounts in either the primary market or secondary channels are typically used at the
firm-level to establish price profiles that set prices below or at the market price. To the best of our
knowledge, the question of how to determine the optimal intertemporal price profile for perishables with
uncertain demand and product substitution has not been considered in past literature.

Consideration of the problem of pricing perishable food products has received very limited attention.
Past literature has considered food products and offered a theory that retailers set price as a markup over
farm price as reviewed by Wohlgenant (2001). Such pricing ignores product perishability as well as the
dynamic profile of uncertainty of demand. Observed retail pricing suggests occasional promotional sales
are often used at the end of predicted product life following a period of fixed price, Li et al. (2006). A key
feature of food products is their perishability. Within the short marketing window that characterizes most
perishable food and ag products, demand is typically highly stochastic, spatially specific, difficult to
predict, and reflects substitution across products by heterogeneous consumers. This combination of
features poses substantial challenges to retailers when pricing products over time, across products, over
spatial dimensions, and across consumer segments. By ignoring perishability, stocks at the end of product
life amount to food waste.

2 Dynamic pricing strategies

Consider a supplier that coordinates production of J perishable products that are marketable within a
finite time horizon with dates t =0,1,...T . Demand is heterogeneous and is characterized by S consumer

segments with each segment noted as se€S, ={1,2,...,S} where the value of s is interpreted as

indicating market segment such that as s increases, consumers have preferences for progressively higher
quality that is reflected in higher price. We note that this specification is consistent with the existence of
alternative  market channels. We define demand for each market segment as

55j (t) e{5lj ('[),52j ®,....., 5; (1)} for productjfor j=1,...,J .

We consider only the marketing problem and suppose initial stocks are pre-determined by prior
production decisions. At any time t in the season, the supplier offers a 1 x J vector of fixed supplies

g, (t) = (AL (t),...,q) (t)) to each segment s that represents remaining inventory given initial stocks

oquj (0). Thus, operationally the firm is faced with sunk costs for an inventory that must be sold before

the end of the season. Here, we suppose the control available to achieve this goal is the intertemporal
price policy. The intertemporal price policy defines a sequence of prices over time within the product life,
as well as across substitute products and market segments. That is, the firm chooses a price vector for

each time t=0,1,..T incorporating a price psj (t) for each product j for j=1,...,J and for each market

segment s for s=1,...,S to maximize revenue. This specification allows the firm to set price policy for
each product that is jointly optimal across products given that other products may be cannibalized.

By definition, uncertainty describes conditions when a firm anticipates stochastic factors will affect its
performance, however, the firm has limited knowledge of the mechanism generating the stochastic
outcomes. In contrast, full knowledge of such mechanisms is presumed when a stochastic environment is
described as posing risk. Given knowledge of characterizing moments of data generating mechanism, a
natural approach to decision-making under risk is to suppose decision-makers have preferences over such
moments and set controls to optimize a functional representation of those preferences. An example is risk
neutral preferences that motivate expected profit maximization. In sharp contrast, under uncertainty,
knowledge of the shape of the distribution of stochastic factors or its moments, are not assumed. Here,
we propose use of robust optimization to set performance controls in uncertain decision environments.
Robust optimization for a single control problem has been recently presented by Lan, et al. (2008) and
Birbil, et al. (2009). Our specification considers robust pricing across a set of substitutable products where
demand across a spectrum of heterogeneous customer segments is uncertain. Our approach builds on
Soyster (1973) and Ben-Tal and Nemirovski (1999). The intuition of the robust optimization approach is
simple. While the distribution of stochastic features of problem may be unknown, the decision maker may
be able to define boundaries of variation. Using simulation across the bounded set of possible stochastic
outcomes, the best choice can be made.
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Case 1: Dynamic perishable pricing under risk and risk neutral preferences

We first consider the case of risk neutral dynamic pricing or equivalently where the firm forecasts demand
based on a known distribution of stochastic demand, accepting those forecasts as its expectations. Where
the firm’s objective is linear in the stochastic factors, such an approach is equivalent to one where the
firm is risk neutral, having preferences only for the first moment of a known distribution over the
stochastic factor. Given fixed initial supply, the firm seeks a pricing strategy to maximize revenue and
ensure zero ending stocks. Product substitutability implies that demand for a product j depends on the
prices for a product j as well as those for other products in the product set, noted as a vector with
subscript, — j , or where particular products are indexed with superscript k. We specify demand as
follows:

sJ(pd p W) =al®-AIMPIM+ D yEMPE®, Vst

vked k=]

Our specification considers demand by segment s such that discrete choices by consumers across the
product set define a continuous function in prices. Together, the specified system for J products can be
viewed as a first-order Taylor series approximation of a complete demand system. We suppose demand is
a negative monotonic function of the own price j and that of substitutes —j. Maglaras and Meissner (2006)
or Perakis and Sood (2006) present similar specifications. We interpret the parameters

asj (t) e EREXJX(T”) as defining the market potential (i.e. maximum quantitative scale) for product j and

segment s at time t. We view market potential as stochastic. The parameters ﬂsj (t) e EREXJX(T”) and

j/sj (t) eERiXJX(T”) represent price sensitivity of products j and —j, respectively. Note that our

specification assumes consumers prefer to substitute products available in their segment rather than
downgrading or upgrading to other segments. This is consistent with consumer loyalty found across
particular market channels, stores, or branded versus private label products. We incorporate this
specification by requiring that products are differentiated by market segment such that each product type
j will be differentiated by market segment s such that its price will increase with s, see Birbil, et al. (2009)
for a similar specification.

The firm’s pricing problem is complicated by a mismatch between product availability and time of
purchase within the product’s life. That is, observation suggests consumers do not purchase
instantaneously when initial supply is provided to the market. We consider this problem as a passive
feature of demand, rather than a result of strategic behavior by consumers. This seems reasonable as
product quality diminishes over product life. To differentiate quantity purchased from level of demand at
any time, we define the proportion of demand that is postponed by customers each time period as

I]sj (t) e SREXJX(T*D and allow it to vary across segments and products. From the firm’s perspective, the

delayed purchase demand amounts to a shift of demand to future periods during the finite product life.
We define the cumulative demand function given postponement at any time t as:

(P (), Py ) = W= nd (DN ¢t -DF) (1 -1+ 5] (pJ (1), p O], t=1..T, Vs, ]

Intuitively, this specification includes demand that is based on delayed demand postponed from last
period (in the first expression in the squared-brackets) and that portion of current demand that will be
postponed to next period (based on the second expression in the squared-brackets). In the absence of
replenishment, the firm controls available inventory by setting price to maximize the season’s revenue
given stochastic demand across consumer segments and substitute products.

We first consider optimal pricing under a risk setting. Within this problem as summarized below, we
suppose the firm chooses price policy to set a dynamic profile of prices over time, across substitute
products, and across consumer segments to maximize expected revenue equation (1) based on an
expectation of delayed demand. To conserve notation, we define expected market potential using a

redefined notation, a; (t) . We assume initial supply of the product is fixed and exogenous to the pricing

problem. In the beginning, a fixed initial stock of each product is available, equation (6). At any time
during the product life, expected demand, equation (4), is affected by postponement of purchase,
equation (3), available supply is reduced each period, equation (2) and available supply must be positive
or zero, equation (5). Thus, we do not constrain ending stock to be zero as that may not make economic
sense. We constrain the price policy to ensure that prices are nonnegative, equation (7), that prices across
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segments are ordered, equation (8), that prices are set such that demand will be nonnegative, equation
(9), and we assume demand at zero prices will not reflect any delayed purchases, equation (10). The firm
is assumed to be risk neutral and draws forecasts of demand intercepts as random parameters from
known independent stochastic density functions. Given risk neutrality, we specify the risk neutral optimal
pricing problem as one of expected revenue maximization:

R (), p. ') = max > >, > [p. (1) (p.(t). p. " (V)] (1)
SOV s o

s.t.

Al () =al(t-1) -5 (pJ (), pi (1), t=1.T,Vs,Vj 2)

SIPI(t), pIT ) = Q- nd O)7d (t -8 € -1 + 1 (pI (1), ps @)1, t=1.T, Vs, j (3)

sd(pd(). pl ) =al®) - Bl )Pl () + Z 7e()pE(t), Vs, jt (4)
q’'()=0, Vvt j (5)
q'(0)=dg, Vi (6)
p(t)>0, Vvt j,s (7)
pi(t)= pl(t), s>s'eS, (8)
s} (pd (), p. ' (1))= 0 (9)
59 (pd(0), p; 7 (0)) =8 (pd (0), p; P (0)), Vs, j (10)

Case 2: Robust dynamic pricing for perishable under uncertainty

Define stochastic potential demand a,’ for each product and consumer segment as having a best estimate

Esj (t) . Define the uncertainty set U, for stochastic potential demand a; / as bounded by limits that are

set by a scaling parameter Hsj (t) that scales our best estimate as in equation (11).

al () e[ (O@-6/ ), a) O+ 6 1)] where a) (1) e R 9) (1) e R (11)

Thus, rather than supposing the agent has knowledge of the stochastic distribution of potential demand,
in case 2 our specification supposes the manager holds a best estimate as well as a scaling parameter that
defines limits on the set from which the manager presumes the stochastic potential demand is drawn.
Alternative specifications such as ellipsoidal and polyhedral uncertainty sets are considered by Ben-Tal
and Nemirovski (1999) and Bertsimas and Sim (2004). For a particular uncertainty set, suppose an optimal
price policy is derived from the revenue maximizing problem describe above. It follows that the control
problem has infinite number of constraints that describe possible uncertainty sets. Since a direct solution
of such a problem is intractable, we manipulate the specification to transform the control problem to an
equivalent, workable form. Specifically, we define a scalar V as the objective in (12) subject to the
constraint in (13) which implies that at the optimum (13) is an equality. We propose the following
deterministic problem as equivalent to the robust formulation with uncertain demand (derivation is
available from authors):
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R(p)(M);p (1) = max V (12)

pd (t),¥j,s,t.V
s.t.

J

S T t . . .
Y Y { P! (t){(ga— HOHG _1))}5; (0)

j=1 s:tl t=0 (13)
+> (- (r))“f[é;' OA-0J W) -AIOPI O+ D ri@) psk(t)} >V
=1 vked k#j
al (-0l - mplM+ D y®pi®)20 (14)
vked k#j
HORLHORYY [[Tr'gl(l— HONCHG —1))}3;' 0
| = (15)
+> @-n (r))”{a;' @O+ 0. @) -BI)pd @)+ D ri@)pd (r)] >0,Vs, j,t
r=1 vked k=]
pJ(t)=0, WVt j,s (16)
pl)= pl(t), s>s'es, @
J S T - .
We note that (13) can be simplified to z z Z:[psJ t)S (pd (t);1))1=V which parallels the objective
j=1 s=1 t=0

(1), however, defines V as a scalar value of the objective to be optimized.

3 Evaluation dynamic pricing policies under risk versus uncertainty

In this section, we compare our robust price policy against the price policy based on a forecast-based, risk
neutral model. First, we present optimal price policies and inventories for each of the models derived
from a numerical example. Next, we consider how the robust policy varies as the extent of uncertainty
varies across a set of randomly generated scenarios.

In our numerical experiments, we assume that consumer segment 1 focuses on the highest quality and
priced products. Parameters for numerical experiments are given in Table 1. We limit our consideration to
demand parameters satisfying a particular segmentation of the consumer population based on ranking
defined as:

Definition 1. Customer segment S is of a rank that is higher than that of segments' if a}(t) <al(t),
B ) < BL(t), and y! (1) <7 (1) for V), t.

We assume demand parameters satisfy Definition 1. This implies as s decreases, segment rank increases,
and market potential and price sensitivity decreases. We specify parameters to allow a sharp focus on
own-price sensitivity, so cross- prlce effects »/ i (t) are specified as equal for the two products as are the
postponement proportions (t) The flrst three rows of Table 1 define values for the demand‘
parameters. Demand for product 1 is parameterized as having greater market scale with values for a,’

that are greater than those used for product 2. Own price response 6; / for product 1 is about 10% less
than that for product 2. The products are parameterized as substitutes though not strong substitutes. 20%
of demand is delayed by consumers each period as shown by 7, /. Initially, we assume a low degree of
uncertainty, using 6, ’ = 0.02. We suppose initial stocks g ’ are smaller for segment 1 consumers than
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segment 2, and larger for product 1 than for product 2. The simulation experiments were implemented
using MATLAB and GAMS on a machine with Windows XP OS, T2300 CPU, 1.66 GHz, and 1 GB RAM.

Table 1.
Parameters for simulation studies. Case: J=2, S=2, T=10.
Parameters Product 1 Product 2

Segment 1 Segment 2 Segment 1 Segment 2
a SJ (t) 60 120 30 100
,BSJ' (1) 0.5 1.5 0.6 1.6
751' (t) 0.1 0.3 0.1 0.3
,751' (1) 0.2 0.2 0.2 0.2
Hsj (t) 0.02 0.02 0.02 0.02
q'(0) 100 400 80 300

The optimal price strategies and inventory policies are shown in Figure 1. In the figure, solid and dotted
lines represent optimal dynamic pricing strategy based on risk neutrality and expected demand and on
our robust strategy based on uncertain demand, respectively. Red and blue lines are the strategies for
segment 1 and 2, respectively. In the top-two panels, the product price dynamic profiles are presented. In
the lower two panels, the inventory profiles over time induced by the price policy are presented.
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Figure 1. Dynamic price and inventory strategies

For each product, segment 1 prices are set above those set for segment 2. In both cases, a fixed price is
not found to be optimal. Instead, initial price decreases are optimal, followed by a period of stable price.
We view this initial price decrease as a means of clearing inventory given observed demand conditions no
apparent in the initial time period. As shown in Figure 1, this price discounting increases sales and draws
down inventory in the first period and prices are re-adjusted upward and maintained there until later
periods when further discounting is set and maintained until inventory is cleared to an optimal level.

Under uncertainty, results show that optimal price strategy sets prices lower than does a price policy
drawn from risk neutral optimization. This is consistent with aversion to future uncertainty that leads to
pricing that induces greater sales early in the season to eliminate possible lost sales. As demand is
uncertain, pricing is assumed to be adjusted to best clear inventories while optimizing the objective.
Looking across market segments, we find the price for segment 1 is much higher than the price for
segment 2 reflecting the economic benefits of differentiation. A similar price difference across segments
is found under both demand conditions. For the inventories, we see that for the problem specified it is
not optimal to set prices to clear inventories. We see optimal pricing results in some waste. We found that
robust strategies for product 1 are nearly but not identical to those associated with the risk neutral case.
The inventory trajectories for product 2 vary between the two market segments, however, in both
segments inventories are drawn down faster under the uncertainty case with robust optimization. We
consider the revenue outcomes next within a study of the implications of the level of uncertainty.

To consider sensitivity of firm revenue to the extent or level of uncertainty, we consider the implications
of the value for Hsj (t) . Intuitively, this parameter indicates the extent to which the bounds that define the
uncertainty set differ from the best estimate of market potential, as’ . We simulate across the following
set of values forHsj (t): [ 2%, 5%, 7%, 10%, 15%]. This results in uncertainty defined by the limits of

possible values increasing by 4%, 10%, 14%, 20% and 30%, respectively. Thus, for the uncertainty case, we
derive five robust price strategy trajectories that can be compared to the risk neutral dynamic pricing
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policy. Based on derived price trajectories, we generate random demand sets from a uniform distribution
to generate demand realizations that define a set of scenarios. We draw our levels of market potential

from the interval[a_lsj (t)(l—t9sj (), ﬁsj O+ Hsj (t))]. We derive 50 realizations (scenarios) for each
setting. For each scenario, we derive corresponding revenue trajectories based on optimal dynamic price
trajectories. To compare results, we note the risk neutral dynamic price trajectories (D) and robust
trajectories (R) and, for each scenario, we report in Table 2 the optimal value (ov), as well as minimum
(min), maximum (max), average (ave), and standard deviation (sd) of objective values.

Table 2.
Revenue characteristics under differing extents of uncertainty
Dov Rov Dmax Rmax Dmin Rmin Dave Rave Dsd de
4.9712e+ 4.6854e+ 5.0784e+ 5.1757e+ 4.9178e+ 4.9876e+ 4.986le+ 5.0743e+
0.02 359.5613  331.9319
004 004 004 004 004 004 004 004
4.9712e+ 4.4984e+ 5.2824e+ 5.7034e+ 4.864le+ 5.2732e+ 5.0463e+ 5.462le+
0.05 944.2957 910.4214
004 004 004 004 004 004 004 004
00 49712e+ 4.3783e+ 5.3800e+ 6.0095e+ 4.6941le+ 5.3378e+ 5.0089e+ 5.6313e+ 1.5416e+  1.4640e+
.07
004 004 004 004 004 004 004 004 003 003
49712e+ 4.1946e+ 5.4003e+ 6.2711e+ 4.7689e+ 5.6926e+ 5.0485e+ 5.9412e+ 1.6425e+ 1.4787e+
0.1
004 004 004 004 004 004 004 004 003 003
o1 49712e+ 3.7643e+ 5.5573e+ 6.5213e+ 4.5801e+ 5.7144e+ 5.1140e+ 6.1633e+ 2.6568e+ 2.2816e+
.15
004 004 004 004 004 004 004 004 003 003

From the simulations of this experiment, robust optimization solutions are shown to be more stable
(based on standard deviation) than risk neutral-based price policy, i.e. Ry < D, across each value of 8.

This result supports the recommendation that to stabilize revenue the adoption of robust price strategies
be pursued relative to forecast-based strategies. However, it is natural to ask what is the cost with respect

to revenue achievable? Table 2 shows that D, > R,, . However, we note that as revenue is stochastic, the

optimum may not be achievable. Instead, we consider the average revenue which shows that D,,.< R,
at all levels of uncertainty. Thus, our robust pricing policy provides both an improved average outcome as

well as reduced variation in revenue as we found Ry, < Dg,.

The dominance of our robust dynamic pricing is further supported by considering minimum, maximum

revenues achievable. Further, Table 2 shows that the values of R, are decreasing in the amount of

uncertainty and smaller than D, . Across each metric for each level of uncertainty, Table 2 shows our

proposed robust dynamic pricing under uncertainty outperforms the risk neutral dynamic pricing that only
considers risk.

4 Conclusions and further studies

In this paper, we have presented two dynamic pricing models: i) risk neutral optimization and ii) a robust
optimization under uncertainty. Robust optimization allows the price policy to be derived such that is
guarantees performance falls within specified boundaries given the degree of uncertainty. In other words,
our robust models can prevent a loss associated with significant demand decreases that fall outside of
such boundaries. In this way, relative to risk neutral pricing, our robust pricing is found to reduce ending
inventories which are specified as waste in our model.

Our experiments for these dynamic pricing approaches show that the robust price strategies are very
stable across different degrees of uncertainty and differing demand parameterizations. Even if a firm
encounters a sudden and significant negative demand shock, a certain range of performance is
guaranteed by the robust policy and this ensures that our robust approach dominates the risk neutral
dynamic pricing policy.
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APPENDIX. Derivation of Robust Optimization model

By addressing uncertainty set (A.12) and manipulating objective function, we have

R(pJ (@) 1)) = eV (A1)
Jo s T ~

s.t. Z Z gtp;’(t)a;’(ps(t):t))]zv (A2)
0 ®=q)(t-1)-5,(p) (V). pJ(©). t=1..T, Vs,vj (A3)
5 (pI (1) = W=7 ) (-1 (-1 + 53 (p)®), (O], t=1...T, Vj (A4)
sJ(pJ @), p. ®) =a) (1) - B M) p. (1) + Z 75 P, Vs, it (A.5)

T

q’(t)=0, Vi ] (A.6)
q’(0)=a, Vi (A.7)
pl®)=0, Vvt j,s (A.8)
pl)=pl), s>s'es, (A.9)
sl (pd(), p;l) =0 (A.10)
59 (pd(0), p; (0)) =5 (p! (0), p; 7 (0), Vs, j (A.11)
val e[al@-6),a)@a+0/), vt, j,s (A.12)

Note that the constraint (A.12) makes infinite number of constraints for the revenue maximizing problem.
Thus, we need to manipulate this constraint.

Here, we know that constraint (A.5) over (A.12) can be reformulated as follows:

siplm.p )=l - A PO+ Y FOPEW)

vked k# j

2@ A-0)®) - A PO+ Y SO )20

vked k# j

Also, manipulation of (A.11) and (A.4) gives us:
SJ (), P (1) = @—7d (O)Ind -1t -1) + 5] (pd (1), P )]

= (ga— nd (N (« —1))]6; (0)+ > -7/ ()7 6! (p! (7). b (7))
=1
The constraint (A.6) and the above equation becomes
0! =al(t-D) —([Tﬁla— nd (N (¢ —1))}3;' 0+ A-n @)} (pl (), .’ (r))J
=1

t=1.T, Vj .

From the (A.7), we have (A.6) over (A.12) as follows:
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(=0} ©0)-3 ([Tﬁl(l—mj (N0 (r—l))jés" ©+ Q-1 () "8I (p(2), p; (r»}
i=0 r=1

>q'(0)- ). ((;'11(1— nd (O (= —1)))6;' ©)

i=0
+> (- (r»t‘f[e‘ls @OA+0J () -Bl@Dpl @)+ D 7 (r)pb(r)Dzo
=1

Vked k#j

for Vt, j,S.

Also, the constraint (A.2)

2 2 Z[p;(t){[ga—n;‘ (). (r—l))jés' 0+ (= n) ()~ 5} (p)(2), p;"(r))sz

j=1 s=1 t=0

222 { p. (t){( }tl(l‘ i @)l (c —1»]5; 0)

j=1 s=1 t=0

+Z(1—ﬂsj(f))‘T(ﬁsj(t)(l—9sj(t))—ﬂsj(t)psj(t)+ > yf(t)p?(t)}sz
=1

Vked k#j

Finally, we have (11)-(16).
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