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Abstract 

Agricultural and environmental economists are in the fortunate position that a lot of what is happening 

on the ground is observable from space. Most agricultural production happens in the open and one 

can see from space when and where innovations are adopted, crop yields change, or forests are 

converted to pastures, to name just a few examples. However, converting images into measurements 

of a particular variable is not trivial, as there are more pitfalls and nuances than “meet the eye”. 

Overall, however, research benefits tremendously from advances in available satellite data as well as 

complementary tools, such as cloud-based platforms for data processing, and machine learning 

algorithms to detect phenomena and mapping variables. The focus of this keynote is to provide 

agricultural and environmental economists with an accessible introduction to working with satellite 

data, show-case applications, discuss advantages and weaknesses of satellite data, and emphasize best 

practices. This is supported by extensive Supplementary Materials, explaining the technical 

foundations, describing in detail how to create different variables, sketch out work flows, and a 

discussion of required resources and skills. Last but not least, example data and reproducible codes 

are available online. 
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1. Introduction 

Satellite data has several features of interest to agricultural and environmental economists. It 

can provide measurements in high frequency and high resolution, over long periods of time 

and with wide spatial scope. It is also commonly more objective and methodologically unified 

than e.g., survey data. At times, it provides the only cost-effective and reliable measurement 

available (Burke et al., 2021; Donaldson & Storeygard, 2016; Lobell et al., 2020). Other times, 

it is a pivotal cross-check to verify other data, or it enables to add a critical variable to an 

existing dataset (Wuepper and Finger, 2023). 

 

Fig.1. Croplands as seen from Space. (a) United States, (b) Uruguay, (c) Egypt, (d) India. 

Source: USGS Landsat via Google Earth Engine. 

 

Fig.2. Quantifying Change over Time. Left: Croplands Near the Border Between South Africa 

and Lesotho in 2001. Right: Croplands Near the Border Between South Africa and Lesotho in 

2018. Blue line indicates a section of the border between the two countries. Source: Wuepper 

et al. (2023). 
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Satellite data, however, cannot replace ground data and it is commonly only useful in 

combination (Nakalembe and Kerner, 2023; Kerner et al, 2024). Moreover, it comes with its 

own list of issues and pitfalls, such as new sources of measurement errors and inconsistencies, 

to name just two (Jain, 2020). As such, understanding the potential and limitations of satellite 

data has become an important skill for agricultural and environmental economists, to make the 

most out of this data source, and to avoid misconceptions. 

The workflow of the here covered literature regularly involve at least two consecutive steps. 

First, satellite measurements come in the form of spatial layers e.g., showing croplands from 

different regions (Fig. 1) or different time periods (Fig. 2). The second step is to take these 

data and turn them into a table that can then be analyzed. This step is fundamentally 

straightforward, as there is a close correspondence between the two formats, and the same 

information can be stored alternatively in multiple layers or in a single table (Fig. 3).  

 

Fig.3. Correspondence between Maps and Tables. (A) Each layer stores a variable. (B) 

each column stores unique identifier of a pixel or grid-cell and its coordinates (longitude and 

latitude) as well as all variables extracted. Source: (A) adapted from Vasiljević et al. (2020), 

(B) this study. 

In contrast to survey data collection, satellite data can be “collected” relatively inexpensively 

and as frequently as commonly needed. The advancements in satellite technology have 

significantly reduced the cost of acquiring high resolution spatial data. As opposed to ground-

based surveys that can be time consuming and expensive due to labor, travel, and equipment 

cost, satellite data offers a more affordable and efficient alternative. The economies of scale 

in satellite operations combined with the ability to cover large and remote areas efficiently make 
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it highly cost-effective. Additionally, the continuous improvement in satellite sensors and data 

processing techniques has enhanced the accuracy and usability of satellite-derived 

information, further increasing its value as a survey tool. Finally, and especially useful, satellite 

data can always be collected close to spontaneously, in contrast to e.g., survey data, for which 

the data collection must be planned long in advance and once the data is collected, the data 

is what it is. With satellite data in contrast, a researcher might create a dataset and later 

realizes that an important variable is missing. This variable can be separately processed and 

added to the initial data. During peer-review, further data might be asked for (further outcome 

variables, e.g., or data on specific mechanisms). These too, can be added at any point in time. 

An obvious and important limitation of satellite data is its inherent inability to measure 

immaterial variables such as preferences and beliefs, prices and contracts, property rights, 

and so on. The second important limitation of satellite data is that it critically requires ground 

measurements for validation, calibration, and training of algorithms. In the end, satellites 

mostly provide pictures and quite general measurements (things like colors, reflectance, etc.), 

and these need to be interpreted to become meaningful variables for economic research.  

The work with satellite data often involves machine learning, e.g., to detect specific patterns in 

the data (classification), or to transform measures into the actual variables of interest 

(prediction). Examples include the identification of deforestation drivers, because deforestation 

looks different depending on its source (Curtis et al., 2018) and the mapping of cropland 

dynamics of over time (Potapov et al., 2022).  

The aim of this keynote is to provide an accessible introduction and a coherent framework to 

using satellite data for research in agricultural and resource economics. We showcase different 

applications, cover satellite data advantages and disadvantages, potentials and risks, and 

distill best practices, together with more detailed explanations in the Supplementary Materials, 

and example code and data provided online.  

Below, we showcase recent applications of using satellite data in agricultural and 

environmental economics (Section 2), discuss known pitfalls and potential remedies (Section 

3) and conclude in Section 4. In the Supplementary Materials, we provide detailed descriptions 

of technical foundations, workflows, variable construction, and required skills and resources. 

On GitHub, we provide links to data and codes1.  

                                                           
1 1 https://github.com/land-economics-ilr-uni-bonn/sat-agri-econ 
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2. Applications 

In this section, we discuss research using satellite data to measure outcomes, treatments, for 

causal identification, to test assumptions, and for practical applications. For reference, Fig.4 

exemplifies the differences in resolution between three of the most used satellite platforms, 

MODIS, Landsat, and Sentinel. Depending on the spatial scale of the analysis, required 

temporal frequency of measurement, and what the researcher is trying to measure, frequently 

at least one of these platforms is used. In addition, sometimes, very high-resolution data is 

needed, such as available from Planet Labs (2024). 

 

Fig.4. Spatial resolutions among three satellite platforms; MODIS, Landsat and Sentinel-

2, zoomed in to different levels of detail represented by panels A, B, and C. Both MODIS 

and Landsat images were acquired on the same day (30th June 2017) while Sentinel image 

was acquired a day earlier. They are displayed as red-green-blue (true color) composites. 

Source: (Luo et al., 2020) 
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a. Using Satellite Data to Measure Outcomes 

A variable of major research and policy relevance is crop yields. Alternatively to the use of 

satellite measurements, one can measure crop yields on the ground, ask farmers to report 

them, or use official statistics, such as provided by the FAO (2024a). When relying on ground 

measures or farmer reports, the data is usually patchy and commonly only available for some 

selected farms. Official statistics on the other hand, are only available highly aggregated. 

Satellite data provides relatively rough but globally consistent, high resolution and high 

frequency, wall-to-wall crop yield measurements. This is usually based on either a vegetation 

index directly, such as the NDVI or the EVI (NASA LP DAAC, 2024a) or a derived product, 

such as NPP (NASA LP DAAC, 2024b), measured on global croplands, as e.g., identified by 

Potapov et al. (2022). An example of a large, global study with satellite measured crop yields 

as outcome variable is Wuepper et al. (2023). They are interested in how crop yields change 

in response to institutional changes and they measure crop yields globally as the annual 

maximum2 of the EVI on 1 km2 cropland grid-cells over 20 years. They estimate that a 10% 

improvement in countries’ institutions improves crop yields by 2% on average globally. 

Strobl and Strobl (2011) are interested in the impact of large dams in Africa, and they measure 

crop yield with the net primary production (NPP) on crop fields over time. NPP approximates 

biomass production, in terms of grams of carbon per m2. This can be converted into 

kilocalories, and hence to nutritional value. They estimate that upstream dams have on 

average provided up to 12% of the daily minimum per capita kilocalorie demand in downstream 

communities and increased agricultural production by 1%. 

Asher et al. (2023) estimate the long-run development impact of India’s irrigation canals. Their 

measure of crop yield is again based on the EVI and they find a larger crop yield effect in the 

dry season (+7.1%) and a smaller effect in the rainy season (+1.7%). The main long-run effect 

is a population increase around irrigated villages, advancing structural change. 

To estimate the effect of Russia’s Ukraine invasion on agricultural production, Deininger et al. 

(2023) use 4 years of panel data based on satellite imagery and extensive ground truthing 

data. Using machine learning techniques, they are then able to identify both location and extent 

of all conflict related damages to crops and fields, and both extent of area grown with crops 

and, for cereals fields, peak NDVI as crop yield measure. As a final step, they use statistical 

data to convert NDVI into actual cereal yield, measured in tons per hectare. 

                                                           
2 To measure crop yield, it is usually more reliable to use maximum values and not the mean, as the mean can 

be biased by the measured color of a field when there is no full crop cover (fallow period, color being 
dominated by color of soil and not of the crop after planting, residue burning turning fields dark, etc.). A 
drawback is that this does not capture the yield obtained from multiple harvests. 
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Another example of a study that quantifies crop yields from satellite data is provided by Rampa 

and Lovo (2023). They evaluate the effect of a land tenure reform in Ethiopia. They rely on the 

NDVI as yield measure, at a resolution of 80 km2 and over 13 years. They find that the land 

tenure reform increased crop yields by about 2% relative to the mean of the treated region. 

Complimentary to the measurement of crop yields on current cropland is the identification of 

cropland changes, i.e., expansion and abandonment. In the study of Wuepper et al. (2023), 

the global land cover classifications from Friedl and Sulla-Menashe (2019) are used to estimate 

whether institutional changes lead to changes in the extent of countries’ cropland area. The 

data provides 17 different land cover classes, which include two types of cropland. Wuepper 

et al. (2023) find that countries’ cropland area (both classes together) tends to expand in 

response to institutional improvements, mostly at the expense of countries’ forests.  

Olsen et al. (2021) focus specifically on the impact of conflict-driven cropland abandonment 

on food insecurity in South Sudan. They combine Sentinel-1, Sentinel-2, Landsat-8 and 

MODIS imagery, as well as a Copernicus land-cover product, and use a random forest 

algorithm to identify all abandoned croplands. They find that the conflict caused 16% of 

croplands to be abandoned between 2016 and 2018. 

Finally, Sukhtankar (2016) is an example for yet another related outcome: Identifying the area 

planted with a specific crop (sugar cane). Sukhtankar (2016) empirically investigates whether 

privately owned sugar mills affect farmers’ crop choices and welfare differently than 

cooperative owned and public mills. It is found that private ownership of mills increases 

sugarcane production and farm incomes. 

Huang et al. (2021) are interested in the impact of an anti-poverty program in Rural Kenya. To 

measure poverty, they combine satellite data with deep learning. What they catch are visible 

changes in housing quality that reflect improving household welfare. The alternative to their 

measurement approach would have been repeated in-person visits for interviews with a large 

number of people who can be difficult to reach. Huang et al. (2021) re-analyze a program for 

which such interviews exist too, and are able to show that they recover the same information. 

Whereas at the national level, night-lights data can already capture economic change, 

particularly in rural areas this does not work well, because there is often too little night light. 

Daytime imagery, however, shows what materials roofs are made of, and this in turn, is a 

reliable proxy for economic change, as Huang et al. (2021) show. Using their approach, they 

find the same, positive treatment effect of the program as does the comparison evaluation 

based on extensive survey work – at a much lower cost. 

Ratledge et al. (2022) develop this further and estimate causal effect of electricity access on 

poverty in rural Uganda. They solve several issues, such as first, making sure that they 
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modelling of the outcome (poverty) is independent from their treatment (electrification). Would 

they have used night-lights, e.g., to predict poverty, they would have “build-in” their treatment 

effect into their outcome data. Secondly, they address the issue of attenuation bias that is often 

a feature of modelled data that contains less variance than actual outcome data.  

Smith (2023) uses satellite data to study land values. Specifically, he is interested in the long-

run effect of land concentration on the American frontier and he finds that historic land 

concentration leads to an increased reliance on tenant farming, lower investments, and lower 

land values that persist to today. To construct the land use values, he especially uses data 

from USDA (2024) (to measure land use) and FAO (2024b)(to measure productivity).  

Ali et al. (2020) use Landsat 7 imagery over Ethiopia to construct pixel level annual and 

seasonal averages of normalized difference vegetation index (NDVI), soil-adjusted vegetation 

index (SAVI), and land surface water index (LSWI) to evaluate the performance of soil and 

water conservation measures. They find large treatment effects which they can also cross-

verify with ground measures of river sediment loads. 

Focusing on pastures in China, Hou et al. (2023) examine the effect of a land tenure reform 

on grassland quality, as measured by the NDVI. According to their estimates, the combination 

of privatization of land use rights and security protection improved grassland conditions by 3%. 

Another outcome of major policy relevance are land-cover changes and particularly forest 

changes (deforestation, forest degradation, forest restoration). Satellite data combined with 

machine learning provides globally consistent forest measurements in high resolution and a 

long period of time, allowing policy evaluations based on difference-in-differences, difference 

in discontinuities, and similar. An exemplary study that uses such data is that of Groom et al. 

(2022). They evaluate Indonesia’s moratorium on forest concessions, using difference-in-

differences with the forest change dataset provided by Hansen et al. (2013). They find a small, 

positive effect on forest cover and that the moratorium was quite cost effective.  

Wuepper et al. (2024) globally evaluate the effectiveness of all major public policies that 

countries implemented from 2001 to 2017. They use differences in discontinuities. They 

consider deforestation, forest degradation and improvement, and net primary production, at a 

spatial resolution of 1 km2. Like Groom et al. (2022), they use the data of Hansen et al. (2013) 

to measure tree cover change, and changes in forest conditions are quantified with the 

Enhanced Vegetation Index (EVI), which measures the health of forests based on their color 

(NASA LP DAAC, 2024a), and Net Primary Productivity (NPP), which approximates how much 

carbon the vegetation accumulates (NASA LP DAAC, 2024b). Wuepper et al. (2024) estimate 

that countries’ public policies reduced global tree cover loss by 4 percentage points - but with 

large between-country differences, mostly explained by policy stringency and enforcement. 
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Changes in tree and forest cover were among the first satellite measured outcomes 

economists analyzed and they continue to be highly utilized. For examples, Jayachandran et 

al. (2017) conducted a large randomized control trial in Uganda, analyzing how much 

deforestation can be reduced with payments for ecosystems (a lot), and West et al. (2023) how 

much voluntary carbon offset projects have actually contributed to forest conservation (a little). 

Studying 26 countries in Sub-Saharan Africa, Lundberg and Abman (2022) show that 

increased maize price volatility reduces deforestation rates. In Mexico, Chort and Öktem 

(2022) show that a coffee pest incentivized the diffusion of a resistant new plant variety that is 

adapted to sun exposure and does not need tree cover anymore, which fueled deforestation. 

Another study, that of Abman and Lundberg (2024), also analyzes deforestation using the 

satellite derived data of Hansen et al. (2013) and additionally uses satellite data to actually 

come up with their study’s control group. They use previously collected survey data on 

participating oil palm farmers in Ghana in a program that helped them improve their market 

access. The important limitation of their survey data was that it does not cover non-participating 

households or villages. To overcome this, they relied on remotely sensed settlement location 

data (GRID3, 2024), created Thiessen polygons around these coordinates (because exact 

settlement boundaries were not available), and used alternative approaches to select control 

observations from those settlements that were in the vicinity but not in their treatment group.  

They then use versions of difference-in-differences and the synthetic control method to 

estimate whether improved market access led to increased forest loss in the participating areas 

compared to non-participating but otherwise similar areas. This is indeed what they find.  

Wilebore et al. (2019) use very high-resolution land cover data in their randomized control trial 

in which they provided unconditional conservation payments for communities near the Gola 

Rainforest Park on the border of Sierra Leone and Liberia. To measure agricultural land 

clearance, they use RapidEye multispectral satellite imagery with a resolution of 5x5m for the 

period before and after the intervention. The classification of land covers was based on a 

maximum likelihood classifier, using optical bands, texture metrics, and vegetation indices.  

Also, agricultural air and water pollution can be derived from satellite measurements, enabling 

research e.g. on potential policy levers to mitigate these issues. Agricultural air pollution, e.g., 

is a major human health hazard. Nian (2023) uses high-resolution satellite data to measure 

agricultural fires at a resolution of 1 km2 for all of China. The data is provided by China’s 

Ministry of Ecology and Environment (MEE) which collects daily straw burning data from the 

moderate resolution imaging spectroradiometers (MODIS) of NASA’s Satellites TERRA and 

AQUA. These satellites overpass China four times a day and a fire point is identified when a 

thermal anomaly is detected within a pixel using an algorithm that exploits the mid-infrared 

radiation from fires. Nian (2023) then estimates and compares the effectiveness of two different 
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mitigation levers: economic incentives and regulation. He estimates that demand from new 

biomass power plants reduced agricultural fires by 30% but a ban around airports was 

ineffective. 

 

Fig.5. Crop Residue Burning as seen on Sentinel-2 Imagery. Left image shows fields 

around harvest time, middle field shows the same fields directly after residues were burned, 

and the right image shows again the same fields one week later. Source: Jack et al. (2022) 

In India, Jack et al. (2022) use high-resolution satellite imagery from Planet Labs (2024) and 

Sentinel-2 to identify residue burning on crop fields (See Fig.5 above). Combining these two 

different measures is helpful, as PlanetScope data is measured more frequently (roughly every 

2-3 days), so less likely to miss a burning event, whereas Sentinel-2 data is collected less 

frequently (every week to 10 days) but additionally provides information in the mid-infrared 

range, which helps to separate burned and unburned plots. Jack et al. (2022) then combine 

monitoring data and spot checks to train a random forest model to categorize fields into burned 

and not burned. This is used in a randomized control trial in which farmers are being paid not 

to burn their crop residues. To address liquidity constraints and farmer distrust, a portion of the 

money was paid unconditionally upfront. They find that this strategy reduces straw burning by 

10 percentage points, in contrast to the standard contract, which has no effect. 

Tang et al. (2023) are interested in the effect of intensive agriculture on water quality in China 

and exploit the fact that nutrient pollution in water creates algae blooms that are detectable on 

satellite imagery. The data on algae blooms is provided by Wang et al. (2023) who developed 

an algorithm to automatically detect algae blooms on MODIS Aqua images. Tang et al. (2023) 

find that a 1% increase in intensively farmed cropland leads to a 0.5 percent increase in the 

size of algae blooms and a 0.24% increase in their duration. A nation-wide policy to reduce 

fertilizer use is found to have mitigated the problem to some extent.  

Advances in the availability of satellite data and complimentary machine learning tools has 

also reinvigorated and improved descriptive research. Often, this research is performed at the 

global level and the main product is a detailed map of a policy-relevant phenomenon, such as 



10 
 

human development (Sherman et al., 2023) or the profitability of farming practices (Kamau et 

al., 2023). 

For example, for a long time, the human development index has been measured at the country 

level using surveys and official statistics. More recently, finer measurements at the level of 

sub-national administrative units have been added (at high costs, based on extensive surveys). 

Sherman et al. (2023) use a machine learning based downscaling approach to produce a 0.1 

× 0.1- degree grid at the global level (see Fig. 6 below). An interesting finding from this exercise 

is that apparently, aggregation bias has so far led to an erroneous HDI assignment of more 

than half of the global population within each country. For their computations, Sherman et al. 

(2023) build on the MOSAIKS approach (Rolf et al., 2021) and use both day and night time 

satellite imagery from Planet Labs (2024). 

 

Fig.6. A High-Resolution Map of the Human Development Index. The Human Development 

Index (HDI) is a summary measure of average achievement in key dimensions of human 

development (income, education, health). Using statistical data, this is available at the national 

level. With satellite data and machine learning, it is available at the grid-cell level. Yellow 

indicates higher, purple lower development. Source: Sherman et al. (2023) 

Other recent studies have mapped agricultural GDP (Ru et al., 2023), by first disaggregated 

different administrative statistics of agricultural GDP and then using satellite-derived indicators 

of crop, livestock, fishery, hunting and forestry production to produce a global gridded dataset 

showing local agricultural GDP all around the world, and the global mapping of the profitability 

of diversified versus simplified farming (Kamau et al. 2023).  

b. Using Satellite Data to Measure Treatments 

A treatment that is regularly measured using satellite data is agricultural pollution. He et al. 

(2020), e.g., use satellite data to detect agricultural straw burning in China (relying on the same 
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data as Nian (2023), which we discuss above). He et al. (2020) are interested in the health 

impact of the straw burning and find a considerable increase in deaths from cardiorespiratory 

diseases.  

Another angle to the effect of air pollution is shown by Proctor (2021), who globally estimates 

the effect of changes in sunlight due to changes in clouds on crop productivity. He find that’s 

average maize and soy yields have been reduced by 1% and 0.1% due to air pollution and 

could further decrease by 1.8% and 0.4% under further climate change. The main data source 

is the remotely sensed cloud data of Rossow et al. (2016). 

In contrast, Taylor and Schlenker (2021) estimate how much CO2 fertilization has contributed 

to agricultural productivity increases over time in the US and identify it as the main driver. The 

data comes from NASA (2024) and for identification, they exploit wind patterns, year-to-year 

anomalies from county-specific trends, and the spatial first-differences approach of 

Druckenmiller and Hsiang (2018). 

Skidmore et al. (2023) estimate the effect of pesticide pollution on the incidence of childhood 

cancer in Brazil, focusing on the gradual spread of high-intensity soy production and exploiting 

that pesticide pollution always moves downstream and never upstream within a watershed. To 

do so, they use remotely sensed landcover maps from Mapbiomas (2023), which map soy, 

sugarcane, all other temporary crops, pasture, mining, and remaining natural vegetation, and 

they use remotely sensed watershed data from Instituto Brasileiro de Geografia e Estatística 

(2023). Skidmore et al. (2023) indeed find a robust connection between upstream agricultural 

intensification relying on toxic pesticides and downstream cancer incidences. 

Another group of variables that is regularly measured with satellite data are weather-variables. 

For example, to correctly predict climate change impacts on global agricultural productivity, it 

is important to understand the impact of water supply on global crop yields and its relation to 

temperature stress. To answer this research question, Proctor et al. (2022) use satellite-

measured soil moisture data measured by the European Space Agency (Dorigo et al., 2017; 

Gruber et al., 2019). This data provides surface soil moisture measures up to a depth of 

approximately 5 cm at daily 0.25° × 0.25° resolution. Other used data includes crop yields from 

FAO (2024a) and temperature and rainfall data from NOAA (2024). Proctor et al. (2022) predict 

yield damages of −9% to −32% by the end of the century from changes in temperature and 

soil moisture, with each contributing roughly equally. In another study, Proctor et al. (2018) 

study the potential effect of geoengineering on global crop yields, using natural volcanic 

eruptions as a natural experiment. Their main satellite data are measures of stratospheric 

aerosol optical depth and cloud fraction data (Sato, 1993; World Radiation Data Centre, 2015). 

According to their estimates, the potential to increase crop yields with geoengineering is rather 

limited. 
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Anderson et al. (2021) combine a range of satellite measured variables such as soil moisture 

(from the Global Land Evaporation Amsterdam Model), precipitation (from the Climate Hazards 

group Infrared Precipitation with Stations), and the enhanced vegetation index (EVI, from the 

MODIS satellite MOD13A1 V6 product) with data on locusts, conflicts, and food insecurity. 

They then quantify the roles of conflict, drought, and locusts on food insecurity in Sub-Saharan 

Africa. One of their findings is that violent conflict exacerbated drought-related food insecurity. 

Malacarne and Paul (2022) examine the impact of adopting improved management practices 

on food security and nutritional diversity in Tanzania and Mozambique – in general, and in the 

context of drought resilience. To measure household specific drought conditions, they 

alternatively use cumulative rainfall from Funk et al. (2015) and the Global Vegetation Health 

Index (VHI) from NOAA (2018). With both they find that improved management practices lead 

to better nutritional outcomes, but much less so under drought conditions. 

Ali et al. (2018) estimate the costs and benefits of land fragmentation in Rwanda and measure 

their treatment variable, land fragmentation, as least-cost walking distance between 

homestead and parcels, using the global topography layer provided by the ASTER Science 

Team (2018). They find that land fragmentation negatively affects yield but also reduces yield 

variability, so it is unclear whether reducing land fragmentation would actually be a real 

improvement for Rwanda’s farmers. 

Deines et al. (2023) use satellite data to estimate the effect of cover crop adoption on maize 

and soybean yields for over 90,000 fields in the US between 2019 and 2020. Using causal 

forests analysis, they estimate an average yield loss of 5.5% for maize, and 3.5% for soy. Their 

identification of cover crop adoption is based on daily measures of the greenness of fields 

(using a fusion of Landsat and Modis data, with dynamic, phenology-based thresholds for the 

identification of cover cropping (Zhou et al., 2022).  

Deines et al. (2019) use satellite data to estimate the impact of conservation tillage on crop 

yields. A map of tillage practices is provided by Azzari et al. (2019), who used a random forest 

classifier trained on ground data from 5866 fields in the region. For maps of crop yields, the 

Scalable Crop Yield Mapper (SCYM) of Lobell et al. (2015) was used. This is based on two 

steps. First, regionally parameterized crop models are used to statistically predict yields from 

crop phenology and climate covariates. Secondly, to generate yield estimates for each pixel, 

the models from step one are applied to satellite imagery and gridded climate datasets based 

on crop type maps. Deines et al. (2019) find a small, positive effect. 

Chen et al. (2023) also estimate the impact of no-till adoption, but they focus on agricultural 

land values instead of yields. Their no-till adoption is measured by satellite too, but in a different 

way. Their measurement uses the percentage share of crop residues that high resolution 
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satellite imagery shows. This is used to classify cropland into categories such as no-till (more 

than 50% crop residues), or reduced tillage (less than 50% residues, but more than 15%), etc. 

(Hagen et al., 2020). Chen et al. (2023) estimate that no-till adoption significantly increases 

land values in the US. 

c. Satellite Data for Causal Identification 

Causal identification is regularly among the main challenges in applied economics research. 

In many data sets, it is not obvious whether there exists a feasible source of exogenous 

variation that allows to judge whether an observed relationship in the data is causal or not. 

Satellite data frequently provides such a source of exogenous variation. A classic example is 

the study by Duflo and Pande (2007), in which they estimate the agricultural impacts of 

irrigation dams in India. Clearly, the correlation between the regional number of dams and 

agricultural productivity has no causal interpretation because regions with more dams differ 

from regions with fewer dams in many dimensions (e.g., agricultural potential). What is 

available for causal identification here is an instrumental variable: The natural suitability of a 

river for the construction of a dam. The river gradient can be too high or too low for dam 

construction, and this is largely orthogonal to the plausible confounding factors one might worry 

about in the study’s context. The earth’s topography including the gradients of its rivers can be 

quantified with satellite data products, and Duflo and Pande (2007) use this as an instrumental 

variable to come to the conclusion that dam construction causally leads to a decline in poverty 

downstream of the dam, and an increase in poverty right where the dam is built. This strategy 

of exploiting arguably random variation in geography and the natural environment as 

instrumental variable is popular. Macchiavello and Morjaria (2020) estimate the effect of 

competition among Rwandan coffee mills on the performance of relational contracts and 

exploit geographic variation in the regional suitability to a build coffee mill. Rubio-Ramos (2023) 

estimates the effect of violence on social capital in the context of fluctuating coca production 

in Colombia. Here, the instrumental variable is an interaction between coca-market shocks and 

a suitability score for coca production, based on ecological conditions to grow coca, derived 

from satellite measurements.  

A related strategy exploits satellite measured weather conditions to construct an instrumental 

variable. One example is the study of Crost and Felter (2019). They are interested in the effect 

of export crop revenue on inner-country conflict and they specifically focus on the case of 

banana exports on the Philippines. Here, insurgent groups use banana export revenues to 

finance their operations, but the issue is that the generated export revenues could potentially 

be endogenous, so they need exogenous shifts in banana prices. This is provided by random 

weather variation in Ecuador, the world’s leading banana exporter. When growing conditions 

in Ecuador are bad, the global banana price goes up, increasing revenues on the Philippines.  
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Axbard (2016) studies the effect of fishermen’s income on sea piracy. As an instrumental 

variable for fishermen’s income, he uses satellite measured, exogenous changes in 

environmental fishing conditions. Satellite data provides chlorophyll-a concentrations and sea 

surface temperatures of the ocean. The constructed instrumental variable then measures how 

much of a given area had optimal values of each in a given month. The data comes from the 

NASA Modis Aqua satellite (Acker & Leptoukh, 2007). 

Satellite measured geographical and environmental variation is equally helpful to identify 

causality in the context of regression discontinuity designs (see also Wuepper & Finger, 2023). 

An example is the study of Jones et al. (2022), in which they estimate the agricultural impacts 

of hillside irrigation systems in Rwanda. As in all example above, a naïve comparison of 

irrigated and non-irrigated farms and fields would be misleading, as there are other relevant 

differences. However, the studied irrigation systems use gravity to transport water to the fields, 

which can be exploited to set up a convincing regression discontinuity design, with the main 

irrigation channel marking the cut-off, and then there is a downhill side that has access to 

irrigation, and an uphill side, that does not. The discontinuity that arises between these two 

sides identifies the causal impact of irrigation. They find a large profit boost but limited adoption 

because of binding local labor market constraints. 

The literature on agricultural pollution generally has the advantage that studies can exploit the 

directionality of the pollution, when the pollution is transported by wind or water currents. 

Sometimes, it can even be exploited that there are random deviations, e.g., wind directions 

can abruptly change.  

A first example study is that of Ferguson and Govaerts (2024), who study the impact of 

adopting conservation agriculture in Mexico relying on various satellite data sources, 

measuring, among others, air quality and random wind direction changes. The latter is their 

source of exogenous variation. They combine this with complimentary data on the roll-out of 

relevant extension services, as well as agricultural profits, and infant deaths in down-win 

locations. They find that the extension services did successfully diffuse conservation 

agriculture and this was profitable for the farmers and advantageous for health and 

environmental outcomes down-wind. For their study, the important advantages of using 

satellite data is that they can rely on measurements from exactly the right locations (up-wind 

vs. down-wind) and timing (there is strong seasonality in agricultural burning). At the global 

level, Pullabhotla et al. (2023) estimate the burden of biomass fires on infant mortality, using 

georeferenced data on more than 2 million births matched to satellite-derived burned area 

exposure. Also in this study, the source of exogenous variation in exposure to agricultural air 

pollution are random wind direction changes. They find that each additional square kilometer 

of burning is associated with nearly 2% higher infant mortality in nearby downwind locations. 
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As demonstrated by Rangel and Vogl (2019) in Brazil, combing high-frequency changes in 

wind directions and fire locations is key in this literature, because agricultural activities, fires, 

and economics outcomes are so intertwined, that the pure panel variation in agricultural 

burnings is not sufficient to recover actual causal effects. Substantially, also in Brazil, the health 

effects of agricultural air pollution are large and important (Rangel & Vogl, 2019). 

A different empirical strategy for causal identification is to explicitly model the counterfactual 

to an observed outcome and compare the two. Adamopoulos and Restuccia (2022) for 

example construct three global maps based on rich geospatial data mostly provided by the 

FAO (2024b), which show current agricultural yields, potential agricultural yields for the same 

crops, and potential yields for an optimized re-allocation of crops. They find that the currently 

observed global differences in agricultural productivity are not much explained by differences 

in natural growing conditions.  

In a similar fashion, Wuepper et al. (2021) quantify global anthropogenic land degradation. 

Specifically, Wuepper et al. (2021) focus on four land degradation dimensions: soil erosion, 

deforestation, and carbon above and below ground. For each, they show two maps: One map 

of the current status, and one natural/historic benchmark. The difference between the two 

quantifies anthropogenic land degradation. To model the counterfactual scenario without 

anthropogenic land degradation, a key-input is the global land cover mix without humans. This 

is provided by Bastin et al. (2019), who use satellite imagery from protected areas all around 

the world to train a random forest algorithm which environmental characteristics are predictive 

of the natural vegetation seen in these protected areas. They then used this algorithm to “fill in 

the gaps” between the protected areas, to create a global land cover layer without humans.  

d. Cross Validations and Assumptions Testing 

Other useful applications of satellite data are to cross-validate an important measure or to 

create a variable that can be used to falsify an important modelling assumption. For example, 

it is highly common to rely on farmer self-reported data in agricultural economics, e.g. to 

measure field and farm sizes, crop yields, labor use, etc. - even though it is well known that 

these self-reports are affected by all sorts of measurement errors, including systematic ones 

(Abay et al., 2019; Gourlay et al., 2019).  

From other outcome variable we know too that measures can deviate, e.g. we know that 

officially reported deforestation rates can be lower than actual ones to hide illegal deforestation, 

especially if the government is somehow involved (Balboni et al., 2021; Burgess et al., 2012), 

and that democracies report more reliable economic performance measures than 

dictatorships, with the latter having a positive bias (Martinez, 2022). 
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Having an alternative, satellite derived measure can be used to understand the reliability and 

accuracy of the reported measure of a variable. In addition, this even allows to disentangle 

misreporting and misperception, which is useful because sometimes misperception affects 

farmer behavior in a way that misreporting does not (Abay et al., 2021). Specifically focused 

on the measurement of crop yields, Lobell et al. (2020) demonstrate how well crop yields can 

be captured using satellite data so when this is an important variable and there could be 

measurement bias in the non-satellite measured crop yield data, it is advisable to compare 

measures. 

As an example for a satellite data enabled test of an identifying assumption, Wuepper et al. 

(2024) use a spatial difference-in-discontinuities design to estimate the global impact of public 

policies on forest conservation. They show that their identified discontinuities in forest 

conditions at international border are not simply the result of discontinuities in forest potential 

using the data of Bastin et al. (2019), who in turn used photo-interpretations of high-resolution 

satellite imagery showing tree cover in protected areas, which were then used to train a 

machine learning algorithm to produce a global map of natural tree cover potential. In their 

study on the effect of countries on the global rate of soil erosion, Wuepper et al. (2020) use a 

similar approach but model their counterfactual even more, going from natural tree cover 

globally to natural land cover more generally and converting this to a natural rate of soil erosion 

globally at a spatial resolution of 1km2. They show that globally, there would be no discontinuity 

in soil erosion at current international borders, so the actual discontinuity is caused by the 

countries.  

Finally, satellite measured exogenous, environmental variables can also directly be used in 

placebo tests without any additional modeling of a specific counterfactual. This is common 

practice for example in regression discontinuity design applications (Wuepper & Finger, 2023). 

To give one specific example, Burgess et al. (2018) exploit deforestation discontinuities at 

Brazil’s borders to estimate the effect of Brazil’s forest policies. To test whether Brazil’s border 

actually presents an exogenous treatment variable, they estimate whether there are 

discontinuities in the slope of the land or the distance to urban areas, water, or roads. Because 

they find no discontinuities in these exogenous variables, they conclude that the forest 

discontinuities they find are politically caused and not environmentally.  

e. Satellite Data for Extension and Agricultural Risk Management 

The satellite data products discussed thus far were created for research purposes. However, 

there are also active lines of research that analyze satellite data products with a practical 

purpose, e.g., informing insurance products, credit schemes, or extension services. A first 

example is the study of Jain et al. (2019), who demonstrate how to utilize high-resolution 



17 
 

satellite data (from SkySat and Planet Labs) to identify which fields would benefit the most 

from improving agricultural practices. With a randomized trial conducted in India, they show 

that the impact of an agricultural innovation (switching from manual fertilizer applications to a 

fertilizer spreader) could be doubled, simply by targeting the fields with the most potential 

instead of a uniform treatment. A second application example that shall be mentioned is index 

insurance. For a more in-depth review see the overview of Benami et al. (2021). 

Vroege et al. (2021) demonstrate how freely available satellite data can be used to design an 

index insurance that effectively mitigates farmers’ financial drought risk exposure. Using data 

from eastern Germany they also show that their insurance product based on satellite data 

outperforms a competing product based on meteorological measurements at ground stations. 

With a randomized control trial, Boucher et al. (2024) explore the impact of providing drought 

tolerant seeds and satellite-based index insurance for farmers in Tanzania and Mozambique. 

They find that combining these two complementary technologies reduces a good share of 

farmers’ drought risk exposure. Nevertheless, inducing sustained uptake proved to be a 

challenge, as a share of farmers who did not experience a drought early enough dis-adopted 

these technologies again. 

The final example is the study of Möllmann et al. (2020), who investigate whether remotely 

sensed vegetation health indices can predict agricultural credit risk in Madagascar. They 

indeed find this to be the case, which indicates that it is possible to reduce the default risk to 

rural banks and thereby make them expand credit access. 

3. Pitfalls and Remedies 

a. Measurement Errors 

Measurement error in satellite derived variables is ubiquitous (see Alix-Garcia & Millimet, 2023; 

Gordon et al., 2024; Proctor et al., 2023). Depending on whether the mismeasured variable is 

on the left or the right regression side and which kind of measurement error dominates 

(classical or systematic, and among those, mean reverting, or differential), estimated effects 

might be exaggerated or attenuated, and even sign flips are possible. Also computed standard 

errors can be too large or too small, depending on the kind of dominant measurement error 

and where the variable is located in the regression. 

Researchers are especially worried about systematic measurement error, i.e., 

mismeasurement that correlates with the treatment variable. For example, the often-used 

global deforestation data of Hansen et al. (2013) contains measurement error that 
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systematically varies with topography, climate, and type of deforestation (Alix-Garcia & 

Millimet, 2023; Gordon et al., 2024; Pendrill et al., 2022). Depending on the application, this 

can seriously bias estimated effects. For example, it might be the case that the “treatment-

forest” is in the wet tropics, and the “control-forest” is in the dry tropics, and the treatment 

coincides with the season in which the trees in the dry forest lose their leaves and are thus 

harder to detect. This could lead to the conclusion that the treatment conserved a lot of forest, 

even though only measurement error increased differentially. 

Classical measurement error comes e.g., from random clouds blocking the view of the satellite, 

or because an available measure is just imprecise. For example, a satellite measurement might 

have a resolution of 100 hectares (1km2) whereas the actual variation of interest happens on 

agricultural fields with an average size of 3 or 4 hectares. 

The more processed the used satellite data, the higher is the risk that additional measurement 

errors have been introduced. First of all, predicted variables tend to vary less than the actual 

phenomenon they are supposed to reflect. This is because extreme values get systematically 

underestimated, causing mean reverting error (Proctor et al., 2023; Ratledge et al., 2022). 

Secondly, the predictor variable used to create a variable of interest might directly include or 

exclude the effect of interest. For example, nighttime lights are a popular predictor to produce 

high resolution maps of economic development. However, in their study on the effect of rural 

electrification on economic development, Ratledge et al. (2022) emphasize that they cannot 

rely on nighttime lights to create their economic development variable, as nighttime-lights 

already directly measure electricity access. If one includes the treatment variable in the 

prediction model for the outcome variable, and then regresses this outcome on the treatment 

again, one does not estimate the causal effect of the treatment, but only mechanically recovers 

the previous prediction step. The opposite mistake is being made when a variable is modeled 

in such a way that the effect of interest is explicitly excluded (e.g. one wants to analyze whether 

more sustainable farming practices increase on-field biodiversity but the available biodiversity 

measure only models biodiversity habitat quality based on land cover types, so within-

landcover variability cannot possibly be detected). 

There are a various ways to correct for the different kinds of measurement error in different 

contexts: Analyses of binary outcomes such as pixel-level deforestation coded as yes or no 

are especially likely to be biased by systematic measurement error. If one has some knowledge 

about the source of the measurement error (e.g., it might be connected to topography or cloud 

cover), one can use the misclassification logit or scobit models proposed by Alix-Garcia and 

Millimet (2023). These model the measurement error as a function of the problematic 
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covariates and off-the-shelf code is available for Stata3. Generally, the scobit does particularly 

well for the analysis of rare events (outcomes with many zeroes) but getting the model to 

converge can be challenging because an additional shape parameter needs to be estimated. 

To circumvent this issue, Alix-Garcia and Millimet (2023) recommend to treat the shape 

parameter of the model as unidentified and conduct a grid search across the range of potential 

values. The logit does not have this issue because the shape is fixed. A big advantage of using 

either of these models to correct for measurement error is that the correction is ex-post, in the 

analysis stage, and does not require any change to the data itself. Many other approaches 

correct the measurement ex-ante, during the dataset construction, as discussed below. 

One example of an ex-ante correction measure is the augmented loss function of Ratledge et 

al. (2022), which is specifically set-up to correct for mean-reverting measurement error when 

modeling variables based on satellite data. Ratledge et al. (2022) add a penalty term to their 

loss function, which penalizes for bias in each quintile of the distribution. Thus, instead of 

having a global loss function that prioritizes the mean of the distribution to minimize prediction 

error, this augmented loss function explicitly treats each part of the distribution as equally 

important. The code is available for R4 

An especially general and versatile way to reduce bias from measurement error is multiple 

imputation (Proctor et al., 2023). This can be implemented with standard code in R, Stata, and 

Python5. The main requirement is that one has at least a small amount of ground truth data. 

As Proctor et al. (2023) demonstrate, not much of this calibration data is actually needed and 

it can come from locations somewhat far away.Fundamentally, the approach of Proctor et al. 

(2023) consists of two steps: First, the calibration data is used to estimate the structure of the 

measurement error present in the satellite data. Secondly, the estimated structure of the 

measurement error is used to correct parameter estimates and uncertainty measures in the 

subsequent regression analysis. 

A final example for how one can mitigate measurement error induced bias is the approach 

proposed by Gordon et al. (2024), based on adversarial debiasing. The original inspiration for 

adversarial debasing was the recognized problem outside of agricultural economics that 

machine learning predictions can be biased (e.g., discriminating against personal 

characteristics such as race or gender in a job or credit application). To solve this problem, 

adversarial debiasing was invented, which, like the approach of Proctor et al. (2023), consists 

of two steps: First, a standard prediction model attempts to minimize prediction error for the 

                                                           
3 https://people.smu.edu/dmillimet/stata-code/ 
4 https://github.com/nwrat/RCQSB2022_public 
5 In Stata, one can use the mi commands, in R one can use the mice package, in Python one can use the 
IterativeImputer within the scikit-learn library. 
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variable of interest (e.g. crop yield, soil erosion). However, non-standard, this first model has 

a loss function with a penalty that is informed by a second model. This second model – the 

adversary – is fed with the measurement errors from the first model and tries to predict 

treatment status for each observation. The better the second model can predict each 

observations treatment status, the larger a penalty is added to the loss function of the first 

model. Thus, the approach of Gordon et al. (2024) aims to minimize prediction error while also 

uncorrelating errors from treatment status. An Advantage of the adversarial debiasing 

approach – that it shares with the multiple imputation approach – is that there is no need to 

have any information about the source of the measurement bias. A drawback of the multiple 

imputation approach compared to the adversarial debiasing approach is that it its effectiveness 

depends on the specified functional relationship between measurement error and the 

dependent and independent variables (essentially, non-calibration data is treated as missing 

at random, conditional on covariates). However, the adversarial debiasing approach is 

computationally quite demanding, must be specifically adapted for each individual variable, 

and there is not yet an off-the-shelf code available. 

b. Temporal Inconsistencies 

While satellite data provides indispensable long-term, observational data going up to four 

decades back in time, users of the data ought to exercise caution when analyzing and inferring 

long-term trends from the data. This is because while data collection by satellite is by design 

a relatively consistent process (as compared to statistical surveys that might employ different 

sampling strategies, sample realization, and less objective self-reports), satellite-based time 

series data and the derived products are not without the issue of temporal inconsistencies. 

These temporal inconsistencies can be caused instrumentally by technical changes in the 

satellite platform and sensors, or analytically by changes in the processing and interpretation 

algorithms applied to transform the raw satellite data into specific thematic information, as well 

as if data from different sensors are fused together. In the first case, natural sensor degradation 

or satellite platform orbit drift has been known to affect long-term NDVI and leaf area index 

(LAI) trend from the AVHRR satellites (~9.2km resolution) widely used in studies examining 

trends from the 1980s, which has been dealt with in several data products (Cao et al., 2023; 

Wang et al., 2022). As an example, Landsat mission provides high-resolution (30m) data 

continuity with Landsat 5 (March 1984 to May 2012), Landsat 7 (July 1999 to April 2022), 

Landsat 8 (April 2013 to present), and Landsat 9 (October 2021 to present). While the 

subsequent Landsat sensors have been designed with continuity in mind (similar spectral and 

spatial resolution), fusing data from the different Landsat sensors requires careful 

consideration (also attention to the optimal processing level i.e., Landsat Collection 2 Level 2 

Science Products (USGS, n.d.)). The scan line corrector failure in Landsat 7 has caused 



21 
 

systematic missing data (22% data loss per scene) since May 2003. Before Landsat 7 (i.e., 

before 1999), the earlier Landsat missions did not have a systematic global data acquisition 

plan, hence resulting in very sparse data record before 2000. In 2012, the number of captured 

images are particularly low due to decommissioning of Landsat 5 in 2011, and thus leaving 

only Landsat 7 acquiring images (typically two Landsat satellites are in operation at the same 

time) in the meantime before the launch of Landsat 8 in 2013. More generally, the different 

data density ultimately results in varying number and timing of clear-sky observations and 

hence presenting a source of variability in the monthly, seasonal, or yearly composites (e.g., 

mean), or phenology reconstruction. Landsat 8 also has a radiometrically improved sensor 

leading to better signal-to-noise ratio, which increases its sensitivity to the land surface features 

being targeted. In the second case, as developers of satellite data products improve their 

processing chain and interpretation algorithm (preprocessing e.g., cloud masking, or training 

data used in machine learning based product, or expert rules combining integrating other 

satellite based ancillary maps as they become available), temporal inconsistencies in the data 

products between subsequent updates (versions) can be expected. A notable example is the 

note for caution with regards to possible temporal inconsistencies in the Global Forest Change 

annual tree cover loss data products (Hansen et al., 2013), which may have a better detection 

of small-scale tree cover loss after 2013 in some regions due to the improved data from 

Landsat 8, as well as enhanced detection particularly from 2015 onwards due to improved 

algorithm (Weisse & Potapov, 2021). Thus, special care is warranted when interpreting long-

term, year-to-year trend from the product (by triangulating/corroborating with multiple lines of 

evidence including official statistics), depending on the phenomenon of interest, inference 

objectives, and scales (Breidenbach et al., 2022; Ceccherini et al., 2020, 2021, 2022; Palahí 

et al., 2021). Similar cautions apply to other satellite-based time series data products that are 

increasingly produced such as annual land cover maps, recognizing probable misclassification 

errors on a per pixel level, in each year of the map (note however data products that use 

algorithms based on temporal segments that are by design more temporally consistent (Friedl 

et al., 2022; Gorelick et al., 2023; Zhang et al., 2024)). This is especially if the developers of 

the data products did not apply some temporal stabilization procedure e.g., by logical temporal 

transition (e.g., of land cover) filters in the algorithm design. Finally, beyond satellite-based 

data products, hybrid products (fusion of satellite, census, surveys, and models) also present 

temporal inconsistencies due to changes in input data used i.e., the underlying sub-national 

statistics, ancillary data (including satellite-based data such as cropland extent), or the 

downscaling/spatial allocation algorithm. 

c. Irreversible Outcomes 

A special case is the analysis of binary, nonrepeatable outcomes. One example is pixel-level 
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deforestation data that only contains the first year in which this happened (e.g., like in the 

popular Hansen et al. (2013) forest change dataset). Other examples could be adoption of 

irrigation (i.e., a pixel takes value zero if not yet equipped with irrigation infrastructure and  one 

starting in the first year it gets equipped with irrigation infrastructure), or road construction. As 

Garcia and Heilmayr (2024) emphasize and demonstrate, this data structure can cause bias 

in common empirical frameworks such as difference-in-difference. The issue is the inclusion 

of individual unit fixed effects. This common practice interacts with the uncommon data 

structure such that one does not actually estimate the average treatment effect on the treated, 

but recovers an ex-post difference in outcomes between the treatment and control group. 

Fortunately, for this issue there are two alternative, simple solution: pixel-level specifications 

with spatially aggregated unit fixed effects and specifications with spatially aggregated units of 

analysis recover the true treatment effect (Garcia & Heilmayr, 2024). 

d. Unobservables 

A very clear weakness of satellite data is that many things cannot be seen on an image taken 

from space. This is yet another reason why satellite data is complementary to other data and 

is seldom sufficient as the sole data-source for an analysis. For example, for many questions 

in agricultural and resource economics, it is extremely useful to be able to objectively measure 

what happens on the fields in a region. One might record with high spatial and temporal 

resolution when and how a field was prepared, how it is managed throughout the season, and 

what agricultural and environmental outcomes can be observed at different points in time. What 

is missing, however, is to which farm the field belongs. Sometimes, fields are far away from 

the homestead and scattered widely, so one needs reliable information about the boundaries 

of each farm, if one wants to conduct a farm-level analysis. The farm-level is usually the most 

relevant unit to study farmers’ decision making, so this is common. Also many variables that 

are relevant explanation for farmers’ choices cannot be seen on any imagery. Preferences, 

behavioral biases, social interactions, culture, and personality are all important explanations 

for the behavior of farmers (Wuepper, Bukchin-Peles, Just, Zilberman 2023) and none of these 

can be measured with satellite data. Yet, combining cadastral data, farmer surveys, ground 

truth data, and then remote sensing measures can provide the kind of rich analyses that build 

on all the individual data strengths while compensating for all the individual data weaknesses.  

4. Conclusion 

Satellite data usually cannot be the only data-source but is immensely useful for many research 

endeavors when combined with other data (e.g., for ground truthing and to cover everything 

that cannot be seen on a satellite, such as the boundaries of individual farms, or farmer 

preferences, or property rights). Here, we have discussed many applications of satellite data 
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and have attempted to build a basic understanding where this data comes from, and what to 

consider when working with it. We provide online code and data for practical exercises6 and 

there is an extensive Supplementary Materials file providing detailed discussion of work flows, 

construction of various variables, and a discussion of required resources and skills. Our hope 

is that this enables and inspired many more uses of satellite data in agricultural and 

environmental economics, as well as raise the average reliability of research in agricultural and 

environmental economics incorporating satellite data.  
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S1 Foundations 

The notable growth in remote sensing relevant for agriculture dates back to 1972 with the 

development of Earth Resources Technology Satellite (ERTS-1) - later in 1975 called Land 

Satellite (Landsat) - to better reflect its mission to observe and monitor the earth surface. 

Landsat brought the greatest change for civilian use due to open mapping at 30 m spatial 

resolution with about 8 days revisit time (same location imaged every 8 days).  

Since then, a number of improvements have been achieved, especially in terms of spatial and 

spectral resolutions. This has made it possible to investigate a number of aspects of land 

surface features such as crop types, stage of growth, species, health condition, drought stress, 

conversion of land from one use to another (for instance deforestation for agricultural 

expansion) among others at finer details that were not possible before. Here we look at a 

selected satellite platforms with sensors at spectral and spatial resolutions that are relevant for 

agriculture. We pay specific attention to free and open access data from both Sentinel and 

MODIS which everyone can access and use without proprietary constraints. We pay more 

attention to these because of their difference in spatial and temporal resolutions with Sentinel 

having higher spatial resolution but relatively lower temporal resolution while MODIS has 

higher temporal resolution but lower spatial resolution. There are also other distinct 

advantages and drawbacks of these and other platforms. Below, we discuss briefly the Sentinel 

platform (a), the MODIS platform (b), and different direct measures, called signatures (c) 

a. SENTINEL 

Sentinel is a series of missions for earth observation that were developed by the European 

Space Agency (ESA) in a collaborative project with the European Commission as part of the 

European Union’s Copernicus program (ESA 2024). The aim of the project was to provide 

timely and reliable information for monitoring and managing the environment, climate change, 

and civil security. There are already six Sentinel missions designed for specific use cases 

depending on the specifications of their sensors and orbital alignment. 

Sentinel-1: This is equipped with a c-band Synthetic Aperture Radar (SAR) instrument that 

enables it to monitor the earth surface irrespective of weather conditions since 2014. It 

penetrates the cloud, the major problem for optical sensors, and is thus primarily preferred in 

regions of high cloud cover, detecting land cover changes, ground motion, and emergency 

response strategies during natural disasters like floods (Kumar et al. 2022). During flood 

events, there is normally corresponding high cloud cover that renders optical sensors 

inappropriate to monitor flood extent on the ground and assess damage, for instance within 

cropland. Sentinel-1 has three spatial resolutions (10, 25, and 40 m). The scenes come pre-
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corrected for thermal noise, radiometric calibration and terrain, normally achieved using the 30 

m Shuttle Radar Topography Mission (SRTM 30) product. 

Sentinel-2: This has a multispectral imaging instrument with the ability to capture very high 

resolution (10 m) optical imagery since 2017. It is specifically useful for monitoring agricultural 

lands, land cover, and other environmental changes. Every scene of Sentinel 2 image has a 

swath of 290 km hence quite appropriate for regional crop mapping expeditions. This is far 

wider and at a finer spatial resolution (10 m) and spectral resolution (13 bands) than for 

Landsat 5 or 7 that was 185 km at coarser spatial resolution of 30 m and limited to eight spectral 

bands. The revisit time for this satellite is 10 days while the whole constellation has a shorter 

revisit period of 5 days. 

Sentinel-3: This sentinel mission has Ocean and Land Color Instrument (OLCI) and is thus 

focused on ocean and land surface monitoring since 2016. It has a collection of instruments 

including radiometers and altimeters as well as optical and microwave sensors to achieve its 

missions. It gives important data for monitoring of sea surface temperature, ocean color, sea 

level variations and land cover changes. However, it captures data at spatial resolution of 300 

m and has global temporal resolution of 2 days. This is making it suitable for regional scale 

analyses of sea and land temperatures, environmental monitoring, including wildfire. while it 

may not be the primary Sentinel mission for agriculture, it can be very useful for farms located 

close by coastal areas where the influence of sea or ocean on crop performance is 

instrumental. 

Sentinel-4 and 5: These two missions are focused on monitoring composition of the earth’s 

atmosphere. while Sentinel-4 focuses on monitoring of aerosols and trace gas concentrations 

within the troposphere of Europe. Sentinel-5 focusses on pollutants and greenhouse gasses 

monitoring throughout the globe. The spatial resolution is about 1 km but captures global data 

on a daily basis. This is therefore a useful platform for monitoring air quality parameters in 

regions with intense agricultural practices. It can also help in assessing the greenhouse gas 

emissions within agro-systems at finer temporal resolutions. 

Sentinel-6: This is concerned with monitoring of sea level changes. It is designed to have high 

precision in the monitoring process which is vital for climate change investigations. A number 

of agricultural activities have been blamed on the evolving changes in climate culminating into 

melting of glaciers and consequent rise in sea levels.  
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b. MODIS 

Moderate Resolution Imaging Spectroradiometer (MODIS) is a sensor aboard Terra and Aqua 

satellites for monitoring land and water, respectively (NASA 2024). The temporal resolution of 

the sensor is 1 to 2 days and gathers images at 36 different spectral bands. The data gathered 

by the sensors are useful for global monitoring for changes across land water spaces. The 

images have a swath of about 2330 km cross track at 250 m (bands 1 and 2), 500 m (bands 3 

to 7) and 1000 m (bands 8 to 36) spatial resolutions. Although the spatial resolutions are quite 

coarse, compared to Landsat or Sentinel, they are very useful for monitoring environmental 

changes at regional or global scales. These are especially useful where more frequent 

coverages are crucial such as changes in burnt area in case of wild fires. Generally, all the 

aspects of land that can be monitored by Sentinel can also be monitored by MODIS more 

frequently but at a coarser spatial resolution.  

c. Spectral, Temporal, and Spatial Signatures 

The primary satellite observable is referred to as the spectral signature, which is the reflectance 

of the Earth surface in discrete wavelength bands (blue, green, red, near-infrared (NIR), 

shortwave-infrared (SWIR) domains) which conveys diagnostic information about the 

properties of earth’s surface cover (Atzberger, 2013; Weiss et al., 2019).  

Mapping land cover, such as the extent of crop land, is based on differences in the remotely 

sensed spectral signature between land cover types. The temporal signature captures different 

phenological characteristics, such as distinct intra-annual temporal developments associated 

e.g., with plant growth cycles.  

Going beyond the qualitative spectral-temporal differences between land cover types (such as 

cropland versus non-cropland, or different crop types, e.g.), and to a lesser extent, between 

crop types, some primary variables that can be physically retrieved from remotely sensed 

radiometric measurements include: (1) plant density, leaf area, green cover, leaf biochemical 

content, leaf orientation, canopy height, the fraction of absorbed photosynthetically active 

radiation, and albedo; (2) land surface temperature (vegetation/soil) and thus plant water in 

the emitted thermal domain; and (3) soil moisture and surface roughness in the microwave 

domain (Homolová et al., 2013; Weiss et al., 2019).  

The satellite observable canopy optical reflectance (or radar backscattering) contains the 

compound (aggregate) effect of these leaf/canopy biophysical and biochemical properties, 

which influence is wavelength-dependent (their optical-reactivity, or absorption features, occur 

in certain wavelengths). In practical terms, then, whether e.g., certain farming practices or 

outcomes can be detected by satellites depends on whether such practices present soil/plant 

diagnostic features that belong to the above state variables. Even if that is the case, the 
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challenge is however to extract (isolate) from the remotely sensed signal, parts of the signal 

that uniquely express the variations in the state variable of interest. Spectrally, with broad 

waveband multispectral sensors in the current operational Earth observing satellites, 

measurement in a spectral channel (band) may contain absorption features of different leaf 

constituents (e.g., plant water, lignin, cellulose, and nitrogen-containing proteins in the 

shortwave infrared band) (Kokaly, 2001). Spatially, the signal recorded for a given satellite 

image pixel contains contributions from the different surface materials (e.g., growing crops, 

soil, crop residues) that are present within that measurement footprint. Indeed, in the science 

of remote sensing, a variety of spectral vegetation indices (Main et al., 2011; Montero et al., 

2023), or/and the combination of different sensors (optical, synthetic aperture radar SAR, 

thermal) (Pinter, Jr. et al., 2003), serve to maximize sensitivity of the remote sensing 

indicator/predictor to the cropping system variable of interest, whilst minimizing sensitivity to 

other sources of variations that contribute to the system’s remotely sensed signal. 

Vegetation indices are derived from combinations of two or more bands of the electromagnetic 

spectrum, for instance red, blue, green, and infra-red bands. Using different combinations and 

calibrations, these signals can be converted to a range of different indices that can be used to 

measure a range of variables, such as crop yields, irrigation, forest degradation, and many 

more. 

One of the most widely utilized vegetation indices in agriculture is the Normalized Difference 

Vegetation Index (NDVI). NDVI quantifies the health of green vegetation in an area by 

measuring the difference between the near-infrared (NIR) and red bands of the 

electromagnetic spectrum. It therefore serves as a reliable indicator of vegetation vigor, 

biomass production, and photosynthetic activity that could be difficult to detect from a single 

band. By analyzing NDVI values obtained from satellite or drone imagery, farmers can assess 

the spatial variability of crop health within their fields, identify areas of stress or nutrient 

deficiency, and implement targeted interventions such as irrigation, fertilization, or pest control, 

among others. 

In addition to NDVI, the Enhanced Vegetation Index (EVI) and Soil Adjusted Vegetation Index 

(SAVI) are indispensable alternatives in agricultural monitoring. EVI, for instance, minimizes 

atmospheric influences and background noise, thereby providing more accurate assessments 

of vegetation dynamics in areas prone to atmospheric interference or soil reflectance 

variations. Similarly, SAVI adjusts for soil brightness, making it particularly useful in arid or 

semi-arid regions where soil background can significantly affect vegetation indices' accuracy. 

Different vegetation indices have been formulated for different applications. For crop yields, 

e.g., Burke & Lobell, (2017) use the Normalized Difference Vegetation Index (NDVI), the green 
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chlorophyll vegetation index (GCVI), and the enhanced vegetation index (EVI). The formula for 

the NDVI is (NIR-red) / (NIR + red), for the GCVI it is (NIR / green) – 1, and for the EVI it is 2.5 

∗ (NIR – red) / (NIR + 6 ∗ red + 7 ∗ blue + 1). 

The Land Surface Water Index (LSWI = (NIR - SWIR) / (NIR + SWIR)), along with NDVI and 

land surface temperature has been used to identify irrigated fields (Massari et al., 2021). The 

Normalized Difference Tillage Index (NDTI = (SWIR1 - SWIR2) / (SWIR1 + SWIR2), where 

SWIR1 and SWIR2 are the two shortwave infrared bands common in multispectral satellite 

system) has been used to differentiate crop residues from bare soil, and thus detect soil tillage 

practices (Zheng et al., 2014). Here, thanks to the ease for satellite data access and computing 

these days, researchers have the flexibility to compute different satellite indicators like 

vegetation indices if not readily available and test the different indices in their application. 

Furthermore, vegetation indices contribute to sustainable land management practices by 

monitoring land cover changes, deforestation, and habitat fragmentation. By tracking 

vegetation dynamics over time, stakeholders can assess the impact of land use policies, 

climate change, and natural disasters on ecosystems and biodiversity, to name just a few 

examples. 

d. Evolving advances in remote sensing for agriculture 

Improvements in artificial intelligence especially in computer vision is further advancing the 

limits of what we can achieve with remotely sensed data. Supervised machine learning 

techniques, for instance, rely on large amount of training samples to calibrate models that can 

be used with some level of uncertainty to predict on unseen data. While this has found 

important usage in still images like detecting objects in fotos, the same techniques have been 

used successfully with spatially explicit remotely sensed data. For instance, mapping the 

extent of cocoa plantations in Ghana and Ivory Coast (Kalischek et al., 2023), crop 

classification (Teixeira et al., 2023), oil palm in (Zortea et al., 2018; Dalagnol et al., 2022), and 

detection of forest degradation (Dalagnol et al., 2023). These techniques are cost effective and 

useful especially in areas where observation data are inadequate. For instance, the cocoa 

plantation mapping study by Kalischek et al (2023), showed not only the extent of cocoa 

plantations in both countries, but also how much the plantations have contributed to forest loss. 

While these were national level investigations, the advances can be upscaled to global level 

investigations. For instance, they can help in detection of how much coffee or tea is coming 

from deforested land across the globe. Such findings fit well into enactment of such policies as 

the European Union Deforestation Regulation when such crops as coffee fields are mapped 

globally. In addition, the techniques are going beyond the need for a lot of annotated data in 
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building the predictive models towards reliance on foundational models to self-learn and map 

the features of interest. Such self-learning models have shown good results in agriculture too 

(Li et al., 2024; Sornapudi and Singh, 2024). The future of leveraging AI and remote sensing 

data holds great potential for many agricultural challenges across the globe. 

S2 Typical Work Flows 

Here we describe a typical end-to-end workflow in preparing geospatial data in general, and 

satellite data in particular, into an analysis-ready data for agriculture and resource economics 

research. We illustrate the workflow as technically implemented primarily in Google Earth 

Engine (Gorelick et al., 2017), however conceptually the workflow is generic and transferable 

across different computational environments (software and libraries) and framework, which we 

further detail in section S3 (Required Skills and Resources) below. 

The starting point of the workflow is the research question, econometric design, and in turn the 

data required to carry out the analysis. The data requirements, which are based on the spatial 

and temporal scale and coverage of the phenomenon of interest, determine the adequate 

spatial and temporal resolution and coverage of the satellite data or/and derived thematic data 

products. Additionally, the econometric design, i.e., whether the identification is based on 

cross-sectional regression model or panel regression model, determines whether the analysis 

can be done with satellite-based data products that have been created as a one-time-off 

demonstration, or it must rely on those that are created as a time series (e.g., annual, from 

2000 to the present). For the same thematic variable, there can exist several data products, 

one product employing the latest improved input satellite data and algorithm but cannot be 

generated as a long-term time series, while another product generated as a long-term time 

series prioritizing long-term temporal consistency. Various satellite-based data products on 

agricultural variables are reviewed in section S2. (Variables).  

When working in Earth Engine, the researchers then search for the satellite-based data or data 

products in the Earth Engine public data catalog (https://developers.google.com/earth-

engine/datasets), or the Earth Engine community datasets (Roy & Swetnam, 2024). If the 

required data is not available in these catalogs i.e., the researchers download the data from 

other repositories (e.g., where authors of scientific publications have uploaded their data), or 

if the researchers have their own data, they can “upload” or ingest the data into their Earth 

Engine private asset (standard quota 250GB, number of assets 10,000). Their own data can 

be raster data i.e. gridded continuous surface (in Earth Engine the object class ee.Image and 

ee.ImageCollection), or vector data i.e. points, lines, or polygons (in Earth Engine the object 

class ee.Feature and ee.FeatureCollection).    (Raster and vector data models and software 

to work with them are described in section S3 (Required Skills and Resources). If no data exist 

https://developers.google.com/earth-engine/datasets
https://developers.google.com/earth-engine/datasets


7 
 

that satisfy the researcher’s analysis requirement, or if the available existing data products are 

not reliable enough for the analysis, or if the researchers wish to improve upon the existing 

data, the researchers may also consider creating their own gridded dataset by combining 

several existing gridded datasets or/and by using standard machine learning methods 

(available in Earth Engine). In the latter, the researchers would need to collect reference 

(“ground truth”) data for model training and validation. The reference data can be a sample of 

field survey locations (point coordinates, as vector data), or a reference map from which we 

sample the training and validation points (pixels). 

The gridded data downloaded from some external repositories may need to be pre-processed 

prior to ingesting them into Earth Engine (for analysis combining with the plethora of gridded 

datasets readily available in Earth Engine, and for easily scalable computation afforded by 

Earth Engine supercomputer cluster). For example, the researchers have downloaded global 

raster data of static-climatology monthly precipitation at 1km resolution (not available in Earth 

Engine data catalog), and would need only the annual sum of precipitation, for the country of 

Ethiopia. Instead of ingesting into Earth Engine asset all the original twelve raster files with 

global extent, which can take up unnecessarily substantial storage space in the Earth Engine 

asset, the researchers can crop the rasters into the spatial extent of Ethiopia, and temporally 

aggregate (reduce in Earth Engine lingo) the rasters by calculating per-pixel sum of the values, 

in their local machine i.e. their own laptops e.g. using R software. In another example, the 

researchers have downloaded a table of country-level socioeconomic variables, annually, from 

1961 to 2023. They then would like to add other variables from satellite based gridded data 

products available in Earth Engine data catalog, to each country in the country-level table. 

Thus, they georeference the data table by adding the country boundary geometry to the data 

table, converting it into geographic vector data (i.e., basically a data table with a special column 

for the geometry). To fill missing data, they calculate the average of the socioeconomic variable 

during some number of years. They also need to add continent information, and intersect the 

country boundary map with the continent boundary map. Then, they ingest the processed 

vector data into Earth Engine asset. The concepts and building blocks (algorithm primitives) of 

geocomputation (e.g., spatial join) for raster data, vector data, and raster-vector interaction are 

described in section Required Skills and Resources. 

Back in Earth Engine, after they identify the satellite data or data products that satisfy their 

analysis requirements, they import them, and apply spatial-temporal query i.e., filter by location 

(rectangular bounding box of the spatial region of interest), by time period, and by metadata 

(e.g., estimated cloud cover percent in the whole image/scene). (As will be described below, 

common Earth Engine workflows consist of three fundamental operations namely filter, map, 

reduce). Satellite data and data products often come with per-pixel quality assurance/quality 
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control (QA/QC) indicators, and data users are strongly advised to read carefully the provided 

documentations about, at minimum, how to interpret the QA/QC indicator (and the unit of the 

measurement, whether some scaling factors need to be applied), and, often necessary for 

deeper understanding, how the data product is made, how the product has been assessed for 

quality and what is the expected accuracy (algorithm theoretical basis document, user guide, 

validation report, known issues, scientific journal publications).  The per-pixel QA/QC 

information is usually stored in the form of bitmask (bitwise flags), that is the binary digits (bits) 

in the binary representation of QA/QC value (decimal) stores information about some quality 

attributes of the data e.g. cloud, cloud’s shadow, radiometric saturation, data fill (whether 

backup algorithm is used) and so on. For example, Landsat collection 2 level 2 (surface 

reflectance) product comes with QA_PIXEL bitmask layer (band), where bit 0 indicates 

whether the pixel status is data fill, bit 1 dilated cloud, bit 2 cirrus cloud, bit 3 cloud, and bit 4 

cloud shadow (USGS, n.d.). If however the standard QA/QC band is not sufficiently accurate 

in the researcher’s geographical area of interest, the researchers might employ a custom 

QA/QC band. For example, it is known that the cloud and shadow QA/QC bands provided with 

the official Sentinel-2 level 2A (surface reflectance) product is not as reliable as the Landsat 

counterpart (due to, in parts, the absence of thermal bands in Sentinel-2), and the remote 

sensing community is actively developing a better cloud and cloud’s shadow masks 

(Pasquarella, 2023), which the researchers should take advantage of. Satellite based thematic 

data products that are produced using machine learning also increasingly come with QA/QC 

layer that informs the prediction uncertainty (see section Required Skills and Resources). 

Once the selected satellite-based data and data products are filtered for high-quality 

observations, the researchers may need to apply some pre-processing to the data, such as 

computing a derived variable such as NDVI, calculating summary statistics for a given time 

window, or applying a further mask to the gridded data to keep only the observations (pixels) 

valid for the analysis. In the first preprocessing use case, the researchers create a custom 

function to perform some calculation combining different bands (raster algebra, or band math 

operation, e.g. calculating NDVI from the red and near-infrared bands) in an image. The 

custom function is then applied to each of the images (e.g. Landsat scenes, where scenes 

correspond to different spatial tiles or image acquisition dates), which in Earth Engine is known 

as a map operation i.e. we map the function over the image collection. In the second 

preprocessing use case, the researchers may want to compute, for each pixel, the annual (or 

other time windows) average air temperature or sum of precipitation. This is a data aggregation 

(a reducer operation in Earth Engine lingo) across time dimension (also known as 

“compositing”). Finally, in the third preprocessing use case, the researchers may want to focus 

their analysis only on cropland, and therefore use a land cover map to mask the image to keep 

only cropland pixels (non-cropland pixels are set as no-data). 
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Ultimately, the analysis-ready data for the economics/econometrics research design is typically 

in the form of a table, where the row corresponds to the observational unit that can be a grid 

cell, or a country, or a field survey area, and so on. To obtain this analysis-ready data table, 

the researchers extract the data from the preprocessed satellite-based data and data products 

as source, for each of the observation units (each grid cell, or each country, or each field plot) 

as the destination/target. In GIS parlance, this raster-to-vector data extraction is usually termed 

“zonal statistics”, and in Earth Engine accomplished by the function/method reduceRegion or 

reduceRegions, which takes as input the image (containing the stack of layers representing 

the data variables of interest) and the feature collection of the spatial observation units, and 

return as output a table where the row corresponds to the individual spatial observation unit 

and the columns correspond to the data variables (layers/bands in the image). This output 

table can be exported to Google Drive, and analyzed in R or Stata for the econometrics 

analysis. A special case is when the observation unit is the grid cell, for which it is more efficient 

to export the data out of Earth Engine as raster data (as an image) and perform the necessary 

conversion of the raster to a table (a row is a grid cell, optionally storing the point coordinate 

of the cell’s centroid) in local machine. In general, working with raster (i.e., in the image space) 

is more efficient, particularly when processing data in Earth Engine. 

When the workflow involves machine learning applications, the researchers need reference 

data (“ground truth” data) to train the machine learning model, and to assess the accuracy of 

the model’s prediction. In some cases, for example for mapping land cover types, 

deforestation, or forest restoration, the reference data can be collected by visual interpretation 

of high-resolution (10-30m) public Earth observation satellite imagery, spectral time series 

profile, and very high resolution (<1m) basemaps such as Google Maps/Earth satellite 

basemap or other basemaps from other providers (Pasquarella et al., 2016). One feature of 

Earth Engine namely the Earth Engine Apps and user interface API can aid in this process of 

reference data collection, as well as in sharing the prediction maps as web-based interactive 

maps to non-GIS specialists, and solicit feedback. While Earth Engine offers functionalities to 

train and apply some standard classical machine learning algorithms, for complex machine 

learning workflow that requires rigorous feature selection, model hyperparameter tuning, and 

advanced spatial cross validation, the researchers can export the training data with the 

covariates extracted in Earth Engine, to Google Drive, to then run the machine learning 

experimentations using machine learning libraries in R or Python. The optimal model 

hyperparameter and features set can then be applied in Earth Engine at inference time to 

predict for the whole study area wall-to-wall. 

Given the series of data preprocessing steps typically required to ensure high-quality 

observations (pixels), it is recommended to visually check the resulting data layers at each 
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step to avoid errors. For example, in the workflow that necessitates masking out non-cropland 

areas from the image, the researchers display the masked image to verify indeed only cropland 

areas remain as valid-data pixels. The Earth Engine web-based interactive development 

environment IDE (code editor), which uses the Earth Engine JavaScript client library (API), is 

particularly designed to facilitate this highly interactive and iterative workflow. In addition to 

displaying computed objects (e.g, image) on the map panel in the code editor, researchers can 

interactively inspect the pixel’s values, and print the objects in the code editor console to verify 

the object contains the elements as expected as a result of the computation (e.g., images that 

satisfy the date filter, or that the output image/table contains the bands/columns requested).  

Here, it is worth paying attention to the limits of this interactive (synchronous, online) 

computation environment, versus the batch (asynchronous) computation environment in Earth 

Engine. The interactive environment allows for computation that takes maximum five minutes 

of processing time, and tens of MB of memory use. This means, the researchers need to create 

a small testing (or debugging) use case from their end-to-end processing chain that can fit that 

interactive environment jobs limit. Once the researchers are confident that the workflow gives 

the correct outputs, they can scale the workflow and execute it over the entire dataset, by 

exporting the outputs. This will use the batch environment, in which a job (task) has maximum 

lifetime effectively four days on average, allowing up to 3,000 tasks submitted per user (but 

each individual user is limited to a small number of concurrently running tasks). When the 

batch jobs need to be programmed as a large number of individual tasks, the Earth Engine 

Python client library (API) is more convenient to use (export jobs automatically executed) and 

the researchers may need to translate their Earth Engine JavaScript API code into the Earth 

Engine Python API code (which is relatively easy as they have very similar coding syntax). 

Even in the batch computing environment, depending on the size of the computation jobs, the 

researchers may need to try out different parallelism designs in their Earth Engine code until 

the batch export can succeed, to fit the scaling limits of the Earth Engine infrastructure. The 

scaling limits are in place considering that while as a whole Earth Engine can manage 

extremely large computations (e.g., processing global 30m Landsat data to produce the Global 

Forest Watch tree cover loss maps (Hansen et al., 2013)), fundamentally it is composed of 

clusters of low-end servers on one hand, and is a shared resource among the Earth Engine 

users. In effect, when scaling their workflow and sending the batch tasks to the Earth Engine 

server, researchers may encounter various scaling-related errors (not an exhaustive list; here 

we note the typical remedy) such as “computation timed-out”, “user memory limit exceeded” 

(increase tileScale parameter in the function, to accommodate the limit of 2GB stack depth per 

tile), “too many input pixels per output pixel” (typically encountered when performing 

reduceResolution, which can be solved by running the reduceResolution calls in two steps i.e., 



11 
 

with an intermediate resolution), “too many aggregations” (break down computations into 

separate export tasks/jobs), “too many concurrent aggregations” (change tileScale), 

“computed object (or value) is too large” (caused by the 100MB cache limit, typically 

encountered when exporting a table output e.g., training points with the predictor variables; 

may be solved by exporting data for a subset of the points at a time), and the generic “internal 

server error” (Google Earth Engine, n.d.-a, n.d.-b). In practice, the researchers need to think 

carefully about the size of their computation (which depends on the spatial extent, spatial 

resolution, time span, and number of data layers i.e. bands), and design how to divide the data 

extraction jobs into separate batch tasks, whether by data variable (e.g., separate tasks for 

precipitation, for air temperature, and so on), by region (e.g, separate tasks per country), or by 

year. Finally, two generic solutions that can be attempted are, first, to tile the study area, and 

create the export task per tile, and second, to store intermediate computation results. For 

additional data storage needs, and for specialized workflow such as deep learning, 

researchers can consider Earth Engine integration with services provided by Google Cloud 

Platform. 

S3 Variable Construction 

Here we provide an overview of both pure satellite-based data products and hybrid data 

products and how to construct different variables. A remark on the general advantages and 

disadvantages of the two types of data products is useful in advance. Satellite data offers the 

only means for continuous monitoring of agricultural areas in a spatially distributed manner. 

Satellite-based data products on agricultural variables have the advantages of having high 

spatial and temporal resolutions (in theory, up to the nominal resolution of the raw satellite 

imagery, e.g., at 10-30m, every few days with Sentinel-2/1 and Landsat (Claverie et al., 2018); 

however, the usable data frequency depends on clear-sky observations availability). However, 

in practice, for cropland variables, temporally, the satellite measurements need to be 

integrated across time to mine sufficient diagnostic information about cropland (e.g., in an area 

cropland and grassland looks similar at one time, but looks different at different times; total 

crop biomass estimated by accumulating the signal throughout the growing season). This, in 

addition to the issue of un-usable cloudy observations, and inherently noisy individual-date 

observation (temporal aggregations serve to reduce noise level), means high-confidence 

satellite-based cropland data products are typically made, operationally, at annual update 

cadence, or, at best seasonally. This data update cadence is of course better than traditional 

agricultural statistics (typically every 5 to 10 years). Thematically, however, not all cropland 

variables are physically detectable from the satellite observable. As will be elaborated later in 

this section, for instance differentiating a large number of crop types is often not possible using 

only satellite data, if the crop types considered are not sufficiently separable from their spectral, 
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temporal, and spatial (textual) signature, along with other environmental characteristics, as 

observed by the satellites. In this situation, hybrid data products provide higher thematic 

accuracy, by integrating data from satellites and thematically-rich data from official statistics 

(e.g., per-crop production quantity). Almost all the hybrid data products are essentially based 

on FAOSTAT national-level crop production data (FAO, 2024) carried out under the FAO World 

Program for the Census of Agriculture (WCA), with data records available from 1961, 

supplemented by sub-national official statistics sources. These crop production data typically 

include harvested area (in hectares), production quantity (in tonnes), and yield (in tonnes per 

hectare), for each of the FAO 175 standardized crops. The hybrid data products then use the 

so-called spatial allocation, or spatial downscaling, procedure to disaggregate/distribute the 

administrative unit aggregated statistics to the cropland grid cells, based on some criteria and 

various gridded covariates, resulting in gridded representation of the crop production data. 

There exist now several hybrid gridded crop data products. Notable examples are the IFPRI 

Spatial Production Allocation Model, SPAM (Yu et al., 2020), the FAO IIASA Global Agro-

Ecological Zones (Fischer et al., 2021), M3Crops (Monfreda et al., 2008), and MIRCA2000 

(Portmann et al., 2010). These hybrid data products are similar in that they apply spatial 

downscaling to the crop production statistics, into 5’ (five minutes) resolution or about 9.2km 

at the equator. They differ, fundamentally, in terms of the underlying aggregated crop 

production statistics they use, i.e, the sub-national political units (or, Statistical Reporting Units, 

SRU, which data compilation represents the major effort), the spatial downscaling (allocation) 

procedure (SPAM applies a cross-entropy model to distribute the political unit level agricultural 

statistics into cropland grid cells based on a satellite-based cropland mask, and other ancillary 

covariates namely irrigated areas, population density, potential crop suitability and yields 

(based on GAEZ), and market access (You et al., 2014; Yu et al., 2020); the other data 

products distribute the political unit level statistics uniformly in all grid cells belonging to the 

respective political unit or weighted by the grid-cell cropland area shares), whether distinctions 

between production or cropping systems (irrigated vs rainfed, low-input vs high-input vs 

substinence farming systems in SPAM, single-cropping vs multiple cropping in GAEZ) are 

made, whether distinctions between seasons are made (e.g., MIRCA2000 applies temporal 

downscaling to estimate monthly growing areas), and the number of crop classes (42 crop 

classes in SPAM, 23 crop classes in GAEZ, 175 crop classes in M3Crops, 26 crop classes in 

MIRCA2000). 

While hybrid data products provide more crop types and more accurate crop yield data than 

what can reliably be predicted using satellite data alone, given the way they are made and the 

input data sources, they possess inherent limitations. First, spatially, the accuracy of the spatial 

distribution is uncertain, while consistency between the political units is also uncertain because 

census methodologies and dissemination vary. Secondly, temporally, as agricultural statistics 
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data collection is typically conducted every 5 to 10 years due to the prohibitive cost, the hybrid 

crop data products are not updated frequently and tend to be outdated (i.e., ca. 2000 or/and 

2010); but recent efforts updating to ca. 2015 e.g., an update to GAEZ by (Grogan et al., 2022), 

and to ca. 2020 e.g., the SPAM 2020 beta release (International Food Policy Research Institute 

(IFPRI), 2024), and CropGRIDS (Tang et al., 2024) as an update to M3Crops (Monfreda et al., 

2008). Furthermore, despite the occasional updates, for researchers interested in changes 

through time, it is not advisable to infer changes between the hybrid data products generated 

for different years, due to the lack of temporal consistency and continuity of the inputs to the 

spatial allocation model. 

The accuracy of the hybrid cropland data products is dependent on the accuracy of the 

underlying agricultural censuses and surveys, which are known to frequently contain errors 

from uneven data collection, misreporting, or incorrect tabulation. Therefore, all data sources 

have errors or imperfection, combining different data sources may reduce the errors, and what 

is important is to account for the errors when interpreting analysis results and deriving robust 

conclusions (e.g., robustness checks with different data sources). Yet another option that is 

now accessible to researchers is to generate their own custom geospatial datasets using easily 

accessible satellite data and machine learning computation, especially to take advantage of 

the study-specific training data and their domain-specific expert knowledge in the design of the 

machine learning implementation (include predictive features that are known to be correlated 

with the prediction outcome variable according to established theory i.e., in favor of explainable 

model decision making, and avoiding the use of features that may correlate with treatment 

or/and control variables that may invalidate causal inference when applicable). 

a. Agricultural Structures and Landscape Compositions  

Agricultural structures refer to the spatial configurations of the agricultural landscape which are 

shaped by various drivers such as climate change and farming practices. As such, the 

fundamental information to characterize agricultural structures is the spatially explicitly 

cropland physical/planting areas (acreage), or the cropland mask (a grid cell is labelled as 

either cropland, or non-cropland). Identifying cropland areas, versus other land cover types, 

using satellite data is now a routine task with generally high expected accuracy (albeit some 

challenges remain in smallholder agriculture landscape (Kerner et al., 2024)). That said, the 

above mentioned challenges in mapping cropland areas in smallholder agricultural landscape 

is also due to these physical limitations of the remotely sensed radiometric signals: in these 

areas the cropped field is small relative to satellite image nominal spatial resolution, as well as 

is interspersed with other vegetation in an intercropping practice, and thus presenting a 

problem of mixed-land-cover spectral signature making it more difficult to distinguish cropland 
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and non-cropland. This can be solved by higher spatial resolution imagery (i.e., sub-meter 

imagery from commercial providers), greater amount of training data to teach the machine 

learning algorithm in this region, and advances in the machine deep learning algorithms 

themselves that can better encode, and generalize (across geographies, times, downstream 

tasks, resolutions, sensors, and image acquisition conditions; “foundational models”), the 

unique spatial/contextual textural features and temporal signatures of cropland (Burke et al., 

2021). The textural features are especially useful in mapping perennial crops like fruit trees, 

vineyards, and plantations, that do not exhibit strong annual growth cycles (phenology) like 

annual crops. 

Owing to the decades of research by the remote sensing community, both in academia and 

industry, and their partnership, as well as advances in satellite data spatial, spectral, temporal 

resolutions, and advances in machine learning (classification or semantic segmentation task; 

note this is to be differentiated from crop field delineation which is an instance segmentation 

task, that requires sub-meter imagery and hence has yet to be demonstrated at global scale) 

and high-performance computing, we have now several global high-resolution cropland land 

cover maps at our disposal. Notable global cropland mask data products (also readily available 

in Earth Engine data catalog) that have become recently available are (note here we noted the 

reported accuracy from product validation by the data providers but the accuracy numbers, 

from the validation sample used, are representative of the global areas; reported accuracies 

among data products are not directly comparable due to different map validation 

methodological details; we noted the data updates, as of this writing):  (1) the cropland-specific 

University of Maryland  (UMD) Global Land Analysis and Discovery (GLAD) cropland extent 

(30m, available for 2003, 2007, 2011, 2015, and 2019 three-year epochs) (Potapov et al., 

2021); the new-generation 10m generic land cover maps (with cropland as one of the land 

cover types) based on Sentinel-2/1 namely (2) the European Space Agency (ESA) 

WorldCover, 10m, 2020 and 2021, annual, with reported overall accuracy (see Olofsson et al. 

(2014) for details on accuracy assessment terminology) 74.4%, and for cropland class users’ 

accuracy UA (1 – commission error) of 81.1% and producers’ accuracy PA (1 – omission error)  

of 76.7% (Buchhorn et al., 2020), (3) the Esri LULC (Land Use and Land Cover), 10m, 2017-

2022, annual, with  reported overall accuracy 85% (Karra et al., 2021), (4) the Google Dynamic 

World, 10m, 2015-2024, classified every Sentinel-2 satellite image scene (acquisition date), 

with accuracy 88.9% reported for the cropland class (Brown et al., 2022), (5) the ESA 

WorldCereal, 10m, 2020 and 2021, annual temporary cropland extent and seasonal maps for 

cereals, with reported UA and PA of 88.5% and 92.1% for temporary cropland extent (Van 

Tricht et al., 2023), (7) MODIS (sensor, on board of the Aqua/Terra satellite platforms) 

MCD12Q1 land cover, 500m, 2001-2022, annual, with reported overall accuracy 73.6% (Sulla-

Menashe et al., 2019), (8) the GLC_FCS30D land cover map, 30m, annual during 2000-2022, 
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roughly five-yearly during 1985-2000, with reported PA and UA of >85% for cropland (X. Zhang 

et al., 2024), and (9) the Global Food-and-Water Security-support Analysis Data (GFSAD) 

Global Cropland-Extent Product at 30-m Resolution (GCEP30), ca. 2015, in which the cropland 

definition includes plantations, and with reported producer’s accuracy 83.4 percent, and user’s 

accuracy 78.3 percent, for the cropland class  (Thenkabail et al., 2021).  

Note that while we here specifically refer to cropland, the generic land cover datasets 

mentioned above also map land cover class(es) pertaining to grassland or pasture. However, 

general-purpose land cover maps do not differentiate grassland management systems i.e. 

between pastures/rangelands and unmanaged lands (Parente et al., 2024). Ramankutty et al. 

(2008) generated the pasture extent (and cropland extent) map with 5 arcmin resolution for ca. 

2000 by harmonizing satellite-derived grassland land cover and ground-based national and 

sub-national agricultural inventory on pasture (and cropland). HYDE annual (1961-2019, 

annual after 2000, decadal before 1990), 5 arcmin, dataset differentiates between more 

intensively managed pasture, and extensively managed rangeland, based on population 

density and aridity index  (Klein Goldewijk et al., 2017). An attempt to create 30m annual (2000-

2022) cultivated grassland versus natural/semi-natural grassland is demonstrated in the 

upcoming Global Pasture Watch dataset, which illustrates the particular challenge in 

harmonizing the definitions of grassland as a very complex system in previous mapping efforts.  

In choosing which cropland mask (extent) datasets best suits a specific study context, 

researchers would then need to consider the appropriate spatial resolution, temporal resolution 

and span, and cropland definition. Concerning definition, as land cover is a semantic 

representation of the land, data providers use not precisely the same cropland definition. For 

example, the GLAD map includes herbaceous cropland but not woody plantations, and 

includes fallow land, whereas the WorldCereal map includes temporary cropland (active 

cropland in a year) and thus excludes fallow land. Some satellite-derived cropland extent data 

products include perennial crops, while others do not (Potapov et al., 2023). Care must also 

be taken when reconciling satellite-derived cropland extent against agricultural censuses and 

surveys (e.g., FAO categories of “arable land”, “permanent crops”, “temporary crops”, 

“temporary fallow”, “temporary meadow and pastures”) (Tubiello et al., 2023), while noting that 

national and sub-national reporting agencies also may use different operational definitions 

despite the FAO standardization framework. With regards the spatial and temporal resolution 

(and span), naturally the optimal choice depends on the expected detectability (spatial footprint 

on the ground, and length of time since intervention, also comparing pre- and post- 

intervention) of the interventions under study. Temporally, the MODIS 500m annual map, and 

the very recently introduced GLC_FCS30D 30m annual map, provides an annual panel data 

spanning over two decades, and is thus suitable for panel studies looking at year-to-year 
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variations (necessary for tracing treatment effects after some time has passed, or for when the 

treatments occurred at different times), or long-difference research designs. Particularly for 

these latter types of applications, researchers need to be aware of the expected year-to-year 

accuracies of the cropland masks, i.e., the temporal stability of the classification. The MODIS 

and GLC_FCS30D accounted for the year-to-year stability in the design of the algorithm, and 

provided the multiyear accuracy assessment, and thus higher quality assurance that the 

temporal trend reflects the actual changes in the status of the lands, and not primarily year-to-

year misclassification (which can be expected from satellite data e.g., due to varying amount 

and intra-annual distribution of clear-sky optical satellite observations, as well as imperfect 

satellite image pre-processing e.g., atmospheric correction). Researchers needing data from 

before the year 2000 (high-resolution satellites data availability is sparse before 2000), can 

consider hybrid data products such as the History Database of the Global Environment (HYDE) 

which provides annual cropland from 10000 before Common Era (BCE) to 2015 Common Era 

(CE) at 5’ (five minutes, or ~9.2km at the equator) resolution  (Klein Goldewijk et al., 2017), 

based on satellite-based land cover maps (ESA-CCI, 300m resolution, 1992-2020, annual 

(ESA, 2017)), official statistics, and other geospatial datasets. 

It is important to note that, while satellites can provide the cropland physical or planting area, 

researchers working with crop production accounting often need cropland harvested area 

instead, and here hybrid data products that harmonize satellite-based cropland physical area 

and crop production official statistics remain the most reliable data for this. In practice, for 

example in M3Crops dataset, the national and sub-national statistics of harvested area is 

spatially distributed/allocated to cropland grid cells based on criteria such as the potential 

cropping intensities (Monfreda et al., 2008). The potential cropping intensities are in turn 

modelled based on criteria such as climate conditions and irrigation such as the FAO and 

IIASA’s Global Agroecological Zone Assessment suite of gridded crop data (Fischer et al., 

2021). Here, the recently available satellite-based 30m cropping intensities data (CI, equals 

the ratio between harvested area and physical area) during 2016-2018 (M. Zhang et al., 2021) 

holds promise to improve the estimation of cropland harvested area. 

While cropland mask is an operational capability using satellite data up to global scale, 

distinguishing crop types on the other hand is yet to achieve similar application readiness. 

Fundamentally, this is because the large number of different crop types may not have clearly 

separable spectral or/and temporal signature that the satellite multispectral sensors (the 

Operational Land Imager sensor on board Landsat-8 satellite has eleven spectral bands, the 

MultiSpectral Instrument (MSI) sensor on board Sentinel-2 satellite has thirteen bands with the 

novel red edge bands) can resolve. In the machine learning classification task, this issue is 

known as low interclass variability and high intraclass variability, and means the success of 
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the crop type classification algorithm depends on the availability of a large amount of local 

training data as the relationship between spectral-temporal signature and crop types are highly 

site-specific and not easily transferable geographically. The implication is while some 

considerably successful local-to-regional demonstration of crop type mapping exist (some 

large-scale examples:  continental scale in Europe (d’Andrimont et al., 2021), national scale in 

Germany (Griffiths et al., 2019), and the United States Department of Agriculture (USDA) 

Cropland Data Layer (CDL) (USDA National Agricultural Statistics Service, n.d.)), no global 

complex-set crop type maps currently exist and will likely remain so in the foreseeable future. 

Becker-Reshef et al. (2023) compiled and harmonized 24 national and regional crop type 

datasets derived from satellite imagery from 21 sources covering 66 countries to develop a 

Global Best Available Crop Specific Masks (GEOGLAM-BACS) at 5km resolution for four main 

crops. That said, if such a sizable global training data of complex-set crop types, and satellite 

hyperspectral data become available, coupled with advances in deep learning algorithm, the 

capability of generating a global crop type map remains to be seen. This, however, likely would 

require substantial ground knowledge particularly pertaining to the expected crop types that 

are known to grow in certain areas, and the crop calendar for the large number of crops which 

is to date not available (but to note the global crop calendar for wheat and maize by Franch et 

al. (2022) within the ESA WorldCereal framework). Previous global crop calendar datasets 

based on national-level observations and sub-national observations in some countries were 

outdated, namely MIRCA2000 (ca. 2000, 26 crops, distinction between rainfed and irrigated 

crops), and SAGE (1990s or early 2000s, 19 crops) (Sacks et al., 2010). Here, the hybrid data 

products are advantageous as agricultural statistics disaggregate among a large number of 

crops, albeit with limitations as noted above (uncertain accuracy of the spatial distribution, 

relatively coarse spatial resolution of ~9.2km, and being outdated and not frequently updated). 

In terms of total crop production, compared to harvested areas, crop yield (ratio of the total 

mass of harvested product to the total harvested area used to grow the crop) is a much more 

dynamic agricultural variable as it can substantially fluctuate year by year due to weather 

condition. Over the last half century, it is the growth in crop yields, rather growth in harvested 

areas, that has contributed predominantly to increased production (Blomqvist et al., 2020). 

Improving crop yields, or closing the yield gaps, on existing cropland (i.e., sustainable 

intensification, as opposed to extensification by cropland expansion) is a main lever to achieve 

global food security. Spatially explicit, at high spatial resolution, crop yield data is therefore a 

critical information need. Absolute crop yield estimation using satellite data depend on 

availability of site-specific and crop-specific training data, with successful local use cases but 

no operational large-scale up to global scale crop yield data product (Atzberger, 2013; 

Rembold et al., 2013; Weiss et al., 2019). To note however, depending on the studies, absolute 

crop yield may be required, or relative changes in crop yield as proxied by the satellite 
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indicators may suffice. Indeed, currently, for operational large-scale (regional to global) crop 

yield monitoring, such systems evaluate trends in crop yield in a qualitative manner by for 

example computing the anomalies on remotely sensed vegetation indices, which are then 

investigated by expert analysts to infer the likely impacts on crop yield (Fritz et al., 2019; 

Nakalembe et al., 2021).  

To circumvent the need of local yield calibration data, some studies make use of point-based 

crop growth models into which the spatially continuous satellite derived variables is 

assimilated, with some successful large-scale applications e.g., in the U.S., and some case 

study regions in India and Zambia (Azzari et al., 2017; Lobell et al., 2015). In Azzari et al. 

(2017), the obtained accuracies as assessed against county-level statistics in the U.S., distinct 

level in India, and province level in Zambia, were R2 consistently above 0.5 and RMSE 0.85 

ton per ha (9% of average yields) in the U.S., R2 above 0.45 and RMSE 0.56 ton per ha (19% 

of average yields) in India, and R2 0.55 and RMSE 0.4 ton per ha (26% of average yields) in 

Zambia. In Burke & Lobell (2017) study in Kenya, the agreement (R2) with field plot level yield 

(full plot crop cutting, which had the highest agreement with the satellite yield as compared to 

sub-plot cutting and self-report) is up to 0.4. In interpreting the agreement between the 

reference yield and satellite yield, it is important to note that at field scale in the smallholder 

system, the subjective self-report yield was found to have very low agreement (r = 0.04) with 

the objective crop cutting-based measures (Lobell et al., 2020).  

The successful use of crop growth models however requires accurate crop growth models, 

which needs to be calibrated (with many agronomy model parameters) for each crop and 

potentially for each region. Therefore, such use of crop growth models to estimate crop yield 

using satellite data is similarly mostly in research rather than in operational applications up to 

global scale (Weiss et al., 2019). Global-scale analysis of crop yield, especially for a large 

number of crop classes, thus rely on hybrid crop data products such the above mentioned 

IFPRI SPAM (which is now updated to 2020), with the caveat that the spatial allocation of the 

input political-level aggregated yield into the grid cells is uncertain (compared to the per-pixel 

direct yield estimation using satellite data), and the rather coarse resolution (~9.2km). For an 

analysis requiring a time series of crop yield, two data products offer a unique long-term, 

annual, historical perspective. Ray et al. (2019) compiled annual crop yield and harvested area 

from 1974 to 2013 for the top ten global crops at ~20,000 political units globally (pure census 

based i.e., not based on satellite data). The global dataset of historical yields for major crops 

(GDHY) by Iizumi & Sakai (2020) provides annual (and seasonal) yield from 1981 to 2016 for 

four major crops at 0.5 degrees (~55 km) resolution globally. GDHY is a hybrid product based 

on census data and satellite based FPAR, LAI and solar radiation, as well as other hybrid crop 

data products M3Crops. Finally, it is worth noting that the ground data collection of crop yields 
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used in censuses is often based on farmer self-report which can be unreliable; imperfect 

satellite-based crop yield can be just as reliable (Burke & Lobell, 2017; Lobell et al., 2020; 

Paliwal & Jain, 2020). In this sense, satellite-derived yield and yield from agricultural statistics 

can be used synergistically, for example to cross-check each other. 

Finally, the delineation of farm boundaries is regularly important. While this used to be done 

manually by navigating around farms, advances in remote sensing and machine learning 

techniques have made this possible digitally (Bilodeau et al., 2024). Edge detection techniques 

are making it possible to rapidly determine boundaries of many cropland farms for optimized 

precision agriculture. This is normally supported by ground metadata such as information 

about farm owners and others. This can also be helpful in detecting changes in the field 

boundaries that could imply encroachment into forested or protected lands and could help in 

enforcing regulations such as European Union Deforestation Regulation that hinders trade on 

products coming from deforested lands. 

b. Cropping System, Farming Practices and Agricultural Technology 

Cropping system refers to the planting arrangement in time and space on a piece of land, and 

associated farming practices and agricultural technology. Relevant agricultural variables under 

this category include variables describing the crop succession (temporal component > 1 year), 

the cropping pattern (crop sequence and spatial arrangement within 1 year), and the crop 

management techniques such as applications of fertilizer, irrigation, pesticide, machinery, soil 

tillage, and harvest practices (Bégué et al., 2018). Overall, compared to the variables 

describing agricultural structure, relatively few satellite remote sensing studies focused on 

cropping system. Most studies were conducted at local scale, highly dependent on local 

reference (training) data, and requires significant knowledge on local agricultural practices. As 

a result, there is presently a lack of operational large-scale (up to global-scale), systematically 

updated, geospatial data products are available under these themes. Therefore, in practice, 

researchers may need to create their own gridded map for the cropping system variables they 

are interested in, using machine learning. As mentioned before, creating such maps is now 

relatively low-effort thanks to cloud-based data access and computation platform such as the 

Google Earth Engine (Gorelick et al., 2017), although availability of high-quality local training 

data is the pre-requisite, and the accuracy of the generated map needs to be evaluated 

carefully to ensure that the map is fit-for-purpose. Below we provide an overview of cropping 

system variables that have been successfully estimated in the remote sensing community and 

the methods employed. 

Crop successions describe the multiyear farming practices in terms of crop rotation, fallowing, 

and shifting cultivation (including abandonment). Linking the observable farming practices to 
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the farmers’ socioeconomic condition and decision making, crop rotation, as opposed to 

monocropping, may indicate the presence of low-input versus high-input farms (crop rotation 

is necessary in low-input farms to maintain soil fertility). The temporal granularity and continuity 

(e.g., Landsat missions data record going back as far as 1980s, with next Landsat missions 

already planned) of satellite data allows to track crop successions, such as demonstrated for 

Europe (Estel et al., 2015) and several study areas in the world (Yin et al., 2020). While crop 

fallows can be inferred from annual maps of cropland mask (extent) that are readily available, 

crop rotation on the other hand requires annual crop type maps, which, as previously noted, 

remains challenging, and thus is yet to be available as an operational product. This is due to 

the large spatial and temporal heterogeneity in the spectral-temporal signature of the same 

crop (which is in turn due to heterogeneity in management practices) or/and inadequate 

spectral-temporal separability between different crop types with the current generation 

satellites (which may be improved by recently launched hyperspectral satellites such as 

EnMAP (Chabrillat et al., 2022)). Studies that do attempt to produce annual crop type maps, 

to infer crop successions, therefore should carefully account for the relatively high chance of 

crop type misclassification errors in each map, in turn leading to erroneously identified changes 

year to year. In practice, this can be done by applying logical crop type yearly transition rule 

based on expert knowledge. 

Cropping pattern denote practices such as single cropping, multiple cropping, where multiple 

cropping can take the form of sequential cropping (multiple harvests during one growing 

season), or intercropping (e.g., agroforestry). Sequential cropping can be identified by 

examining the cropland phenology using high temporal resolution intra-annual time series data 

from. MODIS sensor data, despite the moderate resolution of 250m at most, has powered this 

type of application owing to its daily revisit (compared to 8-day revisit of two simultaneously 

operational 30m Landsat satellites, 5-day revisit of two 10-20m Sentinel-2 i.e. 2A and 2B 

satellites; but promising new capabilities are expected from the 2-3 days temporal resolution 

with the 30m harmonized Landsat and Sentinel-2 data), which allows for more clear-sky 

observations and thus to better reconstruct the phenological cycle (Arvor et al., 2011; J. C. 

Brown et al., 2007; Gumma et al., 2016). Sentinel-1 radar is not affected by clouds, and thus 

provides a denser time series, however the individual Sentinel-1 observation is inherently noisy 

due to speckle noise as well as its sensitivity to soil moisture. The individual optical satellite 

observation also has noise due to imperfect preprocessing (atmospheric, geometric, terrain 

correction). In practice, applications relying on dense time series need to apply smoothing to 

the time series data, or to fit a statistical time series model (Atzberger & Eilers, 2011; Kong et 

al., 2019). Once the temporal profiles are obtained, interpreting e.g., classifying the temporal 

profiles into the types of sequential cropping system however require field knowledge of the 

local sequential cropping system and crop calendar, hence making large-scale (up to global-
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scale) mapping of sequential cropping system challenging. While sequential cropping can be 

resolved by the high temporal resolution of the currently operational satellites, intercropping 

(crop diversification) typically can only be resolved with imagery with at least 1m spatial 

resolution (commercial satellites such as Ikonos, Geoeye, Quickbird, Worldview, and 

Pleiades), and is thus only cost-effective for small areas (however, there are some successful 

demonstrations with PlanetScope 3m and RapidEye 5m imagery for large farmland trees , see 

Brandt et al., 2024). Interpretation of intercropping in the very high spatial resolution imagery 

typically is best performed by manual visual interpretation by a local expert on satellite image 

visual interpretation and on local ground conditions. 

Crop management techniques include the processes from soil preparation until crop harvesting 

and post-harvest practices, including application of agrochemical inputs such as fertilizer, 

pesticide, and herbicide, as well as application of irrigation. Concerning the specific 

macronutrients input from fertilizer, namely nitrogen (N), phosphorus (P), and potassium (K), 

physically speaking, only N has a detectable absorption feature, via chlorophyll and proteins 

that contain N. P and K on the other hand do not exhibit detectable absorption features in their 

spectra, and thus fundamentally cannot be estimated from satellite data, at least directly. 

Further complicating the detection, macronutrients in leaves do not necessarily respond to 

treatments of the corresponding macronutrients in the soil; crops in areas treated with the 

highest amount of a certain nutrient does not necessarily have highest foliar content of that 

nutrient, and have instead the highest foliar content of another nutrient (Siedliska et al., 2021). 

This, however, also means that, application of agrochemical inputs can be indirectly deduced 

from its covariation with other leaf constituents that are spectrally detectable, especially 

chlorophyll that some studies have shown to respond to changes in also P and K inputs (Lu et 

al., 2020; Siedliska et al., 2021). Indeed, a successful N estimation has been demonstrated in 

many local, crop-specific studies, via N covariation with chlorophyll (Berger et al., 2020; 

Homolová et al., 2013). The successful applications however largely make use of field 

hyperspectral measurements, and rarely use satellite data (Berger et al., 2020) as 

hyperspectral data is necessary to uniquely isolate the narrow absorption features of the leaf 

constituent, and historically there were no operational (for global mapping) satellite 

hyperspectral missions. The operational capabilities of the newly launched hyperspectral such 

as EnMAP (Chabrillat et al., 2022; Storch et al., 2023), PRISMA (Cogliati et al., 2021) and 

HISUI (Matsunaga et al., 2020), along with future planned missions, remain to be seen. Due 

to the above challenges, an operational large-scale monitoring of farming agrochemical inputs 

is yet to be realized, as it requires knowing local applications of various farming inputs that 

together affect the crop conditions (feasible for small study areas within which some farming 

inputs are the same or are known). We note however a first global-scale attempt of using 

current operational (multispectral) satellites (Moreno-Martínez et al., 2018) to create a global 
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map of specific leaf area (SLA), leaf dry matter content (LDMC), leaf nitrogen content per dry 

mass (LNC), and leaf phosphorus content per dry mass (LPC) at 500m resolution, for a typical 

year during 2000-2010. They employed a machine learning prediction model to leverage the 

TRY global leaf traits database, and obtained accuracy of RMSE ≤ 20% and Pearson's 

correlation R = 0.78. We recommend however to interpret the estimated leaf traits, especially 

in the context of local variability in agricultural areas, by accounting for other information such 

as crop types from hybrid crop data products overviewed before.  

Two global-scale hybrid data products (thus relatively coarse resolution i.e., ~9.2km) exist for 

agrochemical inputs application rate. The first is the crop-specific (138 crops, also pasture) 

nitrogen (N), phosphorus (P), and potassium (K) application rates for ca. 2000 (Mueller et al., 

2012), created based on national and sub-national fertilizer statistics, and the hybrid (satellite 

and census statistical fusion) cropland extent (Monfreda et al., 2008). The product applied 

income-based extrapolation to fill data gaps, and as with most hybrid datasets, apply 

assumptions/constraints to scale/harmonize between reported agricultural statistics. More 

recently, gridded data (~9.2km) on different nitrogen components at annual time step (1860–

2019) became available (Tian et al., 2022). This dataset is based on the HYDE gridded 

historical cropland extent, which in turn used as input the satellite-based ESA CCI general-

purpose land cover maps (ESA, 2017). A hybrid gridded crop-specific pesticide application 

rates at 5 arcmin resolution (~9.2km)  for 2015 is available (Maggi et al., 2019), which   

performed a global spatial inference i.e., extrapolating adequately-detailed data in the US to 

global-scale, using a set of gridded soil, hydroclimatic, agricultural, and socio-economic 

variables (some of which are derived from satellite data), conditioned on pesticide regulations 

and FAOSTAT country-level pesticide database. 

On the farming input of irrigation, satellite data have proven capable to distinguish between 

irrigated cropland and rainfed cropland. This capability is again owing to the high temporal 

resolution of satellite data, as the key to identifying irrigation is the time window of observation: 

the greenness (NDVI), or the surface moisture (Land Surface Water Index LSWI = (NIR - 

SWIR) / (NIR + SWIR)), and the land surface temperature, differ between irrigated and rainfed 

fields at the time of the peak of growing season (Deines et al., 2019; Massari et al., 2021). In 

notoriously cloudy tropical regions, SAR data which are not affected by cloud cover is 

commonly used. A global map of rainfed versus irrigated cropland at 30m resolution for ca. 

2015 is available (Teluguntla et al., 2023), with reported global producer’s and users’ accuracy 

above 80% for both irrigated and rainfed class. Beyond qualitative identification of irrigated vs 

rainfed cropland areas, estimating the amount/volumes of applied irrigation is however yet to 

be demonstrated (but, different irrigation techniques may be detectable based on in-season 

timing of field’s maximum greenness). For this continuous measurement of irrigation, a hybrid 
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data product taking advantage of satellite data and agricultural statistics on the area equipped 

for irrigation (AEI) has been produced by Siebert et al. (2015). AEI represents the area of land 

that is equipped with infrastructure to provide water to crops, excluding rainwater harvesting 

(note may not be the same as area actually irrigated (AAI), but AEI and AAI typically share the 

same temporal trends). They created gridded historical AEI at ~9.2km resolution, for the period 

1900 to 2005 (10-year steps until 1980 and 5-year steps from 1980 onward), based on country-

level FAOSTAT, and sub-national level Aquastat and Eurostat database of AEI as well as other 

sub-national data sources. The hybrid (satellite and census) cropland and pasture extent maps 

from the HYDE and Earthstat were used for data gaps infilling or consistency constraints. 

Soil tillage (related to the use of agricultural machinery) can be detected by satellites as tillage 

operations modify two land surface features, namely the amount of crop residue (plant litter) 

cover, and the surface roughness (Zheng et al., 2014). The physical basis behind crop residues 

remote mapping is that crop residues can be spectrally distinguished from bare soil in the 

SWIR electromagnetic spectrum due to known absorption features from cellulose and lignin in 

crop residues, such as using the Normalized Difference Tillage Index (NDTI=(SWIR1-

SWIR2)/(SWIR1+SWIR2), where SWIR1 and SWIR2 are the two shortwave infrared bands 

common in multispectral satellite system). Surface roughness can be detected by Sentinel-1 

C-band radar with wavelength 5.6cm and hence sensitive to cm-level variations in soil height. 

The empirical relationship between the satellite indicators and the tillage features, like other 

cropping system variables described in this section, is however not universal (under the 

influence of spatial heterogeneity of other management practices, soil characteristic, and 

weather) and thus depend on local calibration. Pure satellite-based global mapping of tillage 

has not been demonstrated, but large-scale mapping has been demonstrated in the U.S. 

(Azzari et al., 2019). In the absence of reference data for model calibration, expert knowledge 

rule-based determination of tillage types was conducted by Porwollik et al. (2019) based on 

gridded crop type, soil depth, field size (Fritz et al., 2015), erosion, aridity, and country-level 

conservation agriculture area and income. 

c. Environmental and Geographical Variables  

Majority of agricultural activities are dependent on environmental variables such as 

temperature, precipitation, humidity, and solar radiation. Agricultural yield is pegged on the 

genome of the item under production, environment and management practices employed by 

the farmers. The environmental variables are normally obtained via weather instruments sited 

at specific ground stations. However, efforts have been made to capture high resolution data 

based on remote sensing capabilities via UAVs, airborne or satellite as well as proximal 

sensing techniques (Ojha et al., 2015). At the same time, developments around data storage, 

computation and efficient algorithms have also grown tremendously (Weiss et al. 2019). 



24 
 

Indeed, the use of these remotely sensed techniques has boosted the profitability of 

agricultural ventures in the past few decades (Wolfert et al., 2017).  

Ability to rapidly observe the environmental variables over time and across space is making it 

possible for farmers to explain the performance of most farm produce. It also has the 

advantages including gathering data from rather inaccessible locations or under extreme 

weather conditions. Temperature, for example, is gathered using satellite images to help 

farmers decide when to conduct specific agricultural practices. For example, the preceding 

number of high temperature days can help a farmer decide when to sow. They also include 

soil variables such as soil moisture, soil temperature, soil organic carbon content, and soil pH. 

On the other hand, geographical variables as captured by satellites refer to the physical 

features and spatial characteristics of land or earth surface. They include topography such as 

elevation, slope, and aspect, field boundaries, drainage patterns, and road networks among 

others. There are also land cover variables such as cropland, urban, forest, bare soil, water 

bodies among others. Other geographical variables include proximity variables such as 

distance to water bodies, urban centers, distance to roads, distance to borders and other 

infrastructure that affect agricultural and environmental outcomes. Here, we give an overview 

of some of these variables. 

In many analyses, elevation play a role. This refers to the height of the land surface or a point 

above the sea level and e.g., can affect the climate of a place as well as drainage and erosion 

(Amatulli et al., 2018) that are important in agricultural activities. It is normally associated with 

temperature with high altitudes having lower temperature values than higher elevation points 

(Kazemi Garajeh et al, 2023). This is captured by satellite sensors that have active sensors to 

receive backscatter from the ground to record height of a place with respect to time it took to 

send and receive back the signal.  Other derivatives of elevation such as slope and aspect are 

also of interest in agriculture. Slope (the steepness or inclination of land) is an important factor 

influencing surface runoff and soil erosion. It is thus an important consideration in agriculture 

including consideration for mechanization and types of crops to grow at specific slope angles. 

Aspect (the direction that a slope faces) also plays an important role in regulating microclimate 

of a place and how much exposure a place is to sunlight. Both of these play a role in 

determining the type of crop to grow at a given location as some crops need more solar 

exposure than others. All these can be obtained from satellite remote sensing information to 

help farmers make the right decisions on the kind of agricultural activities to venture into. 

The hydrology and drainage patterns of are often important in agriculture as water plays a 

central role in farming. Precise mapping of the natural as well as man-made drainage systems 

including rivers and irrigation channels is crucial for managing water resources in a farm 

(Bilodeau et al., 2024). This is also helpful in preventing or controlling flooding as well as 

planning irrigation systems. Both optical and radar imagery from satellite sensors help identify 
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and monitor the drainage patterns and have proved valuable in detecting hydromorphic soils 

for conservation in agricultural fields of Brazil (Mello et al., 2023). For instance, long term 

monitoring of the behavior of a river in case of flooding could help a farmer design dykes that 

can withstand the worst possible flooding scenario based on the historical observed flooding 

in the region.  

Finally, almost always need researchers work with land cover. This is often right at the start, 

e.g., one might need to exclude all land cover types that are irrelevant to the research, e.g., all 

non-crop land, or all non-forest land. Alternatively, sometimes one simply needs to account for 

different land-covers, e.g., a vegetation index reflects a different phenomenon on cropland and 

on grassland, or maybe land cover changes are the actual research focus. 

Satellite remote sensing and machine learning techniques allow the identification of different 

land cover types such as forests, grasslands, and croplands (Song et al. 2016).  

S4 Required Skills and Resources 

Geospatial data expertise involves conceptual and practical understanding of geospatial data 

models/structures, and algorithms (i.e. what established operations can be performed on 

geospatial data). Geospatial data are georeferenced i.e., are placed in the real world to relate 

the spatial elements (entities) in the data with the surface in the real world. That is, they have 

a coordinate reference system (CRS). The CRS can be geographic CRS (“longitude-latitude”, 

typically in decimal degrees) or projected CRS (“easting-northing” in meters from a local 

coordinate system origin/reference point). Keeping track of CRS is essential as workflows very 

often involve data with different CRS, and thus often require reprojecting data into different 

CRS. Some vector data (data models described below) geometric operations are better 

performed to the data in projected CRS. On the data models, geospatial data represent the 

world as raster data and vector data.  Raster data represents the world as a continuous grid 

of cells, i.e., as an image, fields, surfaces, dividing the surface up into cells of constant size. 

Raster data is therefore suitable for spatially smoothly continuous phenomena such as 

elevation and rainfall. Raster is basically an array of numbers, which can be a two-dimensional 

grid (i.e., single-layer, or a matrix) where the rows and columns indices represent real world 

coordinates such as longitude and latitude and the value of each array element represents the 

data (e.g., elevation value at that coordinate), or three-dimensional (multi-layer) with additional 

time dimension (time series of raster e.g. monthly average rainfall for every 1km grid cell within 

a study area), or four-dimensional (a generic “data (hyper)cube”) with an additional dimension 

representing different data variables or “bands” (e.g., different spectral bands in satellite 

image), and so on. Raster data can store only one attribute in one layer (the pixel value). In 

terms of data types, raster data can be discrete (categorical) values for example to represent 

soil types, or can be continuous for example to represent elevation. Vector data on the other 
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hand represent the world as discrete objects with well-defined borders, namely as points (e.g., 

cities), lines (e.g., rivers) and polygons (e.g., country boundaries or field measurement plots). 

Geographic vector data are composed by the geographic representation, and the attributes or 

properties associated with each geographic entity. In other words, vector data can be 

understood as basically a table, with a special column to store the “geometry”. In contrast to 

raster (single-layer) data, vector data can store multiple attributes as columns in the data (e.g., 

countries vector data with attributes country-level population and GDP). Raster data can be 

converted to vector data (vectorization), and vice versa vector data can be converted to raster 

data (rasterization). For example, a researcher may decide each grid cell is their observational 

unit of analysis, and therefore needs to convert the raster into a table, where each cell becomes 

a row in the table (with the cell id), optionally storing the coordinate of each cell’s centroid 

(raster to points conversion).  

There are numerous file formats for raster data and vector data, with the most commonly used 

ones are GeoTIFF (.tif, basically a TIFF image format but with special header storing the 

geospatial metadata information) and netCDF (.nc) for raster data, whereas ESRI-shapefile 

(.shp) and GeoPackage (.gpkg, which is preferred over shapefile) for vector data. 

The above conceptual data models are implemented using different designs in different 

software and libraries that support geospatial data, including Geospatial Data Abstraction 

Library (GDAL)which is the backbone of many GIS software especially in terms of read/write 

support for the myriad of raster data formats (Gandhi, n.d.; GDAL/OGR contributors, 2024),  R 

(R Core Team, 2023), Earth Engine (Gorelick et al., 2017), and Python (Van Rossum & Drake, 

2009). Understanding the specific data structure, and the algorithms (methods), in the specific 

implementation is key to efficient handling of geospatial data in the chosen software and library. 

Use of built-in data models, object classes, and methods is recommended over custom self 

implementations to avoid potential mistakes due to mis-aligned dimensions or geolocations of 

the data. In R, raster data are supported by the SpatRaster (and SpatRasterDataset, 

SpatRasterCollections) object class in terra library (Hijmans, 2023b), which is the successor 

the raster library (with RasterLayer, RasterStack, and RasterBrick object class; Cohen, n.d.; 

Hijmans, 2023a), and as spatiotemporal raster data cube in the stars library which is designed 

for easier handling of complex multidimensional rasters i.e., raster data (hyper)cubes with 

many layers (e.g., bands), for many moments in time (e.g., months), and many attributes (e.g., 

sensor type A and sensor type B). For data wrangling, subsetting, and manipulation, the stars 

library allows to apply dplyr verbs (Wickham, François, et al., 2023). Terra is in most cases 

more efficient (computational and memory wise). NetCDF file typically has rich metadata which 

in R can be read with ncdf4 library (Pierce, 2023). In the Python world (which, notably, has 

better support for deep learning, and parallel processing use cases), raster data are supported 



27 
 

by the DataArray and Dataset object class in the xarray package (Hoyer et al., 2024; Hoyer & 

Hamman, 2017). Raster file formats can be read into xarray objects using rioxarray library 

(Snow et al., 2024) which is based on rasterio library (Gillies & others, 2013). In Earth Engine, 

the corresponding object class for raster data are ee.Image and ee.ImageCollection. Vector 

data models, in R, are implemented as SpatVector object class in terra, and simple features in 

sf library (Pebesma, 2018; Pebesma & Bivand, 2023; which is successor to sp library).  sf has 

better support for vector data and allows to apply dplyr verbs for data wrangling. In Python, 

vector data can be imported as GeoDataFrame object class in GeoPandas package (Bossche 

et al., 2024; Jordahl et al., 2020) which is based on shapely library (Gillies et al., 2024) to 

encode the geometry. Finally, in Earth Engine, ee.Feature and ee.FeatureCollection are used 

to represent vector data. An analysis often needs to employ methods available in different 

libraries, which is facilitated by existing functions to convert between object classes used in 

different libraries, especially among the geospatial libraries in the R ecosystem. 

Geospatial algorithms or geocomputation that are typically applied to raster data include: (i) 

data aggregation (“reducer” operation in Earth Engine terminology) in space dimension (local 

i.e., per-cell, zonal i.e., per neighborhood window or other zones, or global operations i.e., per-

raster e.g., creating raster of distance to rivers) or/and time dimension (e.g. per-pixel annual 

mean); (ii) modifying spatial extent or resolution of raster(s) with operations such as mosaic, 

merge, crop, mask, and resample; and (iii) reprojecting raster(s) to another CRS. Reprojecting 

a raster involves reprojecting the grid and resampling of the per-pixel values to populate the 

new grid, and thus changing the values. Care must therefore be given in specifying the 

appropriate resampling algorithm, such as nearest neighbor for categorical variable, and 

bilinear interpolation (i.e., based on distance-weighted average of four closest pixels) for 

continuous values, depending on whether preserving original values or having a smooth spatial 

variation is more important (as well as whether resolution changes are from coarser to finer 

resolution, or from finer to coarser resolution). To take advantage of computationally efficient 

matrix algebra operations (array broadcasting), raster layers that share the same spatial 

resolution and extent, can be stacked into a single multi-layer raster object in most software 

and libraries.  Identifying functions which apply an operation across pixels in a single raster, 

versus those that apply an operation across multiple rasters on a per-pixel basis, is key. 

Further, many of the raster processing methods/functionalities then automatically apply a given 

per-raster operation to all the raster layers in the raster object (i.e., for loop is not necessary). 

On to vector data, typical algorithms/geocomputation for them include: (i) geometric queries, 

or spatial join/relationship, such as adjacency, distance computation, finding nearest unit, 

intersection, containment, and other spatial predicates; (ii) buffering; and (iii) simplifying 

geometry and fixing invalid geometry. Spatial join between point (destination/target) and 

polygon (source) vector data for example entails the process of finding for each of the point in 
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the target data, the polygon in the source data that the point intersects, and then assign the 

value of the attributes associated with the polygon, to the point. An example use case for this 

is to assign country information to points observations representing the centroids of ground 

measurement plots (which country each point falls in). 

More broadly, spatial join can be considered a generic operation that can be applied between 

a vector data and another vector data (e.g., point-on-polygon overlay described above), 

between a raster data and another raster data (e.g., re-gridding a raster data into another 

raster data template that may involve reprojecting, resampling, changing extent, and 

aggregating pixels if resolutions differ, in the source raster), but also between a raster data and 

a vector data (Lovelace et al., 2019). The last type of operation involving raster-vector 

interaction is particularly important in preparing analysis-ready data for econometric analysis. 

For example, researchers may need to reduce the data they work with by cropping some raster 

data with polygon vector data delineating their study area. This raster-polygon cropping applies 

spatial subsetting to the raster data to keep grid cells that fall within the geographic extent 

(rectangular bounding box) of the geometry of the vector polygon data. Grid cells that are not 

inside the exact geometry of the polygon can also masked (i.e., set to no-data). Another 

important raster-vector operation is raster data extraction to vector spatial elements (“extract” 

function in terra, “reduceRegion” and “reduceRegions” methods in Earth Engine). A practical 

example use case is when the researchers need to add information about environmental 

variables obtained/derived from satellite data, to their analysis unit which can be survey areal 

sample unit. Raster-points data extraction entails the process in which for each of the points, 

it finds which raster cell the point is located within, and assigns the value of the cell to the point. 

The assigned value can be the value of the single cell the point falls in, or spatial interpolation 

of several nearby cells (weighted by distance). Raster-polygons data extraction identifies for 

each of the polygons, all the raster cells that intersect with the polygon, and assigns a vector 

of the cell values to the polygon. The vector of the cell values can also be summarized during 

the process i.e., we compute the mean of all the cells within each polygon. exactextractr 

(Daniel Baston, 2023) is a specialized, highly performant library in R for raster data extraction 

with polygons. It is worth noting that spatial join using rasters is usually faster than using only 

vectors. For example, if one wishes to add country-level population (polygon vector data) to 

each cell in a 1km raster, rather than converting the raster into points (centroids) and then 

perform points-on-polygons spatial join, it can be more efficient to rasterize the country 

polygons data into the 1km raster grid as template, and then stack them at this stage of 

processing chain. Once the econometric analysis-ready data is created, for a large data table, 

the data.table (Dowle & Srinivasan, 2023) library in R can be a faster alternative to regular 

dplyr data frame (dtplyr library by Wickham, Girlich, et al., (2023) allows to write dplyr code for 

data.table object). 
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To take the benefits from high resolution satellite data and data products, and to investigate 

research questions at a large scale, the research team requires expertise in big data 

processing. The technical challenges in analyzing big data are in processing data which are 

beyond the available computer’s memory (“out-of-memory” computation), and in parallelizing 

the computation across computer cores (“out-of-core” computation) to generate output in 

feasible processing time. Fortunately, tools that facilitate relatively easy set up for out-of-

memory and out-of-core geocomputation are increasingly available. To deal with memory 

limitation, the tools adopt a lazy evaluation framework, in which data is only loaded into 

memory as needed. That is, when a large file is read, only the necessary metadata such as 

the dimensions (the “container”) of the raster data, or the columns names and data type of the 

vector data, is read while the actual content of the data is not loaded into memory as yet. 

Applying a series of geoprocessing functions to these “proxy” objects merely builds a 

computational graph description, which is not automatically executed, but rather executed on 

demand via calling certain functions. This represents the change in paradigm from “file-based” 

processing, to “metadata-based” processing, and different providers of Earth Observation data 

are converging to use a standardized data catalog and metadata specification 

(SpatioTemporal Asset Catalogs, STAC) to allow a unified interface for data access and query. 

Lazy evaluation is performed by the terra library in R, by the xarray package in Python (when 

chunks argument is specified it uses lazy Dask (Rocklin, 2015) array instead of eager numpy 

array) for raster data. For vector (tabular) data, this is for example supported by the arrow 

(Richardson et al., 2023) library in R, and by Dask DataFrame (Dunnington, 2022) and dask-

geopandas packages in Python. Likewise, Earth Engine also builds computational graph 

description before explicit execution calls (e.g., printing objects in the console, displaying 

objects in the map panel, or exporting computed objects).  The modern geospatial tool stack 

also offers an easy interface to request that the geoprocessing, once being asked to be 

executed, is to be parallelized (i.e., the work distributed) across compute cores. This is 

achieved for example by setting up a Dask cluster in Python, and   in R by reading a subset of 

raster data at a time (Krzysztof, 2023) and utilizing standard framework for parallel processing 

namely foreach (Weston, 2022) and doParallel (Weston, 2022). At times, however, instead of 

setting up multi-core processing, faster processing time can be achieved by using algorithms 

natively written in C++, such as using GDAL tools (which supports also “virtual” raster object), 

accessible within R e.g. via gdal_utils function in the sf library. Also, enhanced file formats 

more suitable for big data e.g., cloud-optimized GeoTIFF (COG) for raster data, and 

GeoParquet for vector data, can improve performance as they are specifically designed to 

support streaming parts of the data content (partial read, parallel read). For raster data, careful 

data compression (e.g., lossless LZW or DEFLATE algorithm) and data type specification (e.g., 

integers vs floats) that reduces data size on disk can improve computational performance. For 
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large vector data, use of database e.g., PostGIS (Committee & others, 2018) and duckdb 

(Mühleisen & Raasveldt, 2024) with the spatial extension (Gabrielsson, 2023) can be 

considered. 

When computing resources in the researcher’s machine are not adequate, they need to scale 

their workflow to a cluster of computers. This can be an in-house high-performance computing 

facility, or cloud-hosted virtual machine instances that can be rented from  the Amazon Web 

Services, Google Cloud Platform, Microsoft Azure, and others. Cloud-based scaling is 

advantageous as that means there is no need to move (download) the data (different cloud 

providers readily host satellite data in their cloud storage), thus facilitating a cloud-native 

workflow that brings the algorithm to the data, instead of bringing data to the algorithm. 

Naturally, if researchers need to use such cloud services, some knowledge of cloud computing 

and devops would be necessary. Google Earth Engine alleviates the burden of substantial IT 

management and cloud expertise and effort of which researchers often do not have the luxury 

of having. When using Earth Engine, users are liberated from the details of working in a parallel 

processing environment. This however means that users cannot influence the parallelism, and 

they need to have a good understanding of the parallelism paradigm in  Earth Engine to 

harness the best performance out of the available, shared, resources. Here, it is helpful to have 

an awareness of the fundamental difference in Earth Engine geocomputation models, and 

scaling limits, as compared to traditional (desktop-based) GIS and remote sensing workflow. 

In the traditional geospatial processing paradigm, typically one needs to explicitly, spatially 

align/harmonize raster data into the same, common, grid (extent, resolution, projection 

system), throughout the processing chain. These resampling and reprojection are expensive 

operations. In contrast, when working in Earth Engine, users only need to specify the common 

output grid at the end of the processing chain, and Earth Engine will internally perform the 

necessary resampling and reprojection on the fly. In other words, the projection, resolution and 

spatial extent in which computations take place, are determined on a “pull” basis (i.e., 

determined by the arguments scale/crsTransform, crs, region in export calls, or interactively 

by the map display viewport visible tiles and zoom level), and input data are requested only for 

the respective tile and resolution (Earth Engine internally pre-computes pyramids of reduced-

resolution images). Note however users can also explicitly control the resampling and 

reprojection operation (with reduceResolution, reproject, or/and resample) when desired, for 

example when the users wish to use bilinear resampling instead of the default nearest 

neighbor, or when they wish to upsample a finer resolution image to a coarser resolution image 

by computing specifically the sum (Earth Engine‘s default pyramiding policy is average for 

continuous-valued image) of finer resolution pixels in each of the coarser resolution pixel. 

Some notes on scaling workflows to fit Earth Engine infrastructure and parallelism are provided 

in section S1 (Workflows). 
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Another required skill when working with geospatial data is geodata visualization in both static 

and interactive modes. Frequent visual inspection is recommended to make sense of the data, 

catch potential errors/artifacts, throughout processing chain i.e., to examine whether the output 

from an important processing step (e.g., masking an image so undesired pixels are correctly 

assigned no-data and ignored from subsequent computations, or reprojecting data or 

specifying its CRS so they spatially align, etc.) is not out of expectation. The Earth Engine web-

based IDE/code editor (JavaScript client library/API) is especially designed for this purpose 

with its powerful map panel component. Other geodata visualization tools include QuantumGIS 

QGIS (QGIS Development Team, 2024); ggplot (with geom_sf and geom_raster) (Wickham, 

2016),  mapview (Appelhans et al., 2023), and tmap (Tennekes, 2018) in R; and geemap (Wu, 

2020) and HoloViz (Yang et al., 2022) in Python.  

Finally, equally important as the technical skills enumerated above is domain knowledge 

expertise concerning the satellite-derived data (measurements), and the intended application 

(inference), under the specific theme of the research. When the researchers are thinking to 

use original satellite data to derive some measures (e.g., create a map of crop type using 

machine learning), it is beneficial to have appropriate expectation on the potentials and 

limitations of the available satellite data (in terms of spatial, temporal, spectral resolution i.e. 

whether it can sufficiently detect the outcome of the treatment in relation to the situations on 

the ground) how the satellite observable physically responds to the target variable of interest 

(i.e., the data generating process). To best leverage the many decades of remote sensing 

science, researchers need to be able to identify the most reliable satellite data processing 

levels (e.g., whether atmospheric, view angle corrections have been performed for optical 

satellite data; whether speckle, terrain corrections have been applied to SAR data), and apply 

preprocessing using the QA/QC layers provided in the product appropriately (e.g., filtering out 

clouds and shadows). When the researchers intend to use satellite-based thematic data 

products, such as a map of discrete-valued land cover types, or continuous-valued vegetation 

biomass, they need to have some understanding of the algorithm used to create the product 

(by consulting the Algorithm Theoretical Basis Document or User Guide documents), and be 

informed about the data product accuracy (in validation report or relevant scientific 

publications, though assessing accuracy in local study areas is additionally recommended). By 

understanding the nature of the errors in the satellite data/data products (which can stem from 

the physical sensitivity of the satellite indicators used to predict the variable of interest, or from 

the thematic processing e.g., quality, quantity, and spatial distribution of training data used in 

machine learning based products), the researchers can assess the impact of the errors 

downstream on the econometrics analysis. For example, remote sensing predictions may be 

differentially accurate for positive and negative outcome in a binary classification task (e.g., 

deforestation is over-predicted, i.e. has higher commission error but lower omission error, 
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whereas non-deforestation is under-detected, i.e. has higher omission error but lower 

commission error), or for different class labels (categories) in a multiclass classification task 

(e.g., grass and shrub are more often incorrectly classified compared to forest, water and built-

up), or for different parts of a distribution for continuous outcomes (e.g., the tendency of MODIS 

Vegetation Continuous Field and Landsat Percent Tree Cover product to underestimate high 

percent tree cover values and overestimate low percent tree cover values (Gerard et al., 2017; 

Staver & Hansen, 2015), or of the radar-based aboveground biomass map to underestimate 

high biomass values (Sinha et al., 2015)). Fortunately, increasingly data products developers 

provide uncertainty maps along with their prediction maps. Researchers however need to 

carefully interpret the uncertainty maps as they are based on various techniques such as 

quantile regression, number of valid observations (input pixels), distance to second class, 

ensemble-based prediction variance, or area of model applicability (extrapolation of feature 

space) (Meyer & Pebesma, 2021; Mo et al., 2023; Singh et al., 2024).  For hybrid data that 

combines satellite based data and agricultural censuses or surveys, in addition to 

understanding the errors in the satellite based maps used in the product (how they are used 

and thus how and the extent of which the errors propagate to the end product), the researchers 

need to have the skills account for uncertainties due to the  underlying statistical data, 

interpolation/extrapolation model fit, and data gaps infilling criteria. Awareness of the various 

gridded data layers used in the processing chain of hybrid products also informs whether 

circularity (outcome and treatment data share the same predictor) can be a major issue. 

Ultimately, the researchers need to evaluate the fit-for-purposeness of the satellite data and 

data products within the specific context of the study and the inference objectives. For 

example, the researchers need to consider whether the absolute accuracy of the satellite 

based predicted outcomes permits the research questions to be answered with sufficient 

confidence, or the relative accuracy is acceptable i.e., can the satellite-based predicted 

outcomes sufficiently detect the responses to the treatments of interest (Burke & Lobell, 2017; 

Lobell et al., 2020). 
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