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Climate change and food consumption: Is home-induced food a source of 

resilience and vulnerability? 

 

Abstract 

Global warming-induced climate change presents a significant threat to agriculture and food 

security, particularly in vulnerable regions like India. This study explores whether home-produced 

food can act as a source of resilience or vulnerability in the face of climate change. Using 

comprehensive national data from the National Sample Survey (NSS) 68th round and the 

International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), the paper quantifies 

the food consumption and security role of home-produced food across various Indian regions and 

examines the implications of climate-induced yield changes on food security. The study employs a 

deep learning approach to model the complex, non-linear relationships between climate change, 

agricultural yields, and household food consumption. Preliminary findings suggest that home-

produced food plays a critical role in food consumption and security, especially in rural areas. 

However, increased dependence on home production could heighten vulnerability to climate 

anomalies. While home-produced food has the potential to enhance resilience, its role must be 

carefully supported through policies that provide tools and knowledge for better agricultural 

practices. Conversely, if market participation increases, ensuring effective market functioning and 

affordable nutritious food becomes crucial. The study findings provide valuable insights for 

policymakers on balancing home production and market reliance in the context of climate change. 

JEL Codes: Q18, Q54, D13, O13, C45, E21 
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1. Introduction 

Global warming-induced climate change poses a significant threat to humanity. Manifestations of 

climate change include rising temperatures, unprecedented changes in rainfall patterns, frequent 

floods, declining groundwater levels, soil erosion, prolonged dry spells, droughts, hailstorms, and 

rising sea levels due to melting glaciers (Kumar et al., 2013; Hussain A. et al., 2016). These changes 

are expected to severely affect agriculture and water resources, thereby affecting food security and 

health. Climate change disrupts various aspects of food security, leading to reduced access to food, 

which in turn diminishes dietary quality and diversity (Sibhatu et al., 2015; Behera et al., 2023).  

India is particularly vulnerable to these climatic aberrations (Singh et al., 2020). Despite its 

economic progress, India struggles with malnutrition, which hinders socioeconomic development 

and exacerbates poverty. Approximately a quarter of the world's undernourished population resides 

in India, which ranks 111th out of 125 countries in the Global Hunger Index (GHI) 2023 (Citation). 

Addressing hunger necessitates progress in food and nutrition security; however, even minimal 

warming in a tropical country like India can lead to significant crop yield losses (Parry et al., 2007). 

The country's diverse geography and varying climatic conditions mean that regional impacts will 

differ, and some regions will be affected more than others. Research by the Indian Agricultural 

Research Institute (IARI) suggests a potential loss of 4–5 million tons in wheat production for every 

1°C rise in temperature during the growing season (Citation). Future yields of wheat, soybean, 

mustard, groundnut, and potato are expected to decline by 3–7% with a 1°C increase in temperature 

(Aggarwal, 2009). Additionally, erratic monsoons could severely impact rain-fed agriculture, 

reducing the productivity of crops such as rice, maize, and sorghum, especially in regions like the 

Western Ghats, Coastal areas, and northeastern region, as well as apples in the Himalayan region 

(Kumar et al. 2011). 

To enhance resilience to food insecurity in the face of climate change, households adopt and practice 

various measures. Among these measures, home-produced food through own farm production and 

homestead farming or rooftop agriculture remains vital for food and nutrition security despite rapid 

commercialization of smallholder farming and urbanization. Own-farm production and homestead 

farming systems involve the cultivation of diverse crop species and offer significant livelihood, 

nutrition, and health benefits to rural households. 

These self-sustaining systems can enhance households’ resilience to climate change and food 

insecurity, allowing the households to adapt their cropping patterns and to introduce more climate-
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resistant crops based on their local conditions (Hussain A. et al., 2016). However, a significant 

portion of rural households comes from food purchases (Sibhatu and Qaim, 2018). Hence, when 

larger shares of food consumption come from own production, diets become highly dependent on 

local agricultural yield, and this dependence could increase vulnerability in case of adverse climate 

events. The dual nature of home-produced food as a source of resilience or vulnerability in the 

context of climate change remains unknown. This study aims to address this gap in literature. 

In particular, this paper has two primary objectives. First, it quantifies the food security roles of 

home-produced food across various regions in India using comprehensive national data from the 

National Sample Survey (NSS) 68th round and the International Crops Research Institute for the 

Semi-Arid Tropics (ICRISAT). Second, it examines the implications of climate-induced yield 

changes on food security by specifically considering home production. Despite the promotion of 

home gardens as tools for enhancing resilience and nutrition, the significance of home-grown food 

has often been overlooked in policy and public discourse. If the importance of home-produced food 

increases with climate change, policies must support households with necessary tools and 

knowledge to improve their agricultural practices. Conversely, if the role of home production 

diminishes, there will be a need for effective market functioning, affordable prices, and the 

availability of nutritious foods. Hence, this study also aims to determine whether home production 

complements or replaces market-purchased food in the context of climate change. 

In this study, the effect of climate change on agricultural households is captured by examining the 

effect of changes in the main crop yield that result from climate anomalies, accounting for the 

complex pathways through which lower yields affect food consumption. Household decisions on 

resource allocation aim to maximize revenue for food and non-food consumption. Given the 

complexity and multidirectional nature of these relationships, this study employs a deep learning 

method that offers flexibility in predicting nonlinear relationships with explanatory factors. The 

hidden layers of the network are expected to account for unobservable steps and trade-offs that 

influence household food consumption.  

The remainder of this paper is organized as follows. Section 2 provides an overview of climate 

change projections in India, examining their effects on Indian agriculture, and the role of home-

produced food in ensuring food security and nutrition. Section 3 outlines the conceptual framework 

linking climate change-induced shifts in agricultural production to food security, along with the 

identification strategy. Section 4 details the data sources and empirical methodology employed in 
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this study. Section 5 presents and discusses the results. Section 6 concludes the study, discusses the 

policy implications, and suggests areas for future research. 

 

2. Context 

2.1. Climate change projections for India 

Climate change projections for India paint a scenario of considerable environmental, economic, and 

social challenges that could intensify in the coming decades (Kumar et al., 2013; Sharmila et al., 

2015; Yaduvanshi et al., 2019). Forecasts suggest a marked increase in temperature across the 

subcontinent, with a potential rise in the average temperature by 1.7°C to 2°C by 2030, relative to 

the baseline figures from the latter half of the 20th century (Yaduvanshi et al., 2019). This warming 

is expected to be more pronounced in food-producing agricultural areas, transforming climate 

patterns and exacerbating heatwaves, which are already a significant cause of climate anomalies 

(Kumar et al., 2013; Sharmila et al., 2015; Yaduvanshi et al., 2019). Moreover, the retreat of 

Himalayan glaciers, which are vital sources of water for perennial rivers in the Indian subcontinent, 

is set to impact water availability across the entire region, not only in India. 

The implications of these temperature increases have been far reaching. India is projected to witness 

alterations in monsoon patterns, leading to erratic and unpredictable rainfall. While some areas may 

experience increased rainfall, leading to floods, others may suffer from reduced rainfall, 

exacerbating drought conditions for decades (Kumar et al., 2013; Sharmila et al., 2015; Yaduvanshi 

et al., 2019).  Such variability poses a severe risk to agriculture, which remains a mainstay of the 

Indian economy and a primary source of livelihood for more than half of the country's population. 

Changes in monsoon patterns can severely disrupt agricultural cycles, affecting crop yields and 

threatening food security for millions.  

2.2. Effects of climate change on Indian agriculture 

The agrarian landscape of rural India is currently at a crossroads, and climate change is posing new 

challenges. Rural agriculture, which is primarily rainfed, is extremely vulnerable to such changes 

(Pathak, 2022). Monsoons, which are vital to Indian agriculture, are becoming more erratic, causing 

droughts in some areas and floods in others (Kumar et al., 2013; Pommier et al., 2018; Saryal, 2018; 

Yaduvanshi et al., 2019). These anomalies disrupt planting seasons and affect crop growth and yield, 

thereby threatening food security (Rodthong et al., 2020). 
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Warming temperatures are expected to hasten crop maturation, shorten the growing season, and 

potentially reduce the yields of key staples, such as wheat and rice (Datta et al., 2022). For example, 

wheat, which requires a cooler growing season, may experience lower yields due to heat stress, 

especially in the already warm northern plains (Singh et al., 2023). A simulation study showed that 

a 2 °C increase in temperature reduced potential wheat yields in most places in India (Agarwal et 

al., 1993). Similarly, for rice, a rain-fed crop with a decrease in rainfall resulted in yield loss of about 

8 % in a simulation model for the tropical Indian state, Kerela (Saseendran et al., 2000). A 1°C 

increase in temperature led to about 6% decline in the simulated yield of rice. This is especially 

concerning for rural populations, where dietary variety is limited and reliance on staple grains is 

high. 

The consequences for rural food systems will be significant. As staple crop yields decline and 

nutritional content shifts, the risk of malnutrition is likely to rise, particularly among vulnerable 

populations (Chattopadhyay, 2011).  

2.3. Food security role of home-produced food in rural India  

Overall, Indian households draw non-negligible shares of their nutritional needs from non-market 

resources, such as own-production. This takes the form of farming households and workers who 

retain shares of cash crop production for their own consumption, or kitchen gardens specifically 

designed to procure households with varieties of fruits and vegetables for their own consumption. 

In both cases, own-produced food fulfills specific nutritional needs that complement those of foods 

purchased from markets.  

In addition, home-produced food is not only a source of sustenance in rural India but also an 

important part of its cultural identity and nutritional autonomy. Rural households have developed 

intimate knowledge of food cultivation, which they use to feed their families and improve their 

health (Hudson et al., 2016). Agricultural practices are not only a source of income in rural India 

but also a repository of traditional ecological knowledge. Family farms and smallholdings use time-

tested methods passed down through generations to maximize crop yields while working within the 

constraints of local climate and soil conditions (Cheek et al., 2023; Hudson et al., 2016).  

 

Despite these advantages, the nutritional potential of home-grown food has not been fully realized, 

owing to a variety of constraints. Market access to surplus produce is frequently limited, reducing 

the incentive for domestic food production diversification and innovation (Gruère et al., 2009). 
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Furthermore, nutritional knowledge — understanding how to use a diverse range of available foods 

for a balanced diet — is sometimes insufficient (Cheek et al., 2023). Extension services and 

community education programs aimed at improving nutritional knowledge can be transformed in 

this context. 

 

3. Conceptual framework 

Overall, this paper is focused on the effect of agricultural yields on the quantities of own and 

purchased food by farming households, where yield is of interest as it is expected to lower as a result 

of climate change. Other pathways of climate change on food consumption are beyond the scope of 

this analysis. The following sub-sections explain the choice of yield as determinant of interest, and 

the complex relationship between yield and food consumption choices.   

 

3.1. Climate change and agriculture 

Complex interactions exist between agricultural productivity and climatic factors such as 

temperature, rainfall, and carbon dioxide levels. As stated above, climate change is expected to 

disrupt farming, resulting in crop cycle changes, increased pest and disease outbreaks, and altered 

land suitability for certain crops. Section 2 establishes that lower yields are a major aggregate 

consequence of climate change on farming households, as it integrates most of the effects of climate 

change on agriculture (through soil quality, crop growth, etc.). Given this context, we hypothesize 

that the multiform effects of climate change on agricultural activities are funneled into lower 

agricultural output.  

In this framework, agricultural output is captured by average yield per hectare at the district level, 

where “yield” is the expected production per unit of land given its physical characteristics, including 

climate, and factors common to all farmers in the area (soil quality, technology, extension services, 

policies …). However, indirect effects of climate change on yield through migration, adaptation, 

price fluctuations, and the availability of farming inputs, though present on the long-term, are not 

explicitly accounted for.   
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3.2.Agricultural yields and food consumption  

Our working hypothesis posits that yields affect food consumption through two pathways: monetary 

and non-monetary resources. First, yield, together with the size of land available, labor, and 

productivity, as well as market prices for harvested crops determine how much monetary value crop 

growers can expect to draw from the sale of the products to the market. This monetary resource is 

available for food and non-food consumption. Second, when farmers maintain a share of their 

production for their own consumption, this generates an in-kind resource that is available for their 

family’s food consumption. Of course, the two pathways are interdependent, as a higher share of 

crops sold in the market results in smaller quantities available for their own consumption. Together, 

these monetary and non-monetary resources make the aggregate amount available for food 

consumption. Therefore, yields are expected to affect food consumption through both the monetary 

and non-monetary pathways.  

More precisely, let us first consider households’ endowment in labor and land, which households 

can exploit to generate revenue. According to the productivity of these factors (yield for land, labor 

productivity for labor) and their remuneration (expected harvest price for agricultural production, 

and off-farm wage for labor), households decide the labor allocation between their on- and off-farm 

activities (Nakajima, 1986; Von Braun and Kennedy, 1994). This determines the level of agricultural 

production obtained by the household and monetary income obtained from off-farm activities. 

Regarding agricultural production, households then decide the portion to be sold on the market and 

the portion to keep for own consumption. This decision essentially depends on the gap between sale 

price and shadow price (Janvry et al., 1991, de Janvry & Sadoulet, 2011). The effects of these 

decisions are ambiguous and complex (Janvry et al., 1991; Sadoulet and de Janvry, 1995; Ravallion, 

2000; Taylor and Adelman, 2003; Gillespie et al., 2012). Together, the endowments and decisions 

maximize aggregate household resources, which are then allocated by each household between food 

and non-food consumption. Food consumption thus consists of purchases from the market made 

with off-farm monetary income and monetary revenue from the sale of agricultural products, and 

from in-kind food production from agricultural production. Thus, food security is a function of both 

market purchases and own-produced food, both of which are affected by lower yields due to climate 

anomalies.  
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Figure 1: Linkages between food production and food consumption, in household production model 

(own design) 

 

3.3. Identification  

The identification of the effect of yield on food choice is based on the assumption that yield affects 

food consumption through several intermediate variables that result from household decisions and 

additional determinants, which in turn do not affect district level yield.  

Yield is expected to change how households allocate their labor between on- and off- farm 

employment, as well as the share of agricultural production sold to the market. In turn, these 

decisions affect earned resources (monetary and non-monetary), and, in the end, the chosen 

quantities of purchased and in-kind foods consumed by the household. These production and 

consumption decisions (labour allocation, market participation, income allocation) have a mediating 

effect on how yield translate into food consumption decisions. To guarantee the correct evaluation 

of the effect of yield on food choice, these mediating variables are not included in the analysis 
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(Cinelli et al, 2022). By allowing them to vary with yield, the internal and complex adaptation of 

households to changing yield is captured, and its effect on food consumption reflected. Of course, 

these underlying household decisions are made simultaneously and are prone to endogeneity. 

However, they are not established or estimated formally in the model, and therefore do not prevent 

us from empirically establishing the overarching relationship of the model between yield and food 

consumption. Nevertheless, exogenous determinants that affect these mediating variables and/or the 

outcome food consumption, are included in the model as controls. Households’ socio-demographics, 

agricultural product prices, and infrastructure are expected to influence the mediating decisions, and 

to influence the outcome, and are therefore included in the model. As described in Cinelli et al 

(2022), these are expected to be neutral with respect to bias of the effect, but to render more precise 

estimations of the effect.  

Importantly, we consider that changes in yield are exogenous to the intermediate household decision 

and resulting food consumption, as yield is only affected by climate change and other factors (state 

of technological progress, soil quality, etc.) that are not directly influenced by households. To ensure 

this, the measure of yield is taken as the average of the district level and does not reflect the 

individual decisions of households. Yield represents the average level of production a household 

may expect, independently of its specific productivity level, farming practice, exploitation size, etc. 

The large geographical area covered in the data, spanning several states and agro-ecological zones, 

provides a source of exogenous variation to identify the effect of yield. In addition, district fixed 

effects capture unobserved confounders of yield, the intermediate decisions, and the outcome. 

Similarly, intermediate households’ decisions are considered exogenous to food consumption, at 

least in the short term. Of course, the long-term effects of better food consumption affect 

productivity and earned resources. For example, the decreasing diversity of home-grown food due 

to climate change may impair nutritional status, which in turn may reduce the availability of 

agricultural labor, potentially triggering a cycle of vulnerability. However, these indirect long-term 

effects are not accounted for explicitly in the model.  

Finally, when lowering yield to account for effect of climate change, we assume that no factor that 

affects consumption, other than yield, has been affected by climate change. Therefore, indirect 

effects of climate change are excluded from the analysis. For example, households’ demographics 

likely affect both production and consumption decisions; however, they are assumed to be 

unaffected by lower yields or climate change, at least in the short term. Therefore, in the model there 
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are no pathways other than lower yields in which climate change affects the production and 

consumption decisions of households. 

 

4. Empirical methods and data 

4.1. Data 

Data for India for food consumption, household demographic and socio-eco characteristics come 

from the 68th round of the National Sample Surveys (NSS)1 on Household Consumer Expenditure, 

carried out in 2011-2012. The subset retained consists of rural households that cultivate some land 

and include some of their own products in their diet, or close to 60 percent of all rural households. 

Observations with missing values for the variables of interest are excluded from the analysis. 

Income and food consumption are measured per capita, and food consumption per capita is adjusted 

for demographics of household composition: age, sex, and days away for each member, as well as 

for meals taken outside the home and meals served to guests. Market price data of food items are 

computed from survey data by dividing expenditures by consumed quantities at the household level 

and aggregating this at the district level and food category level (cereals, pulses, milk and dairy 

products, oils, egg, and animal proteins, vegetables, and fresh fruits) using weights that correspond 

to district average shares of items in their food category.  

The data are merged with data from the District Level Data for India (DLD) platform2 developed 

by ICRISAT and its partners, using district census codes and names. The DLD data provide district-

level information on yield, agricultural profile (areas of cultivation for main crops, harvest prices), 

general infrastructure (roads, number of banks, agricultural credit, etc.), and economic situation 

(wages). This allows us to model the production components of the model. Variables with more than 

half of the missing values are excluded from the analysis. For the remaining variables, missing 

values in this dataset are replaced by average state values. The final sample consists of 28282 

observations, as ICRISAT data are not available for all states and districts; therefore, not all selected 

 

1 Household Consumer Expenditure: NSS 68th Round, NSSO, Ministry of Statistics & Programme Implementation, 

Government of India, http://microdata.gov.in/nada43/index.php/catalog/1 

2 District Level Database (DLD) for Indian agriculture and allied sectors, http://data.icrisat.org/dld/src/about-dld.html 

http://microdata.gov.in/nada43/index.php/catalog/1
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NSS observations can be used. Descriptive statistics for variables entered in the model are shown 

in table Appendix A.  

The effect of extreme climate events is worse than the effect of mean climate change, and the 

importance of considering climate variability in the effect of climate on food security (Hasegawa, 

2021). To model the effect of future climate events on food consumption, we compute district-level 

projected climate anomalies from a high-resolution dataset for the South Asian region from the 

Center for Climate Change Research at the Indian Institute of Tropical Meteorology (CCCR-IITM) 

Climate Data Portal (see detail in Appendix C). The effect of climate anomalies on various crops in 

India agriculture is estimated by Gupta et al (2022).   

 

4.2. Empirical strategy 

In order to model the consequences of a change in yield on food security using existing data, we 

implement a model that reports the baseline relationship between yield and aggregate food 

consumption. Then, the values for yield are altered according to the projected scenarios of climate 

change to observe changes in food consumption. A neural network is employed that connects a series 

of inputs to a designated output through a series of hidden layers, where each layer represents a 

vector of nodes, and each node is the result of a combination of inputs. In short, employing deep 

learning allows to map inputs to responses while accounting for several layers of complexity and 

non-linearity, which is appropriate given the complex mediating decisions of the model. Full details 

on training are available Appendix B. A semiparametric neural network is implemented using 

TensorFlow in RStudio (TensorFlow Authors and RStudio, 2015-2022). 

4.2.1. Predictors and outputs 

The model aims to predict the quantities of food consumption, focusing on cereals, that come from 

monetary resources and from in-kind resources. Predictions are made from a set of inputs that 

include district level yield, as well as additional controls.  

Data on labor allocation, market participation are not available and not necessary as they should 

remain flexible to allow to household’s adjustment to changing yield. However, information on 

household endowments (labour force, land size), their expected return (wage at district level and 

gate prices of agricultural products) is known and is expected to affect the households’ intermediate 

decisions, while being exogenous to yield. Thus, controlling for theses helps reduce variability of 
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the effects of yield on food consumption. Similarly, other factors expected to influence both 

household decisions and food consumption are included. Given the availability of data, we include 

market food prices, remoteness in the form of travelling time to cities with at least 50 000 inhabitants 

(Weiss et al., 2015), number of banks, and amount of agricultural credit at the district level; as well 

as socio-demographic information at household level. Descriptive statistics for all variables are 

available in Appendix A.  

Thus, we can map the effect of changes in yields on household cereal food consumption and assess 

the specific role of home food. Section 3.2 showed how varying yields the structure of food 

consumption between a market-purchased portion derived from monetary income, and an in-kind 

portion obtained from the own production of agricultural products. To reflect this, we adopt a multi-

dimensional output which consists of the quantity of monthly cereal consumption per capita 

purchased from store, and derived from own-production.  

4.2.2. Semi-parametric neural network 

Even in the presence of sufficient data, exactly mapping out the decisions and their consequences is 

an arduous and uncertain task, as decisions are likely to be taken simultaneously and to have 

endogeneity issues. As the internal mechanism of how endowments are turned into resources is 

complex, and would not be established firmly with linear relationships, we adopt a neural network 

approach to map out the overarching effects. The structure in several hidden layers allows high 

levels of non-linearity and can capture the sub-levels of decision making that we are unable to model 

explicitly due to endogeneity, in order to recreate the connection between endowments and 

household food consumption, for which data are available.  

Nevertheless, certain robust relationships between production factors, household resources, and 

consumption have been strongly established by prior research, and should be used to inform the 

model. Therefore, we turn to a semiparametric methodology developed by Crane-Droesch (2018) 

to predict crop yields for the US using climate variables, which combines the flexibility of a neural 

network to build highly non-linear relationships with the predictive power of known linear 

relationships. This approach is based on a set of layers and nodes that form a neural network to 

establish nonlinear combinations of the variables. The innovation lies in the inclusion of a set of 

linear terms in the last layer, intended for factors known to have a linear effect on the outcome. This 

semiparametric version of a neural network models an OLS type of relationship between the target 

variables and variables known to affect it linearly, but also allows for additional nonlinear effects 
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and interactions with other variables that are unknown or unobservable. This approach fits the data 

and problem particularly well as it makes use of the relationships that have been extensively 

researched and robustly established in prior research, while it allows space for multidirectional and 

interaction effects that we know exist but are unable to disentangle and quantify precisely. The 

structure of the model, showing how the parametric layer (right-hand side) is combined with the last 

non-parametric layers (left-hand side), is shown in Figure 2. In parentheses are the number of nodes, 

starting with a layer of all 36 inputs entered non-parametrically (left), and a layer of seven of these 

inputs entered linearly (right), which makes the prediction of a single value (bottom), the value of 

the total household resources available for consumption.  

 
Figure 2: Semi-parametric neural network architecture 

 

Specifically, the factors expected to affect resources linearly in the model and entered parametrically 

at the last layer are the size of cultivated land, district male field labor, paddy harvest price, wheat 
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harvest price, groundnut harvest price, chickpea harvest price, and travel time to cities with at least 

50000 inhabitants. All variables entered parametrically are also present in the non-parametric layer 

of the model, allowing these factors to have both linear and non-linear effects. 

 

5. Results and Discussions 

5.1. Relevance of home-produced food for basic nutrition 

Two main observations can be drawn from preliminary observations of the data. First, home-

produced food plays a non-negligible role in nutrition, in particular in fulfilling basic caloric needs, 

as the contribution of home-produced food is mostly found in grains. Second, a strong regional 

pattern of home-grown consumption indicates reliance of households on one primary cereal, drawn 

from their own production according to their regions, as opposed to a balanced mix of cereals. This 

double dependency reinforces the threatening effects of lower yields due to climate change.  

We compute the share of home production within the total food consumed for rice and wheat, using 

the NSS 68th round data. From the initial sample of about 100,000 households, 40% have a share of 

their food consumption that comes from home-produced food. 86% of households who consume 

home products reside in rural areas and cultivate land. Table 1 shows that among households that 

consume some level of home products, cereals and milk products are the food groups where home 

consumption is most important (44% and 51.4%, respectively), followed by vegetables and fresh 

fruits, representing nearly 20% of the average food consumption in these categories. Figure 3 shows 

the average consumption of various grain types in India. 

 

Table 1: Percentage of food coming from home production (sub-sample of NSS households that 

consume some home-products) 
Selected Food Groups  Home production (%) 

Cereals  44.0%  

Cereals Substitutes 14.3%  

Pulses  13.2%  

Milk and dairy Products  51.4%  

Oil  4.9%  

Egg, Fish, Meat  8.9%  

Vegetables  18.3%  

Fruits Fresh  19.9%  

Dry Fruits 7.0%  

Total  41.3%  
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Figure 3: Average grain consumption and share of home-production in consumption, in India, from 

NSS 2012 data (sub-sample of NSS households that consume some home-products) 

 

Among cereals, the highest shares and quantities of home-produced food consumption were found 

for rice and wheat. Therefore, home production plays an important role in fulfilling basic nutritional 

requirements with calorie-rich foods. This is consistent with existing literature that observed 

households using market purchases to diversify their diets and rely on home-produced staples for 

calorie-rich foods (Von Braun et al., 1991, Sibhatu and Qaim, 2017, Ogutu et al., 2020).  
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Figure 4: Geographical variation in consumption of home-produced crops, India, NSS 2012 data 

 

Figure 4 illustrates the geographical variation in the average share of home-produced rice and wheat 

in different districts of India. Regions in Eastern India rely the most on home production for their 

consumption of rice, which covers more than half of the rice consumption in many districts. The 

northern and northwestern Indian regions use home production the most to cover their consumption 

of wheat, often for more than 50% of their wheat consumption. This fragmentation matches the 

major rice and wheat growing regions. The southern states, which are more developed and 

urbanized, rely less on home-produced food for consumption, although this persists. Thus, 

households seem to select one major cereal for their own consumption, whereas other cereals play 

marginal roles.   

5.2. Baseline model of yields, income and food consumption   

Performance of the model is shown in Table 2. To verify how well the model generalizes to new, 

unseen data, the prediction ability is calculated for a portion of the data not included in the training 

(i.e., the test data). At this point in the preliminary analysis, the loss is relatively large compared to 

the outcome variable. This indicates that the fit of the model can be improved. Thus, the basic model 

needs to be further developed in the next steps of this project to achieve a better ability to make 

correct predictions. The error on test set being not larger than on train indicates there is no 

overfitting.  
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Table 2: Model performance 

 

 Neural Network Fully Linear Model 

RMSE Train Test 

Mean 

target  Train Test 
Mean 

target  

Entire model 43.9 44.4 - 60.2 60.9 - 

Market-purchased food 28.4 29.1 32.13 47.0 48.6 32.13 

Home-produced food 33.5 33.5 27.63 37.5 36.7 27.63 

 

The results of the semi-parametric approach can be compared to those of a fully linear approach in 

the form of a neural network with a single layer of all parameters and a linear activation function, 

similar to OLS. The results are presented in the last 3 columns of Table 2. Considering the current 

network architecture, the semi-parametric approach adds a small gain in prediction precision 

compare to a fully parametric approach. 

To verify the role of yield on household resources and of household resources on food consumption 

patterns, it is possible to use the Shapley value method (Sundararajan and Najmi, 2020), which 

computes the importance of each variable to the predictions. Computing Shapley values that are 

compatible with the semiparametric approach will be performed in the near future and integrated 

with these results.  

 

5.3. Projections of diets vulnerability due to climate change 

In this step, we update the yield with the projected values that account for climate change available 

in Gupta et al. (2022). They compute the impact of projected hot and dry anomalies for 12 major 

crops grown in India using comprehensive historical data at the district level for the period 1966-

2017. They generally find that rainfall extremes (wet or dry) and extreme heat events reduce average 

crop yields, although effects are heterogeneous across crops. Yield projections for the horizon 2030 

(946.3 mm and 25.23 C°) and 2050 (927.5 mm and 26.06 C°) are done based on Word Bank’s SSP 

2-4.5 scenario of climate change in India that presents a “middle of the road” scenario in which 

emissions remain around current levels. Therefore, projected yields are available for each crop, but 

only at the national level. Compared to normal levels, rice yield is expected to change by -6,2% and 

-9,2%, and wheat by -4,9% and -7,3%, in 2030 and 2050, respectively.  
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Predictions for household food consumption (for rice at this stage) are obtained using a model 

trained with baseline data. Preliminary results (Table 3) indicate, on average, a moderate decrease 

in household revenues, a decrease in the value of rice consumed, and no change in the balance 

between market purchase and home-produced rice consumption.  

 

Table 3 : Preliminary results for baseline and projections to 2030 

Preliminary model: Value of monthly rice consumption, in Rs per capita 
 

Min. 1st Qu. Median Mean 3rd Qu. Max. 

Actual 4.00 108.00 270.00 367.14 514.00 6780.00 

Baseline -24.72 264.47 350.11 435.45 567.03 2359.56 

2030 Prediction -24.71 264.47 350.44 435.51 567.04 2359.50 

Diff. 2030-Baseline -0.46 0.01 0.02 0.06 0.06 11.22 

 

A sensibility analysis with the results for various income groups and regions will be carried out to 

uncover heterogeneity.  

 

6. Conclusion and Policy Implications 

Climate change poses a significant threat to agriculture and food security in rural India. While home-

produced food provides an important share of household basic calories, it is unclear whether it will 

be a tool for enhancing resilience or vulnerability in the face of climate change. This analysis revisits 

household production models with deep learning to shed light on the reaction of households to 

reduced crop yields caused by extreme climate conditions, with explicit attention to the role of in-

kind resources in the form of home-produced food. 

Specifically, yield affects several decisions of households, which are typically made simultaneously 

and have ambiguous consequences, but which affect food consumption. The neural network 

approach builds a connection between inputs and outputs as a succession of layers, which we expect 

can reflect the several sub-instances and complexity of decision-making.  For example, the arbitrage 

between job market participation or staying at the farm depends on the household’s endowment in 

labor and land, their productivity, and the possibility of off-farm employment. The decision to sell 

or maintain agricultural production depends on market access, prices, the need to generate monetary 

income for non-food expenses, and preferences for time, food safety, culture, household 

demographics, and women’s empowerment, which are all difficult to model precisely. Finally, the 
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decision to purchase food or consume own-production also depends on household demographics, 

access to markets, and market prices.  

Overall, the model builds the overarching relationship between district level yield and quantity of 

food consumption coming from purchase and home production, given available data for India, using 

a national survey of household consumption in 2012 and ICRISAT data for the district-level context. 

In addition, the semi-parametric approach allows for the reconciliation of high non-linearity and 

accounts for known linear relationships that have been strongly established in prior literature. This 

takes the form of an added layer of linear inputs entered in the last layer of the neural network.  

Under climate scenarios for 2030 and 2050, projections of food consumption are generated for the 

anticipated values of lower yields. While the study requires further development, preliminary results 

indicate a moderate reduction in household resources and a moderation reduction in the 

consumption of rice. Detailed implications for home-produced food are still under development.  

This study contributes to the existing literature by integrating in-kind revenues generated from 

farming aimed at own-consumption for projections of food consumption under climate change, 

recognizing that consumption of own-grown food products remains an essential part of households’ 

nutrition in rural India. 
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Appendix A: Descriptive statistics of independent and dependent variables 

Panel I: Independent Variables    

Variable Observation* Mean Std. Dev. Min Max 

ICRISAT Data (District averages)     

Area under Rice cultivation 28052 90.44 103.47 0 655.68 

Area under Wheat cultivation 28052 51.46 68.24 0 394 

Area under Chickpea cultivation 28052 14.09 34.82 0 319.45 

Area under Groundnut cultivation 28052 11.69 54.81 0 753.84 

Rice Yield 28052 2063.25 973.94 0 5422 

Wheat Yield 28052 1978.62 1322.76 0 5675 

Chickpea Yield 28052 762.57 533.6 0 4500 

Groundnut Yield 28052 907.1 863.19 0 5633 

Rice Harvest Price 28052 1117.73 284.19 514 3062 

Wheat Harvest Price 23803 1235.21 179.85 800 2150 

Chickpea Harvest Price 23864 3373.57 645.01 1875 6500 

Groundnut Harvest Price 23101 3598.37 889.04 1322 6300 

Wage of male field labour 26931 230.17 106.28 73.33 836.67 

Total agricultural credit 28052 8191804.7 9049470.6 18358 53595204 

Banks 28052 57.85 17.83 17.8 94.3 

NSS Data      

Agriculture characteristics      

Area of land cultivated/capita 28052 1392.54 2410.22 1 60702 

Price of cereal  28052 .02 0 .01 .03 

Price of pulse 28052 .06 .01 .04 .07 

Price of milk 28052 .05 .02 .02 .19 

Price of oil 28052 .08 .01 .05 .1 

Price of egg 28052 .97 .6 .13 4.32 

Price of vegetables 28052 .06 .03 .01 .2 

Price of fresh fruits 28052 2.43 1.76 .22 9.6 

Household characteristics      

Household size 28052 5.21 2.44 1 32 

Age of household head 28052 48.82 13.03 16 102 

Working age female share 28052 .51 .18 0 1 

Non-durable ownership 28052 12.86 4.75 1 29 

Religion (%)      

Hinduism 24072 85.81    

Islam 2566 9.15    

Christianity 664 2.37    

Sikhism 550 1.96    

Jainism 22 0.08    

Buddhism 85 0.30    

Others 93 0.33    

Possess Ration Card (%)      

Yes 24860 88.62    

No 3192 11.38    

Type of land owned (%)      
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Homestead only 1635 5.83    

Homestead and other land 26297 93.74    

Other land only 120 0.43    

Social group (%)      

ST 3387 12.07    

SC 3932 14.02    

OBC 12393 44.18    

Others 8340 29.73    

Sex of household head (%)      

Female 2199 7.84    

Male 25853 92.16    

Primary education (%)      

No 23600 84.13    

Yes 4452 15.87    

Secondary education (%)      

No 10995 39.20    

Yes 17057 60.80    

Higher education (%)      

No 22764 81.15    

Yes 5288 18.85    

Young kids (%)      

No 18395 65.57    

Yes 9657 34.43    

Other source      

Travel time to cities 28052 42.46 60.42 2.41 653.65 
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Panel II: Dependent Variables (NSS Data) 

Variable Observation* Mean Std. Dev. Min Max 

Home share Rice  28052 .34 .45 0 1 

Home share Wheat 28052 .29 .44 0 1 

Home share Chickpeas 28052 .06 .24 0 1 

Home share Groundnut 28052 .06 .24 0 1 

Home share Maize 28052 .05 .22 0 1 

Home share Millet 28052 .04 .19 0 1 

Home share Sorghum 28052 .04 .18 0 1 

Home share Pigeon pea 28052 .09 .28 0 1 

Home value Rice  25641 239.02 419.18 0 9780 

Market value Rice 25641 280.33 375.91 0 10390 

Total value Rice 25641 519.35 466.68 4 10390 

Home value Wheat 24022 165.54 288.19 0 3600 

Market value Wheat 24022 149.39 216.58 0 5900 

Total value Wheat 24022 314.93 302.6 3 5900 

Home value Chickpeas 16019 7.24 29.94 0 1750 

Market value Chickpeas 16019 47.36 53.11 0 1875 

Total value Chickpeas 16019 54.6 55.22 2 1875 

Home value Groundnut 16019 31.03 128.31 0 7500 

Market value Groundnut 16019 202.95 227.62 0 8035.71 

Total value Groundnut 16019 233.98 236.64 8.57 8035.71 

Home value Maize 2282 90.89 143.97 0 1440 

Market value Maize 2282 32.12 85.45 0 1480 

Total value Maize 2282 123.01 149.83 3 1480 

Home value Millet 1892 116.79 209.88 0 4500 

Market value Millet 1892 82.75 165.36 0 1800 

Total value Millet 1892 199.55 231.7 4 4500 

Home value Millet 1892 116.79 209.88 0 4500 

Market value Millet 1892 82.75 165.36 0 1800 

Total value Millet 1892 199.55 231.7 4 4500 

Home value Sorghum 2428 129.27 248.26 0 3000 

Market value Sorghum 2428 151.36 224.41 0 3200 

Total value Sorghum 2428 280.63 271.56 5 3200 

Home value Pigeon pea 17462 22.03 70.14 0 1200 

Market value Pigeon pea 17462 92.45 97.4 0 3000 

Total value Pigeon pea 17462 114.48 101.95 3 3000 

*Samples with valid observations only.     
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Appendix B: Training parameters of neural networks 

Neural network is trained to minimize a loss function that represents the difference between the 

actual and predicted values (mean squared error for continuous variables, accuracy for categories). 

The leaky ReLU, a piece-wise linear function and a popular choice for training, is adopted as 

activation function, which defines how nodes are activated to map data to the next layer. During 

training, weights and biases are adjusted at regular intervals to make the most accurate predictions 

possible using the Nadam optimizer, which is one of the most popular methods for its performance 

and efficiency. We use 50 epochs, and keep 20% of the initial data for the testing.  Two hidden layers 

are chosen for each model, with the number of nodes shown in the table below. The choice of the 

number of nodes and layers is driven by the rule of thumb that it is better to have deeper than wider 

layers, as more layers are able to handle more levels of complexity. However, as some of the 

variables are already included linearly, the remaining part is not expected to be highly complex so 

that only a small number of layers are deemed necessary. Table 4 displays the parameters across the 

various layers.  

 

Model     

___________________________________________________________________________________ 

Layer (type) Output Shape Param# Connected to Trainable 

input_2 (InputLayer) [(None, 36)] 0 [] Y 

dense_1 (Dense) (None, 16) 592 ['input_2[0][0]'] Y 

batch_normalization 

(BatchNormalizat 

(None, 16) 64 ['dense_1[0][0]'] Y 

ion) 
    

input_1 (InputLayer) [(None, 7)] 0 [] Y 

dense (Dense) (None, 5) 85 ['batch_normalization[0][0]'] Y 

concatenate (Concatenate) (None, 12) 0 ['input_1[0][0]',    
'dense[0][0]'] 

 

=========================================================================== 

Total params: 767 (3.00 KB)    
Trainable params: 735 (2.87 KB)    
Non-trainable params: 32 (128.00 Byte)    

Table 4: model parameters 

 

Figure 5 indicates the value of the error as training progresses along the number of epochs, and the 

number of times the entire dataset passes through the algorithm. A comparison of the two curves 
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indicates that there is no overfitting, as a decreasing training loss with a similar or slightly increasing 

validation loss is a good sign of learning. 

 
 Figure 5: Learning of model on entire model (top), market quantities (middle), home-produced 

quantities (bottom)  
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Appendix C: Climate projection methodology and data 

To assess the impact of climate change on consumption from home production, we use a high-

resolution dataset for the South Asian region from the Center for Climate Change Research at the 

Indian Institute of Tropical Meteorology (CCCR-IITM) Climate Data Portal. The Centre for Climate 

Change Research at the Indian Institute of Tropical Meteorology Pune was launched in 2009 with 

the support of the Ministry of Earth Sciences (MoES), Government of India, to focus on the 

development of new climate modeling capabilities in India and South Asia and to address issues 

concerning the science of climate change. CCCR-IITM is the nodal agency coordinating the 

CORDEX modeling activity in South Asia. The dataset includes an ensemble of high-resolution 

20th-century climatic variations and future climate projections using a global climate model with 

telescopic zooming (~ 35 km longitude × 35 km latitude) over the South Asian region. Monthly 

outputs of simulated rainfall and surface air temperature for the historical period (1951–2005) and 

21st-century RCP4.5 scenario projection for the period 2006-2095 are available.   

From the available dataset, we have used the data for the Indian subcontinent spanning between 

8°4′N to 37°6′ N latitudes and 68° 7′ E to 97°25′ E longitudes. To do so, we have used the QGIS 

3.14.16, where we layered the CCCR-IITM data on the Indian district shape file and cropped it. Our 

study consists of the historical period of 2000-2005 and the RCP 4.5 projected period of 2016-2050. 

The climate profile of the country consists of regional variations, with a tropical climate in the south, 

sub-humid tropical climate in the central, and temperate climate in the northern Himalayan region. 

Indian Meteorological Department (IMD) has categorized the Indian climate into four prominent 

seasons: i) Cold weather season (January–February), ii) Pre-monsoon season (March-May), iii) 

Southwest monsoon season (June–September) and iv) Post monsoon/Northeast monsoon season 

(October–December) (Attri and Tyagi, 2010). Similarly, the temperature profile of the country 

shows an extreme distribution ranging from below 0 °C in the northern region in winter to above 45 

°C during May–June (Attri and Tyagi, 2010).   

This study uses climate anomalies as independent variables in regression estimations. By 

considering climate anomalies, we can observe the effect of deviations from normal temperature 

and rainfall on agricultural yields and, in turn, how it affects their consumption from home 

production. Anomaly variables are created by taking the difference between the temperature or 

rainfall for year t and long-term climate normals (Gupta et al., 2022). Climate normals are defined 
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as averages computed over a relatively long period of at least 30 years (World Meteorological 

Organization). The formulas for temperature and rainfall anomalies are as follows:  

TAit = Tit - T̅i  

RAit = Rit - R̅i  

 

For our study, we have calculated the climate normal twice, first for 2030 considering the period 

(2000-2030) and second for 2050 considering the period (2020-2050). Analyzing decadal data 

shows that India will experience hotter temperatures and scarce rainfall in the coming years 

 


