

The World's Largest Open Access Agricultural & Applied Economics Digital Library

This document is discoverable and free to researchers across the globe due to the work of AgEcon Search.

Help ensure our sustainability.

Give to AgEcon Search

AgEcon Search
<http://ageconsearch.umn.edu>
aesearch@umn.edu

Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only. No other use, including posting to another Internet site, is permitted without permission from the copyright owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C.

No endorsement of AgEcon Search or its fundraising activities by the author(s) of the following work or their employer(s) is intended or implied.

Factors limiting the sustainable implementation of the rice-crayfish system in Hubei Province, China

Shuhao Tan, Yaya Zhang, Qing Liu, Qingyong Zhang*

School of Agricultural Economics and Rural Development, Renmin University of China, Beijing 100872, China

*Corresponding author email: qyzh@ruc.edu.cn

Abstract

CONTEXT: As the most popular model of rice-fish system (RFS) in China, the rice-crayfish system (RCS) has been shown to theoretically increase economic output and improve the ecological integrity of farmlands. Despite its importance, there are some issues to address. Many studies have been done based on the field experiments; however, present work was a comprehensive multistage survey which covered larger areas. Estimating the environmental efficiency (EE) of farmers' RCS and analyzing its limiting factors deserves more attention as farmers' behavior plays a key role in this respect.

OBJECTIVES: This study aimed to: (1) estimate EE, (2) determine the causes of differences in EE, and (3) analyze the factors restricting farmers' optimal application of the RCS.

METHODS: In total, 199 rice-crayfish farmers' field survey data collected across two cities of Hubei Province were applied to estimate the EE and determine its limiting factors.

The EE of the RCS was calculated using the slack-based measure (SBM). The limiting factors were analyzed using the combined least absolute deviation model.

RESULTS AND CONCLUSIONS: The average land productivity and net profit of our sampled farmers were US\$ 10,119 and 4,364 per ha, respectively, with a rice yield of 7,832 kg/ha and a crayfish yield of 1,748 kg/ha, and EE value on average was 0.618. Overall, the large-scale (> 2 ha) farmers performed best in terms of profit and EE value. The SBM results showed that the input, desirable output and undesirable output inefficiencies were 0.311, 0.201 and 0.214, respectively. Redundant inputs such as drugs, feed and labor with redundancy ratios of 50%, 44% and 35%, respectively, resulted in the overall difference in EE performance. Enhancing farmers' education level, technical training, and organic fertilizer application and decreasing their part-time employment can improve the EE of RCS.

SIGNIFICANCE: The findings are expected to facilitate an improvement in production practices that target green agricultural development. Moreover, these results should act as a reference for the government and farmers in the formulation of relevant policies and to guide the implementation of RCS, respectively.

JEL Codes: Q10, Q56, O13

1 **Keywords:** rice-crayfish system; land productivity; environmental efficiency; green agricultural
2 development; farm household; field survey

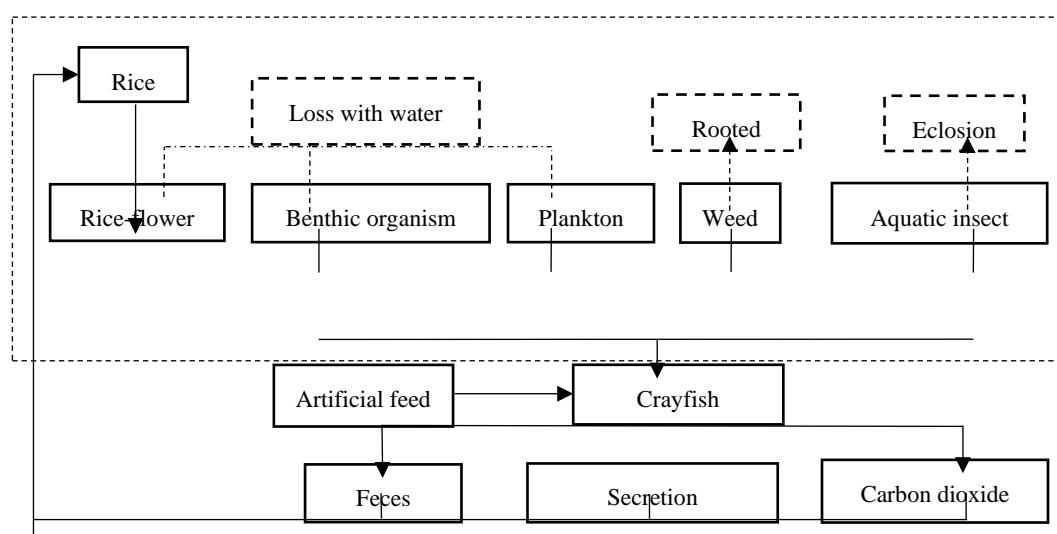
3 **1. Introduction**

4 Reducing carbon emissions is now a significant policy agenda for greening agricultural
5 development globally (Ou et al., 2024; Shen et al., 2024). For the last six decades, agricultural
6 development strategies in most countries have focused on intensification by increasing external inputs
7 such as fertilizers, concentrates, and energy (Khatri-Chhetri et al., 2023). Although this has enhanced
8 yields, the widespread adoption of intensive production practices has also increased greenhouse gas
9 (GHG) emissions. For example, the Institute for Global Decarbonization Progress reported that nearly
10 14% of China's total GHG emissions, or 1.65 billion tons CO₂eq, were emitted by the agri-food system,
11 of which agricultural production was the largest source of emissions (Chen et al., 2023). Agricultural
12 growth, which primarily depends on the intensive input of production factors, inevitably causes severe
13 resource wastage and carbon emissions, threatening green agricultural development (Luan et al., 2013;
14 Qiu et al., 2014).

15 Integrated rice-fish system (RFS) was originally introduced into agricultural production practices
16 as viable strategy for promoting green and efficient agriculture (Cao and Sang, 2020; Chen and Tang,
17 2013). The RFS facilitates the development of a diverse eco-economic system by combining rice
18 cultivation and aquaculture. Through inter-species reciprocity and complementary utilization of
19 resources, this strategy is expected to conserve land, increase economic outputs, and improve the overall
20 ecological integrity of farmlands (Chen and Tang, 2013); these trends should allow for the attainment
21 of objectives outlined in “dual uses of one water, double harvests in one field” (*yishui liangyong, yitian*
22 *shuangshou* in Chinese) (Cao et al., 2017). The RFS has expanded rapidly and reached over 1.06 million
23 ha according to *the 2019 Report on the Development of Rice-fishery Integrated Farming Industry in*
24 *China*.

25 Compared with rice-fish, rice-crab, rice-duck, etc., the rice-crayfish system (RCS) is the most
26 widely used RFS and rapidly developed, accounting for more than nearly 50% of the national RFS in
27 2019. Moreover, RCS has been greatly promoted in governmental documents. For example, from 2016

28 to 2018, the Chinese central government's No. 1 Document consecutively highlight the urgent need to
29 promote the implementation of RCS; these documents also highlight the important role RCS could play
30 in stabilizing grain production, driving further development of the fishery industry, and enhancing
31 agricultural production quality and efficiency. Simultaneously, some local governments such as Hubei,
32 Zhejiang, and Jiangsu have strengthened their promotion of RCS by formulating a series of policies.
33 However, owing to the high investment and technical requirements in agricultural practices, some rice-
34 crayfish farmers often struggle to achieve the expected returns (Lian et al., 2018). According to Hubei
35 Provincial Center of Aquatic Technology Extension, among the more than 2,000 rice-crayfish farmers
36 in 2018, only one-third made a profit (Zhu et al., 2019). In practice, some farmers invested in large
37 quantities of materials to gain economic benefits, leading to severe resource wastage and environmental
38 pollution (Chen et al., 2020). Therefore, regardless of the promotion and popularity of RCS, its
39 performance remains to be thoroughly interrogated.

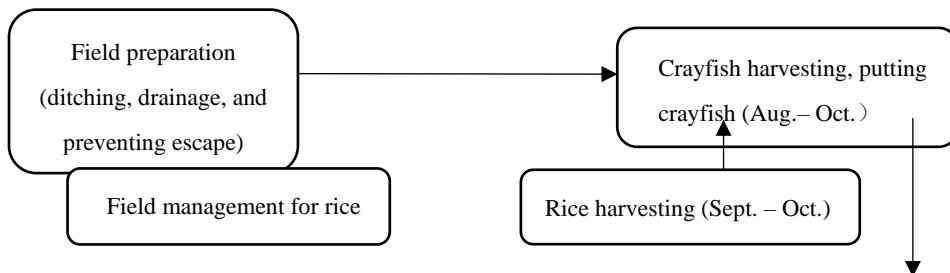

40 Current studies on the effects of RCS either primarily focus on its ecological impact (Shen et al.,
41 2010; Yu et al., 2014; Lin and Zhou, 2012) and economic benefits (Ahmed et al., 2011; Chen, 2018; Li
42 et al., 2014; Wang and Tan, 2020). However, an environmental or economic perspective is not sufficient
43 to illuminate the role of RCS in greening agricultural development. Additionally, the data that underlies
44 most studies on RCS were obtained primarily through field experiments. For example, by testing field
45 plots nationwide, Chen et al. (2019) compared net income per unit area of RCS with rice monocropping
46 and found that the former was about 45% higher than the latter. Based on field experiments, Xiang et
47 al. (2006) found that RFS increased the farmers' economic benefits and reduces CH₄ emissions from
48 paddy fields. Considering the key role of farmers in technology selection and production decision, this
49 study applies farm-level micro-survey data to estimate the ecological impacts of RCS and to analyze its
50 limiting factors. Environmental efficiency (EE), namely the ratio of economic value added to the
51 observed side effects on the environment under desirable outputs and conventional inputs (Tyteca, 1996;
52 Kortelainen, 2008), is used as an indicator to evaluate the performance of RCS (Aldanondo-Ochoa et
53 al., 2014). EE emphasizes the integration of economic benefits and environmental protection and is thus
54 referred to be a better assessment indicator of agricultural practices. The study is expected to provide

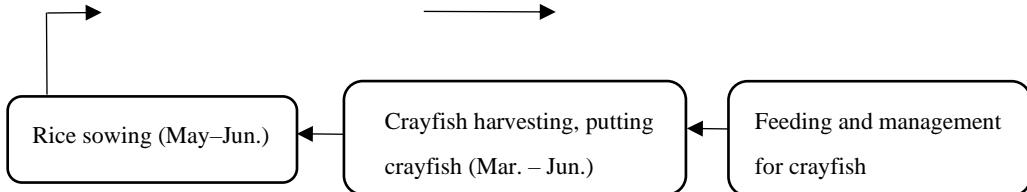
55 suggestions for promoting eco-economic effects at farm household level, thereby improving carbon
56 emission reduction and agricultural green development.

57 **2. Understanding the RCS in the study areas**

58 **2.1 The eco-economic principle of RCS**

59 Due to symbiosis within the system, the RCS can derive maximum benefits from the internal
60 energy cycle, which provides a basis for achieving resource recycling, reducing carbon emissions, and
61 boosting eco-friendly economic growth. Specifically, the functioning of RCS is rooted in the corporation
62 of multiple organisms; therefore, its implementation improves the ecological richness of rice ecosystems
63 (Zhen et al., 2019). Compared to the rice monoculture model, RCS makes better use of the shallow
64 water environment and idle period of winter and spring in paddy fields (Tan et al., 2021). This allows
65 one field to harvest rice and crayfish, thus increasing the economic outputs. In the monoculture model,
66 many resources such as rice flowers, paddy weeds, benthic creatures, and plankton are lost in the water
67 and weeds are uprooted, as shown in Fig.1 (dotted part). This results in significant energy losses and
68 insufficient utilization of the biological productivity in paddy field system. However, in the RCS, the
69 rice-crayfish symbiotic cycle converts the materials wasted in the monoculture model into energy
70 recycling. Crayfish help weeding, control pests, and loosen soil for rice (Li et al., 2023). In turn, rice
71 provides shade, improves water quality, and optimizes the living environment for crayfish. This
72 decreases the use of pesticides and fertilizers, thereby reducing environmental pollution and saving
73 agricultural inputs. In summary, RCS is expected to improve the economic outputs, reduce agricultural
74 inputs and carbon emissions, and enhance ecological benefits, thus achieving “dual uses of one water,
75 double harvests in one field.”




84
85
86
87
88

89 **Fig. 1.** Ecological principle of rice-crayfish farming. Source: Adapted from Xi and Zhou (2016).

90 Rice-crayfish coculture refers to planting one season of rice and breeding two seasons of crayfish
91 each year (Chen, 2018). Cao et al. (2017) mapped the process of RCS according to the chronological
92 sequence of events, as shown in Fig. 2. In the field renovation, a breeding ditch approximately 4 m wide
93 and 1.5 m deep is dug; other remolding work, such as sterilizing crayfish ditches, planting water plants,
94 improving drainage systems, and constructing escape prevention facilities then follows. Parental
95 crayfish should be introduced before the rice harvest in August–September, or the young crayfish should
96 be introduced after rice harvest in September–October. The density of released crayfish is approximately
97 375 kg per ha. In practice, this translates to approximately 7,000 or 8,000 parents and juvenile crayfish.
98 During the four-to-six-month growth cycle, farmers need to frequently inspect the water quality and
99 crayfish's feeding status, as well as clean the aquaculture environment. Adult crayfish are harvested in
100 March–June of the following year, but some of them should be retained in fields for breeding. A crayfish
101 purchasing station is set up in the village for farmers to sell their crayfish during the harvest season. The
102 prices of crayfish vary greatly; they are primarily determined by crayfish size and partly by weather and
103 market rules. At the end of May or the beginning of June, the field should be prepared for transplantation.
104 Crayfish crawls out of rice paddies and into crayfish ditches. Before plowing, farmers need to remove
105 standing water and expose the fields to sunlight for 10-15 days to remove residual pathogens from the
106 soil (Si et al., 2017). When rice is transplanted, and the rice fields are filled with water, rice and crayfish
107 will coexist in one field. The second batch of crayfish will be harvested in August–September. This
108 process will go back and forth alternately.

109
110
111

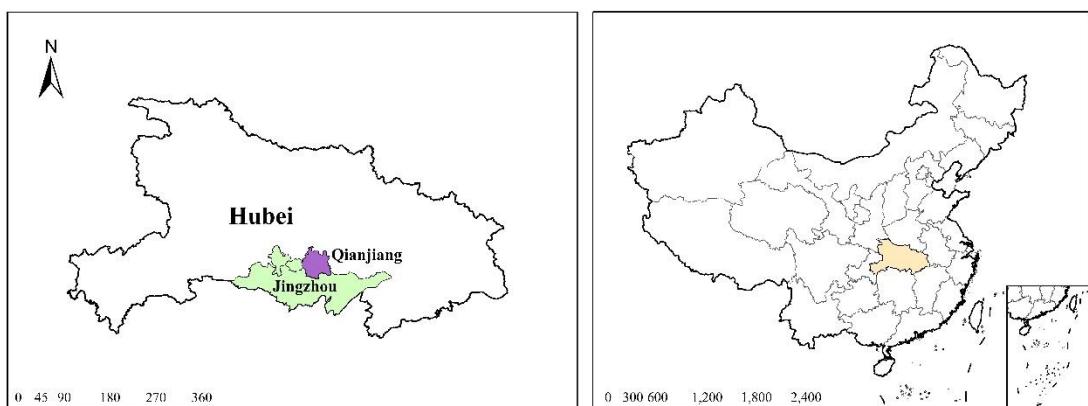
116 **Fig. 2.** Diagram for the rice-crayfish coculture system. Source: Adapted from Cao et al. (2017).

117 **2.2 The RCS in the study area**

118 Hubei Province is the birthplace and main production area of RCS. Based on *the 2019 Report on*
 119 *the Development of Rice-fishery Integrated Farming Industry in China*, Hubei has the largest RFS and
 120 RCS areas compared to the other four main-producing provinces, namely, Hunan, Anhui, Jiangsu, and
 121 Jiangxi. Table 1 summarizes the farming areas and their proportion in the context of the use of RFS and
 122 RCS in 2018. The total RFS area reached approximately 2.13 million ha, of which RCS accounted for
 123 50%. Among the provinces, Hubei has the largest farming area for RCS accounting for 36% of the total.
 124 It has noteworthy inherent advantages such as sunshine, temperature, water, and soil. The rice planting
 125 area in Hubei is more than 2 million ha, of which approximately 1 million ha is suitable for rice-fish
 126 coculture. In 2018, there was 0.39 million ha of RFS in Hubei, of which RCS accounted for nearly 97%.
 127 This suggests that there is a great potential for Hubei to lead the development of RCS.

128 Two cities, Jingzhou and Qianjiang Cities, are selected as the study areas. Jingzhou City has the
 129 largest area of RCS in Hubei. According to Hubei Statistical Yearbook 2019, its total crayfish production
 130 reached approximately 337,100 tons. Qianjiang City is the birthplace of RCS in China. The area of the
 131 RCS in Qianjiang was approximately 36,000 ha, and crayfish production reached 92,200 tons in 2018.
 132 Technical regulations for RCS developed by Qianjiang have been released as a national standard.
 133 Moreover, Qianjiang is adjacent to Jingzhou, making it convenient for us to conduct surveys (See Fig.
 134 3).

135 **Table 1**


136 The farming area of RFS and RCS in 2018

Region	RFS		RCS		RCS/RFS (%)
	Area (ha)	Proportion (%)	Area (ha)	Proportion (%)	

Total in China	2,133,333	100	1,059,627	100	50
Hubei	393,167	18	380,667	36	97
Hunan	300,147	14	197,938	19	66
Anhui	150,633	7	148,136	14	98
Jiangsu	241,060	11	74,916	7	31
Jiangxi	66,993	3	59,021	6	88
Other provinces	981,333	46	60,823	19	6

Notes: The proportion is based on the total farming area of RFS or RCS in China.

137

138

Fig.3. The maps of the study areas.

140 **3. Research methodology**

141 **3.1 Sampling and data collection**

142 The data used for the subsequent analyses were collected from field surveys conducted in Qianjiang
 143 and Jingzhou cities of Hubei Province from 2018–2019. Four field surveys were conducted (see Table

144 2). The first two surveys, held between June and July 2018, aimed to illuminate the socio-economic and
145 bio-physical circumstances of the study areas. These findings drove the creation of the questionnaire.
146 Based on those surveys, three counties from the two cities were selected to conduct the third survey in
147 August 2019. This survey collected data on inputs, outputs, their farming practices, and routine
148 management. Specifically, we collected their 2018 rice and crayfish revenue, respectively, as well as
149 various costs (e.g., the cost of seeds, fertilizer, and pesticides, crayfish feed and drugs, etc.). Data on
150 land, labor, and machinery were collected jointly.

151 We randomly selected approximately 60–80 RCS households from each county in the third survey,
152 resulting in 229 in-person interviewed samples. However, field abandonment was observed in some
153 areas in which rice-crayfish cocultures were implemented. We therefore made a supplementary survey
154 in October 2019 to see whether such trends were present in our samples. Based on this survey, we
155 excluded 10 samples with abandoned coculture fields and 10 samples with missed important indicators,
156 resulting in 199 valid samples. The samples and their distributions are presented in Table 3.

157 **Table 2**

158 The description of the surveys

	Time	Type	Objective
I.	2018.07	Pre-survey	To get more understanding of the study areas and their RCS and decide how to sample
II.	2018.08	Pre-survey	
III.	2019.08	Large-scale formal survey	To collect the data on production inputs, and outputs, and field management, etc.
IV.	2019.10	Supplement survey	To confirm whether the sampled households abandoned their coculture fields

159 **Table 3**

160 Samples and distribution

City	County	The number of farm households	Percentage of sampled farm households (%)
Jingzhou	Jingzhou	59	30
	Shashi	82	41
Qianjiang	Qianjiang	58	29
Total		199	100

Notes: Jingzhou is a prefecture-level city. Qianjiang is a county-level city directly governed by Hubei province.

161 **3.2 Calculation of RCS productivity and profit**

162 The possibility boundary was constructed by considering the rice-crayfish farmer as the decision-
163 making unit (DMU). Using published studies (Ahmed et al., 2011; Tan et al., 2021), we selected seven
164 factors, namely land, labor force, machinery, seeds, fertilizer, feed, and some chemicals, as input
165 indicators. Land inputs were expressed in terms of total operational areas, including contracted land and
166 leased land. The labor force included both family and employed labor. According to our exploratory
167 fieldwork, most farmers used their family labor force for rice-crayfish production activities, and some
168 farmers employed short-term workers during the harvest season. Family labor was estimated as working
169 man days (8 hours a day) multiplied by the local wage, typically \$12 per day¹. Machinery primarily
170 included plowing and harvesting inputs during rice production and ditching and dredging inputs during
171 farmland rehabilitation. Seed inputs included rice and crayfish seeds. The fertilizer inputs primarily
172 included compounds, nitrogen, phosphate, potash, and organic fertilizers. Feed refers to the total feed
173 cost incurred in crayfish farming, including purchased feed and farmer-planted feed, such as corn, wheat,
174 and soybean. The cost of farmer-planted feed was calculated as the market price. Chemicals were
175 primarily used to manage ulcers, ciliates, viral diseases in crayfish and control pests and diseases in rice.
176 To unify the measurements, we estimated the chemical inputs in monetary terms.

177 Productivity in this study refers to land productivity, namely physical or economic output per unit
178 area, and the net profit of RCS implies total revenue per unit area minus total cost. As the coculture
179 fields produce both rice and crayfish by applying fertilizers, seeds, and labor force, etc. as inputs, it is
180 difficult to aggregate the two outputs physically. Therefore, we used economic output to measure land
181 productivity. The equations of land productivity and net profit of RCS can be specified as follows:

$$182 \quad Productivity = \frac{Reve_1 + Reve_2}{Tota} \quad (1)$$

$$183 \quad Profit = \frac{Reve_1 + Reve_2 - \sum_{k=1}^9 Input_k \times Price_k}{Tota} \quad (k = 1, \dots, 9) \quad (2)$$

184 where $Reve_1$ and $Reve_2$ denote the total revenues of crayfish and rice in 2018, respectively; $Tota$
185 refers to the total operation area of the sampled household, including the contracted land and leased

¹ In this study, \$ refers to U.S. dollars.

186 land; $Input_k$ denotes the k th input, representing rice and crayfish seeds, machinery, labor, fertilizer,
187 pesticide, feed, drug, and leased land, respectively; and $Price_k$ is the corresponding price per unit land
188 area.

189 **3.3 The slack-based measure (SBM) model to estimate the eco-efficiency**

190 EE was estimated using the SBM. The rice-crayfish practice produces the expected output as well
191 as discharges undesirable outputs (environmental pollution) (Färe and Grosskopf, 2009). The expected
192 output from the RCS can be divided into rice production and crayfish production. We use the revenues
193 of rice and crayfish to denote the desirable outputs. The undesirable output primarily includes water
194 pollutes such as excessive nitrogen and phosphorus, as well as carbon emissions. It can be distinguished
195 into non-point source pollution (TN and TP) and carbon emissions from fertilizer overflow in this study.²

196 The water pollute emissions were estimated based on the method of Lai et al. (2004). Specifically,
197 we calculated the amount of non-point source pollution (TN and TP) produced by the RCS using
198 equation (3):

$$199 E_m = \sum E_{ij} = \sum C_{ij} * \mu_{ij} = \sum T_i * \rho_{ij} * \mu_{ij} \quad (3)$$

200 where E_m is the total pollutant emissions from non-point sources of fertilizer; E_{ij} is the emission
201 of the j th pollutant in each DMU i ; C_{ij} is the production amount of the j th pollutant in unit i ; T_i is the
202 statistics of unit i ; and ρ_{ij} and μ_{ij} are production pollution coefficient and fertilizer loss rate,
203 respectively. Because potash fertilizer does not directly cause non-point source pollution, pollution is
204 primarily driven by nitrogen, phosphate, and compound fertilizers. According to the chemical
205 composition of fertilizer, TN and TP of nitrogen fertilizer have a pollution coefficient of 1, and TN and
206 TP of compound fertilizer have a pollution coefficient of 0.33 and 0.15, respectively. In Hubei Province,
207 the nitrogen and phosphate fertilizer loss rates were 20% and 7%, respectively (Lai et al., 2004). The
208 determining factors for pollutant emissions are the amount of N and P fertilizer inputs. Compared to the
209 mono-rice planting system, RCS might affect the pollution coefficient and fertilizer loss rates. However,
210 our research aims to compare the differences in EE among farmers and further analyze limiting factors

² Because the chemicals are very complex and most of them are inorganic, their effects on the non-point source pollution and carbon emission of RCS are not considered in this paper.

211 that underlie EE, so that the formula (3) can be used for this study.

212 Using a method proposed by Li et al. (2011), the indirect carbon emissions of fertilizers were
213 calculated using equation (4):

214
$$C_i = F_i * \xi \quad (4)$$

215 where C_i is the carbon emission of fertilizer in the production activities of the i th farmer; F_i is the
216 amount of fertilizer used; and ξ is the carbon emission coefficient of fertilizer, which is approximately
217 0.8956 kg/kg.

218 Although Data Envelopment Analysis (DEA) is an effective method for evaluating the relative
219 efficiency of DMUs, it does not account for unexpected outputs. Tone (2001) proposed a SBM of
220 efficiency, which considers both the input excesses and output shortfalls of each DMU concerned. This
221 measure uses a non-radial and non-angular approach to estimate EE values and explore factor
222 redundancy. Therefore, the SBM based on undesirable output was used in this paper. Undesirable
223 production is measured by non-point source pollution and carbon emissions caused by farmers' overuse
224 of chemicals. When considering environmental pollution, the definition matrix of the undesirable output
225 vector, that is, $y^b \in R^{s_2}$, is $Y^b = [(y_1^b, y_2^b, \dots, y_n^b)] \in R^{s_2 \times n}$. Under the variable returns to scale
226 settings, that is, $\sum_{j=1}^n \lambda_j = 1, \lambda_j \geq 0, j = 1, 2, \dots, n$, the SBM with undesirable output can be expressed
227 as equation (5):

$$\rho^* = \min_{\lambda, s^-} \left[\frac{1 - \frac{1}{m} \sum_{i=1}^m \frac{s_i^-}{x_{i0}}}{1 + \frac{1}{s_1 + s_2} \left(\sum_{r=1}^{s_1} \frac{s_r^g}{y_{r0}^g} + \sum_{r=1}^{s_2} \frac{s_r^b}{y_{r0}^b} \right)} \right]$$

229
$$x_0 = X\lambda + s^-$$

230
$$y_0^g = Y^g\lambda - s^g$$

231
$$y_0^b = Y^b\lambda + s^b$$

232
$$s^- \geq 0, s^g \geq 0, s^b \geq 0 \quad (5)$$

233 where s^- , s^g , and s^b are slack variables; s^- represents the redundancy of the inputs; s^g is the
234 shortage of desirable outputs; and s^b is the excess of undesirable outputs. P^* represents the EE value
235 with respect to diminishing s^- , s^g , and s^b . In the SBM, the efficiency of each DMU is computed by
236 minimizing the slack variables. If $\rho^* = 1$ and $s^- = s^g = s^b = 0$, the function has an optimal solution,

237 and the DMU is completely efficient. When $\rho^* < 1$ and at least one of s^-, s^g, s^b is not equal to zero,
 238 there is efficiency loss in the DMU (environmental inefficiency), indicating the necessity of improving
 239 the input-output situation. Cooper et al. (2007) decomposed environmental inefficiency into input
 240 inefficiency (IE_x), desirable output inefficiency (IE_g), and undesirable output inefficiency (IE_b),
 241 expressed as equation (6):

$$242 \quad IE_x = \frac{1}{m} \sum_{i=1}^m \frac{s_i^-}{x_{i0}}, (i = 1, \dots, m)$$

$$243 \quad IE_g = \frac{1}{s_1} \sum_{i=1}^{s_1} \frac{s_r^g}{y_{r0}^g}, (r = 1, \dots, s_1)$$

$$244 \quad IE_b = \frac{1}{s_2} \sum_{i=1}^{s_2} \frac{s_r^b}{y_{r0}^b}, (r = 1, \dots, s_2) \quad (6)$$

245 Then, we probed deeper into how land productivity, profit, and EE vary across different farming
 246 scales. According to China's Ministry of Agriculture and Rural Affairs, nearly 96% of the total farms in
 247 China had operating scale less than 2 ha, among which farms less than 0.667 ha and having 0.667–2 ha
 248 accounted for 43% and 57% in 2020, respectively. We therefore categorized the total samples into small-
 249 scale (<0.667 ha), medium-scale (0.667–2 ha) and large-scale (>2 ha) groups. This categorization was
 250 based on the operational RCS land area of the farms, including their contracted and leased land. Each
 251 group has 50, 96, and 53 households, accounting for 25%, 48% and 27% of the total samples,
 252 respectively.

253 **3.4 The combined least absolute deviation (CLAD) model to analyze factors influencing EE**

254 Production practices of farmers usually influence agri-EE. Farmers who adopt eco-friendly
 255 technologies or make protective inputs can effectively reduce environmental pollution (Alauddin and
 256 Quiggin, 2008), whereas irrational production behaviors may increase environmental pollution (Hu,
 257 1997). This section identifies the factors that influence EE based on farm household characteristics and
 258 external environmental factors. The expected effects on EE of all variables, including the household
 259 head's individual characteristics, household livelihood strategies, production behaviors, and production
 260 conditions, are summarized in Table 4.

261 **Table 4**

262 Potential factors influencing the EE and their expected effects

Variables	Explanation	Unit	Expected effects
<i>Individual characteristics</i>			
Age	Age of the household head	year	+/-
Education	Education level of the household head	year	+
<i>Livelihood strategies</i>			
Part-time farming	The share of off-farm income	%	-
<i>Production behaviors</i>			
Technical training	Does the household head participate in any technical training? yes=1, otherwise=0		+
Organic fertilizer application	The amount of organic fertilizer application	kg/ha	+
Informal lending	Does the head borrow informally for production? yes=1, otherwise=0		+/-
<i>Production conditions</i>			
Land fragmentation	The average area of plots	ha	-
Policy promotion	Does the local government promote RCS related policies? yes=1, otherwise=0		+

263 The **age of the household head** is an essential factor affecting agri-EE. However, their effects
 264 remain uncertain. Age-related experiences enable farmers to apply productive inputs in more
 265 environmentally efficient ways (Ma, 2009; Yang et al., 2015). In contrast, older farmers tend to be risk-
 266 averse and less receptive to pro-environmental technologies than younger farmers (Liang et al., 2016).
 267 **Educational level** may positively affect EE, as higher education levels may enhance the ability of
 268 farmers to acquire more scientific knowledge on rice-crayfish production inputs (e.g., pesticides,
 269 fertilizers, and machinery). This helps to reduce the possibility of environmental inefficiency (Chang
 270 and Meyerhoefer, 2016). Livelihood strategies refer to farmers' means of making a living, that is,
 271 whether the household relies on pure agriculture, part-time farming, or off-farm employment for their
 272 livelihood. Some studies argue that **part-time farming** reduces farmers' incentives to invest in land
 273 conservation and sustainability (Yang et al., 2015) while switching to environmentally unfavorable
 274 practices to ensure their economic benefits (He and Wei, 2003; Lyu et al., 2018). We expected an

275 increase in the share of off-farm income to negatively affect EE.

276 **Technical training** helps guide farmers' production management and increases their awareness of
277 pro-environmental agricultural techniques. We expected that participation in technical training would
278 lead to higher levels of agri-EE. **Organic fertilizer application** generally reduces agro-environmental
279 pollution. However, bio-organic fertilizers applied in rice-crayfish farming are more expensive and
280 require higher labor costs than compound fertilizers. Therefore, their effects on EE are mixed. **Informal**
281 **lending** is a critical way to meet farmers' investment demands. In the early stages of production, rice-
282 crayfish coculture requires digging trenches, purchasing feeding tools, and inputting shrimp seeds,
283 which require high investment capital. Although informal lending may increase farmers' incomes by
284 meeting input demand, it still has the potential to reduce agri-EE. When farmers face financial
285 constraints, the desire for increased income is preferred to ecological capital inputs. Thus, the effects of
286 informal lending are mixed. **Land fragmentation** is the state of several spatially separate plots of land
287 farming as single units (Tan et al., 2006; Gomes et al., 2019). This results in poor efficiency owing to
288 the inefficient use of inputs (Manjunatha et al., 2013) and creates a barrier to agricultural development
289 (Hartvigsen, 2014). Some studies argued that farmers with highly fragmented land tended to invest more
290 in fertilizers (Nkamleu and Adesina, 2000). Therefore, we expected land fragmentation to decrease the
291 EE of rice-crayfish production. Agricultural policy refers to a specialized policy that addresses problems
292 in agricultural development. Rice-fish coculture is still in the development stage; thus, **policy**
293 **promotion** is significant for achieving efficient and sustainable agricultural production.

294 We considered that the EE calculated by the SBM is a variable with a non-negative truncated
295 feature. The Ordinary Least Squares method often yields biased estimation results for restricted
296 dependent variables. Therefore, we considered the Tobit or CLAD model to identify the limiting factors.
297 The Tobit model makes strict assumptions, namely normal distribution and homoscedasticity, in terms
298 of the distributional characteristics of the target variables. Therefore, we employed CLAD if the
299 prerequisite assumptions were not met. The Conditional Moment (CM) and Lagrange Multiplier (LM)
300 tests were used to verify whether normality and homoscedasticity were satisfied.

301 CM test is expressed as equation (7):

302
$$\frac{1}{N} \sum_{i=1}^N w_i \widehat{\eta}_i \xrightarrow{p} \lim_{N \rightarrow \infty} \frac{1}{N} \sum_{i=1}^N E[w_i u_i] \quad (7)$$

303 where $\widehat{\eta}_i = I_i \left(y_i^* - \mathbf{x}_i' \beta \right) - (1 - I_i) \widehat{\sigma} \widehat{\lambda}_i$, $\lambda_i = \varphi(z_i)/(1 - \psi(z_i))$, and $z_i = \mathbf{x}_i' \beta / \sigma$ denotes the
 304 density and cumulative distribution functions of the standard normal distribution, respectively, and w_i
 305 is a representative potential exclusion variable.

306 LM statistics is stated as equation (8):

307
$$LM = \left(\sum_{i=1}^n \widehat{s}_i \right) \left(\sum_{i=1}^n \widehat{s}_i \widehat{s}_i' \right)^{-1} \left(\sum_{i=1}^n \widehat{s}_i \right) = \mathbf{1}' \mathbf{s} \left(\mathbf{s}' \mathbf{s} \right)^{-1} \mathbf{s}' \mathbf{1} \quad (8)$$

308 The constructed auxiliary regression is equation (9):

309
$$\mathbf{1} \xrightarrow{ols} \widehat{\mathbf{s}}_i \gamma + \vartheta_i$$

310
$$R_{uc}^2 = \frac{\mathbf{1}' \mathbf{s} \left(\mathbf{s}' \mathbf{s} \right)^{-1} \mathbf{s}' \mathbf{1}}{\mathbf{1}' \mathbf{1}} = \frac{LM}{n}, \quad LM = n R_{uc}^2 \quad (9)$$

311 where $\widehat{s}_i = s_i(\widehat{\beta}_R)$ is the value at p of the contribution of the i th observation to the score function,
 312 and R_{uc}^2 is the non-center R^2 .

313 When the Tobit model was not applicable, the CLAD model was employed to obtain more robust
 314 results. This method only requires the perturbation terms to follow identically independent distributions.

315 The CLAD model can be constructed as equation (10):

316
$$y_i = \max \left(0, \mathbf{x}_i' \beta + \varepsilon_i \right) \quad (10)$$

317 If $\mathbf{x}_i' \beta + \varepsilon_i \geq 0$, then $y_i = \mathbf{x}_i' \beta + \varepsilon$, otherwise $y_i = 0$. The objective function is the sum of the
 318 absolute values of the deviations in equation (11):

319
$$\min_{\beta} \sum_{i=1}^n \left| y_i - \max \left(0, \mathbf{x}_i' \beta \right) \right| \quad (11)$$

320 **4 Results**

321 **4.1 Descriptive statistics**

322 Descriptive statistics of the analyzed variables are presented in Table 5. The heads of the surveyed
 323 households were, on average, 55 years old, with the oldest being 77. The education level was moderate,

324 with an average of 7 years, and several farmers were uneducated. The degree of part-time farming
325 differed considerably from household to household, with the share ranging from 0% to 99%. Notably,
326 the share of organic fertilizer application was relatively low, with an average of 64 ± 56 kg/ha. The
327 minimum was 3.5 kg/ha, and the highest was 361 kg/ha. Land fragmentation represented by the average
328 plot size varied from 0.02 to 11.4 ha with an average size of 1.1 ± 1.3 ha. The other indicators also showed
329 substantial variations.

330 To calculate the EE of the RCS, we adopted three types of indicators—production inputs, desirable
331 outputs, and undesirable outputs—all of which were calculated per ha. The summary statistics of the
332 inputs and outputs are presented in Table 6. Each of these indicators varied considerably. In terms of
333 inputs, the cost of crayfish seeds averaged $\$1,512 \pm 1,342$, which was the highest among all the inputs.
334 Desirable outputs include crayfish and rice revenues, with an average of $\$9,048 \pm 4,627$ for crayfish and
335 $\$3,264 \pm 847$ for rice, but the gaps between the DMUs was relatively large. In Hubei Province, rice and
336 crayfish prices faced by farmers were relatively stable and similar in 2017. Therefore, the revenue
337 difference between farmers was primarily caused by their crayfish yield. In terms of the undesirable
338 outputs, the average of non-point source pollution and carbon emissions were approximately 77 ± 30 and
339 639 ± 270 kg, respectively. The maximum carbon emissions were 2,280 kg.

340 **Table 5**

341 Descriptive statistics of the variables used in the analysis

Variables	Mean	S.D.	Min	Max
<i>Individual characteristics</i>				
Age (years)	55	9.45	25	77
Education (years)	7	3.1	0	15
<i>Livelihood strategies</i>				
Part-time farming (%)	27	29	0	99
<i>Production behaviors</i>				
Technical training	0.4	0.5	0	1
Organic fertilizer application (kg/ha)	64	56	3.5	361

Informal lending (yes=1, otherwise=0)	0.3	0.5	0	1
<i>Production conditions</i>				
Land fragmentation (ha)	1.1	1.3	0.02	11.4
Policy promotion (yes =1, otherwise =0)	0.3	0.5	0	1

Source: Calculated from the survey data.

342

343 **Table 6**

344 Summary statistics of inputs and outputs (per ha)

Indicators	Mean	S.D.	Max	Min
<i>Production inputs</i>				
Rice seed (\$)	238	178	1,133	34
Crayfish seed (\$)	1,512	1,342	5,803	9
Machinery (\$)	437	187	1,813	26
Labor (\$)	19	16	120	4
Fertilizer (\$)	290	138	1,074	39
Pesticide (\$)	200	131	839	21
Feed (\$)	884	784	6,528	43
Medicine (\$)	707	884	3,781	14
<i>Desirable outputs</i>				
Crayfish production (kg/ha)	1,748	1,116	6,872	119
Crayfish revenue (\$/ha)	9,048	4,627	19,041	329
Rice production (kg/ha)	7,832	2,306	21,429	1,500
Rice revenue (\$/ha)	3,264	847	7,688	455
<i>Undesirable outputs</i>				
Non-point source pollution (kg)	77	30	201	19
Carbon emission (kg)	639	270	2,280	114

345 **4.2 Productivity, profitability, and EE**

346 Table 7 presents the results of productivity, profitability, and EE. On average, the land productivity
347 and net profit were 10,119 and 4,364 \$/ha, respectively. Land productivity of the small-, medium-, and
348 large- scale group averaged 10,730, 9,741, and 9,887 \$/ha, respectively. The small-scale farmers had
349 the highest revenue. However, when considering the production costs, their profit was lower than that
350 of their medium- and large-scale counterparts, specifically, 2,930 vs. to 4,626 and 5,537 \$/ha,
351 respectively. Obviously, small-scale farmers bear much higher costs.

352 **Table 7**

353 Productivity, profit, and environmental efficiency (EE) distribution

	Total samples	Small-scale	Medium-scale	Large-scale
Productivity (\$/ha)	10,119	10,730	9,741	9,887
Profit (\$/ha)	4,364	2,930	4,626	5,537
EE	0.618	0.532	0.620	0.701

Notes: The results in the table are the average values of the variables.

354 The SBM was used to estimate the EE of the surveyed households. The average EE of all the
355 studied households was 0.618. Specifically, the EE values of the small-, medium-, and large-scale
356 groups were 0.532, 0.620, and 0.701, respectively. This suggests that the EE values of the RCS
357 increase with production scale. To comprehensively elucidate the dynamics of EE, we divided
358 these households into nine groups based on their EE values and farming areas. Table 8 provides a
359 snapshot of the distribution of EE across all the sampled households. Using lateral efficiency
360 groups, we distinguished the farmers into three groups: high-efficiency group (*EE value* = 1),
361 medium-efficiency group ($0.5 \leq \text{EE value} < 1$), and low-efficiency group ($\text{EE value} < 0.5$).
362 Farmers in the high-efficiency group accounted for approximately one-third (33%) of the total
363 sample with an EE value of 1. These farmers performed excellently on the frontier surface.
364 Farmers in the medium-efficiency group accounted for 16% of the sample; the EE values ranged
365 from 0.5–1, which can be improved through reasonable allocation of production factors and
366 technical management. Notably, more than half (51%) of the total sample in the low-efficiency

367 group had relatively low EE values (less than 0.5). Overall, large-scale farms performed best in
368 terms of profit and EE value.

369 **Table 8**

370 Environmental efficiency distribution

Total farmers	EE values	Total		Small-scale		Medium-scale		Large-scale	
		Hhs	Pct (%)	Hhs	Pct (%)	Hhs	Pct (%)	Hhs	Pct (%)
High-efficiency	1	66	33	14	23	25	31	27	46
Medium-efficiency	0.5-1	31	16	7	12	18	23	6	10
Low-efficiency	< 0.5	102	51	39	65	37	41	26	44

Notes: Hhs indicates the number of each household group; Pct refers to percentage.

371 **4.3 EE performance**

372 The SBM results revealed that EE varies greatly among farmers. Differences in EE
373 performance can be elucidated through a study of input, desirable output, and undesirable output,
374 according to Cooper et al. (2007). The input, desirable output, and undesirable output
375 inefficiencies of the surveyed farmers were 0.311, 0.201, and 0.214, respectively, indicating that
376 input redundancy has a greatest negative impact on EE.

377 In rice-crayfish coculture practices, farmers need to invest in fertilizers, pesticides, and seeds
378 during rice planting, and use drugs, feed, and crayfish seeds during crayfish farming. Except for
379 66 DMUs (*EE value* = 1), the inputs of the other DMUs were excessive in some cases. The
380 redundancy ratio of each factor input was equal to the slack variable S^- of each input divided by
381 the corresponding input variable. We found that the input redundancy ratios of each production
382 factor were drugs (50%), feed (44%), labor (35%), crayfish seeds (33%), rice seeds (31%),
383 pesticides (23%), fertilizers (17%), and machinery (16%). Higher redundancy rates indicate

384 greater overuse of inputs and a major contributor to environmental inefficiency. Specifically,
385 farmers overused drugs and feeds in crayfish production and failed to appropriately allocate the
386 labor force. Excessive drugs and feeds, etc., were used in crayfish disease control, feeding,
387 harvesting and routine management, thus increasing undesired outputs and carbon emissions.

388 **4.4 Factors limiting EE**

389 To determine the factors limiting EE performance, we first test the CM and LM statistics to
390 examine whether the error term satisfies the prerequisite assumptions, that is, normal distribution
391 and homoscedasticity. The CM statistic was 112.03 (Table 9), rejecting the null hypothesis that
392 the error term follows a normal distribution. Similarly, the auxiliary regression LM statistic was
393 25.33 with a p-value of 0.000, indicating that the error term does not satisfy homoscedasticity.
394 The use of a Tobit model led to biased estimates. Therefore, we adopted the CLAD model to
395 analyze the factors restricting farmers' performance of the RCS by referring to the method by
396 Zhang et al. (2017). This model only requires the error term to be identically distributed. A
397 consistent estimator can be obtained under truncated data, which follow an abnormal distribution
398 and show heteroscedasticity. The results are presented in Table 10.

399 **Table 9**

400 Test results for the distribution of the perturbation term

CM Test		LM Test	
CM	112.03	nR_{uc}^2	25.33
10%	12.03	p-value	0.000
Critical values	5% 1%	15.42 39.92	

401 All variables were significant except for informal lending and land fragmentation. Farmers'
402 characteristics, namely age and education level, positively impacted EE, implying that an increase
403 in age does not constrain farmers from enhancing production efficiency. In contrast, older

404 producers have more experience in fertilizer and pesticide application, which can effectively
405 improve the efficiency of input factors. Moreover, the estimated coefficient of education was
406 0.007, indicating that when the average years of education of farmers increase by 10 years, EE
407 increases by approximately 7%. Farmers with higher education levels have more extensive
408 knowledge of applied technology and management methods, contributing to efficiency
409 improvements.

410 Among the livelihood characteristics of farmers, part-time farming significantly negatively
411 impacted EE, which is consistent with our expectations. Farmers' part-time behavior makes them
412 reduce resource inputs in agricultural production, and several arable lands are more likely to be
413 underutilized, resulting in rough agrarian management and a low-efficiency level.

414 Regarding production behaviors, the estimated coefficients of technical training and organic
415 fertilizer application were significantly positive. Farmers participating in technical training
416 acquire more advanced farming techniques and scientific production methods. This reduces the
417 risk of excessive inputs and unnecessary losses in production practices. Organic fertilizer
418 application reduces environmental pollution by partly replacing chemicals and increasing the
419 sustainable utilization of resources. Regarding informal lending, the estimated coefficient was
420 insignificant. Although informal loans exert financial constraints on farmers, these constraints are
421 more elastic than formal lending. The high returns from rice-crayfish coculture increase expected
422 returns, and then the impact on farmers' short-term production behavior is insignificant.

423 In production conditions, policy promotion was significant at 1%. Policy promotion has a
424 positive impact on the EE of RCS. The policy relative to rice-crayfish farming can enhance
425 farmers' knowledge of RCS and provide a policy safeguard for production and operation.

426 **Table 10**

427 The results of the determinants of environmental efficiency

Variables	Coefficient	S.E.	Variables	Coefficient	S.E.
-----------	-------------	------	-----------	-------------	------

<i>Individual characteristics</i>			Informal lending	-0.001	0.007
Age (years)	0.002***	0.000	<i>Production conditions</i>		
Education level (years)	0.007***	0.001	Land fragmentation (ha)	0.000	0.000
<i>Livelihood strategies</i>			Policy promotion	0.047***	0.009
Part-time farming (%)	-0.058***	0.012	Constant	-0.120***	0.031
<i>Production behaviors</i>			Pseudo R^2	0.373	
Technical training	0.015*	0.008	Number of observations	199	
Organic fertilizer application	0.78***	0.001			

428 **5 Discussion**

429 **5.1 How different farmers performed?**

430 This study revealed that RCS partly fulfills the principles outlined in “dual uses of one
 431 water, double harvests in one field.” Although RCS has higher revenue than monocropping model
 432 (Wang and Tan, 2020), the EE of RCS still had notable potential for improvement. To understand
 433 factors driving the difficulty of optimizing RCS in practice, we divided the total sample into three
 434 farm-size groups. We found that the small-scale farmers had the highest revenue but lowest profit
 435 and EE values. This finding is consistent with that of Tu et al. (2021). This trend is most likely
 436 rooted in the fact that small-scale farmers tend to bear the highest production costs and undesired
 437 outputs than their large-scale counterparts. For example, Ju et al. (2016) argued that fertilizer use
 438 per ha sharply increased with a decrease in farm size. To guarantee profitability, small-scale
 439 farmers have to adopt an intensive approach to farming. However, this approach, in the context of
 440 the required production inputs, is more expensive and it also generates a high amount of carbon
 441 emissions. Another possible reason is that small-scale farms are not conducive to adopting
 442 innovative eco-friendly techniques, such as new rice-crayfish fertilizer and other chemical-saving
 443 technology (Vidogbéna et al., 2016). Specifically, in the context of small-scale farms, the use of
 444 new techniques does not bring significant benefits in the short term and even entails high fixed
 445 costs. In the long term, however, they can considerably reduce carbon emissions and improve the

446 ecological status of the soil. As such, the small farms are difficult to promote their profit and EE
447 performance.

448 According to the Technical procedure of “crayfish-rice synchronous + crayfish-rice rotation”
449 complex model of planting and breeding (2023), a suitable unit area for RCS is 1.33–3.33 ha. In
450 our study, the average unit sizes of the small- (<0.667 ha), medium- (0.667–2 ha) and large-scale
451 (> 2 ha) households were 0.8, 1.2 and 2.4 ha, respectively. Obviously, the large-scale farms meet
452 the recommended requirement of size, and had the highest profit and best EE performance. As
453 introduced in Section 3.3, the above three farm groups were classified based on China’s Ministry
454 of Agriculture and Rural Affairs, which is inconsistent with the recommended size (1.33–3.33 ha)
455 in Technical Procedure. To be noted that among the large-scale group with total 53 farms, only 9
456 samples having size more than 3.33 ha, of which both the largest one with 11.4 ha and the second
457 largest one with 8 ha had negative profits. This partially supported the Technical Procedure with
458 regard to the suitable size. Unfortunately, nearly 54% of the sample farmers had a total operating
459 area less than 1.33 ha. If these farms can be enlarged appropriately, they are expected to be more
460 profitable and efficient. This suggests that it is necessary to take supervision, rewards, and
461 punishment measures to guide small farmers rationally into the rice-fish coculture model.

462 **5.2 What caused differences in EE performance?**

463 We found that although one-third of farmers were effective, almost more than half were
464 ineffective (*EE value* < 0.5). Some studies have argued that the RCS can achieve greater
465 ecological and economic benefits than rice monocropping (Ahmed et al., 2011; Wang and Tan,
466 2020; Yu et al., 2014). However, when considering integrated eco-economic effects, the EE of
467 RCS varies for various reasons. The results of SBM showed that input redundancy might explain
468 the difference in EE performance. Specifically, the redundancy rate of each factor of production
469 was drug (50%), > feed (44%), > labor (35%), > crayfish seeds (33%), > rice seeds (31%), >
470 pesticide (23%), > fertilizer (17%) and > machinery (16%). This showed that the drugs and feed
471 invested in crayfish farming were not used sustainably, and that the labor force was not

472 appropriately allocated. Owing to the high investment cost required for RCS, producers should
473 allocate input factors reasonably and grasp scientific management methods, if not, their
474 operations will be subjected to a great amount of risk (Chen et al., 2019). In practice, 64% of the
475 surveyed farmers considered that the crayfish disease risk was very high, 16% responded that the
476 disease risk was considerable but manageable, and only 20% held that the risk was not high.³

477 Labor redundancy is also an important contributor to the variation in EE among farmers.
478 Compared to large farms, the small-scale farmers are not conducive to using labor-saving
479 machinery, especially for rice cultivation, such as those for plowing, transplanting, and
480 harvesting. This produces large labor inputs, increasing the odds of small-scale farms drifting
481 toward labor redundancy. Additionally, the rearing and harvesting of crayfish rely on the
482 producer's routine maintenance. Farmers with weaker technical and managerial skills tend to hire
483 workers unreasonably, resulting in redundant labor input. Therefore, improving the management
484 practices of farmers and promoting the efficiency of labor utilization are important ways to
485 enhance EE.

486 The results of CLAD model indicated that age and education level of the household head,
487 and technical training had positive impacts on EE. An increase in age and education level can
488 increase farmers' experience and improve their production and management capacities. Farmers
489 who participate in technical training can implement insights gained from scientific guides,
490 thereby achieving a higher efficiency. Therefore, it is necessary to strengthen farmers' technical
491 training and increase their knowledge of modern production.

492 Part-time farming negatively impacts EE. Although previous studies have divergent views
493 on the relationship between part-time employment and the farm sector, the consensus is that this
494 relationship is influenced by rural labor market circumstances (Mutyasira et al., 2018). Due to the
495 coherence and intensity of rice-crayfish farming, the greater the part-time extent, the lower the
496 labor input, and the less efficient the land utilization. Organic fertilizer application has a positive

³ Source: Calculated from the survey data.

497 impact on EE. According to our survey, farmers normally use organic fertilizer as a carrier, add
498 functional bacteria to improve the water environment, and add shrimp fertilizer with trace
499 elements required for the growth of crayfish. This help reduce environmental pollution and
500 promote green agriculture by partly replacing chemicals.

501 It should be noted that there exist some limitations in the current study. Due to the existing
502 limited research, we used the estimation methods of water pollute and carbon emissions based on
503 Lai et al. (2004) and Li et al. (2011), respectively, which were conducted in mono-rice planting
504 systems. We primarily estimated carbon emissions stemming from the application of fertilizer, as
505 is one of the main sources of carbon emissions. Compared to mono-rice planting systems, RCS
506 might reduce the water pollution and carbon emissions (Berg, 2002), and the emission factors and
507 rates might be different (Yuan et al., 2022; Jiang and Cao, 2021). To a certain extent, we might
508 underestimate the EE of the RCS. However, this study was centered on the differences in EE
509 among farms that have implemented RCS, instead of comparing EE trends between RCS and
510 mono-rice planting systems, thus, the estimation methods might not affect our results and the
511 conclusions. Meanwhile, as this research was based on farmer survey, it was too difficult to
512 measure or estimate the direct carbon emission RCS, such as CH_4 emission (Hu et al., 2016).
513 Therefore, it is necessary to estimate the EE based on RCS field experiments, especially carbon
514 emission such as CH_4 emission in the future study. Additionally, factors affecting farmers'
515 profitability we primarily considered their farming experience and may have neglected market
516 regulation. Future research will add some macro data to calculate farmers' profitability.

517 **6 Conclusion**

518 This study demonstrated factors affecting the EE of RCS by employing 199 rice-crayfish
519 household's data collected from two cities of Hubei province, China. This study showed that the
520 average land productivity and net profit of our sampled farmers were US\$ 10,119 and 4,364 per
521 ha, respectively, with a rice yield of 7,832 kg/ha and a crayfish yield of 1,748 kg/ha. The average
522 EE of RCS was 0.618, with notable variations in EE values among different-scale farmers.

523 Compared with their small- and medium-scale counterparts, the large-scale farmers performed
524 best in terms of profits and EE values. Additionally, the input, desirable output and undesirable
525 output inefficiencies were 0.311, 0.201 and 0.214, respectively. Redundant inputs such as drugs,
526 feed and labor with redundancy ratios of 50%, 44% and 35%, respectively, resulted in the overall
527 difference in EE performance. To better realize “dual uses of one water, double harvests in one
528 field,” farmers need to reduce unnecessary inputs to improve EE as much as possible. Enhancing
529 farmers’ education level, technical training, and organic fertilizer application, and decreasing
530 their part-time employment will further optimize EE performance of RCS.

531 **Acknowledgements**

532 The authors would like to thank the students for their participation in the field surveys and
533 thank the interviewed farmers for their time.

534 **Funding**

535 This work was supported by the Foundation of Renmin University of China [grant number
536 16XNI004].

537 **Declaration of competing interest**

538 The authors declare that they have no known competing financial interests or personal
539 relationships that could have appeared to influence the work reported in this paper.

References

Ahmed, N., Zander, K.K., Garnett, S.T., 2011. Socioeconomic aspects of rice-fish farming in Bangladesh: opportunities, challenges and production efficiency: Rice-fish farming in Bangladesh. *Australian Journal of Agricultural and Resource Economics* 55, 199–219. <https://doi.org/10.1111/j.1467-8489.2011.00535.x>

Alauddin, M., Quiggin, J., 2008. Agricultural intensification, irrigation and the environment in South Asia: Issues and policy options. *Ecological Economics* 65, 111–124. <https://doi.org/10.1016/j.ecolecon.2007.06.004>

Aldanondo-Ochoa, A.M., Casasnovas-Oliva, V.L., Arandia-Miura, A., 2014. Environmental efficiency and the impact of regulation in dryland organic vine production. *Land Use Policy* 36, 275–284. <https://doi.org/10.1016/j.landusepol.2013.08.010>

Berg H., 2002. Rice monoculture and integrated rice-fish farming in the Mekong Delta, Vietnam—economic and ecological considerations. *Ecological economics* 41(1): 95–107. [https://doi.org/10.1016/S0921-8009\(02\)00027-7](https://doi.org/10.1016/S0921-8009(02)00027-7)

Cao, C., Jiang, Y., Wang, J., Yuan, P., Chen, S., 2017. “Dual character” of rice-crayfish culture and strategy for its sustainable development. *Chinese Journal of Eco-Agriculture* 25, 1245–1253 (in Chinese).

Cao, J., Sang, F., 2020. Thinking on Theory, Model and Evaluation Method of Aquaculture Green Development. *Ecological Economy* 36, 101–106+153 (in Chinese).

Chang, H., Meyerhoefer, C.D., 2016. The Causal Effect of Education on Farm-related Disability: Evidence from a Compulsory Schooling Reform in Taiwan. *American Journal of Agricultural Economics* 98, 1545–1557. <https://doi.org/10.1093/ajae/aaw060>

Chen, S., Jiang, Y., Wang, J., Cao, C., 2020. Situation and countermeasures of integrated rice-crayfish farming in Hubei province. *Journal of Huazhong Agricultural University* 39, 1–7 (in Chinese).

Chen, X., 2018. Analysis of technical specification for rice-aquatic coculture system (Part 1: General principles). *China Fisheries* 90–91 (in Chinese).

Chen, X., Tang, J., 2013. Utilization of biodiversity in agriculture: today and tomorrow. *Chinese Journal of Eco-Agriculture* 21, 54–60 (in Chinese).

Chen, W., Peng, L., Liu, Y., et al., 2019. Analysis of economic and ecological benefits of rice- crayfish coculture model in Jianghan plain. *Hubei Agricultural Sciences* 58, 160–166 (in Chinese).

Cooper W, Seiford L, Tone K, 2007. Envelopment analysis. Boston: Kluwer Academic Publishers.

Färe, R., Grosskopf, S., 2009. A Comment on Weak Disposability in Nonparametric Production Analysis. *American Journal of Agricultural Economics* 91, 535–538. <https://doi.org/10.1111/j.1467-8276.2008.01237.x>

Gomes, E., Banos, A., Abrantes, P., Rocha, J., Kristensen, S.B.P., Busck, A., 2019. Agricultural land fragmentation analysis in a peri-urban context: From the past into the future. *Ecological Indicators* 97, 380–388. <https://doi.org/10.1016/j.ecolind.2018.10.025>

Hartvigsen, M., 2014. Land reform and land fragmentation in Central and Eastern Europe. *Land Use Policy* 36, 330–341. <https://doi.org/10.1016/j.landusepol.2013.08.016>

He, P., Wei, J., 2003. On the influence of peasant household management behavior on the sustainable development of agriculture. *Journal of Agrotechnical Economics* 24–27 (in Chinese).

Hu, W., 1997. Household land tenure reform in China: Its impact on farming land use and agro-environment. *Land Use Policy* 14, 175–186. [https://doi.org/10.1016/S0264-8377\(97\)00010-0](https://doi.org/10.1016/S0264-8377(97)00010-0)

Hu, L., Zhang, J., Ren, W. et al., 2016. Can the co-cultivation of rice and fish help sustain rice production?. *Scientific Reports* 6, 28728. <https://doi.org/10.1038/srep28728>

Jiang Y, Cao C., 2021. Crayfish–rice integrated system of production: an agriculture success story in China. A review. *Agronomy for Sustainable Development* 41: 1-14. <https://doi.org/10.1007/s13593-021-00724-w>

Ju, X., Gu, B., Wu, Y., Galloway, J. N., 2016. Reducing China's fertilizer use by increasing farm size. *Global environmental change* 41, 26-32. <https://doi.org/10.1016/j.gloenvcha.2016.08.005>

Khatri-Chhetri, A., Sapkota, T.B., Maharjan, S., Cheerakkollil Konath, N., Shirasath, P., 2023. Agricultural emissions reduction potential by improving technical efficiency in crop production. *Agricultural Systems* 207, 103620. <https://doi.org/10.1016/j.agsy.2023.103620>

Kortelainen, M., 2008. Dynamic environmental performance analysis: A Malmquist index approach. *Ecological Economics* 64, 701–715. <https://doi.org/10.1016/j.ecolecon.2007.08.001>

Lai, Y., Du, P., Chen, J., 2004. Investigation and evaluation method of non-point source pollution based on unit analysis. *Journal of Tsinghua University (natural science edition)* 09, 1184-1187 (in Chinese).

Li, J., Chang, D., Li, B., Wu, X., Zhu, Z., Cheng, Y., 2014. Benefit-cost analysis of different rice-based production systems. *Journal of Fisheries of China* 38, 1431–1438 (in Chinese).

Li, B., Zhang, J., Li, H., 2011. Spatiotemporal characteristics and decomposition of influencing factors of agricultural carbon emissions in China. *China Population, Resources and Environment* 21(08), 80-86 (in Chinese).

Li, Y., Wu, T., Wang, S. et al., 2023. Developing integrated rice-animal farming based on climate and farmers choices. *Agricultural Systems* 204, 103554. <https://doi.org/10.1016/j.agsy.2022.103554>

Lian, J., Li, Y., Qiao, C., Chen, Y., Dong, S., 2018. Promotion technology and benefit analysis of integrated rice-crayfish farming system in Dafeng district, Yancheng city. *Modern Agricultural Science and Technology* 218–219 (in Chinese).

Liang, L., Zhai, B., Fan, P., 2016. Environmental Influence Mechanism of Household Production Behavior: A Case of Traditional Agricultural Areas in Henan Province. *Journal of Nanjing Agricultural University (Social Sciences Edition)* 16, 145-153+158 (in Chinese).

Lin, X., Zhou, Y., 2012. An analysis on the ecoenvironment effect of circular agriculture mode of planting-culture in the paddy field. *China Population, Resources and Environment* 22, 37–42 (in Chinese).

Luan, J., Qiu, H., Jing, Y., Liao, S., Han, W., 2013. Decomposition of Factors Contributed to the Increase of China's Chemical Fertilizer Use and Projections for Future Fertilizer Use in China. *Journal of Natural Resources* 28, 1869–1878 (in Chinese).

Lyu, X., Li, D., Zhou, H., 2018. Discussion on Quality and Safety of Agricultural Products: Concurrent Business and Pesticide Application Behavior. *China Agricultural University Journal of Social Sciences Edition* 35, 69–78 (in Chinese).

Ma, X., 2009. An empirical analysis of the influence of farmland property rights system on farmers' investment in soil conservation at present - a case study of rice production in hilly areas. Chinese Rural Economy 31-41+50 (in Chinese).

Manjunatha, A.V., Anik, A.R., Speelman, S., Nuppenau, E.A., 2013. Impact of land fragmentation, farm size, land ownership and crop diversity on profit and efficiency of irrigated farms in India. Land Use Policy 31, 397–405.
<https://doi.org/10.1016/j.landusepol.2012.08.005>

Mutyasira, V., Hoag, D., Pendell, D., Manning, D.T., Berhe, M., 2018. Assessing the relative sustainability of smallholder farming systems in Ethiopian highlands. Agricultural Systems 167, 83–91. <https://doi.org/10.1016/j.agsy.2018.08.006>

Nkamleu, G.B., Adesina, A.A., 2000. Determinants of chemical input use in peri-urban lowland systems: bivariate probit analysis in Cameroon. Agricultural Systems 63, 111–121. [https://doi.org/10.1016/S0308521X\(99\)00074-8](https://doi.org/10.1016/S0308521X(99)00074-8)

Ou, Y., Bao, Z., Ng, S. T., Song, W., Chen, K., 2024. Land-use carbon emissions and built environment characteristics: A city-level quantitative analysis in emerging economies. Land Use Policy 137, 107019. <https://doi.org/10.1016/j.landusepol.2023.107019>

Qiu, H., Luan, H., Li, J., Wang, Y., 2014. Effects of risk aversion on excessive fertilizer application of farmers. Chinese Rural Economy 85–96 (in Chinese).

Report on the Development of Rice-fishery Integrated Farming Industry in China (2019). China Aquaculture (01):16-22 (in Chinese).

Technical procedure of “crayfish-rice synchronous + crayfish-rice rotation” complex model of planting and breeding, 2023.
<https://www.hbqj.gov.cn/xwzx/zibd/qjlxsgjx/cybztx/202312/P020231220628793867443.pdf>

Shen, J., Huang, H., Fu, Z., Zhang, Y., Chen, C., Jin X., Liao, X., Long, P., Gao, W., Xie, X., 2010. Effect of large-scale rice-duck eco-farming on the composition and diversity of weed community in paddy fields. Chinese Journal of Eco-Agriculture 18, 123–128 (in Chinese).

Shen, L., Sun, R., Liu, W., 2024. Examining the drivers of grain production efficiency for achieving energy transition in China. Environmental Impact Assessment Review 105, 107431. <https://doi.org/10.1016/j.eiar.2024.10.7431>

Si, G., Peng, C., Xu, X., Xu, D., Yuan, J., Li, J., 2017. Effect of integrated rice-crayfish farming system on soil physico-chemical properties in waterlogged paddy soils. Chinese Journal of Eco-Agriculture 25(01):61-68 (in Chinese).

Tan, S., Heerink, N., Qu, F., 2006. Land fragmentation and its driving forces in China. Land Use Policy 23, 272–285.
<https://doi.org/10.1016/j.landusepol.2004.12.001>

Tan S., Liu Q., Zhang Q., 2021. Study on the ecological-economic effects of rice-aquatic coculture land use pattern: The case of rice-crayfish coculture in Hubei province. Journal of Natural Resources 36, 3131. [https://doi.org/10.31497/zrzyxb.20211209 \(in Chinese\).](https://doi.org/10.31497/zrzyxb.20211209)

Tone K., 2001. A slacks-based measure of super-efficiency in data envelopment analysis. European Journal of Operational Research 143, 32-41. [https://doi.org/10.1016/S0377-2217\(01\)00324-1](https://doi.org/10.1016/S0377-2217(01)00324-1)

Tu, V.H., Kopp, S.W., Trang, N.T., Hong, N.B., Yabe, M., 2021. Land accumulation: An option for improving technical and environmental efficiencies of rice production in the Vietnamese Mekong Delta. Land Use Policy 108, 105678.
<https://doi.org/10.1016/j.landusepol.2021.105678>

Tyteca, D., 1996. On the Measurement of the Environmental Performance of Firms— A Literature Review and a Productive Efficiency Perspective. *Journal of Environmental Management* 46, 281–308. <https://doi.org/10.1006/jema.1996.0022>

The 2019 Report on the Development of Rice-fishery Integrated Farming Industry in China. *China Fisheries* 2019 (in Chinese).

Vidogbéna, F., Adégbidi, A. B. E. A., Tossou, R., Assogba-Komlan, F., Martin, T., Ngouajio, M. et al., 2016. Exploring factors that shape small-scale farmers' opinions on the adoption of eco-friendly nets for vegetable productio. *Environment, Development and Sustainability* 18: 1749-1770. <https://doi.org/10.1007/s10668-015-9717-z>

Wang, X., Tan, S., 2020. Cost-Efficiency Analysis of Rice-Crayfish Integrated Land Operation Mode Based on Non-homogeneous DEA. *China Land Science* 34, 56–63 (in Chinese).

Xiang, P., Huang, H., Huang, M., Gan, D., Zhou, Y., Fu, Z., 2006. Studies on Technique of Reducing Methane-Emission in a Rice-Duck Ecological System and the Evaluation of Its Economic Significance. *Scientia Agricultura Sinica* 968–975 (in Chinese).

Xi, Y., Zhou, X., 2016. A preliminary study on material circulation and benefits in the paddy field ecosystem under continuous cropping of rice-crayfish coculture. *Chinese aquatics* 03, 78-82 (in Chinese).

Yang, Z., Wang, Y., Tu Er Sun, M. er dan, 2015. Farm Households'Input Behavior of Land Conservation and Its Driving Factors: From a Perspective of Farm Household Differentiation. *China Population, Resources and Environment* 25, 105–112 (in Chinese).

Yu, S., Zhu, L., Ouyang, Y., Xu, J., Zhang, J., Xu, D., Jin, Q., 2014. Influence of Rice-Duck Farming System on Soil Physical Properties, Fertility Factors and Yield in Paddy Fields. *Chinese Journal of Soil Science* 45, 151–156 (in Chinese).

Yuan, P., Wang, J., Can, G., Guo, Z., Yao, G., Cao, C., 2022. Sustainability of the rice–crayfish farming model in waterlogged land: A case study in Qianjiang County, Hubei Province, China. *Journal of Integrative Agriculture* 21(4): 1203-1214. [https://doi.org/10.1016/S2095-3119\(21\)63787-5](https://doi.org/10.1016/S2095-3119(21)63787-5)

Zhang, X., Zhang, B., Chen, X., Zhang, Z., 2017. Study of the efficiency of livestock production and its influence factors in Chinese main pastoral area: Based on the two-phase modeling of DEA-CLAD. *Journal of China Agricultural University* 22(04), 171-178 (in Chinese).

Zhen, Z., Weng, W., Li, Z., Sun. Y., Hu, A., Xiao, D., Zhang, X., 2019. Typical ecological agriculture model -- research review on rice field cultivation. *Jiangsu Agricultural Sciences* 47(04), 11-16 (in Chinese).

Zhu, P., Zhang, K., Song, D., Lou, B., Wang, Z., 2019. Present situation, existing problems and suggestions of rice-crayfish co-culture in Jingzhou. *Primary Agricultural Technology Extension* 7, 101–103 (in Chinese).