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Abstract

This paper investigates the interaction among potential and revealed resilience capacities, technical
efficiency, and total factor productivity (TFP) in Italian olive farms using FADN data from 2013-
2019. To achieve this objective, we use principal component analysis for evaluating potential
resilience indicators and a stochastic frontier model (SFM) to assess farms' competitiveness and
evaluate the impact of resilience measures on farms' efficiency and productivity. Results show that
Italian olive farms exhibit higher resilience in transformability, followed by robustness and
adaptability. Resilience indicators negatively impact technical efficiency. TFP growth is notably
influenced by adaptability. Results suggest that balancing competitiveness and resilience is crucial
to achieving a sustainable farming system. To face climate change challenges, policies should
facilitate transitions to a climate-resilient farming system by incentivizing investments in climate-
adaptive technologies and designing careful subsidy programs that emphasize the long-term
resilience benefits of sustainable farming practices rather than considering immediate efficiency
gains. Farmer support through training and collaborative networks is vital to strengthening farms'
adaptability and transformability capacities.
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I. INTRODUCTION

Italy stands as one of the leading producers of olives and olive oil within the European Union,
making a substantial contribution to the country's overall agricultural output. The olive sector's significance
extends beyond economic relevance, encompassing social and environmental dimensions. Several factors
justify the relevance of the olive sector in ltaly. Firstly, olive cultivation holds a pivotal role in the EU
agricultural model across the Mediterranean region since out of the 4.6 million hectares of EU land
designated as olive groves, Italian ones accounts for 23% (Eurostat dataset, 2017). Secondly, the majority
of olive production occurs in less developed regions, falling under the Objective 1 category of the EU
regional policy. This concentration makes these regions crucial sources of employment and economic
activity. Thirdly, Italy accounts for the largest share of protected olive oil labels, comprising approximately
40% of the EU Protected Designations of Origin (PDOs) and Protected Geographical Indications (PGIs)
(Belletti et al., 2015). Lastly, under the new Common Agricultural Policy (CAP), Italian agriculture is set
to receive subsidies totaling 34 billion from 2023 to 2027, with 25% of direct payments explicitly allocated

for farmers engaged in environmental practices to conserve biodiversity.

Despite its significance and supportive EU policies, the Italian olive sector faces challenges leading
to a decline in yields over the years. Factors contributing to this decline include traditional practices, limited
technological innovation, landscape protection measures, and unsustainable agricultural systems. Climate
change effects, such as pest attacks, extreme weather conditions aggravate these challenges (ISMEA, 2021,
Rezgui et al, 2024).

On the other side, despite the widespread presence of olive cultivation across the Italian peninsula,
the production of olives suffers from fragmentation, with the average olive grove covering only 1.8 hectares
of land. Competitiveness is a major issue for the Italian olive sector due to production and market
fragmentation, diverse cost dynamics, an aging farmer population, and a significant labor shortage. Many
olive groves house old, inefficient trees, impacting profitability. In 2022/2023, Italy produced 235 thousand
tons of oil, a significant decrease from the 329 thousand tons in 2021/2022 (DeAndreis, 2023, Rosati et al,
2013).

Addressing these challenges necessitates an in-depth analysis of the competitiveness and resilience
of the olive sector. This paper aims to address the research gap by analyzing the dynamics and trade-offs
between resilience capacities, total factor productivity, and technical efficiency in the Italian olive sector.
Understanding the interaction of resilience indicators with total factor productivity over the years will
provide insights into improving yields during alternate bearing years of olive farms. As specific objectives,
the aim is to assess the potential and revealed resilience indicators of Italian olive farms, analyze the impact

of potential resilience capacities on the technical efficiency, assess the Total Factor Productivity (TFP) of



Italian olive farms, and understand the synergies between revealed resilience, TFP, and the potential

resilience of Italian olive farms.

In assessing farm resilience, it is crucial to examine both potential and revealed resilience. Potential
resilience encompasses three critical capacities—robustness, adaptability, and transformability—while
revealed resilience is revealed through efficiency changes. These concepts converge in the sphere of total
factor productivity. Recent studies indicate that technological advancements play a pivotal role in fostering
resilience (Zawalinska et al., 2022). Resilience, in this context, denotes a system's ability to withstand
adverse shocks, recover, and sustain its fundamental structure and functions. Resilient farming practices
not only contribute to TFP growth by facilitating technological and efficiency changes but also exert
influence on ecosystem services and natural capital through externalities and feedback mechanisms. Our
study focuses on exploring of how resilience is manifested in TFP changes and its subsequent
decomposition. By differentiating between potential resilience, represented, and revealed resilience,
illustrated in TFP changes, we aim to shed light on the synergies between farm resilience and total factor

productivity.

Il. METHODOLOGY FRAMEWORK

To examines the interaction among potential and revealed resilience capacities, technical
efficiency, and TFP in Italian olive farms using FADN farm resilience is divided into potential resilience—
assessed through capacities like robustness, adaptability, and transformability—and revealed resilience,
measured by observable responses to shocks through changes in TFP. The SFM is employed to measure
competitiveness and assess the impact of resilience on efficiency. TFP is then decomposed to observe

revealed resilience (Figure 1)
11.1. Potential and revealed resilience

Following Zawalinska et al. (2022), farm resilience comprises potential and revealed aspects.
Potential resilience is assessed through resilience capacities including farm robustness, transformation, and
adaptability. While revealed resilience is demonstrated through observable responses to the ex-post the

shocks by observing the changes in the Total Factor Productivity.
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Figure 1. Methodological approach

a. Potential resilience

Potential resilience is defined as the farm's ability to fulfill its functions in the face of economic,
environmental, institutional, and social shocks through resilience capacities: robustness, adaptability, and
transformability (Meuwissen et al., 2019). These capacities empower the farm to withstand (robustness)

and recover from and respond (adaptability and transformation) to stresses (Gaviglio et al., 2021).

Robustness is defined as the capacity to withstand, absorb, and recover from both expected and
unexpected shocks. To quantify robustness, three indicators are utilized: resistance, shock, and recovery
rate. Each of the three is based on farm profitability. Resistance pertains to the level of profitability decrease,
with a shock identified when profitability experiences a drop of at least 30%. The recovery rate reflects the
extent to which the system rebounds after a decline in profitability. The rate of return on Assets (ROA) is
considered an indicator of profitability (Barry and Ellinger, 2011).

Resistance is described as the farm's ability to absorb the consequences of risks by minimizing
decreases in farm income or profitability (Urruty, Tailliez-Lefebvre, and Huyghe, 2016). Therefore, we
define resistance as the decrease in profitability of farms over time. Resistance is a continuous variable
within the domain of (0, -1), where 0 indicates the most resistant farms and -1 indicates the least resistant

farms.

0
resistance; = ROAROA if ROA = ROA,_4 1)

ROA;_4
if ROA < ROA,_,

Shock is defined as the ability of a farm to withstand successive risks (Sabatier et al., 2015;

Sneessens et al., 2019). A severe shock, therefore, is defined as a decrease in normalized profitability by at



least 30%. If the value lies below 30%, it is recorded as 1, indicating a severe shock, and O if no shock

occurred.

0, resistance; < —0.3

shock, = { 1, resistance; = —0.3

)

Recovery rate describes the degree of recovery after a set amount of time, given that the normalized
profitability has decreased (Urruty, Tailliez-Lefebvre, and Huyghe, 2016; Sneessens et al., 2019;
Dardonville, Bockstaller, and Therond, 2021). It is a measure of the degree to which a farm can bounce
back. A lower recovery rate indicates a poor ability of a farm to bounce back after a shock. On the contrary,
a higher recovery rate indicates better recovery after a shock. Its values lie within the domain (0, 1), where

0 indicates no recovery and 1 indicates full recovery.

1 if ROA, = ROA,_,

— ROA;11—ROA
Recoveryrate_(t + 1) =. m if ROA, < ROA,_, 3)

Adaptability is reflected by changes in a farm’s input composition, production, marketing, and risk
management. Adaptability is therefore either an increase or decrease in input composition and production
processes. Adaption consists of the following four indicators: crop diversity, specific costs which is a
summation of changes in fertilizers, water, seed protection, insurance, greenhouse materials, certifications,
and external services. The last two indicators are irrigated area and total labor hours. The direction of each
adaptability indicator is not interpretable in favor of more or less intensification in farming systems, as
intensification can have a positive or negative impact on the adaptability indicator. Therefore, to avoid
making normative statements about the desired direction of adaptability, this paper only uses absolute

values for the adaptability indicators, as discussed by Slijper et al. (2022).

Crop diversity is measured using the Shannon Diversity Index (SDI). It is defined as reflecting the
evenness (the proportion of land covered by a crop) and richness (the number of different crops) of a crop
portfolio (Brady et al., 2009).

SDIjy = — ¥t=1Peipinciv 4)



Where SDI (Shannon Diversity Index) represents the diversity of crops at a specific time t. The variable pci
denotes the proportion of land occupied by crop i (where i can be cereals, other field crops, vegetables and
flowers, vineyards, permanent crops, other permanent crops, forage crops, or woodland) during that time t.
The change in crop diversity is indicated by the yearly change in SDI (Smit and Skinner, 2002; Kremen
and Miles, 2012). Changes in the intensity of the production process of a farm are a measure of adaptation.
In this paper, we use changes in specific costs, which are a summation of changes in fertilizers, water, seed
protection, insurance, greenhouse materials, certifications, and external services, as a measure of
adaptation. Irrigation, the third indicator, serves as an adaptive strategy for regulating water availability,
particularly in addressing droughts and unfavorable weather circumstances (Howden et al., 2007).
Ultimately, changing the labor intensity per hectare represents an adaptive approach that showcases a farm's

capacity to adapt to high-demand periods.

Transformability is defined as the fundamental and integral changes in the internal farm structure
to cope with risks. Transformation capacity consists of three indicators: organic farming, farm tourism, and
change of farm type. Organic farming refers to the ability of the farm to transform from conventional to
organic or vice versa. Utilized agriculture area (UAA) represents the change in farm type and its outputs.
Finally, obtaining a considerable part of the revenue from tourism implies a shift in business focus from

primarily agricultural activities towards a more recreational character (Rickards and Howden, 2012).
b. Revealed resilience

Revealed resilience is measured ex-post the shocks by observing the changes in the TFP
decomposition (Zawalinska et al., 2022). It is accessed by decomposing TFP into technological change and
three types of efficiency changes; scale efficiency, allocative efficiency and the rate of change in technical
efficiency. Farm demonstrates revealed resilience through observable responses to the challenges. If the
TFP decomposition shows no substantial changes and the system maintains its performance by withstanding
the situation, it indicates revealed resilience and the system is therefore robust. The technological change
and efficiency components maintain similar proportions, and TFP remains non-declining or even grows. In
case the TFP path declines then the system is considered non-robust, if there is no change in TFP
composition. On the contrary, the adaptive system shows revealed resilience by showcasing substantial
changes in TFP composition. In this case, technological change and efficiency components exhibit notable

shifts yet the overall TFP remains non-declining.



I1.1. Stochastic Frontier Analysis and Total Factor Productivity
11.1.1 Stochastic Frontier Analysis (SFA)

To explores the trade-offs of between farm resilience, farm efficiency and TFP, Stochastic Frontier
Analysis (SFA) is used (Lambarraa-Lehnhardt, 2023). Following the SFA, the farm's production process is
assumed to be influenced by two error components (e.g., Aigner et al., 1977; Coelli et al., 2005). The initial
error component is the technical inefficiency error term (u), signifying the deviation to which current
production falls short of optimal achievable production (frontier). While, the second error term is the
symmetric error component (v), representing unfavorable factors such as unobserved inputs beyond the
farm's control or potentially excluded variables (Battese and Coelli, 1995, Meeusen and van den Broeck,
1977, Kim and Schmidt, 2000).

The stochastic production function, can be expressed as (Greene, 2005):

Iny, = [(atw)*+f (%) t; B)]exp(vic—ur) ()

where y; represents the output of the iy, _farm (i=1...,N) in year t (t= 1....,T); a is a group specific
constant; wi is a time invariant, firm specific random term12 meant to capture cross farm heterogeneity; the
quantity of the j¢ input (j=1...., J) used by the i farm in year t is represented by x;i; B is the vector of
unknown parameters to be estimated; and e;=vi—u;: iS the above mentioned composite stochastic error

term. The technical inefficiency (w..) in the stochastic production frontier is expressed as fellow.

Uit = 8, + Ym=1OmZmit + Qi (6)

where zn;: are explanatory variables (m=1,...,M) of farm i (i=1,...,N) in year t (t=1,...,T); 6o and &, are
unknown parameters; and ¢;~N(0,0¢2) is a random variable defined by a half normal distribution such
that @;; = - (8¢ + X Omzmic)- Integrating equation (6) into equation (5) results in the following model

specification:

Iny, = (a+tw)+f (x5t B) + vi — uir(Zi;6) @)



11.1.2 Total Factor Productivity (TFP)

Farm productivity is a measure of the agricultural output generated by a farm relative to its available
resources i.e., land, labor, capital, and machinery. The production function is used to further decompose
TFP. TFP can be calculated after estimating the stochastic frontier model following Lambarraa et al. (2007,
2011). The calculation of TFP is composed of four parts: rate of technical change, rate of change in technical

efficiency, scale of economies, and allocative efficiency.

TFP can be defined as the difference between the rate of change of output and the rate of change

of an input quantity index based on Divisa Index as:

TEP=7-Y S x,
' 2 o 8)

Where a dot on the variable indicates its rate of change and Sk = Wi *X\/E, is the observed expenditure
share of input k, being £ = X W,*X the total expenditure and W the price of input k. By differentiating

the equation (1) with time and using the above-given expression, we can write TFP as:

TEP=TA+(e—1) X (%) % + i [(‘%k) - SK] X, + TEA 9)
where,

TA:—alnfa(:'t;B) , € = g()(, t; ‘8) :Zk‘sk (X, t; ‘8), and TEA:‘(;_1ti ,

Xr(af(xt; B))/0xy

Here, TA is the rate of technical change which is a measure of the maximum attainable output. The second
sum represents the scale of economies. Ex, represents the output elasticity to input Xx. The third term is
allocative efficiency. It is a measure of the impacts of a deviation in input prices from the value of their
marginal products. Lastly, technical efficiency change is the rate of change in technical efficiency which is

a measure of the gap between the production frontier and the firm's actual production.
11.1. 3 Trade off and synergies between farm resilience, total factor productivity and efficiency

Figure 2 illustrates the concept of farm resilience, showcasing the trade-offs and synergies between
potential resilience and revealed resilience. It breaks down potential resilience into three key capacities:

robustness, adaptability, and transformation. These capacities contribute to the farm's ability to withstand



and recover from shocks. Revealed resilience, on the other hand, involves technical efficiency (TE),

efficiency change, scale efficiency change (SEC), and other efficiencies (OE).

The figure suggests that the components of potential resilience, such as robustness, adaptability, and
transformation, play a role in influencing technical efficiency. Moreover, the combined impact of technical
efficiency and the efficiency change represented by farm revealed resilience contributes to the overall TFP.
In another way, the technical change represented by farm potential resilience also contributes to TFP. This
holistic view underscores this trade off and synergies between different aspects of farm resilience,
efficiency, and farm productivity

I Farm Resilience I

Potential Resilience Revealed Resilience
Robustness Adaptability Transformability | TE ‘ | SEC ‘ ‘ OE
Technical Change Efficiency Change

Total Factor Productivity

TE: technical efficiency, SEC: scale efficiency change, OE: other efficiencies

Source: Authors

Figure 2. Trade off and synergies between farm potential and revealed resilience, TFP and

efficiency
I11. Empirical application

As noted above, the aim of this paper is to quantify the relation among resilience, technical
efficiency, and total factor productivity of Italian olive farms. Farm level data is taken from EU Farm
Accounting Data Network (FADN). Information collected from each farm encompasses physical,
structural, economic, and financial data. FADN (2006) offers representative data on EU agricultural
holdings across three dimensions: region, economic size, and type of farming. The sample consists of
unbalanced panel data of 1412 observations from 2013 to 2019. The sample data was prepared in order to
assess calculate the resilience capacities, estimate the stochastic frontier model, and decompose the TFP

growth. To assess farm resilience, we aggregate various resilience capacity indicators into composite



measures. These composite indicators provide valuable insights into the farm's ability to withstand and
recover from shocks. Before running Principal Component Analysis (PCA), it was necessary to run KMO
and Bartlett’s tests to check the adequacy of the statistical technique. PCA is a suitable method if Bartlett’s
test rejects the null hypothesis (at a 5% level) of no intercorrelations between indicators (Hair et al., 2014)
and the KMO value exceeds 0.5 (Kaiser, 1974). The p-values were recorded at 0.000 and the KMO was
0.621 which is greater than the benchmark. Therefore, PCA is the suitable statistical method for calculating
composite resilience indicators in this paper. The composite resilience indicators are derived using PCA
approach proposed by Slijper et al. (2022). The suitability of PCA for assigning indicator weights is
confirmed, as all KMO values surpassed 0.500, and the Bartlett test yielded significant intercorrelations

between indicators (p-values<0.01).

SFA is used to estimate farm technical efficiency and to explore the impact of potential influence
of resilience measures on farm productivity. The production function (equation 5) is specified as the Trans-
log form. Trans-log model shows positive values for each of the four inputs used in the production frontier
whereas, in the case of the Cobb-Douglas, the land variable showed a negative coefficient and insignificant
p-value which lacks theoretical basis. The output variable is measured as total revenue (in €). Vector xji: iS
determined as a (1x4) vector that consists of four inputs. These inputs represent the production frontier of
the efficiency analysis. X; represents the Land; X , is the labor input measured in labor hours per year; Xs,
representing fertilizers and pesticides; and X, variable crop-specific inputs other than fertilizers. The output
and the input variables are trimmed at 10% to reduce the effect of outliers. Trimming was checked against
a benchmark of 5% and 10%, however 10% was selected as the best fit. The technical inefficiency
component consists of five variables, each of them are recorded as dummy variables where 1, indicates a
positive response and 0 indicates a no/negative response (Z1, robustness; Z,, adaptability; Zs transformation
dummy; Z4, subsidies dummy and Zs, renting machinery dummy). As suggested by (Madaan et al., 2023)
renting machinery can help increase farm income and efficiency. Additionally, based on research of
(Kumbhakar et al., 2023), subsidies tend to increase farm’s efficiency and profitability. Furthermore, a time
trend variable is also included that represents technical change. The above equations also include the cross-

section of inputs with other inputs. Technical change is expressed by trend variable ¢.

Currently, the model might suffer from reverse causality. To address potential issues of reverse
causality in the model specification, the study employs a control function approach. This approach aims to
examine whether the resilience capacity indicators themselves contribute to endogeneity in the technical
efficiency models. To achieve this, a two-stage approach, inspired by the works of Papke and Wooldridge
(2008), Wooldridge (2015), and Slijper et al. (2022), is adopted. In the first stage, a reduced form equation
is estimated for each resilience capacity variable, utilizing pooled Ordinary Least Squares (OLS) regression.

In the second stage, the residuals obtained from the first stage are integrated into the technical inefficiency

10



function model. This approach helps to mitigate any potential bias arising from endogeneity, thereby
enhancing the reliability of the estimates and facilitating a more accurate analysis of the relationship

between the resilience indicators and technical inefficiency. The reduced form is given by:

Yait = Asit + OmZmie + 1+ Ty (10)

where y; are the endogenous composite resilience indicators i (i=1,...,N) indicates a certain farm; t
(t=1,...,T) represents a time dummy to allow for different period intercepts; m (m=1,...,M) are other
explanatory variables of technical inefficiency besides the estimated resilience capacity variable; s; is a
vector of instrumental variables, in this paper, the first lags of the composite resilience indicators; and ;. is

the error term.

To specify the model, we carried out different statistical tests using the generalized likelihood ratio

(L-R). The results of test outcomes are presented in Table 1.

The first tested hypothesis is the presence of constant returns to scale is rejected at 1% significance level,
which means that there are no constant returns to scale. The second hypothesis of the absence of inefficiency
effects is rejected at 1%, which reveals that inefficiency effects are not absent from the model. The last
hypothesis of zero-technical change is rejected at 5%, this indicates that the Italian olive farms show non-

neutral technical progresses.

Table 1. Model specification tests

Hypothesis LR test-statistic = P-value
Constant returns-to-scale, (i.e., Xkpk = 1) 18.11 0.0001
Absence of inefficiency effects, (i.e., ¥ = 81=...6m=0) 39.93 0.0000
Zero-technical change,( i.e., Bt = pwx= 0 VK) 11.49 0.0424

Source: Authors

For TFP analysis, the equation (5) is partially derivative with respect to the time variable t, which
represent the technical change. Following the framework of Lambarraa et al. (2007, 2011), each of the four
components are calculated. The TFP growth is the summation of its four components. To quantify the
relationship between TFP and resilience indicators, the OLS estimation is utilized. The estimated results

derived from the Trans-log model are given in the following section along with regression results.
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VI. RESULTS
V1.1 Potential resilience capacity indicators

The calculated composite potential resilience capacity indicators suggest that Italian farms exhibit
higher resilience in terms of transformability, with an indicator of 0.55, followed by robustness in absorbing

economic shocks (0.398) and adaptability to new circumstances (0.259).

Figure 3 depicts the changes in potential resilience capacities within Italian olive farms over time.
The Robustness dimension exhibits oscillations from one year to another, influenced by the alternation in
olive production (biennial bearing). This alternation impacts farm profitability and, consequently, its
robustness. In the case of Italian farms, this natural phenomenon might be more pronounced due to climate
change and the age of olive trees. Adaptability, reflecting alterations in input composition and production
processes, demonstrates a contrasting evolution to robustness, but with minor fluctuations. In years with
low production, the adaptability of Italian olive farms increases, but not sufficiently to offset the reduction
in robustness. However, there is a general increasing trend from 2014 to 2018, showing an 84% overall
rise. Transformability shows a gradual increase of 4.6% during the period, indicating mild internal structural

changes in Italian olive farms to adapt to risks.

0,7
0,6
0,5
0,4
0,3
0,2

0,1

2014 2015 2016 2017 2018

Robustness Adaptability Transformation

Source: Authors

Figure 3. The evolution of potential resilience capacities in Italian olive farms

V1.2 SFA and TE estimation: impact of resilience capacities

The results obtained from estimating the Translog stochastic frontier model for Italian olive farms

are presented in Table 2. First-order parameters are positive and statistically significant, indicating an

12



increase in production with the corresponding inputs. In the inefficiency model, the impact of renting
machinery on lItalian olive farms' technical efficiency is positive, suggesting that farms with more rented

machinery tend to be more efficient. This finding aligns with the results of Madaan et al. (2023).

On the other hand, subsidies have a negative impact on farm technical efficiency, consistent with
the findings of Rizov et al. (2013). The provision of subsidies may diminish the motivation to adopt new
technologies or enhance farming practices, prioritizing short-term benefits at the expense of long-term farm

performance.

Robustness has a negative impact on the technical efficiency of Italian olive farms. This result can
be explained by the oscillation of robustness influenced by the alternation in olive production during the
studied period, which impacts the farm's capacity to utilize its inputs optimally in the production process to
achieve the maximum possible output level. The adaptability indicator also has a negative impact on farm
technical efficiency. Similarly, adaptability often requires reallocating resources to address new challenges
or opportunities. This reallocation can disrupt established workflows and may result in temporary
inefficiencies as resources are redirected and adjusted to new priorities. Reorganizing teams or changing
roles can also cause a temporary decrease in technical efficiency until everyone adapts to the new structure.
Adaptability solutions might not be fully optimized to address the requirements of olive farms during
shocks, causing disruptions in output pre and post-shock. In terms of adaptability, building adaptive
practices might lead to greater long-term flexibility, but the process of adapting and learning new techniques
can initially be less efficient. Adopting new methods requires additional training, which could temporarily
affect operational efficiency. Transformability to a new farm type also decreases efficiency, as organic
farms are deemed less efficient compared to conventional farming systems. An entire shift in the farming

system can set back farm efficiency for years until the strategies are optimally designed.

Table 6. Maximum likelihood estimates of the stochastic frontier model for Italian olive farms

Variables Parameters Estimates Standard error

Frontier production function

Constant a -7.894 3.539%**
Labor Bus 2.660 0.8416%**
Land BL 0.1649 0.08842*
Fertilizers & Pesticides Brp 0.2973 0.1636***
Other-specific cost (sc) Bsc .281503 0.0930*

13



Technical change Br -0.0524 0.0978
Time x Land Bri -0.0019 0.0017
Time x Labor Bris -0.0041 0.0150
Time x Fertilizers & Pesticides Brrp -0.0003 0.0047
Time x Other-specific costs Brsc 0.0117 0.008
Other specific cost x Land Ssci -0.0142 0.0057***
Other specific-cost x Labor SscLp -0.0290 0.0454
Other specific-cost x Other specific-cost Sscsc 0.098 0.0220***
Other specific-cost x Fertilizers & Pesticides Sscrp -0.095 0.0141%**
Fertilizers & Pesticides x Land EppL 0.003 0.0026
Fertilizers & Pesticides x Labor ErpLB 0.0379 0.0231
Fertilizers & Pesticides x  Fertilizers & Erprp 0.0102 0.0054*
Pesticides

Land x Land WL -0.0112 0.0046%***
Land x Labor WL 0.007 0.0099
Labor x Labor OLeLE -0.1468 0.0588***
Technical inefficiency function

Constant 8 -7.766 1.596***
Renting machinery Srm -1.117 0.2815***
Subsidies Osp 0.7874 1.280***
Robustness Or 5.914 0.7900***
Adaptability N 0.5315 0.2240***
Transformability Or 0.202 0.1946*
Sigma squared o? 0.203 .0080%***
LR-test -350.675

Mean technical efficiency 0.861

Notes: ***, ** and * indicate that the parameter is significant at 1%, 5%, and 10% respectively.

14
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The evolution of the estimated technical efficiency scores are presented in Figure 4. The predicted
technical efficiency takes the average value of 86.1%, implying that output could increase substantially if
technical inefficiency were eliminated. The fluctuations in technical efficiency are related to farm potential

resilience capacities to deal with shocks, especially robustness and adaptability.
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Source: Authors

Figure 4. The evolution of potential resilience capacities in Italian olive farms
V1.3 TFP decomposition and resilience dynamics

The evolution of the TFP decomposition over the years is reported in Figure 5. TFP is the
aggregated sum of the rate of technical change, scale economies, allocative efficiency, and the rate of
change in technical efficiency. TFP exhibits a fluctuating pattern over the years, which can be attributed to
the natural tendency for alternate bearing, resulting in high productivity in one year and low productivity
in the next.

The rate of technical change indicates a weak adoption of technology in the olive sector of Italy,
with a slight improvement in the last year. The rate of change in technical efficiency follows a similar
pattern to the total factor productivity of the farm. When the farm utilizes its set of inputs efficiently, its
total factor productivity improves. On the other hand, allocative efficiency and scale economies have a

negative impact on TFP growth.
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Figure 1. Changes in TFP components over the years

Table 7 illustrates the dynamics of the evolution of TFP in comparison to potential resilience

capacities (robustness, adaptability, and transformability) over the years.

Table 7. Analysis of the dynamics of TFP & resilience indicators

Years 2014-2015 2015-2016 2016-2017 2017-2018
Potential resilience Non-declining TFP Declining TFP Non-declining TFP Declining TFP
capacities

Robustness Drastic decrease Drastic increase Drastic decrease Drastic increase
Adaptability Increase Decrease Increase Decrease
Transformability Partial decrease Partial increase Relatively Stable Partial increase

Source: Authors

The changes in these resilience capacities correspond to whether TFP is non-declining or declining

during each respective period. For example, in the year 2014-2015, TFP declined alongside a drastic

decrease in Robustness, while adaptability increased. In contrast, in the following year (2015-2016), TFP

declined significantly with a decrease in adaptability and a drastic increase in Robustness. These patterns

suggest a potential tradeoff between farm resilience capacities and TFP, with the fluctuations in resilience

indicators coinciding with changes in TFP over the observed years. We observe a direct impact of farms'

adaptability on TFP growth. Changes in a farm's input composition, production, marketing, and risk

management directly result in either an increase or decrease in input composition and production processes,
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impacting TFP growth. However, the other capacities reflected by Robustness and Transformation do not

seem to directly influence TFP movement.

V. CONCLUSION

This paper explores the synergies among resilience, technical efficiency, and total factor
productivity (TFP) in Italian olive farms using data from the FADN for the period 2013-2019. The study
applied Principal Component Analysis (PCA) to derive composite potential resilience indicators and
employed a two-stage control function approach to address potential issues of reverse causality. The
stochastic frontier model was employed to estimate technical efficiency and analyze the impact of potential

resilience measures on farm productivity.

The calculated potential resilience capacity indicators revealed that Italian olive farms exhibit
higher resilience in terms of transformability, followed by robustness and adaptability. The evolution of
these capacities over time indicated fluctuations influenced by biennial bearing and external factors like
climate change. From the results of stochastic frontier model, we can see that resilience capacity indicators
have impact on technical efficiency. Robustness and adaptability negatively affected technical efficiency,
indicating challenges related to optimal input utilization during periods of economic shocks or adaptation.
Transformability to a new farm type also decreased efficiency, highlighting the complexities of
transitioning farming systems. Renting machinery positively influenced technical efficiency, aligning with
prior research. In contrast, subsidies had a negative impact, potentially due to short-term prioritization over

long-term farm performance.

The examination of TFP growth revealed a fluctuating pattern attributed to natural tendencies like
alternate bearing. The rate of technical change indicated a weak adoption of technology in the olive sector,
while changes in technical efficiency correlated with TFP growth. A tradeoff between farm resilience

capacities and TFP emerged, particularly with Adaptability influencing TFP positively.

In conclusion, this study contributes to the understanding of the complex interaction between
resilience, technical efficiency, and TFP in Italian olive farming. The findings underscore the importance
of balancing efficiency and resilience, acknowledging the challenges posed by external shocks and
transitions in farming practices. The results provide valuable insights for policymakers, farmers, and
researchers seeking sustainable and resilient agricultural practices in the face of evolving challenges.
Policymakers should incentivize and facilitate the adoption of modern agricultural technologies in the
Italian olive sector. Support programs, training initiatives, and subsidies for advanced machinery can
contribute to increased productivity and competitiveness. However, subsidies programs need to be carefully

designed. Focus should be on promoting long-term sustainable practices rather than solely emphasizing
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short-term gains. Monitoring and evaluation mechanisms should be in place to assess the effectiveness of
subsidies in fostering innovation and efficiency. Farmers should be equipped with strategies and resources
to navigate economic shocks and adapt to the changes. Training programs, insurance schemes, and
collaborative networks can enhance farmers' capacity to withstand uncertainties and improve its resilience
capacities especially robustness and adaptability. Policies should facilitate and support the transition
process posed by transformability to new farm types. Financial incentives, technical assistance, and
knowledge-sharing platforms can aid farmers in adopting new farming systems. Long-term benefits of
sustainable and resilient farming practices should be emphasized to encourage gradual transitions. The
climate-resilient agricultural practices need to be prioritize to face the impacts of shocks such as climate
change. Investment in research and development of climate-adaptive technologies, water management
strategies, and sustainable farming practices can contribute to the long-term sustainability of Italian olive
farming. Establishing a robust monitoring and extension service system is essential. For that, the FADN
dataset needs to be integrated to take into consideration other aspects related to sustainability and resilience
aspects such as environmental, social, and behavioral indicators to help in the establishment of a strong
monitoring system and provide valuable data for evidence-based policymaking. Future research needs to
focus also on more collaborative research initiatives involving different stakeholders such as researchers,

farmers, policymakers, and the industry.

18



REFERENCES

1.

10.

11.

12.

13.

14.
15.

16.

17.

Aigner, D., Lovell, C. K., & Schmidt, P. (1977). Formulation and estimation of stochastic frontier
production function models. Journal of Econometrics, 6(1), 21-37.

Barry, P.J., and Ellinger, P.N. (2011). Financial management in Agriculture. Boston: Prentice Hall.
Battese, G. E., Coelli, T. J. (1995). A model for technical inefficiency effects in a stochastic frontier
production function for panel data. Empirical economics, 20(2), 325-332.

Belletti, G., Marescotti, A., Sanz-Cafiada, J., & Vakoufaris, H. (2015). Linking protection of
geographical indications to the environment: Evidence from the European Union olive-oil sector.
Land Use Policy, 48, 94-106.

Brady, M., Kellermann, K., Sahrbacher, C., & Jelinek, L. (2009). Impacts of decoupled agricultural
support on farm structure, biodiversity and landscape mosaic: some EU results. Journal of
agricultural economics, 60(3), 563-585.

Coelli, T.J., Rao, D. S. P., O'Donnell, C. J., & Battese, G. E. (2005). An introduction to efficiency
and productivity analysis.

Dardonville, M., Bockstaller, C., & Therond, O. (2021). Review of quantitative evaluations of the
resilience, vulnerability, robustness and adaptive capacity of temperate agricultural systems.
Journal of Cleaner Production, 286, 125456.

DeAndreis, P. (2023, October 3). Optimism in Italy as Olive Harvest Gets Underway. Liguria, Italy.
Olive Oil Times. Https://www.oliveoiltimes.com.

Gaviglio, A., Filippini, R., Madau, F. A., Marescotti, M. E., & Demartini, E. (2021). Technical
efficiency and productivity of farms: A periurban case study analysis. Agricultural and Food
Economics, 9(1), 11.

Greene, W. (2005). Fixed and random effects in stochastic frontier models. Journal of productivity
analysis, 23, 7-32.

Hair, J. F., Black, W. C., Babin, B. J., Anderson, R. E., & Tatham, R. L. (2014). Pearson new
international edition. Multivariate data analysis, Seventh Edition. Pearson Education Limited
Harlow, Essex.

Howden, S. M., Soussana, J. F., Tubiello, F. N., Chhetri, N., Dunlop, M., & Meinke, H. (2007).
Adapting agriculture to climate change. Proceedings of the national academy of sciences, 104(50),
19691-19696.

Institute for Services to the Agricultural Market (Ismea) 2021. La competitivita della filiera
olivicola analisi della redditivita e fattori determinant. Rete Rurale Nazionale Ministero delle
politiche agricole alimentari e forestali Via XX Settembre, 20
Romahttps://www.reterurale.it/flex/cm/pages/ServeBLOB.php/L/IT/IDPagina/22376.

Kaiser, H. F. (1974). An index of factorial simplicity. psychometrika, 39(1), 31-36.

Kashiwagi, K., & Kamiyama, H. (2023). Effect of adoption of organic farming on technical
efficiency of olive-growing farms: Empirical evidence from West Bank of Palestine. Agricultural
and Food Economics, 11(1), 26.

Kim, Y., & Schmidt, P. (2000). A review and empirical comparison of Bayesian and classical
approaches to inference on efficiency levels in stochastic frontier models with panel data. Journal
of productivity Analysis, 14(2), 91-118.

Kremen, C., & Miles, A. (2012). Ecosystem services in biologically diversified versus conventional
farming systems: benefits, externalities, and trade-offs. Ecology and society, 17(4).

19


https://www.reterurale.it/flex/cm/pages/ServeBLOB.php/L/IT/IDPagina/22376

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

Kumbhakar, S. C., Li, M., & Lien, G. (2023). Do subsidies matter in productivity and profitability
changes? Economic Modelling, 123, 106264. https://doi.org/10.1016/j.econmod.2023.106264
Lambarraa, F., Serra, T., & Gil, J. M. (2007). Technical efficiency analysis and decomposition of
productivity growth of Spanish olive farms. Spanish Journal of Agricultural Research, 5(3), 259-
270.

Lambarraa, F., Stefanou, S., Serra, T., & Gil, J. M. (2009). The impact of the 1999 CAP reforms
on the efficiency of the COP sector in Spain. Agricultural economics, 40(3), 355-364.
Lambarraa-Lehnhardt, F. (2023). Assessing the Trade-offs between farm resilience and farm
efficiency and its Implication to the sustainability of farming systems. The 63. GEWISOLA-
Jahrestagung der Gesellschaft fur Wirtschafts- und Sozialwissenschaften des Landbaues e.V. 20-
22.09. Gottingen.

Lambarraa-Lehnhardt, F., Uthes, S., Zander, P., & Benhammou, A. (2022). How improving the
technical efficiency of Moroccan saffron farms can contribute to sustainable agriculture in the Anti-
Atlas region. STUDIES IN AGRICULTURAL ECONOMICS, 124(3), 96-103.

Madaan, R., Jindal, K., Sharma, S., & Kumar, D. (2023). Increasing farmhand income through
equipment and machinery renting. 11(1).

Meuwissen, M. P., Feindt, P. H., Spiegel, A., Termeer, C. J., Mathijs, E., de Mey, Y., ... & Reidsma,
P. (2019). A framework to assess the resilience of farming systems. Agricultural Systems, 176,
102656.

Olive trees cover 4.6 million hectares in the EU. (n.d.). Retrieved January 14, 2024, from
https://ec.europa.eu/eurostat/web/products-eurostat-news/-/ddn-20190301-1

Papke, L. E., & Wooldridge, J. M. (2008). Panel data methods for fractional response variables
with an application to test pass rates. Journal of econometrics, 145(1-2), 121-133.

Raimondo, M., Caracciolo, F., Nazzaro, C., & Marotta, G. (2021). Organic Farming Increases the
Technical Efficiency of Olive Farms in Italy. Agriculture, 11(3), Article3.

Rickards, L., & Howden, S. M. (2012). Transformational adaptation: agriculture and climate
change. Crop and Pasture Science, 63(3), 240-250.

Rizov, M., Pokrivcak, J., & Ciaian, P. (2013, December 10). CAP Subsidies and Productivity of
the EU Farms. JRC Publications Repository.

Rosati, A., Paoletti, A., Caporali, S., & Perri, E. (2013). The role of tree architecture in super high
density olive orchards. Scientia Horticulturae, 161, 24-29.

Rezgui, F, Rosati, A, Lambarraa-Lehnhardt, F, Paul, C, Reckling, M. (2024). Assessing
Mediterranean agroforestry systems: Agro-economic impacts of olive wild asparagus in central
Italy, European Journal of Agronomy, Volume 152, https://doi.org/10.1016/j.eja.2023.127012.
Sabatier, R., Oates, L. G., Brink, G. E., Bleier, J., & Jackson, R. D. (2015). Grazing in an Uncertain
Environment: Modeling the Trade-Off between Production and Robustness. Agronomy Journal,
107(1), 257-264.

Slijper, T., de Mey, Y., Poortvliet, P. M., & Meuwissen, M. P. (2022). Quantifying the resilience
of European farms using FADN. European Review of Agricultural Economics, 49(1), 121-150.
Smit, B., & Skinner, M. W. (2002). Adaptation options in agriculture to climate change: a typology.
Mitigation and adaptation strategies for global change, 7(1), 85-114.

Sneessens, |., Sauvée, L., Randrianasolo-Rakotobe, H., & Ingrand, S. (2019). A framework to
assess the economic vulnerability of farming systems: application to mixed crop-livestock systems.
Agricultural Systems, 176, 102658.

20


https://doi.org/10.1016/j.econmod.2023.106264
https://ec.europa.eu/eurostat/web/products-eurostat-news/-/ddn-20190301-1

36. Urruty, N., Tailliez-Lefebvre, D., & Huyghe, C. (2016). Stability, robustness, vulnerability, and
resilience of agricultural systems. A review. Agronomy for Sustainable Development, 36(1), 15.
https://doi.org/10.1007/s13593-015-0347-5

37. Wooldridge, J. M. (2015). Control function methods in applied econometrics. Journal of Human
Resources, 50(2), 420-445.

38. Zawalinska, K., Was, A., Kobus, P., & Bankowska, K. (2022). A framework linking farming
resilience with productivity: empirical validation from Poland in times of crises.

21



