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Abstract 

This paper investigates the interaction among potential and revealed resilience capacities, technical 

efficiency, and total factor productivity (TFP) in Italian olive farms using FADN data from 2013-

2019. To achieve this objective, we use principal component analysis for evaluating potential 

resilience indicators and a stochastic frontier model (SFM) to assess farms' competitiveness and 

evaluate the impact of resilience measures on farms' efficiency and productivity. Results show that 

Italian olive farms exhibit higher resilience in transformability, followed by robustness and 

adaptability. Resilience indicators negatively impact technical efficiency. TFP growth is notably 

influenced by adaptability. Results suggest that balancing competitiveness and resilience is crucial 

to achieving a sustainable farming system. To face climate change challenges, policies should 

facilitate transitions to a climate-resilient farming system by incentivizing investments in climate-

adaptive technologies and designing careful subsidy programs that emphasize the long-term 

resilience benefits of sustainable farming practices rather than considering immediate efficiency 

gains. Farmer support through training and collaborative networks is vital to strengthening farms' 

adaptability and transformability capacities.  

JEL Codes: C190, D290, C010  
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I. INTRODUCTION 

Italy stands as one of the leading producers of olives and olive oil within the European Union, 

making a substantial contribution to the country's overall agricultural output. The olive sector's significance 

extends beyond economic relevance, encompassing social and environmental dimensions. Several factors 

justify the relevance of the olive sector in Italy. Firstly, olive cultivation holds a pivotal role in the EU 

agricultural model across the Mediterranean region since out of the 4.6 million hectares of EU land 

designated as olive groves, Italian ones accounts for 23% (Eurostat dataset, 2017). Secondly, the majority 

of olive production occurs in less developed regions, falling under the Objective 1 category of the EU 

regional policy. This concentration makes these regions crucial sources of employment and economic 

activity. Thirdly, Italy accounts for the largest share of protected olive oil labels, comprising approximately 

40% of the EU Protected Designations of Origin (PDOs) and Protected Geographical Indications (PGIs) 

(Belletti et al., 2015). Lastly, under the new Common Agricultural Policy (CAP), Italian agriculture is set 

to receive subsidies totaling 34 billion from 2023 to 2027, with 25% of direct payments explicitly allocated 

for farmers engaged in environmental practices to conserve biodiversity. 

Despite its significance and supportive EU policies, the Italian olive sector faces challenges leading 

to a decline in yields over the years. Factors contributing to this decline include traditional practices, limited 

technological innovation, landscape protection measures, and unsustainable agricultural systems. Climate 

change effects, such as pest attacks, extreme weather conditions aggravate these challenges (ISMEA, 2021, 

Rezgui et al, 2024). 

On the other side, despite the widespread presence of olive cultivation across the Italian peninsula, 

the production of olives suffers from fragmentation, with the average olive grove covering only 1.8 hectares 

of land. Competitiveness is a major issue for the Italian olive sector due to production and market 

fragmentation, diverse cost dynamics, an aging farmer population, and a significant labor shortage. Many 

olive groves house old, inefficient trees, impacting profitability. In 2022/2023, Italy produced 235 thousand 

tons of oil, a significant decrease from the 329 thousand tons in 2021/2022 (DeAndreis, 2023, Rosati et al, 

2013). 

Addressing these challenges necessitates an in-depth analysis of the competitiveness and resilience 

of the olive sector. This paper aims to address the research gap by analyzing the dynamics and trade-offs 

between resilience capacities, total factor productivity, and technical efficiency in the Italian olive sector. 

Understanding the interaction of resilience indicators with total factor productivity over the years will 

provide insights into improving yields during alternate bearing years of olive farms. As specific objectives, 

the aim is to assess the potential and revealed resilience indicators of Italian olive farms, analyze the impact 

of potential resilience capacities on the technical efficiency, assess the Total Factor Productivity (TFP) of 
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Italian olive farms, and understand the synergies between revealed resilience, TFP, and the potential 

resilience of Italian olive farms. 

 

In assessing farm resilience, it is crucial to examine both potential and revealed resilience. Potential 

resilience encompasses three critical capacities—robustness, adaptability, and transformability—while 

revealed resilience is revealed through efficiency changes. These concepts converge in the sphere of total 

factor productivity. Recent studies indicate that technological advancements play a pivotal role in fostering 

resilience (Zawalińska et al., 2022). Resilience, in this context, denotes a system's ability to withstand 

adverse shocks, recover, and sustain its fundamental structure and functions. Resilient farming practices 

not only contribute to TFP growth by facilitating technological and efficiency changes but also exert 

influence on ecosystem services and natural capital through externalities and feedback mechanisms. Our 

study focuses on exploring of how resilience is manifested in TFP changes and its subsequent 

decomposition. By differentiating between potential resilience, represented, and revealed resilience, 

illustrated in TFP changes, we aim to shed light on the synergies between farm resilience and total factor 

productivity. 

 

II. METHODOLOGY FRAMEWORK 

To examines the interaction among potential and revealed resilience capacities, technical 

efficiency, and TFP in Italian olive farms using FADN farm resilience is divided into potential resilience—

assessed through capacities like robustness, adaptability, and transformability—and revealed resilience, 

measured by observable responses to shocks through changes in TFP. The SFM is employed to measure 

competitiveness and assess the impact of resilience on efficiency. TFP is then decomposed to observe 

revealed resilience (Figure 1)  

II.1. Potential and revealed resilience 

Following Zawalińska et al. (2022), farm resilience comprises potential and revealed aspects. 

Potential resilience is assessed through resilience capacities including farm robustness, transformation, and 

adaptability. While revealed resilience is demonstrated through observable responses to the ex-post the 

shocks by observing the changes in the Total Factor Productivity. 
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Source: Authors 

Figure 1. Methodological approach 

 

a. Potential resilience  

Potential resilience is defined as the farm's ability to fulfill its functions in the face of economic, 

environmental, institutional, and social shocks through resilience capacities: robustness, adaptability, and 

transformability (Meuwissen et al., 2019). These capacities empower the farm to withstand (robustness) 

and recover from and respond (adaptability and transformation) to stresses (Gaviglio et al., 2021).  

Robustness is defined as the capacity to withstand, absorb, and recover from both expected and 

unexpected shocks. To quantify robustness, three indicators are utilized: resistance, shock, and recovery 

rate. Each of the three is based on farm profitability. Resistance pertains to the level of profitability decrease, 

with a shock identified when profitability experiences a drop of at least 30%. The recovery rate reflects the 

extent to which the system rebounds after a decline in profitability. The rate of return on Assets (ROA) is 

considered an indicator of profitability (Barry and Ellinger, 2011). 

Resistance is described as the farm's ability to absorb the consequences of risks by minimizing 

decreases in farm income or profitability (Urruty, Tailliez-Lefebvre, and Huyghe, 2016). Therefore, we 

define resistance as the decrease in profitability of farms over time. Resistance is a continuous variable 

within the domain of (0, -1), where 0 indicates the most resistant farms and -1 indicates the least resistant 

farms. 

 

𝑟𝑒𝑠𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑡   =  {

  

  
0

𝑅𝑂𝐴𝑡−𝑅𝑂𝐴𝑡−1 

𝑅𝑂𝐴𝑡−1
                𝑖𝑓 𝑅𝑂𝐴 ≥  𝑅𝑂𝐴𝑡−1

                                                𝑖𝑓 𝑅𝑂𝐴 <  𝑅𝑂𝐴𝑡−1

}                            (1) 

 

Shock is defined as the ability of a farm to withstand successive risks (Sabatier et al., 2015; 

Sneessens et al., 2019). A severe shock, therefore, is defined as a decrease in normalized profitability by at 



5 
 

least 30%. If the value lies below 30%, it is recorded as 1, indicating a severe shock, and 0 if no shock 

occurred. 

 

𝑠ℎ𝑜𝑐𝑘𝑡 = {
 0,   𝑟𝑒𝑠𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑡 < −0.3 
1,   𝑟𝑒𝑠𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑡 ≥ −0.3

        (2) 

 

Recovery rate describes the degree of recovery after a set amount of time, given that the normalized 

profitability has decreased (Urruty, Tailliez-Lefebvre, and Huyghe, 2016; Sneessens et al., 2019; 

Dardonville, Bockstaller, and Therond, 2021). It is a measure of the degree to which a farm can bounce 

back. A lower recovery rate indicates a poor ability of a farm to bounce back after a shock. On the contrary, 

a higher recovery rate indicates better recovery after a shock. Its values lie within the domain (0, 1), where 

0 indicates no recovery and 1 indicates full recovery. 

 

𝑅𝑒𝑐𝑜𝑣𝑒𝑟𝑦 𝑟𝑎𝑡𝑒_(𝑡 + 1) = .     {

1                                       𝑖𝑓               𝑅𝑂𝐴𝑡  ≥  𝑅𝑂𝐴𝑡−1  

  
𝑅𝑂𝐴𝑡+1−𝑅𝑂𝐴𝑡 

𝑅𝑂𝐴𝑡−1−𝑅𝑂𝐴𝑡
        

             
𝑖𝑓       𝑅𝑂𝐴𝑡  <  𝑅𝑂𝐴𝑡−1

                                                

}    (3) 

Adaptability is reflected by changes in a farm’s input composition, production, marketing, and risk 

management. Adaptability is therefore either an increase or decrease in input composition and production 

processes. Adaption consists of the following four indicators: crop diversity, specific costs which is a 

summation of changes in fertilizers, water, seed protection, insurance, greenhouse materials, certifications, 

and external services. The last two indicators are irrigated area and total labor hours. The direction of each 

adaptability indicator is not interpretable in favor of more or less intensification in farming systems, as 

intensification can have a positive or negative impact on the adaptability indicator. Therefore, to avoid 

making normative statements about the desired direction of adaptability, this paper only uses absolute 

values for the adaptability indicators, as discussed by Slijper et al. (2022). 

Crop diversity is measured using the Shannon Diversity Index (SDI). It is defined as reflecting the 

evenness (the proportion of land covered by a crop) and richness (the number of different crops) of a crop 

portfolio (Brady et al., 2009). 

 

                                                     𝑆𝐷𝐼𝑖𝑡  =  − ∑ 𝑝𝑐𝑖𝑡ln (𝑝𝑐𝑖𝑡)
𝑐
𝑐=1                            (4)  
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Where SDI (Shannon Diversity Index) represents the diversity of crops at a specific time t. The variable pcit 

denotes the proportion of land occupied by crop i (where i can be cereals, other field crops, vegetables and 

flowers, vineyards, permanent crops, other permanent crops, forage crops, or woodland) during that time t. 

The change in crop diversity is indicated by the yearly change in SDI (Smit and Skinner, 2002; Kremen 

and Miles, 2012). Changes in the intensity of the production process of a farm are a measure of adaptation. 

In this paper, we use changes in specific costs, which are a summation of changes in fertilizers, water, seed 

protection, insurance, greenhouse materials, certifications, and external services, as a measure of 

adaptation. Irrigation, the third indicator, serves as an adaptive strategy for regulating water availability, 

particularly in addressing droughts and unfavorable weather circumstances (Howden et al., 2007). 

Ultimately, changing the labor intensity per hectare represents an adaptive approach that showcases a farm's 

capacity to adapt to high-demand periods. 

Transformability is defined as the fundamental and integral changes in the internal farm structure 

to cope with risks. Transformation capacity consists of three indicators: organic farming, farm tourism, and 

change of farm type. Organic farming refers to the ability of the farm to transform from conventional to 

organic or vice versa. Utilized agriculture area (UAA) represents the change in farm type and its outputs. 

Finally, obtaining a considerable part of the revenue from tourism implies a shift in business focus from 

primarily agricultural activities towards a more recreational character (Rickards and Howden, 2012).  

b. Revealed resilience 

Revealed resilience is measured ex-post the shocks by observing the changes in the TFP 

decomposition (Zawalińska et al., 2022). It is accessed by decomposing TFP into technological change and 

three types of efficiency changes; scale efficiency, allocative efficiency and the rate of change in technical 

efficiency. Farm demonstrates revealed resilience through observable responses to the challenges. If the 

TFP decomposition shows no substantial changes and the system maintains its performance by withstanding 

the situation, it indicates revealed resilience and the system is therefore robust. The technological change 

and efficiency components maintain similar proportions, and TFP remains non-declining or even grows. In 

case the TFP path declines then the system is considered non-robust, if there is no change in TFP 

composition. On the contrary, the adaptive system shows revealed resilience by showcasing substantial 

changes in TFP composition. In this case, technological change and efficiency components exhibit notable 

shifts yet the overall TFP remains non-declining. 

  



7 
 

II.1. Stochastic Frontier Analysis and Total Factor Productivity  

II.1.1 Stochastic Frontier Analysis (SFA) 

To explores the trade-offs of between farm resilience, farm efficiency and TFP, Stochastic Frontier 

Analysis (SFA) is used (Lambarraa-Lehnhardt, 2023). Following the SFA, the farm's production process is 

assumed to be influenced by two error components (e.g., Aigner et al., 1977; Coelli et al., 2005). The initial 

error component is the technical inefficiency error term (u), signifying the deviation to which current 

production falls short of optimal achievable production (frontier). While, the second error term is the 

symmetric error component (v), representing unfavorable factors such as unobserved inputs beyond the 

farm's control or potentially excluded variables (Battese and Coelli, 1995, Meeusen and van den Broeck, 

1977, Kim and Schmidt, 2000).  

The stochastic production function, can be expressed as (Greene, 2005): 

 

                                    𝑙𝑛𝑦𝑖𝑡
= [(𝛼+𝜔𝑖)+𝑓(𝑥𝑗𝑖𝑡,𝑡;𝛽)]exp(𝑣𝑖𝑡–𝑢𝑖𝑡)                      (5) 

 

where 𝑦𝑖𝑡 represents the output of the 𝑖𝑡ℎ _farm (𝑖=1…,𝑁) in year 𝑡 (𝑡= 1….,𝑇); 𝛼 is a group specific 

constant; 𝜔i is a time invariant, firm specific random term12 meant to capture cross farm heterogeneity; the 

quantity of the 𝑗𝑡ℎ input (𝑗=1…., 𝐽) used by the 𝑖 th farm in year 𝑡 is represented by 𝑥𝑗𝑖𝑡; 𝛽 is the vector of 

unknown parameters to be estimated; and 𝑒𝑖𝑡=𝑣𝑖𝑡–𝑢𝑖𝑡 is the above mentioned composite stochastic error 

term. The technical inefficiency (𝑢𝑖𝑡) in the stochastic production frontier is expressed as fellow.  

 

                                      𝑢𝑖𝑡  = 𝛿∘ + ∑ 𝛿𝑚𝑧𝑚𝑖𝑡 
𝑀
𝑚=1 + 𝜑𝑖𝑡              (6)  

 

where 𝑧𝑚𝑖𝑡 are explanatory variables (𝑚=1,...,𝑀) of farm 𝑖 (𝑖=1,...,𝑁) in year 𝑡 (𝑡=1,...,𝑇); 𝛿0 and 𝛿𝑚 are 

unknown parameters; and 𝜑𝑖𝑡~𝑁(0,𝜎𝜑2) is a random variable defined by a half normal distribution such 

that 𝜑𝑖𝑡 ≥ – (𝛿0 + ∑ 𝛿𝑚𝑧𝑚𝑖𝑡). Integrating equation (6) into equation (5) results in the following model 

specification:    

 

                               𝑙𝑛𝑦𝑖𝑡
= (𝛼+𝑤𝑖)+𝑓(𝑥𝑗𝑖𝑡,𝑡;𝛽) + 𝜈𝑖 – 𝑢it(𝑧𝑖𝑡;𝛿)            (7) 
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II.1.2 Total Factor Productivity (TFP) 

Farm productivity is a measure of the agricultural output generated by a farm relative to its available 

resources i.e., land, labor, capital, and machinery. The production function is used to further decompose 

TFP. TFP can be calculated after estimating the stochastic frontier model following Lambarraa et al. (2007, 

2011). The calculation of TFP is composed of four parts: rate of technical change, rate of change in technical 

efficiency, scale of economies, and allocative efficiency.  

TFP can be defined as the difference between the rate of change of output and the rate of change 

of an input quantity index based on Divisa Index as:  

 

        (8) 

 

Where a dot on the variable indicates its rate of change and Sk = Wk*Xk/E, is the observed expenditure 

share of input k, being E = Σ Wk*Xk the total expenditure and Wk the price of input k. By differentiating 

the equation (1) with time and using the above-given expression, we can write TFP as: 

  

         T𝐹̇𝑃 = T∆ + (𝜀 − 1) ∑ (
𝜀𝑘

𝜀
) 𝑥𝑘̇ + ∑ [(

𝜀𝑘

𝜀
) − 𝑆𝐾]𝑘 𝑥𝑘̇ + TE𝛥        (9) 

where,  

T∆ = 
𝜕 ln 𝑓(𝑥,𝑡;𝛽)

𝜕𝑡
  ,   𝜀   = 𝜀(x, t; 𝛽)  = ∑ 𝜀𝑘𝑘  (x, t; 𝛽), and TE∆ = - 

𝜕𝑢

𝜕𝑡
  , 

𝜀𝑘 =  𝜀𝑘(x, t; 𝛽) = 
𝑥𝑘(𝜕𝑓(𝑥,𝑡; 𝛽))/𝜕𝑥𝑘

𝑓(𝑥,𝑡;𝛽)
 

Here, TΔ is the rate of technical change which is a measure of the maximum attainable output. The second 

sum represents the scale of economies. Ek, represents the output elasticity to input xk. The third term is 

allocative efficiency. It is a measure of the impacts of a deviation in input prices from the value of their 

marginal products. Lastly, technical efficiency change is the rate of change in technical efficiency which is 

a measure of the gap between the production frontier and the firm's actual production. 

II.1. 3 Trade off and synergies between farm resilience, total factor productivity and efficiency 

Figure 2 illustrates the concept of farm resilience, showcasing the trade-offs and synergies between 

potential resilience and revealed resilience. It breaks down potential resilience into three key capacities: 

robustness, adaptability, and transformation. These capacities contribute to the farm's ability to withstand 
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and recover from shocks. Revealed resilience, on the other hand, involves technical efficiency (TE), 

efficiency change, scale efficiency change (SEC), and other efficiencies (OE). 

The figure suggests that the components of potential resilience, such as robustness, adaptability, and 

transformation, play a role in influencing technical efficiency. Moreover, the combined impact of technical 

efficiency and the efficiency change represented by farm revealed resilience contributes to the overall TFP. 

In another way, the technical change represented by farm potential resilience also contributes to TFP. This 

holistic view underscores this trade off and synergies between different aspects of farm resilience, 

efficiency, and farm productivity 

 
Source: Authors 

Figure 2. Trade off and synergies between farm potential and revealed resilience, TFP and 

efficiency 

III. Empirical application 

As noted above, the aim of this paper is to quantify the relation among resilience, technical 

efficiency, and total factor productivity of Italian olive farms. Farm level data is taken from EU Farm 

Accounting Data Network (FADN). Information collected from each farm encompasses physical, 

structural, economic, and financial data. FADN (2006) offers representative data on EU agricultural 

holdings across three dimensions: region, economic size, and type of farming. The sample consists of 

unbalanced panel data of 1412 observations from 2013 to 2019. The sample data was prepared in order to 

assess calculate the resilience capacities, estimate the stochastic frontier model, and decompose the TFP 

growth. To assess farm resilience, we aggregate various resilience capacity indicators into composite 
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measures. These composite indicators provide valuable insights into the farm's ability to withstand and 

recover from shocks. Before running Principal Component Analysis (PCA), it was necessary to run KMO 

and Bartlett’s tests to check the adequacy of the statistical technique. PCA is a suitable method if Bartlett’s 

test rejects the null hypothesis (at a 5% level) of no intercorrelations between indicators (Hair et al., 2014) 

and the KMO value exceeds 0.5 (Kaiser, 1974). The p-values were recorded at 0.000 and the KMO was 

0.621 which is greater than the benchmark. Therefore, PCA is the suitable statistical method for calculating 

composite resilience indicators in this paper. The composite resilience indicators are derived using PCA 

approach proposed by Slijper et al. (2022). The suitability of PCA for assigning indicator weights is 

confirmed, as all KMO values surpassed 0.500, and the Bartlett test yielded significant intercorrelations 

between indicators (p-values<0.01).  

SFA is used to estimate farm technical efficiency and to explore the impact of potential influence 

of resilience measures on farm productivity. The production function (equation 5) is specified as the Trans-

log form. Trans-log model shows positive values for each of the four inputs used in the production frontier 

whereas, in the case of the Cobb-Douglas, the land variable showed a negative coefficient and insignificant 

p-value which lacks theoretical basis. The output variable is measured as total revenue (in €). Vector 𝑥𝑗𝑖𝑡 is 

determined as a (1×4) vector that consists of four inputs. These inputs represent the production frontier of 

the efficiency analysis. x1 represents the Land; x2 , is the labor input measured in labor hours per year; x3, 

representing fertilizers and pesticides; and x4, variable crop-specific inputs other than fertilizers. The output 

and the input variables are trimmed at 10% to reduce the effect of outliers. Trimming was checked against 

a benchmark of 5% and 10%, however 10% was selected as the best fit. The technical inefficiency 

component consists of five variables, each of them are recorded as dummy variables where 1, indicates a 

positive response and 0 indicates a no/negative response (Z1, robustness; Z2, adaptability; Z3, transformation 

dummy; Z4, subsidies dummy and Z5, renting machinery dummy). As suggested by (Madaan et al., 2023) 

renting machinery can help increase farm income and efficiency. Additionally, based on research of 

(Kumbhakar et al., 2023), subsidies tend to increase farm’s efficiency and profitability. Furthermore, a time 

trend variable is also included that represents technical change. The above equations also include the cross-

section of inputs with other inputs. Technical change is expressed by trend variable 𝑡. 

Currently, the model might suffer from reverse causality. To address potential issues of reverse 

causality in the model specification, the study employs a control function approach. This approach aims to 

examine whether the resilience capacity indicators themselves contribute to endogeneity in the technical 

efficiency models. To achieve this, a two-stage approach, inspired by the works of Papke and Wooldridge 

(2008), Wooldridge (2015), and Slijper et al. (2022), is adopted. In the first stage, a reduced form equation 

is estimated for each resilience capacity variable, utilizing pooled Ordinary Least Squares (OLS) regression. 

In the second stage, the residuals obtained from the first stage are integrated into the technical inefficiency 
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function model. This approach helps to mitigate any potential bias arising from endogeneity, thereby 

enhancing the reliability of the estimates and facilitating a more accurate analysis of the relationship 

between the resilience indicators and technical inefficiency. The reduced form is given by: 

 

𝑦2𝑖𝑡 = 𝜆𝑠𝑖𝑡 +  𝛿𝑚𝑍𝑚𝑖𝑡 + t + 𝜏𝑖𝑡      (10) 

 

where 𝑦2𝑖𝑡 are the endogenous composite resilience indicators 𝑖 (𝑖=1,...,𝑁) indicates a certain farm; 𝑡 

(𝑡=1,...,𝑇) represents a time dummy to allow for different period intercepts; 𝑚 (𝑚=1,...,𝑀) are other 

explanatory variables of technical inefficiency besides the estimated resilience capacity variable; 𝑠𝑖𝑡 is a 

vector of instrumental variables, in this paper, the first lags of the composite resilience indicators; and 𝜏𝑖𝑡 is 

the error term.  

To specify the model, we carried out different statistical tests using the generalized likelihood ratio 

(L-R). The results of test outcomes are presented in Table 1. 

The first tested hypothesis is the presence of constant returns to scale is rejected at 1% significance level, 

which means that there are no constant returns to scale. The second hypothesis of the absence of inefficiency 

effects is rejected at 1%, which reveals that inefficiency effects are not absent from the model. The last 

hypothesis of zero-technical change is rejected at 5%, this indicates that the Italian olive farms show non-

neutral technical progresses. 

Table 1. Model specification tests 

Hypothesis LR test-statistic P-value 

Constant returns-to-scale, (i.e., Σkβk = 1) 18.11 0.0001 

Absence of inefficiency effects, (i.e., γ = δ1=…δM=0) 39.93 0.0000 

Zero-technical change,( i.e., βt = βkt= 0 ∀k) 11.49 0.0424 

Source: Authors 

 

For TFP analysis, the equation (5) is partially derivative with respect to the time variable t, which 

represent the technical change. Following the framework of Lambarraa et al. (2007, 2011), each of the four 

components are calculated. The TFP growth is the summation of its four components. To quantify the 

relationship between TFP and resilience indicators, the OLS estimation is utilized. The estimated results 

derived from the Trans-log model are given in the following section along with regression results.  
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VI. RESULTS  

VI.1 Potential resilience capacity indicators 

The calculated composite potential resilience capacity indicators suggest that Italian farms exhibit 

higher resilience in terms of transformability, with an indicator of 0.55, followed by robustness in absorbing 

economic shocks (0.398) and adaptability to new circumstances (0.259).  

Figure 3 depicts the changes in potential resilience capacities within Italian olive farms over time. 

The Robustness dimension exhibits oscillations from one year to another, influenced by the alternation in 

olive production (biennial bearing). This alternation impacts farm profitability and, consequently, its 

robustness. In the case of Italian farms, this natural phenomenon might be more pronounced due to climate 

change and the age of olive trees. Adaptability, reflecting alterations in input composition and production 

processes, demonstrates a contrasting evolution to robustness, but with minor fluctuations. In years with 

low production, the adaptability of Italian olive farms increases, but not sufficiently to offset the reduction 

in robustness. However, there is a general increasing trend from 2014 to 2018, showing an 84% overall 

rise. Transformability shows a gradual increase of 4.6% during the period, indicating mild internal structural 

changes in Italian olive farms to adapt to risks. 

 

 

Source: Authors 

Figure 3. The evolution of potential resilience capacities in Italian olive farms 

 

VI.2 SFA and TE estimation: impact of resilience capacities 

The results obtained from estimating the Translog stochastic frontier model for Italian olive farms 

are presented in Table 2. First-order parameters are positive and statistically significant, indicating an 
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increase in production with the corresponding inputs. In the inefficiency model, the impact of renting 

machinery on Italian olive farms' technical efficiency is positive, suggesting that farms with more rented 

machinery tend to be more efficient. This finding aligns with the results of Madaan et al. (2023).  

On the other hand, subsidies have a negative impact on farm technical efficiency, consistent with 

the findings of Rizov et al. (2013). The provision of subsidies may diminish the motivation to adopt new 

technologies or enhance farming practices, prioritizing short-term benefits at the expense of long-term farm 

performance.  

Robustness has a negative impact on the technical efficiency of Italian olive farms. This result can 

be explained by the oscillation of robustness influenced by the alternation in olive production during the 

studied period, which impacts the farm's capacity to utilize its inputs optimally in the production process to 

achieve the maximum possible output level. The adaptability indicator also has a negative impact on farm 

technical efficiency. Similarly, adaptability often requires reallocating resources to address new challenges 

or opportunities. This reallocation can disrupt established workflows and may result in temporary 

inefficiencies as resources are redirected and adjusted to new priorities. Reorganizing teams or changing 

roles can also cause a temporary decrease in technical efficiency until everyone adapts to the new structure. 

Adaptability solutions might not be fully optimized to address the requirements of olive farms during 

shocks, causing disruptions in output pre and post-shock. In terms of adaptability, building adaptive 

practices might lead to greater long-term flexibility, but the process of adapting and learning new techniques 

can initially be less efficient. Adopting new methods requires additional training, which could temporarily 

affect operational efficiency. Transformability to a new farm type also decreases efficiency, as organic 

farms are deemed less efficient compared to conventional farming systems. An entire shift in the farming 

system can set back farm efficiency for years until the strategies are optimally designed. 

 

Table 6. Maximum likelihood estimates of the stochastic frontier model for Italian olive farms  

Variables  Parameters Estimates Standard error 

Frontier production function 

Constant 𝛼 -7.894 3.539*** 

Labor 𝛽𝐿𝐵 2.660 0.8416*** 

Land 𝛽𝐿 0.1649 0.08842* 

Fertilizers & Pesticides 𝛽𝐹𝑃 0.2973 0.1636*** 

Other-specific cost (sc) 𝛽𝑆𝐶  .281503 0.0930* 
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Notes: ***, ** and * indicate that the parameter is significant at 1%, 5%, and 10% respectively. 

Source: Authors 

 

Technical change  𝛽𝑇 -0.0524 0.0978 

Time x Land 𝛽𝑇𝐿 -0.0019 0.0017 

Time x Labor  𝛽𝑇𝐿𝐵 -0.0041 0.0150 

Time x Fertilizers & Pesticides 𝛽𝑇𝐹𝑃 -0.0003 0.0047 

Time x Other-specific costs  𝛽𝑇𝑆𝐶  0.0117 0.008 

Other specific cost x Land 𝛿𝑆𝐶𝐿 -0.0142 0.0057*** 

Other specific-cost x Labor 𝛿𝑆𝐶𝐿𝐵 -0.0290 0.0454 

Other specific-cost x Other specific-cost 𝛿𝑆𝐶𝑆𝐶 0.098 0.0220*** 

Other specific-cost x  Fertilizers & Pesticides 𝛿𝑆𝐶𝐹𝑃 -0.095 0.0141*** 

Fertilizers & Pesticides x Land 𝜀𝐹𝑃𝐿 0.003 0.0026 

Fertilizers & Pesticides x Labor 𝜀𝐹𝑃𝐿𝐵 0.0379 0.0231 

Fertilizers & Pesticides x  Fertilizers & 

Pesticides 

𝜀𝐹𝑃𝐹𝑃 0.0102 0.0054* 

Land x Land 𝜔𝐿𝐿 -0.0112 0.0046*** 

Land x Labor 𝜔𝐿𝐿𝐵 0.007 0.0099 

Labor x Labor ∅𝐿𝐵𝐿𝐵 -0.1468 0.0588*** 

Technical inefficiency function 

Constant  𝛿0 -7.766 1.596*** 

Renting machinery 𝛿𝑅𝑀 ­1.117 0.2815*** 

Subsidies  𝛿𝑆𝐵 0.7874 1.280*** 

Robustness 𝛿𝑅 5.914 0.7900*** 

Adaptability 𝛿𝐴 0.5315 0.2240*** 

Transformability 𝛿𝑇 0.202 0.1946* 

Sigma squared 𝜎2 0.203 .0080*** 

LR-test  -350.675 

Mean technical efficiency 0.861 
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The evolution of the estimated technical efficiency scores are presented in Figure 4. The predicted 

technical efficiency takes the average value of 86.1%, implying that output could increase substantially if 

technical inefficiency were eliminated. The fluctuations in technical efficiency are related to farm potential 

resilience capacities to deal with shocks, especially robustness and adaptability. 

 

 

                                                                                                                              Source: Authors 

 

Figure 4. The evolution of potential resilience capacities in Italian olive farms 

VI.3 TFP decomposition and resilience dynamics 

The evolution of the TFP decomposition over the years is reported in Figure 5. TFP is the 

aggregated sum of the rate of technical change, scale economies, allocative efficiency, and the rate of 

change in technical efficiency. TFP exhibits a fluctuating pattern over the years, which can be attributed to 

the natural tendency for alternate bearing, resulting in high productivity in one year and low productivity 

in the next. 

The rate of technical change indicates a weak adoption of technology in the olive sector of Italy, 

with a slight improvement in the last year. The rate of change in technical efficiency follows a similar 

pattern to the total factor productivity of the farm. When the farm utilizes its set of inputs efficiently, its 

total factor productivity improves. On the other hand, allocative efficiency and scale economies have a 

negative impact on TFP growth. 
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Source: Authors 

Figure 1. Changes in TFP components over the years 

 

Table 7 illustrates the dynamics of the evolution of TFP in comparison to potential resilience 

capacities (robustness, adaptability, and transformability) over the years.  

 

Table 7. Analysis of the dynamics of TFP & resilience indicators 

Source: Authors 

The changes in these resilience capacities correspond to whether TFP is non-declining or declining 

during each respective period. For example, in the year 2014-2015, TFP declined alongside a drastic 

decrease in Robustness, while adaptability increased. In contrast, in the following year (2015-2016), TFP 

declined significantly with a decrease in adaptability and a drastic increase in Robustness. These patterns 

suggest a potential tradeoff between farm resilience capacities and TFP, with the fluctuations in resilience 

indicators coinciding with changes in TFP over the observed years. We observe a direct impact of farms' 

adaptability on TFP growth. Changes in a farm's input composition, production, marketing, and risk 

management directly result in either an increase or decrease in input composition and production processes, 
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Years  2014-2015 2015-2016 2016-2017 2017-2018 

Potential resilience 
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Robustness Drastic decrease Drastic increase Drastic decrease Drastic increase 

Adaptability Increase Decrease Increase Decrease 

Transformability Partial decrease Partial increase Relatively Stable Partial increase 
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impacting TFP growth. However, the other capacities reflected by Robustness and Transformation do not 

seem to directly influence TFP movement. 

 

V. CONCLUSION 

This paper explores the synergies among resilience, technical efficiency, and total factor 

productivity (TFP) in Italian olive farms using data from the FADN for the period 2013-2019. The study 

applied Principal Component Analysis (PCA) to derive composite potential resilience indicators and 

employed a two-stage control function approach to address potential issues of reverse causality. The 

stochastic frontier model was employed to estimate technical efficiency and analyze the impact of potential 

resilience measures on farm productivity. 

The calculated potential resilience capacity indicators revealed that Italian olive farms exhibit 

higher resilience in terms of transformability, followed by robustness and adaptability. The evolution of 

these capacities over time indicated fluctuations influenced by biennial bearing and external factors like 

climate change. From the results of stochastic frontier model, we can see that resilience capacity indicators 

have impact on technical efficiency. Robustness and adaptability negatively affected technical efficiency, 

indicating challenges related to optimal input utilization during periods of economic shocks or adaptation. 

Transformability to a new farm type also decreased efficiency, highlighting the complexities of 

transitioning farming systems. Renting machinery positively influenced technical efficiency, aligning with 

prior research. In contrast, subsidies had a negative impact, potentially due to short-term prioritization over 

long-term farm performance.  

The examination of TFP growth revealed a fluctuating pattern attributed to natural tendencies like 

alternate bearing. The rate of technical change indicated a weak adoption of technology in the olive sector, 

while changes in technical efficiency correlated with TFP growth. A tradeoff between farm resilience 

capacities and TFP emerged, particularly with Adaptability influencing TFP positively. 

In conclusion, this study contributes to the understanding of the complex interaction between 

resilience, technical efficiency, and TFP in Italian olive farming. The findings underscore the importance 

of balancing efficiency and resilience, acknowledging the challenges posed by external shocks and 

transitions in farming practices. The results provide valuable insights for policymakers, farmers, and 

researchers seeking sustainable and resilient agricultural practices in the face of evolving challenges. 

Policymakers should incentivize and facilitate the adoption of modern agricultural technologies in the 

Italian olive sector. Support programs, training initiatives, and subsidies for advanced machinery can 

contribute to increased productivity and competitiveness. However, subsidies programs need to be carefully 

designed. Focus should be on promoting long-term sustainable practices rather than solely emphasizing 
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short-term gains. Monitoring and evaluation mechanisms should be in place to assess the effectiveness of 

subsidies in fostering innovation and efficiency. Farmers should be equipped with strategies and resources 

to navigate economic shocks and adapt to the changes. Training programs, insurance schemes, and 

collaborative networks can enhance farmers' capacity to withstand uncertainties and improve its resilience 

capacities especially robustness and adaptability. Policies should facilitate and support the transition 

process posed by transformability to new farm types. Financial incentives, technical assistance, and 

knowledge-sharing platforms can aid farmers in adopting new farming systems. Long-term benefits of 

sustainable and resilient farming practices should be emphasized to encourage gradual transitions. The 

climate-resilient agricultural practices need to be prioritize to face the impacts of shocks such as climate 

change. Investment in research and development of climate-adaptive technologies, water management 

strategies, and sustainable farming practices can contribute to the long-term sustainability of Italian olive 

farming. Establishing a robust monitoring and extension service system is essential. For that, the FADN 

dataset needs to be integrated to take into consideration other aspects related to sustainability and resilience 

aspects such as environmental, social, and behavioral indicators to help in the establishment of a strong 

monitoring system and provide valuable data for evidence-based policymaking. Future research needs to 

focus also on more collaborative research initiatives involving different stakeholders such as researchers, 

farmers, policymakers, and the industry. 
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